User Tools

Site Tools


research:johnny_zhang

Zhiyong Johnny Zhang

PhD, University of Virginia
Professor of Quantitative Psychology, University of Notre Dame
Director, Lab for Big Data Methodology
Faculty Fellow, Institute for Educational Initiatives
Fellow, American Psychological Association
Editor, Journal of Behavioral Data Science
Associate Editor, Multivariate Behavioral Research
Editorial Board (Associate Editor), Neurocomputing
Editorial Board (Guest Editor), Psychological Methods

438 Corbett Family Hall
Department of Psychology
University of Notre Dame

Tel: 574-631-2902
Fax: 574-631-8883
Email: ZhiyongZhang (at) nd.edu
Web: https://nd.psychstat.org
https://bigdatalab.nd.edu

Curriculum Vitae

Research interests

Our Lab for Big Data Methodology aims to develop better statistical methods and software in the areas of education, health, management and psychology. Our most recent research involves the development of new methods for social network and big data analysis. Particularly, we have contributed to the areas of Bayesian methods, Network analysis, Big data analysis, Structural equation modeling, Longitudinal data analysis, Mediation analysis, and Statistical computing and programming.

Doctoral Students

Current students

  • 2020 - Now: Lingbo Tong
  • 2021 - Now: Ziqian Xu
  • 2023 - Now: Austin Wyman
  • 2024 - Now: Zongyu Li

Former students

  • 2024    Sijing Shao (Post-doc at Cornell University, Co-advised with Ross Jacobucci and Guangjian Zhang)
  • 2022    Tyler Wilcox (Statistical Consultant at Cornell University, Co-advised with Lijuan Wang)
  • 2021    Change Che (Senior data scientist at Facebook)
  • 2021    Wen Qu (Assistant professor at the Fudan University)
  • 2018    Haiyan Liu (Tenure-track assistant professor at the University of California, Merced)
  • 2017    Meghan Cain (Now Senior Statistician at StataCorp, co-advised with Ke-Hai Yuan)
  • 2014    Xin Tong (Tenured associate professor at the University of Virginia)
  • 2011    Zhenqiu Lu (Tenured associate professor at the University of Georgia, co-advised with Ke-Hai Yuan)

