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1 Introduction

There has been widespread interest in the analysis of change in social and
behavioral sciences (e.g., Singer and Willett 2003). Growth modeling, in particular,
is becoming increasingly important in these areas. Among the most popular growth
models, latent growth curve models (LGCMs) are statistical models designed to
study individuals’ latent growth trajectories by analyzing the variables of interest
on the same individuals repeatedly through time (e.g., Bollen and Curran 2006).
With an increase in complexity of LGCMs, comes an increase in difficulties
estimating such models. First, missing data are almost inevitable with longitudinal
data (e.g., Jelicic et al. 2009). Second, using conventional likelihood procedures
may be challenging when estimating model parameters in complex models with
complicated data structures. And third, even with effective estimation methods,
model selection in such complex situations becomes difficult.

1.1 Missing Data

As LCGMs involve data collection on the same participants through multiple waves
of surveys, tests, or questionnaires, missing data are almost inevitable. This is
because some students may miss a test because of absence or fatigue or research
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participants may drop out of a study (e.g., Schafer 1997). Missing data can be
investigated from their mechanisms, that is, by examining why missing data occur.
Little and Rubin (2002) distinguished two mechanisms for missing data, ignorable
and non-ignorable. For ignorable missingness, estimates are usually asymptotically
consistent when the missingness is ignored (Little and Rubin 2002). This is because
parameters that govern the missing process either are distinct from the parameters
that govern the model outcomes or depend on the observed parameters in the fitted
model. The non-ignorable missingness is also referred to as missing not at random
(MNAR), in which the missing data probability depends on unobserved outcomes or
on some unobserved latent variables in the model.

With the appearance of missing data comes the challenge in estimating growth
model parameters. Although there is a large literature addressing the problems of
missing data in applied and quantitative psychology (e.g., Yuan and Lu 2008; Roth
1994), particularly in longitudinal studies (e.g., Jelicic et al. 2009), the majority
of the literature is on ignorable missingness. This is mainly because (1) analysis
models or techniques for non-ignorable missing data are traditionally difficult to
implement and not yet well suited for widespread use (e.g., Baraldi and Enders
2010); and (2) missingness mechanisms are not testable (Little and Rubin 2002).
At the same time, however, the analysis of non-ignorable missingness is a crucial
and a serious concern in applied research areas, in which participants may be
dropping out for reasons closely related to the response being measured (e.g., Enders
2011). Not attending to the non-ignorable missingness may result in severely biased
statistical estimates, standard errors, and associated confidence intervals (e.g.,
Schafer 1997), and thus poses substantial risk of leading researchers to incorrect
conclusions. Accordingly, this paper focuses on non-ignorable missingness and
investigates its influences on model estimation for different types of missingness.

In a recent study of latent growth models, Lu et al. (2011) investigated non-
ignorable missingness. However, the missingness in that study was only allowed to
depend on latent class membership. In practice, the non-ignorable missingness in
latent growth models can depend on many other latent variables such as individual
starting level and growth rate. Furthermore, Lu et al. (2011) did not discuss how to
identify the missingness mechanisms.

1.2 Bayesian Approach

In this study, a full Bayesian approach is used for parameter estimation. Previously,
maximum likelihood methods were adopted for most of the studies, and statistical
inferences were carried out using conventional likelihood procedures (e.g., Yuan
and Lu 2008). Recently, Bayesian methods have been proposed as an alternative
approach (e.g., Muthén and Asparouhov 2012) to estimate complex models. The
advantages of Bayesian methods include their intuitive interpretations of statistical
results, their flexibility in incorporating prior information about how data behave
in similar contexts and findings from experimental research, their capacity for
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dealing with small sample sizes (such as occur with special populations), and their
expandability in the analysis of complex statistical models with complicated data
structure (e.g., Lee 2007).

In a Bayesian approach, when the joint distribution is complex or unknown but
the conditional distribution of each variable is available for each set of variables,
Gibbs sampling algorithm (Geman and Geman 1984) can be adopted. The Gibbs
sampling generates Markov chains which can be shown to be ergodic (Geman
and Geman 1984), and thus the sequence of samples after convergence can be
viewed from the joint probability distribution of all parameters. It is also shown
that each variable from the Markov chain converges to the marginal distribution of
that variable (Robert and Casella 2004).

1.3 Model Selection Criteria

Model selection criteria can be used to compare models to identify the best-fit
model. Akaike (1974) proposed the Akaike’s information criterion (AIC). AIC
offers a relative measure of the information lost. For Bayesian models, the Bayes
factor is used for hypothesis testing. But the Bayes factor is usually difficult or even
impossible to calculate, especially for models that involve many random effects,
large numbers of unknowns parameters, or improper priors. To approximate the
Bayes factor, Schwarz (1978) developed the Bayesian information criterion (BIC)
or Schwarz criterion. To obtain more precise criteria, Bozdogan (1987) proposed the
consistent Akaike Information Criterion (CAIC) and Sclove (1987) proposed the
sample-size adjusted Bayesian information criterion (ssBIC) which is based on
the Rissanen Information Criteria (RIC, Rissanen 1978) for auto-regressions. The
deviance information criterion (DIC) (Spiegelhalter et al. 2002) is a recently
developed criterion designed for complex hierarchical models. It is based on the
posterior distribution of the log-likelihood, following the original suggestion of
Dempster (1974) for model choice in the Bayesian framework, and it is particularly
useful in Bayesian model selection problems where the posterior distributions of
the models have been obtained by Markov chain Monte Carlo (MCMC) simulation.
DIC is usually regarded as a Bayesian version or generalization of the AIC and BIC.
For all these criteria, the model with a smaller value is better supported by data.

In a Bayesian context, currently there are no well-defined model selection criteria
for latent growth models with missing data (e.g., Celeux et al. 2006). The problem
is mainly due to random effects and missing data. For random effects models, the
likelihood function can be an observed-data likelihood, a complete-data likelihood,
or a conditional likelihood. Briefly speaking, an observed-data likelihood does
not explicitly include latent variables, such as random-effects; a complete-data
likelihood includes all auxiliary variables in the model; and a conditional likelihood
is the joint likelihood function of the observed outcomes and the missingness
indicator conditional on the random-effects, and thus the likelihood only includes
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random-effects, with no fixed-effects involved (e.g., Celeux et al. 2006). Also, the
missing data part can be either included in or excluded from the log-likelihood
functions.

1.4 Goals and Structure

The goals of the paper are to propose latent growth models with non-ignorable
missingness, to estimate the models via a Bayesian approach, and to evaluate the
performance of model selection criteria.

The rest of the paper consists of six sections. Section 2 describes the pro-
posed growth models. Three non-ignorable missingness selection models are
presented and formulated. Section 3 presents a full Bayesian method to estimate the
latent growth models through data augmentation and Gibbs sampling algorithms.
Section 4 proposes model selection criteria in a Bayesian context for growth
models with missing data. Section 5 conducts simulation studies. Estimates from
models with different non-ignorable missingness and different sample sizes are
summarized, analyzed, and compared. Conclusions based on the simulation studies
are drawn. Section 6 discusses the implications and future directions of this study.
In addition, the Appendices present some technical details.

