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Abstract Intra-individual variation is time dependent variation within a single
participant’s time series. When data are collected from more than one subject,
methods developed for single subject intra-individual relationship may not fully
work and laws governing the inter-individual relationship may not apply to
intra-individual relationship. There are relatively few methods to pool multiple time
series for statistical data analysis. This article aims to investigate empirically several
methods for pooling time series data and to address related issues through an AR(1)
model. Specifically, multiple time series are formulated, pooling estimation methods
are derived and compared, simulation studies results are summarized, and related
practical issues are addressed.

Key words: Time Series Analysis, First-order Autoregressive Model, Pooling
Multiple Subjects, Longitudinal Analysis, Maximum Likelihood Estimation.

1 Introduction

The variation analysis in psychological, social, and behavioral researches has many
ramifications. Among them two main branches are inter-individual variation and
intra-individual variation. The inter-individual variation is the variation between
individuals, and also widely known as the analysis of cross-sectional data in many
researches. The intra-individual variation is time dependent variation within a single
participant’s time series. It is also known as the analysis of time series data or
P-technique in Cattell’s (1952) data-box (Cattell, 1952). In this type of study,
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usually one subject is measured repeatedly and data on the variables of interest
are collected for a large number of occasions. Data collected in this way do
not have inter-individual differences since there is only one subject involved, but
they can reflect the change across occasions. Intra-individual analysis has become
popular advanced by Nesselroade, Molenaar, and colleagues and many methods
are available for single time series analysis (e.g., Cattell, Cattell, & Rhymer, 1947;
Molenaar, 1985; Nesselroade & Molenaar, 2003). (add Zhang & Nesselroade,
2007: Zhang, Z., & Nesselroade J. R. (2007). Bayesian estimation of categorical
dynamic factor models. Multivariate Behavioral Research, 42(4), 729-756.)

In this article, attention will be drawn to multiple-subject intra-individual
variation analysis. In many researches intra-individual relationship data are
collected from more than one subject. When multiple subjects are involved,
methods developed for single-subject intra-individual relationship may not fully
work. In addition, laws governing the inter-individual relationship may not apply
to intra-individual relationship (e.g., Molenaar, 2004; Nesselroade & Ram, 2004).
Check the references for Molenaar, they should be the same Currently, there
are relatively few methods in the literature on pooling multiple time series
for data analysis (e.g., Cattell & Scheier, 1961; Daly, Bath, & Nesselroade,
1974; P. C. M. Molenaar, Huizenga, & Nesselroade, 2003; Nesselroade &
Molenaar, 1999). Therefore, this study aims to evaluate methods for pooling time
series and to address related issues through a first-order autoregressive (AR(1))
model. Specifically, we focus on five estimation methods for combining multiple
time series: pooling conditional likelihood estimation, pooling exact likelihood
estimation, connecting data conditional likelihood, connecting data exact likelihood,
and multivariate analysis.

This rest of the article is organized as follows. In Section 2, we propose several
methods for pooling time series data. Single time series and multiple time series
are first described and formulated in terms of the AR(1) model. Then different
estimation methods for multiple time series are introduced and derived. In Section
3, we evaluate the performance of different methods through a simulation study.
We first present the simulation design and implementation. Then, we provide the
simulation results. Section 4 discusses the implication and future direction of the
study.

2 Models

In this section, we introduce the time series models and the corresponding
estimation methods. We first focus on the single time series analysis, and then extend
to multiple time series analysis.
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2.1 Single Time Series AR(1) Model and Estimation Method

The simplest and the most popular single time series model to describe the
intra-individual relationship is the first-order autoregressive model, also known as
AR(1). It can be expressed as follows.

y1 : the initial value
yt = µ +α yt−1 + zt (t > 1) (1)
zt ∼ i.i.d. N(0,φ)

where yt is the observed value at time point t, α is the autoregressive coefficient at
lag 1, µ is an unknown parameter related to the mean of y, and z is a random shock
or a white noise, which is assumed to follow a normal distribution with mean 0 and
unknown variance φ . The joint density function of yt (t = 1, ...,T ) given the AR(1)
model in Eq (2) is

p(y|µ,α,φ) = p(y1,y2, ...,yT |µ,α,φ) = p(y1)
T

∏
t=2

p(yt |yt−1).