Publications

Journal Articles

  1. Wyman, A. & Zhang, Z. (in press). A Tutorial on the Use of Artificial Intelligence Tools for Facial Emotion Recognition in R. Multivariate Behavioral Research.
  2. Yuan, K.-H., & Zhang, Z. (in press). Parameterizing the LISREL Model as a Correlation Structure Model for More Efficient Parameter Estimates and More Powerful Statistical Tests. Structural Equation Modeling: A Multidisciplinary Journal.
  3. Yuan, K.-H., Ling, L., & Zhang, Z. (in press). Scale-invariance, equivariance and dependency of structural equation models. Structural Equation Modeling: A Multidisciplinary Journal. https://doi.org/10.1080/10705511.2024.2353168 Get bib
  4. Liu, X., Zhang Z., & Wang, L. (accepted). Detecting mediation effects with the Bayes factor: Performance evaluation and tools for sample size determination. Psychological Methods. https://doi.org/10.1037/met0000670
  5. Yuan, K.-H., Zhang Z., & Wang, L. (2024). Signal-to-Noise Ratio in Estimating and Testing the Mediation Effect: Structural Equation Modeling versus Path Analysis with Weighted Composites. Psychometrika, 89(3), 974-1006. https://doi.org/10.1007/s11336-024-09975-4
  6. Yuan, K.-H., & Zhang, Z. (2024). Modeling Data with Measurement Errors but without Predefined Metrics: Fact versus Fallacy. Journal of Behavioral Data Science, 4(2), 1-28. https://doi.org/10.35566/jbds/yuan
  7. *Xu, Z., *Gao, F., *Fa, A., Qu, W., & Zhang, Z. (2024). Statistical Power Analysis and Sample Size Planning for Moderated Mediation Models. Behavior Research Methods, 56, 6130–6149. https://doi.org/10.3758/s13428-024-02342-2
  8. *Zhao, S., Zhang, Z., & Zhang, H. (2024). Bayesian Inference of Dynamic Mediation Models for Longitudinal Data. Structural Equation Modeling: A Multidisciplinary Journal, 31(1), 14-26. https://doi.org/10.1080/10705511.2023.2230519
  9. Liu, X., Zhang, Z., Valentino, K., & Wang, L. (2024). The impact of omitting confounders in parallel process latent growth curve mediation models: Three sensitivity analysis approaches. Structural Equation Modeling: A Multidisciplinary Journal, 31(1), 132-150. https://doi.org/10.1080/10705511.2023.2189551
  10. *Zhang, L., +Li, X., & Zhang, Z. (2023). Variety and Mainstays of the R Developer Community. R Journal, 15(3), 5-25. https://doi.org/10.32614/RJ-2023-060
  11. *Wilcox, K. T., Jacobucci, R., Zhang, Z., & Ammerman, B. A. (2023). Supervised Latent Dirichlet Allocation with Covariates: A Bayesian Structural and Measurement Model of Text and Covariates. Psychological Methods, 28(5), 1178–1206. https://doi.org/10.1037/met0000541
  12. Liu, X., Wang, L., & Zhang, Z. (2023). Bayesian hypothesis testing of mediation: Methods and the impact of prior odds specifications. Behavior Research Methods, 55, 1108–1120. https://doi.org/10.3758/s13428-022-01860-1
  13. *Xu, Z., *Hai, J., *Yang, Y., & Zhang, Z. (2023). Comparison of Methods for Imputing Social Network Data. Journal of Data Science, 21(3), 599–618 https://doi.org/10.6339/22-JDS1045
  14. Wyman, A., & Zhang, Z. (2023). API Face Value: Evaluating the Current Status and Potential of Emotion Detection Software in Emotional Deficit Interventions. Journal of Behavioral Data Science, 3(1), 59–69. https://doi.org/10.35566/jbds/v3n1/wyman
  15. *Mai, Y., *Xu, Z., Zhang, Z., & Yuan, K.-H. (2023). An Open Source WYSIWYG Web Application for Drawing Path Diagrams of Structural Equation Models. Structural Equation Modeling: A Multidisciplinary Journal, 30(2), 328-335. https://doi.org/10.1080/10705511.2022.2101460
  16. Krettenauer, T., Lefebvre, J. P., Hardy, S. A., Zhang, Z., & Cazzell, A. R. (2022) Daily moral identity: Linkages with integrity and compassion. Journal of Personality, 90(5), 663-674. https://doi.org/10.1111/jopy.12689