2 Latent Growth Models

The LGCMs can be expressed by a regression equation with latent variables being
regressors. Specifically, for a longitudinal study with N subjects and T measurement
time points, let yi = (yi1,yi2, . . . ,yiT )

′ be a T × 1 random vector, where yit stands
for the outcome or observation of individual i on occasion t (i = 1,2, . . . ,N;
t = 1,2, . . . ,T ), and let η i be a q× 1 random vector containing q continuous latent
variables. A LGCM for the outcome yi related to the latent η i can be written as

yi = Λη i + ei (1)

η i = β + ξ i, (2)

where Λ is a T × q matrix consisting of factor loadings, ei is a T × 1 vector
of residuals or measurement errors that are assumed to follow a T -dimensional
multivariate normal distribution, i.e., ei ∼ MNT (0,Θ), and ξ i is a q×1 vector that is
assumed to follow a q-dimensional multivariate distribution, i.e., ξ i ∼ MNq(0,Ψ ).
In LGCMs, β is a vector of fixed effects and ξ i is a vector of random effects (e.g.,
Fitzmaurice et al. 2004). The vector β , η i, and the matrix Λ determine the growth
trajectory of the model.
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2.1 Selection Models for Non-ignorable Missingness

To address the non-ignorable missingness, there are two general approaches,
pattern-mixture models (Little and Rubin 1987) and selection models (Glynn
et al. 1986). In both cases, the statistical analysis requires joint modeling of
dependent variable and missing data processes. In this research, selection models
are used, mainly because (1) substantively selection models seem more natural for
considering the behavior of the response variable in the full target population of
interests, rather than in the sub-populations defined by missing data patterns (e.g.,
Fitzmaurice et al. 2008), and (2) the selection models formulation leads directly
to the joint distribution of both dependent variables and the missingness (e.g.,
Fitzmaurice et al. 2008):

p(yi,mi|ν,φ ,xi) = p(yi|ν,xi) p(mi|yi,ν,φ ,xi)

where xi is a vector of covariates for individual i, yi is a vector of individual
i’s outcome scores, θ = (ν,φ ) are all parameters in the model, in which ν are
parameters for the growth model and φ are parameters for the missingness, and
mi is a vector mi = (mi1,mi2, . . . ,miT )

′ that indicates the missingness status for yi.
Specifically, if yi is missing at time point t, then mit = 1. Otherwise, mit = 0.

Let τit = p(mit = 1) be the probability that yit is missing, then mit follows a
Bernoulli distribution of τit , and the density function of mit is

p(mit) = τmit
it (1− τit)

1−mit . (3)

For different non-ignorable missingness patterns, the expressions of τit are different.
In Lu et al. (2011), τit is a function of latent class membership and thus the miss-
ingness is latent class dependent (LCD). However, the non-ignorable missingness
mechanism could be much more complex in reality. For example, the missingness
may be related to the latent intercept, the latent slope of growth, or the potential
outcome variables. In these cases, the missing data probabilities depend on latent
variables, and thus missingness is non-ignorable. We propose three basic non-
ignorable missingness models in detail as follows.

(1) Latent Intercept-Dependent (LID) Missingness: This pattern assumes that the
missingness depends on individual’s latent intercept, or initial level, Ii, and some
observed covariates xi. The rate of missingness τIit is expressed as a probit link
function of Ii and xi

τIit = Φ(γ0t + IiγIt + x′iγxt) = Φ(ω ′
Ii γ It ), (4)

where xi is an r-dimensional vector, ω Ii = (1, Ii,x′i)′ and γ It = (γ0t ,γIt ,γ ′xt )
′. Note

that if the vector γ It = 0, then the missingness is ignorable. A path diagram of
the LGCM with an LID missingness is illustrated in Fig. 1.
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Fig. 1 Path diagram of a latent growth model with latent intercept-dependent missingness (LID),
where the rate of missingness p(mt ) depends on covariates xrs and individual’s latent intercept, or
initial level, I

(2) Latent Slope-Dependent (LSD) Missingness: This pattern assumes the miss-
ingness depends on the latent slope of individuals, Si. The missing data rate τit is
expressed as a probit link function of Si and covariates xi,

τSit = Φ(γ0t + SiγSt + x′iγxt) = Φ(ω ′
Si γSt), (5)

with ωSi = (1,Si,x′i)′ and γSt = (γ0t ,γSt ,γ ′xt)
′. Its path diagram is drawn in Fig. 2.

(3) Latent Outcome-Dependent (LOD) Missingness: This pattern assumes that the
missing data rates depend on the potential outcomes that may be missing. With
covariates xi, we express τit as a probit link function as follows.

τyit = Φ(γ0t + yitγyt + x′iγxt ) = Φ(ω ′
yit γyt), (6)

with ωyit = (1,yit ,x′i)′ and γyt = (γ0t ,γyt ,γ ′xt)
′. The path diagram illustrating the

LGCMs with LOD missingness is illustrated in Fig. 3.
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Fig. 2 Path diagram of a latent growth model with latent slope-dependent missing data where
p(mt ) depends on covariates xrs and the latent slope S

3 Bayesian Estimation

In this research, a full Bayesian estimation approach is used to estimate growth
models. The algorithm is described as follows. First, model-related latent variables
are added via the data augmentation method (Tanner and Wong 1987). By including
auxiliary variables, the likelihood function for each model is obtained. Second,
proper priors are adopted. Third, with the likelihood function and the priors, based
on the Bayes’ Theorem, the posterior distribution of the unknown parameters
is readily available. We obtain conditional posterior distributions instead of the
joint posteriors because the integrations of marginal posterior distributions of
the parameters are usually hard to obtain explicitly for high-dimensional data.
Fourth, with conditional posterior distributions, Markov chains are generated for
the unknown model parameters by implementing a Gibbs sampling algorithm
(Geman and Geman 1984). Finally, the statistical inferences are conducted based
on converged Markov chains.
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Fig. 3 Path diagram of a latent growth model with potential outcome-dependent missing data
where p(mt ) depends on covariates xrs and the outcome y

3.1 Data Augmentation and Likelihood Functions

In order to construct the likelihood function explicitly, we use the data augmentation
algorithm (Tanner and Wong 1987). The observed outcomes yobs

i can be augmented
with the missing values ymis

i such that yi = (yobs
i ,ymis

i )′ for individual i. Also, the
missing data indicator variable mi is added to models. Then the joint likelihood
function of the selection model for the ith individual can be expressed as

Li(η i,yi,mi) = [p(η i) p(yi|η i)] p(mi|yi,η i,xi).

For the whole sample, the likelihood function is specifically expressed as

L(y,η ,m) ∝
N

∏
i=1

{
|Ψ |−1/2 exp

[
−1

2
(η i −β)′Ψ−1(η i −β)

]

×|φ |−T/2 exp

[
− 1

2φ
(yi −Λη i)

′(yi −Λη i)

]

×
T

∏
t=1

[
τmit

it (1− τit)
1−mit

]}
,

(7)
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where τit is defined by Eq. (4) for the LID missingness, (5) for the LSD missingness,
and (6) for the LOD missingness.