The path diagram of the AR(1) model can be portrayed as in Fig. (1).
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Fig. 1: The AR(1) Model

There are two maximum likelihood estimation (MLE) methods for AR(1):
the conditional MLE and the exact MLE. The former treats the initial value y1
as deterministic and focuses only on the conditional distribution in Eq. (2). By
maximizing the conditional likelihood function without y1, this estimation method
makes the analysis relatively easy. Parameters are obtained by maximizing the
conditional likelihood function as follows:

Lc(α,µ,φ |y) =
T

∏
t=2

p(yt |yt−1,α,µ,φ) =
T

∏
t=2

1√
2πφ

exp
[
− (yt −µ−α yt−1)

2

2φ

]
.

Instead of treating y1 as deterministic, the latter (exact MLE) estimation treats
y1 as random. It maximizes the exact likelihood function which includes the
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distribution of y1. When exact MLE is adopted, a stationarity procedure is required.
By assuming |α|< 1, the covariance of yt in AR(1) is shown stationary, and we have

y1 ∼ N(
µ

1−α
,

φ

1−α2 ),

yt |yt−1 ∼ N(µ +α yt−1,φ),(t > 1).

With this assumption, the exact likelihood function of y is

Le(α,µ,φ |y) = p(y1|α,µ,φ)Lc(α,µ,φ |y)

=
1√

2π( φ

1−α2 )
exp

[
−
(y1− µ

1−α
)2

2( φ

1−α2 )

]{
T

∏
t=2

1√
2πφ

exp
[
− (yt −µ−α yt−1)

2

2φ

]}
.

2.2 Multiple Time Series and Estimation

The AR(1) model introduced above is for single time series analysis. In reality,
however, multiple time series are prevalent. There are many sources of multiple time
series such as multiple-subject time series, in which data are collected from multiple
similar subjects, multivariate time series, in which multiple dependent variables are
collected from the same subjects and multiple-session time series, in which data
are collected at different sessions from the same subjects. Suppose there are N
individuals (or sessions or other forms of series). Without loss of generality, we
assume that each individual has T observations collected from different time points,
so totally there are NT observations. Note that individuals can have different time
series lengths. The model for individual i at time point t is expressed as follows.

yit = µ +α yi(t−1)+ zit , (i = 1, ...,N; t = 2, ...,T )

where zit ∼ i.i.d.N(0,φ). We focus on three strategies to analysis such multiple time
series: pooling likelihoods together, connecting data directly, and using multivariate
data analysis.

2.2.1 Pooling Likelihoods

There are various methods to estimate parameters µ , α and φ in multiple time
series analysis. They can be estimated by pooling the likelihood functions across
all individuals. Based on different forms of the likelihood function, there are pooled
conditional likelihood MLE and pooled exact likelihood MLE.

In the following analysis, we assume the N individuals are from one population
and have the same parameters µ , α and φ . But these assumptions can be relaxed.
Pooled likelihood methods allow µ , α , and φ to vary and estimate.

The pooled conditional likelihood of an AR(1) model for N individuals is
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Lc(α,µ,φ |y) =
N

∏
i=1

T

∏
t=2

p(yit |yi(t−1),α,µ,φ)

=
N

∏
i=1

T

∏
t=2

1√
2πφ

exp

[
−
(yit −µ−α yi(t−1))

2

2φ

]
. (2)

To obtain the MLE of µ , α and φ , we take the first derivative with respect to each
parameter and set it to 0 and make their corresponding second derivatives negative
at θ̂ = (µ̂, α̂, φ̂). For pooling conditional likelihoods, we have the closed form
estimates for the parameters such that,

µ̂ =
(∑N

i=1 ∑
T
t=2 y2

i(t−1))(∑
N
i=1 ∑

T
t=2 yit)− (∑N

i=1 ∑
T
t=2 yi(t−1))(∑

N
i=1 ∑

T
t=2 yi(t−1)yit)