  17. *Liu, H. ., *Qu, W., Zhang, Z., & Wu, H. (2022). A New Bayesian Structural Equation Modeling Approach with Priors on the Covariance Matrix Parameter. Journal of Behavioral Data Science, 2(2), 23–46. https://doi.org/10.35566/jbds/v2n2/p2
  18. *Lu, L., & Zhang, Z. (2022). How to Select the Best Fit Model among Bayesian Latent Growth Models for Complex Data. Journal of Behavioral Data Science, 2(1), 35–58. https://doi.org/10.35566/jbds/v2n1/p2
  19. Lu, Z. (Laura)*, & Zhang, Z. (2021). Bayesian Approach to Non-ignorable Missingness in Latent Growth Models. Journal of Behavioral Data Science, 1(2), 1–30. https://doi.org/10.35566/jbds/v1n2/p1
  20. Zhang, Z. (2021). A Note on Wishart and Inverse Wishart Priors for Covariance Matrix. Journal of Behavioral Data Science, 1(2), 119–126. https://doi.org/10.35566/jbds/v1n2/p2
  21. *Liu, H., Jin, I.-H., Zhang, Z., & Yuan, Y. (2021). Social network mediation analysis: A latent space approach. Psychometrika, 86(1), 272-298. https://doi.org/10.1007/s11336-020-09736-z
  22. Che, C.*, Jin, I.-K., & Zhang, Z. (2021). Network Mediation Analysis Using Model-based Eigenvalue Decomposition. Structural Equation Modeling, 28(1), 148-161. https://doi.org/10.1080/10705511.2020.1721292
  23. Zhang, Z. & *Zhang, D. (2021). What is Data Science? An Operational Definition based on Text Mining of Data Science Curricula. Journal of Behavioral Data Science 1(1), 1-16. https://doi.org/10.35566/jbds/v1n1/p1
  24. *Liu, H. & Zhang, Z. (2021). Birds of a Feather Flock Together and Opposites Attract: The Nonlinear Relationship Between Personality and Friendship, Journal of Behavioral Data Science 1(1), 34-52. https://doi.org/10.35566/jbds/v1n1/p3
  25. *Kuang, Y., Zhang, Z., Duan, B., & Zhang, P. (2020). Fuzzy Cognitive Maps-based Switched-Mode Power Supply Design Assistant System. IEEE Access, 8, 183014-183024. https://doi.org/10.1109/ACCESS.2020.3029090
  26. *Tong, X., & Zhang, Z. (2020). Robust Bayesian approaches in growth curve modeling: Using Student's t distributions versus a semiparametric method. Structural Equation Modeling, 27(4), 544-560. https://doi.org/10.1080/10705511.2019.1683014
  27. *Wen, Q., *Liu, H., & Zhang, Z. (2020). Generating multivariate non-normal random numbers with specified multivariate skewness and kurtosis. Behavior Research Methods, 52, 939–946. https://doi.org/10.3758/s13428-019-01291-5
  28. *Wilcox, L.T., Jacobucci, R. & Zhang, Z. (2019). Bayesian Supervised Topic Modeling with Covariates (Abstract). Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2019.1695568
  29. *Du, H., Edwards, M., & Zhang, Z. (2019). Bayes factor in one-sample tests of means with a sensitivity analysis: A discussion of separate prior distributions. Behavior Research Methods, 51(5), 1998–2021. https://doi.org/10.3758/s13428-019-01262-w
  30. Serang, S., Grimm, K. J., & Zhang, Z. (2019). On the correspondence between the latent growth curve and latent change score models. Structural Equation Modeling, 26(4), 623-635. https://doi.org/10.1080/10705511.2018.1533835  
  31. *Cain, M. K., & Zhang, Z. (2019). Fit for a Bayesian: An evaluation of PPP and DIC for structural equation modeling. Structural Equation Modeling, 26(1), 39–50. https://doi.org/10.1080/10705511.2018.1490648
  32. Yuan, K., Zhang, Z., & Deng, L. (2019). Fit indices for mean structures with growth curve models. Psychological Methods, 24(1), 36-53. https://doi.org/10.1037/met0000186
  33. *Liu, H., Jin, I. K., & Zhang, Z. (2018). Structural equation modeling of social networks: Specification, estimation, and application. Multivariate Behavioral Research, 53(5), 714–730. https://doi.org/10.1080/00273171.2018.1479629