3.2 Priors, Posteriors, and Gibbs Sampling

We assume that all posterior distributions exist in this study. Commonly used
proper priors (e.g., Lee 2007) are adopted. Specifically, (1) an inverse Gamma
distribution prior is used for φ ∼ IG(v0/2,s0/2) where v0 and s0 are given hyper-
parameters. The density function of an inverse Gamma distribution is p(φ) ∝
φ−(v0/2)−1 exp(−s0/(2φ)). (2) An inverse Wishart distribution prior is used for Ψ .
With hyper-parameters m0 and V0, Ψ ∼ IW (m0,V0), where m0 is a scalar and V0 is
a q× q matrix. Its density function is p(Ψ) ∝ |Ψ |−(m0+q+1)/2 exp[−tr(V0Ψ−1)/2].
(3) For β a multivariate normal prior is used, and β ∼ MNq(β 0,Σ0) where the
hyper-parameter β 0 is a q-dimensional vector and Σ0 is a q× q matrix. (4) The
prior for γt (t = 1,2, . . . ,T ) is chosen to be a multivariate normal distribution γt ∼
MN(2+r)(γt0,Dt0), where γt0 is a (2+r)-dimensional vector, Dt0 is a (2+r)×(2+r)
matrix, and both are pre-determined hyper-parameters.

After constructing the likelihood function and assigning the priors, the joint
posterior distribution for unknown parameters is readily available. Considering the
high-dimensional integration for marginal distributions of parameters, the condi-
tional distribution for each parameter is obtained instead. The derived conditional
posteriors are provided by the equations for parameters in the Appendix. In addition,
the conditional posteriors for the latent variable η i and the augmented missing
data ymis

i (i = 1,2, . . . ,N) are also provided by their corresponding equations in the
Appendix.

After obtaining conditional posteriors, the Markov chain for each model param-
eter is generated by implementing a Gibbs sampling algorithm (Geman and Geman
1984). Specifically, suppose θ = (θ1,θ2, . . . ,θM) is a vector of model parameters,
latent variables, and missing values. We start with a set of initial values for θ s.
At the sth iteration, θ (s) is generated. To obtain θ (s+1), each θ (s+1) is generated
from its corresponding posterior distribution, derived in the Appendix, with renewed
parameters.

3.3 Statistical Inference

After passing convergence tests, the generated Markov chains can be viewed as from
the joint and marginal distributions of all parameters. The statistical inference can
then be conducted based on the generated Markov chains.

For different loss functions of θ , the point estimates are different. For example,
if a square loss function, LF = (θ − θ̂ )2, is used, then the posterior mean is the
estimate of θ ; but if an absolute loss function, LF = |θ − θ̂ |, is used, then its estimate



284 Z. Lu et al.

is the posterior median. There are other function forms, such as 0–1 loss function,
but in this research we take the square loss function.

Let θ = (θ1,θ2, . . . ,θp)
′ denote a vector of all the unknown parameters in

the model. Then the converged Markov chains can be recorded as θ (s),s =
1,2, . . . ,S, and each parameter estimate θ̂ j ( j = 1,2, . . . , p) can be calculated as

θ̂ j = ∑S
s=1 θ (s)

j /S with standard error (SE) s.e.(θ̂ j) =
√

∑S
s=1(θ

(s)
j − θ̂ j)2/(S− 1).

To get the credible (confidence) intervals, both percentile intervals and the highest
posterior density intervals (HPD, Box and Tiao 1973) of the Markov chains can

be used. Percentile intervals are obtained by sorting θ (s)
j . HPD intervals may also

be referred to as minimum length confidence intervals for a Bayesian posterior
distribution, and for symmetric distributions HPD intervals obtain equal tail area
probabilities.

4 Model Selection Criteria

Model selection criteria play an important role in comparing competing models.
In this section, Bayesian model selection criteria are proposed for latent growth
models with missing data.

The general mathematical forms of selection criteria are closely related to each
other. Almost all of them try to find a balance between the accuracy and the
complexity of a model. First, the accuracy of a model can be measured by deviance,
which is defined as D(θ ) =−2log(p(y|θ ))+C for some constant C. In a Bayesian
context, the most popular way to calculate the deviance is to plug the expectation
of θ . So we have D(θ̂ ) = −2log(p(y|Eθ |y[θ ])) +C, which can be estimated by

D(θ̂ )≈−2log(p(y|θ̂))+C. For latent growth models with missing data, D(θ̂ ) can
be calculated as

D(θ̂ ) =−2
N

∑
i=1

T

∑
t=1

[
(1−mit)lit(y|θ̂ )+ lit(m|θ̂ )] (8)

in which mit is the missing data indicator for individual i at occasion t, θ̂ is
the posterior mean of parameter estimates across S converged Markov iterations,

and l(s)it (y) and l(s)it (m) are the conditional likelihood functions of yit and mit ,
respectively, for individual i at occasion t. When yit is missing, mit = 1, the
likelihood of yit is excluded. When yit are normally distributed, the log-likelihood
function is

lit(yN) =− 1
2

log(2π |φ |)− (yit − Ii− tSi)
2

2φ
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Table 1 Model selection
criteria

Criterion(Index) = Deviance + Penalty

Dhat.AIC D(θ̂ ) 2 p
Dhat.BIC D(θ̂ ) log(N) p
Dhat.CAIC D(θ̂ ) (log(N)+1) p
Dhat.ssBIC D(θ̂ ) log((N+2)/24) p
DIC D(θ̂ ) 2(D(θ )−D(θ̂ ))
rough DIC D(θ ) var(D(θ ))/2

where Ii and Si are obtained from the random effect model. For the missing data
indicator mit , the log-likelihood function is

lit(m) =mit log(τit)+ (1−mit)log(1− τit),

where τit varies for different missingness models.
The second part of a criterion is the complexity of a model, which is also

called a penalty term. For AIC, the penalty is 2 p, where p is the number of model
parameters. As the penalty of AIC is sometimes considered to be too lenient in that
it selects saturated models in large samples (e.g., Janssen and De Boeck 1999), BIC
uses log(N)p as the penalty, where N is the sample size. CAIC is another improved
version of AIC. Compared with BIC, CAIC adds an extra p in penalty, which makes
CAIC favor smaller models slightly more than BIC. Also, ssBIC improves BIC. The
penalty in ssBIC is log((N + 2)/24) p. For DIC, the penalty takes the difference
between Eθ |y[D] and D(Eθ |y[θ ]), where Eθ |y[D] = Eθ |y[−2log(p(y|θ ))] +C is a
Monte Carlo estimation of the expectation deviance and can be estimated as the
posterior mean across the converged Markov chain,

D(θ ) =−2
S

S

∑
s=1

N

∑
i=1

T

∑
1=t

[
(1−mit)l

(s)
it (y)+ l(s)it (m)

]
. (9)

In DIC, pD=Eθ |y[D]−D(Eθ |y[θ ]) is a measure of the effective model parameters or

the complexity of the model, and it is approximated by pD = D(θ )−D(θ̂). In prac-
tice, rough DIC (RDIC, sometimes called DICV in some literature, e.g., Oldmeadow
and Keith 2011) is an approximation of formal DIC (e.g., Sturtz et al. 2005). It takes
D(θ ) as its deviance and pV =Var(D(θ ))/2 as its penalty.

In summary, the model selection criteria for latent growth models with missing
data in this study are listed in Table 1.
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5 Simulation Studies

In this section, simulation studies are conducted to evaluate the performance of
the proposed latent growth models and the model selection criteria in a Bayesian
context.

5.1 Simulation Design and Implementation

In the simulation we focus on linear LGCMs to simplify the presentation. Higher
order LGCMs can be easily expanded by adding quadratic or higher order terms.