N(T −1)∑
N
i=1 ∑

T
t=2 y2

i(t−1)− (∑N
i=1 ∑

T
t=2 yi(t−1))2

,

α̂ =
N(T −1)(∑N

i=1 ∑
T
t=2 yi(t−1)yit)− (∑N

i=1 ∑
T
t=2 yi(t−1))(∑

N
i=1 ∑

T
t=2 yit)

N(T −1)∑
N
i=1 ∑

T
t=2 y2

i(t−1)− (∑N
i=1 ∑

T
t=2 yi(t−1))

2
,

φ̂ =
1

N(T −1)

N

∑
i=1

T

∑
t=2

(yit − µ̂− α̂ yi(t−1))
2. (3)

Parameters can also be estimated by maximizing the pooled exact likelihood
function including the distribution of the initial value.

Le(α,µ,φ |y) =
N

∏
i=1

[
p(yi1|α,µ,φ)

T

∏
t=2

p(yit |yi(t−1),α,µ,φ)

]

Unfortunately, there is no analytic solution for θ̂ = (µ̂, α̂, φ̂) in terms of {yit},(1≤
i≤N,1≤ t ≤ T ). Instead, we have to adopt iterative algorithms to obtain numerical
solutions. This method is recommended when participants are almost identical, or
data are from multiple sessions of the same participant.

2.2.2 Connecting Data

Intuitively, one can also analyze multiple series data data by connecting all time
series from multiple subjects as from a single subject. Fig. 2 shows the connected
series from four individuals. This method assumes that the connecting points do not
matter and, therefore, yiT and y(i+1)1 can be connected as from a sequence. Also, it
assumes all series share the same µ , α and φ . The assumption of equal µ can be
relaxed, e.g., through centering means.

Based on different likelihood functions, there are conditional MLE and exact
MLE for connected data. Let j ( j = 1,2, ...,NT ) be the new subscript for the
connected series. The conditional likelihood function is
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Fig. 2: Connecting data from multiple subjects

L(α,µ,φ |y) =
NT

∏
j=2

p(y j|α,µ,φ) =
NT

∏
j=2

1√
2πφ

exp
[
−
(y j−µ−α y j−1)

2

2φ

]
.

The closed form parameter estimates can be easily obtained as

µ̂ =
(∑NT

j=2 y2
j−1)(∑

NT
t=2 y j)− (∑NT

j=2 y j−1)(∑
NT
j=2 y j−1y j)

(NT −1)∑
NT
j=2 y2

j−1− (∑NT
j=2 y j−1)2

,

α̂ =
(NT −1)(∑NT

j=2 y j−1y j)− (∑NT
j=2 y j−1)(∑

NT
j=2 y j)

(NT −1)∑
NT
j=2 y2

j−1− (∑NT
j=2 y j−1)2

,

φ̂ =
1

NT −1

NT

∑
j=2

(y j− µ̂− α̂ y j−1)
2.

For exact MLE, it requires a stationary AR(1) model. The exact likelihood
functions of the connected data is

L(α,µ,φ |y) = p(y1|α,µ,φ)
NT

∏
j=2

p(y j|α,µ,φ)

=
1√

2π( φ

1−α2 )
exp

[
−
(y1− µ

1−α
)2

2( φ

1−α2 )

]{
NT

∏
j=2

1√
2πφ

exp
[
−
(y j−µ−α y j−1)

2

2φ

]}
.

Again, there is no analytical solutions for θ̂ = (µ̂, α̂, φ̂).

2.2.3 Multivariate Time Series Analysis

Multivariate analysis is another alternative approach to multiple time series analysis.
It views each time series as a N-dimensional multivariate variable. It also allows
subject dependence. This method is relatively difficult to use compared the other
two methods. It requires that the data are collected at the same time points, and
certainly, all individuals have the same time series length.



Aggregating Time Series AR(1) 7

Let Yt , Yt−1 and zt be three N-dimensional column vectors, Y′t =
(y1t ,y2t , ...,yNt), Y′t−1 = (y1(t−1),y2(t−1), ...,yN(t−1)), and z′t = (z1t ,z2t , ...,zNt), and
β be a (2× 1) vector including parameters µ and α . At time point t, the multiple
time series can be expressed as Yt = (1,Yt−1)β + zt , which is

y1t
y2t
...

yNt

=


1 y1(t−1)
1 y2(t−1)
...