  34. ^Mai, Y., Zhang, Z., & Wen, Z. (2018). Comparing exploratory structural equation modeling and existing approaches for multiple regression with latent variables. Structural Equation Modeling, 25(5), 737–749. https://doi.org/10.1080/10705511.2018.1444993
  35. ^Mai, Y., & Zhang, Z. (2018). Review of software packages for Bayesian multilevel modeling. Structural Equation Modeling, 25(4), 650–658. https://doi.org/10.1080/10705511.2018.1431545
  36. *Cain, M. K., Zhang, Z., & Bergeman, C. S. (2018). Time and other considerations in mediation design. Educational and Psychological Measurement, 78(6), 952–972. https://doi.org/10.1177/0013164417743003
  37. *Ke, Z., & Zhang, Z. (2018). Testing autocorrelation and partial autocorrelation: Asymptotic methods versus resampling techniques. British Journal of Mathematical and Statistical Psychology, 71(1), 96–116. https://doi.org/10.1111/bmsp.12109
  38. *Tong, X., & Zhang, Z. (2017). Outlying observation diagnostics in growth curve modeling. Multivariate Behavioral Research, 52(6), 768–788. https://doi.org/10.1080/00273171.2017.1374824
  39. Zhang, Z., Jiang, K., *Liu, H., & Oh, I.-S. (2017). Bayesian meta-analysis of correlation coefficients through power prior. Communications in Statistics: Theory and Methods, 46(24), 11988–12007. https://doi.org/10.1080/03610926.2017.1288251
  40. *Cain, M. K., Zhang, Z., & Yuan, K. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49(5), 1716–1735. https://doi.org/10.3758/s13428-016-0814-1
  41. *Liu, H., & Zhang, Z. (2017). Logistic regression with misclassification in binary outcome variables: A method and software. Behaviormetrika, 44(2), 447–476. https://doi.org/10.1007/s41237-017-0031-y
  42. Yuan, K.-H., Zhang, Z., & Zhao, Y. (2017). Reliable and more powerful methods for power analysis in structural equation modeling. Structural Equation Modeling, 24(3), 315–330. https://doi.org/10.1080/10705511.2016.1276836
  43. *Cheung, R. Y. M., Cummings, E. M., Zhang, Z., & Davies, P. (2016). Trivariate modeling of interparental conflict and adolescent emotional security: An examination of mother-father-child dynamics. Journal of Youth and Adolescence, 45(11), 2336–2352. https://doi.org/10.1007/s10964-015-0406-x
  44. *Liu, H., Zhang, Z., & Grimm, K. J. (2016). Comparison of inverse-Wishart and separation-strategy priors for Bayesian estimation of covariance parameter matrix in growth curve analysis. Structural Equation Modeling, 23 (3), 354–367. https://doi.org/10.1080/10705511.2015.1057285
  45. Zhang, Z. (2016). Modeling error distributions of growth curve models through Bayesian methods. Behavior Research Methods, 48(2), 427–444. https://doi.org/10.3758/s13428-015-0589-9
  46. Zhang, Z. & Yuan, K.-H. (2016). Robust coefficients alpha and omega and confidence intervals with outlying observations and missing data: Methods and software. Educational and Psychological Measurement, 76(3), 387–411. https://doi.org/10.1177/0013164415594658
  47. Serang, S., Zhang, Z., Helm, J., Steele, J. S., & Grimm, K. J. (2015). Evaluation of a Bayesian approach to estimating nonlinear mixed-effects mixture models. Structural Equation Modeling, 22(2), 202–215. https://doi.org/10.1080/10705511.2014.937322
  48. Yuan, K.-H., *Tong, X., & Zhang, Z. (2015). Bias and efficiency for SEM with missing data and auxiliary variables: Two-stage robust method versus two-stage ML. Structural Equation Modeling, 22(2), 178–192. https://doi.org/10.1080/10705511.2014.935750
  49. Bernard, K., Peloso, E., Laurenceau, J-P, Zhang, Z., & Dozier, M. (2015). Examining change in cortisol patterns during the 10-week transition to a new childcare setting. Child Development, 86(2), 456–71. https://doi.org/10.1111/cdev.12304
  50. Merluzzi, T.V., Philip, E.J., Zhang, Z., & Sullivan, C. (2015). Perceived discrimination, coping, and quality of life for African-American and Caucasian persons with cancer. Cultural Diversity and Ethnic Minority Psychology, 21(3), 337–344. https://doi.org/10.1037/a0037543