First, four waves of complete LGCM data yi are generated based on Eqs. (1) and
(2). The random effects consist of the intercept Ii and the slope Si, with Var(Ii) = 1,
Var(Si) = 4, and Cov(Ii,Si) = 0. The fix-effects are (I,S)= (1,3). The measurement
errors are assumed to follow a normal distribution with mean 0 and standard
deviation 1. In the simulation we also assume there is one covariate X generated
from a normal distribution, X ∼ N(1,sd = 0.2). Missing data are created based on
different pre-designed missingness rates. We assume the true missingness is LSD
(also noted as the XS missingness in this study because the missingness depends on
the latent individual slope S and covariate X). With LSD, the bigger the slope is, the
more the missing data. For the sake of simplicity in the simulation, the missingness
rate is set the same for every occasion. Specifically, we set the missingness
probit coefficients as γ0 = (−1,−1,−1,−1), γx = (−1.5,−1.5,−1.5,−1.5), and
γS = (0.5,0.5,0.5,0.5). With the setting, missingness rates are generated based on
Eq. (5). If a participant has a latent growth slope 3, with a covariate value 1, his or
her missingness rate at each wave is τ ≈ 16%; and if the slope is 5, with the same
covariate value, the missing rate increases to τ ≈ 50%; but when the slope is 1, the
missingness rate decreases to τ ≈ 2.3%.

Next, we fit data with LGCMs with different missingness. Specifically, the model
design with different missingness is shown in Table 2, where the symbol “�” shows
the related factors on which the missing data rates depend. For example, when both
“X” and “I” are checked, the missingness depends on the individual’s latent intercept
“I” and the observed covariate “X.” Four types of missingness are studied: LID
(also noted as XI in Table 2), LSD (XS), LOD (XY), and ignorable (X). The shaded
model, LSD (XS), is the true model we used for generating the simulation data.
Five levels of sample size (N = 1,000, N = 500, N = 300, N = 200 and N = 100)
are investigated, and for each sample size, 100 converged replications are analyzed
and summarized.

The simulation studies are implemented by the following algorithm. (1) Set
the counter R = 0. (2) Generate complete longitudinal growth data according
to predefined model parameters. (3) Create missing data according to missing
data mechanisms and missing data rates. (4) Generate Markov chains for model
parameters through the Gibbs sampling procedure. (5) Test the convergence of
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Table 2 Model design in the
simulation study

LGCM: N = 1000, 500, 300, 200 and 100

Missingness

Model X2 I3 S4 Y5

Ignorable (X)
√

LID (XI)
√ √

LSD (XS)1 √ √

LOD (XY)
√ √

1 The shaded model is the true model.
2 Observed covariates.
3 Individual latent intercept. If checked, the missingness is non-

ignorable.
4 Individual latent slope. If checked, the missingness is non-

ignorable.
5 Individual potential outcome y. If checked, the missingness is

non-ignorable.

generated Markov chains. (6) If the Markov chains pass the convergence test, set
R = R+ 1 and calculate and save the parameter estimates. Otherwise, set R = R
and discard the current replication of simulation. (7) Repeat the above process till
R = 100 to obtain 100 replications of valid simulation.

In step 4, priors carrying little prior information are adopted (Zhang et al.
2007). Specifically, for ϕ1, we set μϕ1

= 02 and Σϕ1 = 103I2. For φ , we set
v0k = s0k = 0.002. For β , it is assumed that β k0 = 02 and Σ k0 = 103I2. For Ψ ,
we define mk0 = 2 and Vk0 = I2. Finally, for γt , we let γt0 = 03 and Dt0 = 103I3,
where 0d and Id denote a d-dimensional zero vector and a d-dimensional identity
matrix, respectively. In step 5, the iteration number of burn-in period is set.
The Geweke convergence criterion indicated that less than 10,000 iterations were
adequate for all conditions in the study. Therefore, a conservative burn-in of 20,000
iterations was used for all iterations. And then the Markov chains with a length of
20,000 iterations are saved for convergence testing and data analysis. After step 7,
twelve summary statistics are reported based on 100 sets of converged simulation
replications. For the purpose of presentation, let θ j represent the jth parameter,
also the true value in the simulation. The twelve statistics are defined below. (1)
The average estimate (est. j) across 100 converged simulation replications of each

parameter is obtained as est. j =
¯̂θ j = ∑100

i=1 θ̂i j/100, where θ̂i j denotes the estimate
of θ j in the ith simulation replication. (2) The simple bias (BIAS.smp j) of each

parameter is calculated as BIAS.smp j =
¯̂θ j − θ j. (3) The relative bias (BIAS.rel j)

of each parameter is calculated using BIAS.rel j = ( ¯̂θ j − θ j)/θ j when θ j �= 0 and

BIAS.rel j =
¯̂θ j − θ j when θ j = 0. (4) The empirical standard error (SE.emp j) of

each parameter is obtained as SE.emp j =

√
∑100

i=1(θ̂i j − ¯̂θ j)2/99. (5) The average

standard error (SE.avg j) is calculated by SE.avg j = ∑100
i=1 ŝi j/100, where ŝi j denotes

the estimated standard error of θ̂i j. (6) The average mean square error (MSE)
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of each parameter is obtained by MSE j = ∑100
i=1 MSEi j/100, where MSEi j is the

mean square error for the jth parameter in the ith simulation replication, MSEi j =
(Biasi j)

2 +(ŝi j)
2. (7) The average lower and (8) upper limits of the 95% percentile

confidence interval (CI.low j and CI.upper j) are, respectively, defined as CI.low j =

∑100
i=1 θ̂ l

i j/100, and CI.upper j = ∑100
i=1 θ̂ u

i j/100 where θ̂ l
i j and θ̂ u

i j denote the 95%
lower and upper limits of CI for the jth parameter, respectively. (9) The coverage
probability of the 95% percentile confidence interval (CI.cover j) of each parameter
is obtained using CI.cover j = [#(θ̂ l

i j ≤ θ j ≤ θ̂ u
i j)]/100. (10) The average lower, (11)

upper limits, and (12) the coverage probability of the 95% highest posterior density
credible interval (HPD, Box and Tiao 1973) of each parameter are similarly defined
by HPD.low j, HPD.upper j, and HPD.cover j, respectively.

5.2 Simulation Results

In this section, we show simulation results for the estimates obtained from the true
model and mis-specified models, and the performance of model selection criteria.

First, we investigate the estimates obtained from the true model. Tables 3 and
4 show the summarized estimates for different sample sizes (N = 1,000, N = 500,
N = 300, N = 200, and N = 100). From both tables, except for the small sample
size N = 100, one can see that (1) all the estimate biases are very small; (2) the
difference between the empirical SEs and the average SEs is very small, which
indicates the SEs are estimated accurately; (3) both percentile interval and HPD
interval coverage probabilities are very close to the theoretical percentage 95%,
which means the type I error for each parameter is close to the specified 5% so
that we can use the estimated confidence intervals to conduct statistical inference;
and (4) this true model has 100% convergence rate.

In order to conveniently compare estimates for different sample sizes, we
further summarize Tables 3 and 4 by calculating five summary statistics across
all parameters, which are shown in Table 5. The first statistic is the average
absolute relative biases (|Bias.rel|) across all parameters, which is defined as
|Bias.rel| = ∑p

j=1 |Bias.rel j|/p, where p is the total number of parameters in a
model. Second, we obtain the average absolute differences between the empirical
SEs and the average Bayesian SEs (|SE.diff|) across all parameters by using
|SE.diff| = ∑p

j=1 |SE.emp j − SE.avg j|/p. Third, we calculate the average per-
centile coverage probabilities (CI.cover) across all parameters by using CI.cover =
∑p

j=1 CI.cover j/p. Fourth, we calculate the average HPD coverage probabilities
(HPD.cover) across all parameters by using HPD.cover = ∑p

j=1 HPD.cover j/p.
Fifth, the convergence rate for the study is calculated.