...
1 yN(t−1)


(

µ

α

)
+


z1t
z2t
...

zNt

 .

If we combine all time points t from 2 to T , then we have the least-squares (LS)
estimate of β ,

β̂ =

[
µ̂

α̂

]
=

[
N(T −1) ∑

T
t=2 ∑

N
i=1 yi(t−1)

∑
T
t=2 ∑

N
i=1 yi(t−1) ∑

T
t=2 ∑

N
i=1 y2

i(t−1)

]−1 [
∑

T
t=2 ∑

N
i=1 yit

∑
T
t=2 ∑

N
i=1 yi(t−1)yit

]
.

Note that with the normality assumption, maximizing (2) with respect to µ and α is
equivalent to minimizing

N

∑
i=1

T

∑
t=2

(yit −µ−α yi(t−1))
2

with respect to µ and α . Therefore, the LS solution for θ = (µ,α,φ) is exactly the
same as the pooled conditional likelihood MLE solution as shown in (3).

3 Simulation Study

To investigate the performance of different pooling methods on estimating multiple
times series, we conducted a simulation study.

3.1 Design and Implementation

First, multiple time series under various conditions were generated from an AR(1)
model. The true population parameter values were µ = 0, α = 0.5, and φ = 0.25. As
a main difference among various methods on parameter estimation is the treatment
of the initial value y1, we generated data under three conditions: (i) with a fixed
y1 at 0, (ii) with a random y1 drew from N(0,φ), and (iii) with a random y1

drew from N( µ

1−α
, φ

1−α2 ). Other conditions included the number of time points,
T = (5,10,15,20,30), and the number of subjects, N = (10,20,30,40,50). In total,
there are 3× 5× 5 = 75 different conditions in the simulation. For each condition,
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1,000 replications of data were generated and analyzed using the different pooling
methods.

Second, model parameters (µ , α , and φ ) were estimated by using different
multiple time series estimation methods. As the multivariate LS estimation method
yields the same results as the pooled likelihood conditional MLE when data are
normally distributed, we adopted four estimation methods in this study: pooled
likelihood conditional MLE, pooled likelihood exact MLE, pooled data conditional
MLE, and pooled data exact MLE. As there is no analytical solutions for exact MLE,
iterative algorithms were employed to obtain numerical solutions.

Finally, results were summarized across all simulation replications. For each
parameter estimate, Est. is the average estimate across 1,000 replications; the
absolute bias (Bias.abs) was calculated as the absolute value of the difference
between the estimated value and its true value; the relative bias (Bias.rel) of the
estimate was the ratio of the absolute bias to the true value; the empirical s.e.
(SE.emp) was calculated as the standard deviation of the parameter estimates across
1,000 replications; the average s.e. (SE.avg) was the average standard error across
1,000 replications; the mean square error (MSE) of each parameter estimate was
calculated as MSE = Bias.abs2 +SE.emp2; and the Cover is the coverage rate.

In the simulation study, we used the R language to generate data, estimate
parameters, and summarize results. Complete R code is available from the first
author of the article.

3.2 Results

Totally, there were 3×5×5 = 75 simulation result tables. Due to the limited space,
we only showed part of the results here. Tables 1 to 6 summarized the estimates
from different estimation methods: pooling likelihood (P.L.) conditional MLE,
pooling likelihood (P.L.) exact MLE, connecting data (C.D.) conditional MLE, and
connecting data (C.D.) exact MLE.
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Table 1 : Simulation results for the condition of fixed y1 = 0, N = 10 individuals, T = 5
observations (1000 replications)

Truea Est.b Bias.absc Bias.reld SE.empe SE.avgf MSEg Coverh

P.
L

.i E
xa

ct
j µ 0 -0.0027 0.0027 0.0027 0.0640 0.0574 0.0041 0.9440

α 0.5 0.3567 0.1433 0.2867 0.1399 0.1318 0.0401 0.8250
φ 0.25 0.1942 0.0558 0.2234 0.0466 0.0392 0.0053 0.5990