  51. Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132–147. https://doi.org/10.1080/10705511.2014.935257
  52. Hardy, S. A., Zhang, Z., Skalski, J. E., Melling, B. S., & Brinton, C. T. (2014). Daily religious involvement, spirituality, and moral emotions. Psychology of Religion and Spirituality, 6(4), 338–348. http://doi.org/10.1037/a0037293
  53. *Tong, X., Zhang, Z., & Yuan, K.-H. (2014). Evaluation of test statistics for robust structural equation modeling with nonnormal missing data. Structural Equation Modeling, 21, 553–565. https://doi.org/10.1080/10705511.2014.919820
  54. Zhang, Z. (2014a). WebBUGS: Conducting Bayesian analysis online. Journal of Statistical Software, 61(7), 1–30. http://doi.org/10.18637/jss.v061.i07
  55. Zhang, Z. (2014b). Monte Carlo based statistical power analysis for mediation models: Methods and software. Behavior Research Methods, 46(4), 1184–1198. https://doi.org/10.3758/s13428-013-0424-0
  56. Song, H., & Zhang, Z. (2014). Analyzing multiple multivariate time series data using multilevel dynamic factor models. Multivariate Behavioral Research, 49(1), 67–77. https://doi.org/10.1080/00273171.2013.851018
  57. *Lu, Z., & Zhang, Z. (2014). Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application. Computational Statistics and Data Analysis, 71, 220–240. https://doi.org/10.1016/j.csda.2013.07.036
  58. *Tong, X., & Zhang, Z. (2014). Abstract: Semiparametric Bayesian modeling with application in growth curve analysis. Multivariate Behavioral Research, 49, 299–299. https://doi.org/10.1080/00273171.2014.912928
  59. Zhang, Z. (2013). Bayesian growth curve models with the generalized error distribution. Journal of Applied Statistics, 40(8), 1779–1795. https://doi.org/10.1080/02664763.2013.796348
  60. Grimm, K. J., Kuhl, A. P., & Zhang, Z. (2013). Measurement models, estimation, and the study of change. Structural Equation Modeling, 20(3), 504–517, DOI: http:// doi.org/10.1080/10705511.2013.797837
  61. Philip, E. J., Merluzzi, T. V., Zhang, Z. & Heitzmann, C. (2013). Depression and cancer survivorship: Importance of coping self-efficacy in post-treatment survivors. Psycho-Oncology, 22(5), 987–994. https://doi.org/10.1002/pon.3088
  62. Grimm, K. J., Zhang, Z., Hamagami, F., & Mazzocco, M. (2013). Modeling nonlinear change via latent change and latent acceleration frameworks: Examining velocity and acceleration of growth trajectories. Multivariate Behavioral Research, 48, 117–143. https://doi.org/10.1080/00273171.2012.755111
  63. Zhang, Z., *Lai, K., *Lu, Z., & *Tong, X. (2013). Bayesian inference and application of robust growth curve models using Student’s t distribution. Structural Equation Modeling, 20(1), 47–78. https://doi.org/10.1080/10705511.2013.742382
  64. Zhang, Z., & Wang, L. (2013). Methods for mediation analysis with missing data. Psychometrika, 78(1), 154–184. https://doi.org/10.1007/s11336-012-9301-5
  65. Yuan, K.-H., & Zhang, Z. (2012). Robust structural equation modeling with missing data and auxiliary variables. Psychometrika, 77(4), 803–826. https://doi.org/10.1007/s11336-012-9282-4
  66. *Tong, X., and Zhang, Z. (2012). Diagnostics of robust growth curve modeling using Student's t distribution. Multivariate Behavioral Research, 47(4), 493–518. https://doi.org/10.1080/00273171.2012.692614
  67. Yuan, K.-H., & Zhang, Z. (2012). Structural equation modeling diagnostics using R package semdiag and EQS. Structural Equation Modeling: An Interdisciplinary Journal, 19(4), 683–702. https://doi.org/10.1080/10705511.2012.713282