Table 5 shows that, except for the case for N = 100, the true mode can
recover model parameters very well, by checking (1) the small average absolute
relative biases of estimates, |Bias.rel|, (2) the small average absolute differences
between the empirical SEs and the average SEs, |SE.diff|, and (3) the almost 95%
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(ŝ

ij
)2



292 Z. Lu et al.

T
ab

le
4

Su
m

m
ar

iz
ed

es
ti

m
at

es
of

th
e

tr
ue

m
od

el
s

w
it

h
L

SD
(X

S)
m

is
si

ng
ne

ss
(c

on
t’d

)

B
IA

S
SE

95
%

pe
rc

en
ti

le
C

I
95

%
H

PD
in

te
rv

al

Pa
ra

m
et

er
T

ru
e

es
t.

sm
p.

re
l.

em
p.

av
g.

M
SE

L
ow

er
U

pp
er

C
ov

er
L

ow
er

U
pp

er
C

ov
er

N
=

20
0,

Su
m

m
ar

iz
ed

ba
se

d
on

10
0

co
nv

er
ge

d
re

pl
ic

at
io

ns
w

it
h

a
co

nv
er

ge
nc

e
ra

te
of

10
0/

10
6
=

94
.3

4%
.

Growthcurve

I
1

1.
01

1
0.

01
1

0.
01

1
0.

09
9

0.
11

9
0.

02
4

0.
77

9
1.

24
4

0.
98

0.
77

9
1.

24
3

0.
98

S
3

2.
97

5
−0

.0
25

−0
.0

08
0.

17
7

0.
17

1
0.

06
1

2.
64

3
3.

31
4

0.
93

2.
64

2
3.

31
2

0.
94

va
r(

I)
1

1.
01

1
0.

01
1

0.
01

1
0.

22
8

0.
23

3
0.

10
7

0.
60

1
1.

51
6

0.
94

0.
57

2
1.

47
6

0.
92

va
r(

S)
4

4
0

0
0.

47
4

0.
52

2
0.

49
8

3.
09

5
5.

13
5

0.
97

3.
02

9
5.

04
1

0.
96

co
v(

IS
)

0
0.

06
5

0 .
06

5
0.

06
5

0.
25

7
0.

25
2

0.
13

4
−0

.4
47

0.
54

9
0.

92
−0

.4
36

0.
55

7
0.

92
va

r(
e)

1
1.

02
7

0.
02

7
0.

02
7

0.
09

8
0.

09
9

0.
02

0.
85

1
1.

23
8

0.
95

0.
84

1.
22

4
0.

95

Missingnessparameters

Wave1

γ 0
1

−1
−1

.3
−0

.3
0.

3
0.

67
1

0.
5

0.
90

1
−2

.3
99

−0
.4

49
0.

93
−2

.3
06

−0
.4

02
0.

94
γ x

1
−1

.5
−1

.8
74

−0
.3

74
0.

24
9

0.
74

5
0.

42
4

1.
11

3
−2

.8
68

−1
.2

27
0.

88
−2

.7
35

−1
.1

69
0.

91
γ S

1
0.

5
0.

64
7

0.
14

7
0.

29
3

0.
32

3
0.

19
7

0.
20

2
0.

33
4

1.
1

0.
91

0.
31

1
1.

04
5

0.
92

Wave2

γ 0
2

−1
−1

.2
78

−0
.2

78
0.

27
8

0.
69

0.
46

8
0.

83
8

−2
.3

03
−0

.4
63

0.
87

−2
.2

27
−0

.4
26

0.
89

γ x
2

−1
.5

−1
.7

79
−0

.2
79

0.
18

6
0.

45
6

0.
34

9
0.

45
1

−2
.5

78
−1

.2
09

0.
91

−2
.4

87
−1

.1
63

0.
9

γ S
2

0.
5

0.
62

7
0.

12
7

0.
25

4
0.

24
4

0.
17

1
0.

11
7

0.
34

3
1.

01
4

0.
9

0.
32

4
0.

97
6

0.
91

Wave3

γ 0
3

−1
−1

.1
91

−0
.1

91
0.

19
1

0.
50

5
0.

43
6

0.
5

−2
.1

33
−0

.4
19

0.
91

−2
.0

5
−0

.3
77

0.
93

γ x
3

−1
.5

−1
.7

21
−0

.2
21

0.
14

7
0.

50
2

0.
31

4
0.

42
6

−2
.4

28
−1

.1
93

0.
9

−2
.3

48
−1

.1
5

0.
94

γ S
3

0.
5

0.
58

6
0.

08
6

0.
17

2
0.

18
3

0.
15

2
0.

06
8

0.
32

6
0.

92
6

0.
91

0.
30

9
0.

88
9

0.
95

Wave4

γ 0
4

−1
−1

.2
7

−0
.2

7
0.

27
0.

59
4

0.
46

7
0.

67
−2

.3
04

−0
.4

57
0.

86
−2

.2
09

−0
.4

04
0.

90
γ x

4
−1

.5
−1

.8
08

−0
.3

08
0.

20
5

0.
39

7
0.

33
6

0.
38

2
−2

.5
6

−1
.2

4
0.

82
−2

.4
8

−1
.1

95
0.

89
γ S

4
0.

5
0.

61
8

0.
11

8
0.

23
6

0.
20

4
0.

16
0.

08
5

0.
34

5
0.

98
0.

88
0.

32
5

0.
94

2
0.

89



Bayesian Latent Growth Curve Models with Missing Data 293

N
=

10
0,

Su
m

m
ar

iz
ed

ba
se

d
on

10
0

co
nv

er
ge

d
re

pl
ic

at
io

ns
w

it
h

a
co

nv
er

ge
nc

e
ra

te
of

10
0/

14
2
=

70
.4

2%
.

Growthcurve

I
1

1.
03

1
0.

03
1

0.
03

1
0.

16
7

0.
16

8
0.

05
7

0.
70

1
1.

35
9

0.
96

0.
70

1
1.

35
9

0.
97

S
3

2.
98

3
−0

.0
17

−0
.0

06
0.

23
6

0.
24

2
0.

11
5

2.
51

4
3.

46
7

0.
95

2.
51

3.
46

0.
94

va
r(

I)
1

0.
93

3
−0

.0
67

−0
.0

67
0.

30
5

0.
32

3
0.

20
6

0.
40

8
1.

66
5

0.
93

0.
35

5
1.

57
4

0.
91

va
r(

S)
4

3.
96

5
−0

.0
35

−0
.0

09
0.

82
9

0.
74

7
1.

26
1

2.
74

3
5.

65
6

0.
91

2.
62

3
5.

45
8

0.
91

co
v(

IS
)

0
0.

06
9

0.
06

9
0.

06
9

0.
33

3
0.

35
7

0.
24

6
−0

.6
66

0.
74

8
0.

93
−0

.6
46

0.
76

2
0.

95
va

r(
e)

1
1.

07
8

0.
07

8
0.