C
on

d.
k µ 0 -0.0039 0.0039 0.0039 0.0884 0.0782 0.0078 0.9200

α 0.5 0.4534 0.0466 0.0932 0.1794 0.1693 0.0344 0.9330
φ 0.25 0.2372 0.0128 0.0510 0.0572 0.0531 0.0034 0.8750

C
.D

.l E
xa

ct µ 0 -0.0032 0.0032 0.0032 0.0708 0.0641 0.0050 0.9370
α 0.5 0.3245 0.1755 0.3509 0.1325 0.1325 0.0484 0.7630
φ 0.25 0.2039 0.0461 0.1845 0.0501 0.0408 0.0046 0.6480

C
on

d. µ 0 -0.0033 0.0033 0.0033 0.0729 0.0660 0.0053 0.9350
α 0.5 0.3310 0.1690 0.3381 0.1353 0.1355 0.0469 0.7790
φ 0.25 0.2078 0.0422 0.1686 0.0511 0.0420 0.0044 0.6830

a The true value of the corresponding parameter.
b The average of the estimate of the corresponding parameter across 1000 replications.
c The absolute bias of the estimate.
d The relative bias of the estimate.
e The empirical s.e. across 1000 replications.
f The average of the s.e. obtained from the model.
g The mean square error of the estimate, MSE = Bias.abs2 +SE.emp2.
h The coverage probability of the estimate.
i The method of pooling likelihood functions.
j Parameters are estimated by maximizing the exact likelihood function of the original data.
k Parameters are estimated by maximizing the conditional likelihood function of the original data.
l The method of connecting data.

Table 2: Simulation results for the condition of fixed y1 = 0, N = 50 individuals, T = 30
observations (1000 replications)

True Est. Bias.abs Bias.rel SE.emp SE.avg MSE Cover

P.
L

. E
xa

ct µ 0 0.0002 0.0002 0.0002 0.0126 0.0123 0.0002 0.9450
α 0.5 0.4810 0.0190 0.0380 0.0225 0.0223 0.0009 0.8680
φ 0.25 0.2413 0.0087 0.0348 0.0087 0.0088 0.0002 0.8280

C
on

d. µ 0 0.0002 0.0002 0.0002 0.0134 0.0131 0.0002 0.9450
α 0.5 0.4974 0.0026 0.0052 0.0233 0.0233 0.0005 0.9590
φ 0.25 0.2495 0.0005 0.0019 0.0090 0.0093 0.0001 0.9560

C
.D

. E
xa

ct µ 0 0.0002 0.0002 0.0002 0.0131 0.0128 0.0002 0.9410
α 0.5 0.4802 0.0198 0.0397 0.0227 0.0226 0.0009 0.8580
φ 0.25 0.2438 0.0062 0.0248 0.0088 0.0089 0.0001 0.8720

C
on

d. µ 0 0.0002 0.0002 0.0002 0.0131 0.0128 0.0002 0.9410
α 0.5 0.4805 0.0195 0.0391 0.0227 0.0227 0.0009 0.8600
φ 0.25 0.2440 0.0060 0.0241 0.0088 0.0089 0.0001 0.8780

Note: With the same notations as in Table 1.
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Table 3: Simulation results for the condition of y1 ∼ N(0,φ), N = 10 individuals, T = 5
observations (1000 replications)

True Est. Bias.abs Bias.rel SE.emp SE.avg MSE Cover

P.
L

. E
xa

ct µ 0 -0.0007 0.0007 0.0007 0.0657 0.0604 0.0043 0.9470
α 0.5 0.4387 0.0613 0.1225 0.1345 0.1318 0.0218 0.9370
φ 0.25 0.2301 0.0199 0.0795 0.0481 0.0466 0.0027 0.8550

C
on

d. µ 0 -0.0008 0.0008 0.0008 0.0874 0.0786 0.0076 0.9230
α 0.5 0.4638 0.0362 0.0724 0.1491 0.1443 0.0235 0.9310
φ 0.25 0.2382 0.0118 0.0473 0.0550 0.0533 0.0032 0.8890

C
.D

. E
xa

ct µ 0 -0.0009 0.0009 0.0009 0.0753 0.0713 0.0057 0.9450
α 0.5 0.3613 0.1387 0.2775 0.1322 0.1312 0.0367 0.8450
φ 0.25 0.2512 0.0012 0.0048 0.0535 0.0503 0.0029 0.9140

C
on

d. µ 0 -0.0004 0.0004 0.0004 0.0772 0.0729 0.0060 0.9370
α 0.5 0.3621 0.1379 0.2757 0.1331 0.1319 0.0367 0.8470
φ 0.25 0.2517 0.0017 0.0069 0.0537 0.0509 0.0029 0.9170

Note: With the same notations as in Table 1.