  68. Zhang, Z., & Wang, L. (2012). A note on the robustness of a full Bayesian method for non-ignorable missing data analysis. Brazilian Journal of Probability and Statistics, 26(3), 244–264.  https://doi.org/10.1214/10-BJPS132
  69. Zhang, Z., McArdle, J. J., & Nesselroade, J. R. (2012). Growth rate models: Emphasizing growth rate analysis through growth curve modeling. Journal of Applied Statistics, 39(6), 1241–1262. https://doi.org/10.1080/02664763.2011.644528
  70. *Tong, X., Zhang, Z., & Yuan, K.-H. (2011). Abstract: Evaluation of test statistics for robust structural equation modeling with nonnormal missing data. Multivariate Behavioral Research, 46(6), 1016–1016. https://doi.org/10.1080/00273171.2011.636715  
  71. Wang, L. & Zhang, Z. (2011). Estimating and testing mediation effects with censored data. Structural Equation Modeling, 18(1), 18–34. http://doi.org/10.1080/10705511.2011.534324
  72. Hardy, S. A., White, J., Zhang, Z., & Ruchty, J. (2011). Parenting and the socialization of religiousness and spirituality. Psychology of Religion and Spirituality, 3(3), 217–230. https://doi.org/10.1037/a0021600
  73. *Lu, Z., Zhang, Z., & Lubke, G. (2011). Bayesian inference for growth mixture models with latent class dependent missing data. Multivariate Behavioral Research, 46(4), 567–597. https://doi.org/10.1080/00273171.2011.589261
  74. Zhang, Z., Browne, M. W., & Nesselroade, J. R. (2011). Higher-order factor invariance and idiographic mapping of constructs to observables. Applied Developmental Sciences, 15(4), 186–200.  https://doi.org/10.1080/10888691.2011.618099
  75. *Lu, Z., Zhang, Z., & Lubke, G. (2010). Abstract: Bayesian inference for growth mixture models with non-ignorable missing data. Multivariate Behavioral Research, 45(6), 1028–1028. https://doi.org/10.1080/00273171.2010.534381   
  76. Winter, W. C., Hammond, W. R., Zhang, Z., & Green, N. H. (2009). Measuring circadian advantage in Major League Baseball: A 10-year retrospective study. International Journal of Sports Physiology and Performance, 4(3) 394–401. https://doi.org/10.1123/ijspp.4.3.394
  77. Hamaker, E. L., Zhang, Z., & van der Maas, H. L. J. (2009). Dyads as dynamic systems: Using threshold autoregressive models to study dyadic interactions. Psychometrika, 74(4) 727–745. https://doi.org/10.1007/s11336-009-9113-4
  78. Zhang, Z., & Wang, L. (2009). Statistical power analysis for growth curve models using SAS. Behavior Research Methods, 41(4), 1083–1094. https://doi.org/10.3758/BRM.41.4.1083
  79. Zhang, Z., Hamaker, E. L., & Nesselroade, J. R. (2008). Comparisons of four methods for estimating dynamic factor models. Structural Equation Modeling, 15(3), 377–402. https://doi.org/10.1080/10705510802154281
  80. Zhang, Z., McArdle, J. J., Wang, L., & Hamagami, F. (2008). A SAS interface for Bayesian analysis with WinBUGS. Structural Equation Modeling, 15(4), 705–728.  https://doi.org/10.1080/10705510802339106
  81. Wang, L., Zhang, Z., McArdle, J. J., & Salthouse, T. A. (2008). Investigating ceiling effects in longitudinal data analysis. Multivariate Behavioral Research, 43(3), 476–496.  https://doi.org/10.1080/00273170802285941
  82. Zhang, Z., Davis, H. P., Salthouse, T. A., & Tucker-Drob, E. A. (2007). Correlates of individual, and age-related, differences in short-term learning. Learning and Individual Differences, 17(3), 231–240.  https://doi.org/10.1016/j.lindif.2007.01.004
  83. Zhang, Z., Hamagami, F., Wang, L., Grimm, K. J., & Nesselroade, J. R. (2007). Bayesian analysis of longitudinal data using growth curve models. International Journal of Behavioral Development, 31(4), 374–383. https://doi.org/10.1177/0165025407077764
  84. Zhang, Z., & Nesselroade J. R. (2007). Bayesian estimation of categorical dynamic factor models. Multivariate Behavioral Research, 42(4), 729–756. https://doi.org/10.1080/00273170701715998