07
8

0.
15

7
0.

15
1

0.
05

4
0.

82
1.

40
9

0.
93

0.
80

1
1.

38
0.

94

Missingnessparameters

Wave1

γ 0
1

−1
−3

.2
57

−2
.2

57
2.

25
7

5.
79

4
1.

33
3

42
.7

92
−6

.2
64

−1
.1

31
0.

84
−5

.9
22

−1
.0

18
0.

86
γ x

1
−1

.5
−4

.3
14

−2
.8

14
1.

87
6

7.
49

2
1.

27
7

69
.3

37
−7

.1
71

−2
.3

96
0.

8
−6

.7
39

−2
.2

51
0.

85
γ S

1
0.

5
1.

62
6

1.
12

6
2.

25
2

2.
88

1
0.

55
10

.3
53

0.
78

8
2.

85
7

0.
8

0.
74

6
2.

69
8

0.
84

Wave2

γ 0
2

−1
−3

.0
11

−2
.0

11
2.

01
1

5.
71

9
1.

32
2

41
.7

11
−6

.0
62

−1
.0

27
0.

85
−5

.6
96

−0
.8

93
0.

88
γ x

2
−1

.5
−3

.7
72

−2
.2

72
1.

51
5

6.
94

7
1.

28
3

61
.2

37
−6

.8
11

−1
.9

27
0.

82
−6

.3
85

−1
.7

74
0.

85
γ S

2
0.

5
1.

43
6

0.
93

6
1.

87
1

2.
57

0.
54

9
8.

56
4

0.
65

3
2.

71
0.

81
0.

58
6

2.
52

7
0.

86

Wave3

γ 0
3

−1
−2

.8
77

−1
.8

77
1.

87
7

5.
93

1.
2

42
.4

01
−5

.4
93

−0
.8

98
0.

89
−5

.2
33

−0
.8

06
0.

91
γ x

3
−1

.5
−3

.8
6

−2
.3

6
1.

57
3

6.
95

5
1.

15
3

58
.8

35
−6

.5
08

−2
.0

86
0.

83
−6

.1
25

−1
.9

32
0.

85
γ S

3
0.

5
1.

38
8

0.
88

8
1.

77
6

2.
56

7
0.

46
7

7.
97

7
0.

64
1

2.
42

8
0.

85
0.

59
6

2.
28

9
0.

89

Wave4

γ 0
4

−1
−2

.8
31

−1
.8

31
1.

83
1

5.
64

6
1.

29
7

39
.8

35
−5

.9
02

−0
.8

91
0.

89
−5

.5
22

−0
.7

53
0.

90
γ x

4
−1

.5
−3

.3
86

−1
.8

86
1.

25
7

5.
37

9
1.

12
7

37
.5

32
−6

.0
48

−1
.7

45
0.

81
−5

.6
22

−1
.5

86
0.

88
γ S

4
0.

5
1.

22
2

0.
72

2
1.

44
4

1.
94

4
0.

45
7

4.
85

4
0.

55
2

2.
31

2
0.

84
0.

49
1

2.
15

2
0.

88

N
ot

e:
A

bb
re

vi
at

io
ns

ar
e

as
gi

ve
n

in
Ta

bl
e

3



294 Z. Lu et al.

Table 5 Summary and comparison of simulation results of the true model

|Bias.rel|a |SE.diff|b MSEc CI.coverd HPD.covere CVG.ratef (%)

1,000 0.025 0.007 0.033 0.942 0.942 100
500 0.052 0.021 0.079 0.932 0.939 100

N 300 0.089 0.031 0.150 0.922 0.930 100
200 0.160 0.090 0.366 0.909 0.924 94.34
100 1.202 2.664 23.743 0.869 0.893 70.42

aThe average absolute relative bias across all parameters, defined by |Bias.rel| =
∑p

j=1 |Bias.rel j|/p. The smaller, the better
bThe average absolute difference between the empirical SEs and the average Bayesian SEs
across all parameters, defined by |SE.diff| = ∑p

j=1 |SE.emp j − SE.avg j|/p. The smaller, the
better
cThe Mean Square Errors (MSE) across all parameters, defined by MSE = ∑p

j=1[(Bias j)
2 +

(ŝ j)
2]/p. The smaller, the better

dThe average percentile coverage probability across all parameters, defined by CI.cover =
∑p

j=1 CI.cover j/p, with a theoretical value of 0.95
eThe average highest posterior density (HPD) coverage probability across all parameters,
defined by HPD.cover = ∑p

j=1 HPD.cover j/p, with a theoretical value of 0.95
fThe convergence rate

average percentile coverage probabilities, CI.cover, and the average HPD coverage
probabilities, HPD.cover. With the increase of the sample size, both the point
estimates and standard errors get more accurate.

Second, we compare the estimates obtained from the true model and different
mis-specified models. In this study the true model is the LGCM with LSD (XS)
missingness, and there are three mis-specified models, the LGCM with LID
(XI) missingness, the LGCM with LOD (XY) missingness, and the LGCM with
ignorable missingness (see Table 2 for simulation design). The estimates from the
mis-specified models, such as LID (XI) missingness, LOD (XY) missingness, and
ignorable missingness, are also summarized, but not included in this paper due to
limit space.

To compare estimates from different models, we further summarize and visualize
some statistics. Figure 4a compares the point estimates of intercept and slope for all
models when N = 1,000. The true value of slope is 3 but the estimate is 2.711 when
the missingness is ignored. Actually, for the model with ignorable missingness, the
slope estimates are all less than 2.711 for all sample sizes in our study. Figure 4b
focuses on the coverage of slope. When the missingness is ignored, it is as low
as 4% for N = 1,000, and 21% for N = 500 (the coverage for N = 1,000 is
lower because the SE for N = 1,000 is smaller than the SE for N = 500). As a
result, conclusions based on the model with ignorable missingness will be severely
misleading. Figure 4b also shows that the slope estimate from the model with the
mis-specified missingness, LID (XI), has low coverage, with 76% for N = 1,000
and 87% for N = 500. So the conclusions based on this model may still be incorrect.
Figure 4c compares the true model and the model with another type of mis-specified
missingness, LOD (XY) for N = 1,000. For the wrong model, the coverage is 51%
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Fig. 4 Comparison of four models/missingness mechanisms. (a) Intercept and slope estimates
for all models (True Int=1, True Slope=3), (b) Slope coverage for all models (Theoretical
coverage=95%), (c) Parameter coverage for LSD(XS) and LOD (XY) (Theoretical value=95%),
and (d) Convergence rates for all models (The closer to 100%, the better)

for intercept, and 72% for Cov(I,S). Finally, Fig. 4d compares the convergence rates
for all models. One can see that the convergence rates of LOD (XY) and LID (XI)
models are much lower than those of the true model LSD (XS) and the model with
ignorable missingness. When the missingness is ignored, the number of parameters
is smaller than that of non-ignorable models, and then convergence rate gets higher.

In summary, the estimates from mis-specified models may result in severely
misleading conclusions, especially when the missingness is ignored. Also, the
convergence rate of a mis-specified model is usually lower than that of the true
model.