Table 4: Simulation results for the condition of y1 ∼ N(0,φ), N = 50 individuals, T = 30
observations (1000 replications)

True Est. Bias.abs Bias.rel SE.emp SE.avg MSE Cover

P.
L

. E
xa

ct µ 0 0.0007 0.0007 0.0007 0.0125 0.0125 0.0002 0.9490
α 0.5 0.4949 0.0051 0.0103 0.0236 0.0225 0.0006 0.9320
φ 0.25 0.2474 0.0026 0.0103 0.0092 0.0090 0.0001 0.9280

C
on

d. µ 0 0.0009 0.0009 0.0009 0.0132 0.0131 0.0002 0.9480
α 0.5 0.4989 0.0011 0.0022 0.0241 0.0229 0.0006 0.9340
φ 0.25 0.2494 0.0006 0.0022 0.0094 0.0093 0.0001 0.9390

C
.D

. E
xa

ct µ 0 0.0007 0.0007 0.0007 0.0130 0.0130 0.0002 0.9490
α 0.5 0.4822 0.0178 0.0356 0.0238 0.0226 0.0009 0.8650
φ 0.25 0.2521 0.0021 0.0084 0.0094 0.0092 0.0001 0.9300

C
on

d. µ 0 0.0007 0.0007 0.0007 0.0131 0.0130 0.0002 0.9480
α 0.5 0.4823 0.0177 0.0355 0.0238 0.0226 0.0009 0.8680
φ 0.25 0.2521 0.0021 0.0086 0.0094 0.0092 0.0001 0.9280

Note: With the same notations as in Table 1.

Table 5: Simulation results for the condition of y1 ∼ N( µ

1−α
, φ

1−α2 ), N = 10 individuals, T = 5
observations (1000 replications)

True Est. Bias.abs Bias.rel SE.emp SE.avg MSE Cover

P.
L

. E
xa

ct µ 0 -0.0006 0.0006 0.0006 0.0692 0.0616 0.0048 0.9400
α 0.5 0.4561 0.0439 0.0879 0.1384 0.1325 0.0211 0.9380
φ 0.25 0.2417 0.0083 0.0333 0.0501 0.0490 0.0026 0.9010

C
on

d. µ 0 -0.0011 0.0011 0.0011 0.0896 0.0789 0.0080 0.9120
α 0.5 0.4603 0.0397 0.0794 0.1505 0.1392 0.0242 0.9250
φ 0.25 0.2382 0.0118 0.0470 0.0551 0.0533 0.0032 0.8920

C
.D

. E
xa

ct µ 0 -0.0004 0.0004 0.0004 0.0800 0.0736 0.0064 0.9310
α 0.5 0.3666 0.1334 0.2669 0.1324 0.1311 0.0353 0.8500
φ 0.25 0.2670 0.0170 0.0680 0.0586 0.0534 0.0037 0.9230

C
on

d. µ 0 -0.0011 0.0011 0.0011 0.0820 0.0752 0.0067 0.9290
α 0.5 0.3662 0.1338 0.2675 0.1327 0.1315 0.0355 0.8490
φ 0.25 0.2668 0.0168 0.0672 0.0593 0.0539 0.0038 0.9190

Note: With the same notations as in Table 1.
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Table 6: Simulation results for the condition of y1 ∼ N( µ

1−α
, φ

1−α2 ), N = 50 individuals, T = 30
observations (1000 replications)

True Est. Bias.abs Bias.rel SE.emp SE.avg MSE Cover

P.
L

. E
xa

ct µ 0 -0.0002 0.0002 0.0002 0.0127 0.0125 0.0002 0.9540
α 0.5 0.4998 0.0002 0.0003 0.0220 0.0225 0.0005 0.9470
φ 0.25 0.2495 0.0005 0.0021 0.0091 0.0091 0.0001 0.9570