Books and Monographs

  1. Jacobucci, R., Grimm, K. J., & Zhang, Z. (2023). Machine Learning for social and behavioral research. New York, NY: Guilford.
  2. Zhang, Z., Yuan, K.-H., Wen, Y., & Tang, J. (Eds.). (2020). New developments in data science and data analytics: Proceedings of the 2019 meeting of the International Society for Data Science and Analytics. Granger, IN: ISDSA Press. https://doi.org/10.35566/isdsa2019. To order: https://www.amazon.com/gp/product/1946728039
  3. Zhang, Z., & Yuan, K.-H. (Eds.). (2018). Practical statistical power analysis using Webpower and R. Granger, IN: ISDSA Press. https://doi.org/10.35566/power. To order: https://www.amazon.com/gp/product/1946728020. Free E-book:  https://bit.ly/32ybdzQ
  4. Zhang, Z. & Wang, L. (2017). Advanced statistics using R. Granger, IN: ISDSA Press. https://doi.org/10.35566/advstats. Retrievable from https://advstats.psychstat.org/.

Refereed Publications in Proceedings and Books

  1. Zhang,Z., Qu, W. (2020). Kurtosis. Dana S. Dunn (Ed.) Oxford Bibliographies in Psychology. New York: Oxford University Press. https://doi.org/10.1093/obo/9780199828340-0276
  2. *Qu, W. & Zhang, Z. (2020). An application of aspect-based sentiment analysis on teaching evaluation. New Developments in Data Science and Data Analytics: Proceedings of the 2019 Meeting of the International Society for Data Science and Analytics. Granger:  ISDSA Press. https://doi.org/10.35566/isdsa2019c6
  3. *Qu, W., *Liu, H., & Zhang, Z. (2020).  Permutation test of regression coefficients in social network data analysis. Quantitative Psychology. IMPS 2019. Springer Proceedings in Mathematics & Statistics, 322. Springer, Cham. https://doi.org/10.1007/978-3-030-43469-4_28.
  4. Zhang, Z., +Ye, M., +Huang, Y., & +Sun, N. (2018). A longitudinal social network clustering method based on tie strength. Proceedings of 2018 IEEE international conference on big data (pp. 1690–1697). https://doi.org/10.1109/BigData.2018.8621925
  5. Zhang, Z., & *Liu, H. (2018). Sample size and measurement occasion planning for latent change score models through Monte Carlo simulation. In E. Ferrer, S. M. Boker, and K. J. Grimm (Eds.), Advances in longitudinal models for multivariate psychology: A festschrift for Jack McArdle (pp. 189–211). New York, NY: Routledge.
  6. ^Mai, Y., & Zhang, Z. (2017). Statistical power analysis for comparing means with binary or count data based on analogous ANOVA. In L. A. van der Ark, M. Wiberg, S. A. Culpepper, J. A. Douglas, and W.-C. Wang (Eds.), Quantitative psychologyThe 81st annual meeting of the psychometric society (pp. 381–393). Springer Proceedings in Mathematics & Statistics. New York, NY: Springer. https://doi.org/10.1007/978-3-319-56294-0_33
  7. *Du, H., Zhang, Z., & Yuan, K.-H. (2017). Power analysis for t-test with non-normal data and unequal variances. In L. A. van der Ark, M. Wiberg, S. A. Culpepper, J. A. Douglas, and W.-C. Wang (Eds.), Quantitative psychologyThe 81st annual meeting of the psychometric society (pp. 373–380). Springer Proceedings in Mathematics & Statistics. New York, NY: Springer. https://doi.org/10.1007/978-3-319-56294-0_32
  8. Zhang, Z., Wang, L., & *Tong, X. (2015). Mediation analysis with missing data through multiple imputation and bootstrap. In L. A. van der Ark, D. M. Bolt, W.-C. Wang, J. A. Douglas, & S.-M. Chow (Eds.), Quantitative psychology researchThe 79th annual meeting of the psychometric society (pp. 341–355). Springer Proceedings in Mathematics & Statistics. New York, NY: Springer. https://doi.org/10.1007/978-3-319-19977-1_24
  9. *Lu, Z., & Zhang, Z. (2015). Issues in aggregating time series: Illustration through an AR(1) model. . In L. A. van der Ark, D. M. Bolt, W.-C. Wang, J. A. Douglas, & S.-M. Chow (Eds.), Quantitative psychology researchThe 79th annual meeting of the psychometric society (pp. 357–370). Springer Proceedings in Mathematics & Statistics. New York, NY: Springer. https://doi.org/10.1007/978-3-319-19977-1_25
  10. *Lu, Z., Zhang, Z., & Cohen, A. (2015). Model selection criteria for latent growth models using Bayesian methods. In R. E. Millsap, D. M. Bolt, L. A. van der Ark, & W.-C. Wang (Eds.), Quantitative psychology researchThe 78th annual meeting of the psychometric society (pp. 319–341).Springer Proceedings in Mathematics & Statistics.  New York, NY: Springer. https://doi.org/10.1007/978-3-319-07503-7_21
  11. *Lu, Z., Zhang, Z., & Cohen, A. (2013). Bayesian methods and model selection for latent growth curve models with missing data. In R. E. Millsap, L. A. van der Ark, D. M. Bolt, & C. M. Woods (Eds.), New developments in quantitative psychology (pp. 275–304). Springer Proceedings in Mathematics & Statistics. New York, NY: Springer. https://doi.org/10.1007/978-1-4614-9348-8_18
  12. Hamagami, F., Zhang, Z., & McArdle, J. J. (2009). Modeling latent difference score models using Bayesian algorithms. In S.-M. Chow, E. Ferrer, & F. Hsieh (Eds), Statistical methods for modeling human dynamics: An interdisciplinary dialogue (pp. 319–348). New York, NY: Lawrence Erlbaum Associates.
  13. Wang, L., Zhang, Z., & Estabrook, R. (2009). Longitudinal mediation analysis of training intervention effects. In S.-M. Chow, E. Ferrer, & F. Hsieh (Eds), Statistical methods for modeling human dynamics: An interdisciplinary dialogue (pp. 349–380). New York, NY: Lawrence Erlbaum Associates.
  14. Zhang, Z., & Wang, L. (2008). Methods for evaluating mediation effects: Rationale and comparison. In K. Shigemasu, A. Okada, T. Imaizumi, & T. Hoshino (Eds.), New trends in psychometrics (pp. 585–594). Tokyo: Universal Academy Press.

Encyclopedia Entries

  1. *Liu, H., & Zhang, Z. (2018). Probit transformation. The SAGE encyclopedia of educational research, measurement, and evaluation (p. 1300). Thousand Oaks, CA: Sage. https://doi.org/10.4135/9781506326139.n541
  2. Zhang, Z. (2018). Moments of a Distribution. The SAGE encyclopedia of educational research, measurement, and evaluation (p. 1084–1085). Thousand Oaks, CA: Sage.https://doi.org/10.4135/9781506326139.n441
  3. *Cain, M., & Zhang, Z. (2018). Posterior Distribution. The SAGE encyclopedia of educational research, measurement, and evaluation (p. 1274–1275). Thousand Oaks, CA: Sage. https://doi.org/10.4135/9781506326139.n528

Book Review

  1. Zhang, Z. (2018). Psychometrics from a Bayesian perspective: A review of Bayesian Psychometric Modeling (Levy & Mislevy, 2016). Journal of Educational and Behavioral Statistics, 43(4), 502–505. https://doi.org/10.3102/1076998618778011