Third, regarding model selection, Table 6 lists the selection proportions across
all replications. It shows that almost all the criteria, except for the rough DIC, can
correctly identify the true model with high certainty.
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Table 6 Model selection proportion

Non-ignorable missingness
ignorable

Non-ignorable missingness
ignorable

Criteron1 LSD (XS) 2 LOD (XY) LID (XI) missingness LSD (XS) LOD (XY) LID (XI) missingness

N = 1000 N = 500

Dhat.AIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dhat.BIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dhat.CAIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dhat.ssBIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

DIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Rough DIC 0.013 0.000 0.987 0.000 0.038 0.000 0.962 0.000

N = 300 N = 200

Dhat.AIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

Dhat.BIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

Dhat.CAIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

Dhat.ssBIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

DIC 1 0.000 0.000 0.000 0.98125 0.0125 0.00625 0.000

Rough DIC 0.1125 0.000 0.8875 0.000 0.2 0.03125 0.76875 0.000

N = 100

Dhat.AIC 0.7125 0.28125 0.00625 0.000

Dhat.BIC 0.7125 0.28125 0.00625 0.000

Dhat.CAIC 0.7125 0.28125 0.00625 0.000

Dhat.ssBIC 70625 0.28125 0.00625 0.000

DIC 0.70625 0.175 0.11875 0.000

Rough DIC 0.1125 0.04375 0.84375 0.000
1 The definition of each criterion is given in Table 1.
2 The shaded model is the true model.
3 The shaded cell has the largest proportion. For each criterion, the sum of all proportions might be larger than 1 because

models may have the same lowest index value.

5.3 Simulation Conclusions

Based on the simulation studies, we conclude as follows. (1) The proposed Bayesian
method can accurately recover model parameters (both point estimates and standard
errors). (2) The small difference between the empirical SE and the average SE
indicates that the Bayesian method used in the study can estimate the standard
errors accurately. (3) With the increase of the sample size, estimates get closer to
their true values and standard errors become more accurate. (4) Ignoring the non-
ignorable missingness can lead to severely incorrect conclusions. (5) Mis-specified
missingness may also result in misleading conclusions. (6) Almost all the criteria,
except for the rough DIC, can correctly identify the true model with high certainty.
(7) The non-convergent model might be a sign of a wrong model.
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6 Real Data Analysis

In this section, we illustrate the application of the Bayesian latent growth curve
model with missing data through the analysis of mathematical ability growth
data from the NLSY97 survey (Bureau of Labor Statistics, U.S. Department of
Labor 1997). The data set available to us consisted of N = 362 youths who
were administered the Peabody Individual Achievement Test (PIAT) Mathematics
Assessment yearly from 1997, when they were 12 years old and in Grade 7, to 2000,
when they were 15 years old and in Grade 10. Figure 5 plots the data, which shows
the four measures of mathematical ability increased over time with a roughly linear
trend.

Table 7 presents the summary statistics. The missing data rates range from
5.801% to 12.707%. Information on mothers’ education (in years) was also included
in the sample. In this analysis, we are interested to see how mathematical ability
grew over the 4-year period, and if mothers’ education influenced the missing data
pattern.

First, for comparison purposes, we fit four models with different types of
missingness, LSD, LID, LOD, and ignorable. For each model, the burn-in period
for Gibbs sampling was generated long enough to make sure Markov chains for
parameters converged. To test convergence, the history plot and Geweke test statistic

0
2

4
6

8
10

time

sc
or

e

1997 1998 1999 2000

Fig. 5 Plot for the PIAT math data
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Table 7 Summary statistics
for the PIAT math data

1997 1998 1999 2000

Mean 6.110 6.309 6.722 6.959
Standard deviation 1.560 1.698 1.679 1.770
Missing data (count) 22 21 39 46
Missing data rate (%) 6.077 5.801 10.773 12.707

for each unknown model parameter were examined. Except for the LID model, all
the other three models converged. Table 8 shows the Geweke test statistics for all the
model parameters are smaller than 1.96, which indicates the convergence of Markov
chains (Geweke 1992). The next 90,000 iterations are then saved for data analysis.
The results of the three models are provided in Table 8. In the table, the ratio
of Monte Carlo error (MC error) and standard deviation (SD) for each parameter
is around or smaller than 0.05, which indicates parameter estimates are accurate
(Spiegelhalter et al. 2003). MC error is an important statistic providing a measure of
the variability of each parameter estimate in the MCMC chain. The lower the MC
error, the more precise the parameter estimate. Overall, we conclude that the results
from the real data analysis can be used for further inference. A quick look at the
results from the three models shows that the growth parameters do not differ much,
even for the model with ignorable missingness. This is due to the low missing data
rates for our data set. However, for missingness parameters, different missingness
models have different results which, in turn, leads to different interpretations of the
data.

Second, the model selection criteria were used to identify the best-fit model.
Table 9 shows all the available indices. As one can see, the LSD model is favored
by all the criteria. The results from the best-fit model, LSD, reveal that (1) none of
γxts, the coefficients for the covariate, are significant at the α level of 0.05, which
implies that the missingness is not related to mothers’ education level; however, (2)
the missingness is significantly negatively correlated with the latent slope in 1999
and 2000, which implies that in these 2 years the youth with a low mathematical
growth is more likely to miss a test.

7 Discussion

Latent growth curve models are becoming increasingly complex and with this
comes an increase in concerns about estimating these models. In this study, we
examined several growth models designed to address problems common to almost
all longitudinal research, namely, that of missing data. Three new non-ignorable
missingness mechanisms were considered: latent intercept missingness, latent slope
missingness, and outcome-dependent missingness. A fully Bayesian approach was
implemented using data augmentation and Gibbs sampling to estimate these models
in the presence of the three types of non-ignorable missingness. Simulation results
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Table 8 Estimates from different models in real data analysis

Mean S.D.1 MCs.e./S.D.2 Lower[2.5%] Upper[97.5%] Geweke t3

Model with LSD (XS) missingness 4

G
ro

w
th

C
ur

ve

Pa
ra

m
et

er
s

Intercept 6.060 5 0.083 0.001 5.895 6.223 −0.718

Slope 0.288 0.030 7.3E−4 0.230 0.348 0.170

Var(I) 1.697 0.171 0.002 1.387 2.057 0.928

Var(S) 0.078 0.020 7.4E−4 0.046 0.121 −1.280

Cov(I,S) −0.039 0.038 8.7E−4 −0.120 0.031 −0.199

Var(e) 1.011 0.054 0.001 0.909 1.121 1.734

M
is

si
ng

ne
ss

Pa
ra

m
et

er
s 19

97

γ01 −2.574 0.625 0.033 −3.847 −1.450 −1.448

γx1 0.081 0.046 0.002 −0.004 0.175 1.512
γS1 −0.089 0.840 0.030 −1.797 1.550 0.205

19
98

γ02 −1.656 0.516 0.025 −2.681 −0.636 −0.162

γx2 0.022 0.039 0.002 −0.054 0.103 0.313
γS2 −0.926 0.796 0.025 −2.613 0.526 −0.989

19
99

γ03 −1.710 0.695 0.039 −3.164 −0.407 1.387

γx3 0.083 0.054 0.003 −0.020 0.195 −1.146

γS3 −4.332 2.878 0.073 −12.457 −1.170 −1.201

20
00

γ04 −0.875 0.482 0.025 −1.823 0.021 0.484
γx4 0.009 0.037 0.002 −0.061 0.085 −0.230