C
on

d. µ 0 -0.0001 0.0001 0.0001 0.0134 0.0131 0.0002 0.9540
α 0.5 0.4997 0.0003 0.0007 0.0222 0.0227 0.0005 0.9440
φ 0.25 0.2494 0.0006 0.0024 0.0093 0.0093 0.0001 0.9530

C
.D

. E
xa

ct µ 0 -0.0002 0.0002 0.0002 0.0132 0.0130 0.0002 0.9560
α 0.5 0.4833 0.0167 0.0334 0.0222 0.0226 0.0008 0.8900
φ 0.25 0.2549 0.0049 0.0195 0.0095 0.0093 0.0001 0.9260

C
on

d. µ 0 -0.0002 0.0002 0.0002 0.0133 0.0131 0.0002 0.9560
α 0.5 0.4833 0.0167 0.0334 0.0221 0.0226 0.0008 0.8900
φ 0.25 0.2549 0.0049 0.0195 0.0095 0.0093 0.0001 0.9260

Note: With the same notations as in Table 1.

3.2.1 Findings from the Simulation

Based on the simulation results, we can draw the following conclusions.
(1) In general, the Bias.abs, Bias.rel, SE.emp, SE.avg, and MSE values for large

T or large N (e.g., see Tables 2, 4, 6) were smaller than those for small T or small
N (e.g., see Tables 1, 3, 5). The coverage rates for large T or large N were more
close to 0.95 than those for small T or small N. Both indicated that for these four
estimation methods, although the data sets had different initial values, (a) the longer
the time series, the more accurate the estimate, and (b) the more participants, the
more accurate the estimates.

(2) By comparing bias statistics (such as Bias.abs and Bias.rel) and coverage
rates (Cover) across all tables, in most cases the pooled likelihood methods
outperformed the connecting data methods. For the situation of large T and small
N, connecting data methods also estimated well.

(3) The pooled likelihood conditional MLE performed best, especially on the
recovery of the autoregressive coefficient α (see tables 1-4), except when initial
value y1 ∼ N( µ

1−α
, φ

1−α2 ) both the pooled likelihood conditional MLE and the
pooled likelihood exact MLE performed well (e.g., see tables 5 and 6).

(4) For large T and small N, conditional MLE performed similarly as the exact
MLE.

(5) For small T and large N, exact MLE is more efficient but may have large bias
depending on the state of y1 and stationarity of time series.

(6) The parameter coverages for data with random initial values were closer to
0.95 than those for fixed initial value y1 = 0. Among two types of random initial
values, the one drew from the stationary distribution y1 ∼ N( µ

1−α
, φ

1−α2 ) performed
better than the other distribution.

(7) For the data with fixed initial values y1 = 0, the parameter coverage rates were
low, especially for φ (see Table 1).
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4 Discussion, and Future Directions

To compare the different methods, we contrast them in Table 4. You might as well
describe the difference in words here.

Table 7: A comparison of multiple time series estimation methods
Pooling Method Comparision

Easy to use;
Connecting data Allow µ to vary through centering;

Can be used for large T and small N situation.
Easy to use;
Allow µ , α , φ to vary and estimate;

Pooling likelihood For large T and small N, Conditional MLE ≈ Exact MLE;
For small T and large N, Exact MLE is more efficient but
may have large bias depending on the state of y1 and
stationarity of time series.
Relatively difficult to use;

Multivariate method The same time series length;
Data measured at the same time;
Allow subject dependence.

4.1 Future Directions

This study serves as an initial inquiry to pooling multiple time series. Future
research can be conducted in the following areas. First, in the current study, we
simply assume that µ , α , and φ are homogenous across participants. Such an
assumption can be tested before pooling data together. Second, another extension is
to fit a multilevel time series model to the data to account for possible heterogenous
in the model parameters. Third, in read data collection, the Likert items are often
used and therefore, data collected are often ordinal and not normally distributed.
How to analyze multiple time series of ordinal data can be investigated in the
future. Fourth, in collecting time series data, missing data can occur more often
than cross-sectional data collection. Therefore, dealing with missing data is another
potential topic.
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