Software Development

  1. +Xu, J., Zhang, Z., & *Qu, W. (2018). webnetvis: Interactive network visualization online [Computer software]. Retrieved from https://webnetvis.psychstat.org.
  2. *Wen, Q., *Liu, H., & Zhang, Z. (2018). mnonr: An R package for multivariate non-normal data generation [Computer software]. Retrieved from https://cran.r-project.org/package=mnonr.
  3. Zhang, Z., & +Keenan, A. (2017). WebPower: An Android app for statistical power analysis [Computer software]. Retrieved from https://play.google.com/store/apps/details?id=org.psychstat.webpower.
  4. Zhang, Z., Yuan, K.-H., & ^Mai, Y. (2018). WebPower: An R package for statistical power analysis [Computer software]. Retrieved from https://CRAN.R-project.org/package=WebPower. (Installed more than 3,000 times from May 2018 to May 2019)
  5. Zhang, Z., Yuan, K.-H., & *Cain, M. (2016). Software for estimating univariate and multivariate skewness and kurtosis [Computer software]. Retrieved from http://psychstat.org/nonnormal.                    
  6. *Ke, Z., & Zhang, Z. (2016). pautocorr: Testing autocorrelation and partial autocorrelation through bootstrap and surrogate methods [Computer software]. Retrieved from https://r-forge.r-project.org.
  7. *Liu, H., & Zhang, Z. (2016). logistic4p: Logistic regression with misclassification in dependent variables [Computer software]. Retrieved from https://r-forge.r-project.org.
  8. ^Mai, Y., Zhang, Z., & Yuan, K.-H. (2015). An online interface for drawing path diagrams for structural equation modeling [Computer software]. Retrieved from http://semdiag.psychstat.org.
  9. Zhang, Z., Yuan, K.-H., & ^Mai, Y. (2015-2018). WebPower: Statistical power analysis online [Computer software]. Retrieved from http://webpower.psychstat.org.
  10. Zhang, Z., & Yuan, K.-H. (2015). coefficientalpha: Robust Cronbach's alpha and McDonald's omega for non-normal and missing data [Computer software]. Retrieved from https://CRAN.R-project.org/package=coefficientalpha.
  11. Zhang, Z. (2014-2018). WebBUGS: Conducting Bayesian analysis online [Computer software]. Retrieved from http://webbugs.psychstat.org.
  12. Zhang, Z., Jiang, J., & Liu, H. (2013). An online software for meta-analysis of correlation [Computer software]. Retrieved from http://webbugs.psychstat.org/modules/metacorr/.
  13. Zhang, Z., McArdle, J. J., Hamagami, F., & Grimm, K. J. (2013). RAMpath: Structural equation modeling using RAM notation [Computer software]. Retrieved from https://CRAN.R-project.org/package=RAMpath.
  14. Zhang, Z. & Yuan, K.-H. (2012-2018). WebSEM: Conducting SEM analysis online [Computer software]. Retrieved from https://websem.psychstat.org.
  15. Yuan, K.-H.  & Zhang, Z. (2011). rsem: An R package for robust structural equation modeling with non-normal and missing data [Computer software]. Retrieved from https://CRAN.R-project.org/package=rsem.
  16. Zhang, Z. & Yuan, K.-H. (2011). semdiag: An R package for structural equation modeling diagnostics [Computer software]. Retrievable from https://CRAN.R-project.org/package=semdiag.
  17. Zhang, Z., & Wang, L. (2011). bmem: An R packages for mediation analysis with ignorable and non-ignorable missing data [Computer software]. Retrieved from https://CRAN.R-project.org/package=bmem.
  18. Zhang, Z., & Wang, L. (2009). SAS macros for power analysis of growth curve models [Computer software]. Retrievable from http://saspower.psychstat.org.
  19. Zhang, Z., & Wang, L. (2008). BAUW as an OpenBUGS plugin [Computer software]. Retrievable from http://bauw.psychstat.org.
  20. Zhang, Z., McArdle, J. J., Wang, L., & Hamagami, F. (2008). SAS scripts for Bayesian analysis with WinBUGS [Computer software]. Retrieved from http://www.psychstat.org/us/sort.php/25.htm.
  21.  Zhang, Z., & Wang, L. (2007). MedCI: Mediation confidence intervals [Computer software]. Retrieved from http://www.psychstat.org/us/sort.php/31.htm.
  22. Zhang, Z., & Wang, L. (2006). BAUW: Bayesian analysis using WinBUGS [Computer software]. Retrieved from http://bauw.psychstat.org.
  23. Zhang, Z., & Nesselroade, J. R. (2004). DFA: Dynamic factor analysis [Computer software]. Retrieved from http://dfa.psychstat.org.
research/johnny_zhang.txt · Last modified: 2025/01/21 13:04 by johnny