γS4 −1.838 0.920 0.032 −3.967 −0.319 −1.258

Model with LOD (XY) missingness

G
ro

w
th

C
ur

ve

Pa
ra

m
et

er
s

Intercept 6.002 0.084 8.8E−4 5.838 6.167 0.315

Slope 0.333 0.032 6.0E−4 0.271 0.396 0.205

Var(I) 1.738 0.187 0.002 1.396 2.128 0.035

Var(S) 0.103 0.022 3.2E−4 0.064 0.150 0.437

Cov(I,S) −0.057 0.050 6.6E−4 −0.161 0.036 0.243

Var(e) 0.972 0.053 4.7E−4 0.873 1.080 −1.124

M
is

si
ng

ne
ss

Pa
ra

m
et

er
s 19

97

γ01 −0.986 0.760 0.041 −2.491 0.539 0.204

γx1 0.102 0.052 0.003 0.005 0.211 −0.466

γY1 −0.345 0.117 0.006 −0.591 −0.133 0.201

19
98

γ02 −1.794 0.681 0.036 -3.213 −0.543 −0.162

γx2 0.026 0.040 0.002 −0.053 0.104 −0.593
γY2 −0.019 0.082 0.004 −0.178 0.145 0.902

19
99

γ03 −1.258 0.586 0.031 −2.344 −0.034 −1.477

γx3 0.050 0.038 0.001 −0.024 0.124 1.272
γY3 −0.092 0.069 0.003 −0.230 0.045 0.804

20
00

γ04 −1.638 0.606 0.033 -2.740 −0.371 −0.142

γx4 4.4E-4 0.032 0.002 −0.060 0.064 −0.464
γY4 0.067 0.070 0.004 −0.076 0.187 0.529

Model with ignorable (X) missingness

G
ro

w
th

C
ur

ve

Pa
ra

m
et

er
s

Intercept 6.051 0.082 4.7E−4 5.890 6.210 1.303

Slope 0.311 0.030 2.5E−4 0.252 0.369 −1.376

Var(I) 1.683 0.183 0.001 1.349 2.064 1.431

Var(S) 0.100 0.021 3.0E−4 0.062 0.145 1.052

Cov(I,S) −0.043 0.049 5.7E−4 −0.144 0.049 −1.945

Var(e) 0.966 0.052 3.8E−4 0.869 1.072 −1.446

(continued)
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Table 8 (continued)
M

is
si

ng
ne

ss
Pa

ra
m

et
er

s

19
97 γ01 −2.554 0.553 0.029 −3.640 −1.433 −0.254

γx1 0.080 0.043 0.002 −0.007 0.163 0.305
19

98 γ02 −1.906 0.541 0.028 −2.963 −0.869 −0.282

γx2 0.026 0.043 0.002 −0.058 0.109 0.294

19
99 γ03 −1.784 0.420 0.021 −2.598 −0.978 −0.394

γx3 0.044 0.033 0.002 −0.021 0.109 0.389

20
00 γ04 −1.189 0.381 0.019 −1.914 −0.463 −0.287

γx4 0.004 0.031 0.002 −0.056 0.061 0.281

Note:
Standard deviation.
Ratio of MC error to standard deviation. A value around or less than 0.05 indicates that the
corresponding estimate is accurate (Spiegelhalter et al. 2003).
Geweke test t value. An absolute value less than 1.96 indicates
The shaded model is selected to be the best-fit model by all criteria in this study.
The shaded parameter estimate is significant from zero.

Table 9 Model selection in real data analysis
non-ignorable missingness ignorable

Criterion LOD (XY) LSD (XS) LID (XI) missingness

Dhat.AIC 4125.000 4083.000 N/A 4151.000

Dhat.BIC 4195.050 4153.050 N/A 4205.483

Dhat.CAIC 4213.050 4171.050 N/A 4219.483

Dhat.ssBIC 4137.944 4095.944 N/A 4161.067

DIC 4959.000 4953.000 N/A 4979.000

rough DIC 5730.878 5714.752 N/A 5731.980

Note:
The definition of each criterion is given in Table 1.
The shaded cell has the smallest value.

showed that the Bayesian method was able to accurately recover parameters in all
models considered.

Next, Bayesian model selection criteria were studied to identify the best-fit model
in the context of the correct missing mechanisms. Almost all the criteria were able
to correctly identify the true model with high certainty.

We also illustrated the application of the Bayesian latent growth curve model
with missing data through the analysis of mathematical ability growth data from
the NLSY97 survey. In this example, the focus was on seeing how mathematical
ability grew over the 4-year period, and whether mothers’ education influenced the
missing data pattern. Using the model selection criteria introduced in this study,
we were able to identify the best-fit of the models considered. The results obtained
from the best-fit model showed that mathematical ability grew significantly, and the
missing data mainly depended on student’s latent rate of growth. Further, mothers’
education did not significantly influence the missing data pattern.

The models proposed in this paper can be further developed in various ways.
First, the missingness in the simulation was assumed to be independent across time
points. If this assumption is violated, likelihood functions will be different. For
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example, if the missingness depends on the previous session, then autocorrelations
might be involved, and the likelihood will be much more complicated. Furthermore,
the missingness in practice can be a combination of different types of missingness,
quite probably leading to development of increasingly more complex models.
Second, additional model selection criteria could be considered, for example, Bayes
factors and predictive posterior probabilities. Also, designing new criteria is an
interesting topic for future work. It might be useful, for example, to consider
observed-data or complete-data likelihood functions for random effects models
for p(y|θ ). Third, the data considered in the study were assumed to be normally
distributed. However, in reality data are seldom normally distributed, particularly
in behavioral and educational sciences (e.g., Micceri 1989). When data have heavy
tails, or are contaminated with outliers, robust models (e.g., Huber 1996) should be
adopted to help reduce the sensitivity to small deviations from the assumption of
normality. Fourth, latent population heterogeneity (e.g., McLachlan and Peel 2000)
may exist in the collected longitudinal data. Growth mixture models (GMMs) can
be considered to provide a flexible set of models for analyzing longitudinal data
with latent or mixture distributions (e.g., Bartholomew and Knott 1999).

Appendix

The Derived Posteriors for LGCMs with Non-ignorable Missingness:

(1) Let η = (η1,η2, . . . ,ηN), and the conditional posterior distribution for φ can
be easily derived as an Inverse Gamma distribution,

φ |η ,y ∼ IG(a1/2,b1/2) ,

where a1 = v0 +N T , and b1 = s0 +∑N
i=1(yi −Λη i)

′(yi −Λη i).
(2) Notice that tr(AB) = tr(BA), so the conditional posterior distribution for Ψ is

derived as an Inverse Wishart distribution,

Ψ |β ,η ∼ IW (m1,V1) ,

where m1 = m0 +N, and V1 = V0 +∑N
i=1(η i −β)(η i −β)′.

(3) By expanding the terms inside the exponential part and combining similar
terms, the conditional posterior distribution for β is derived as a multivariate
normal distribution,

β |Ψ ,η ∼ MN(β 1,Σ 1),

where β 1=
(
NΨ−1+Σ−1

0

)−1 (Ψ−1 ∑N
i=1 η i+Σ−1

0 β 0

)
, and Σ1 =

(
NΨ−1+

Σ−1
0

)−1
.

(4) The conditional posterior for γt , (t = 1,2, . . . ,T ), is a distribution of
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p(γt |ω,x,m) ∝ exp

[
− 1

2
(γt − γt0)

′D−1
t0 (γ t − γt0)

+
N

∑
i=1

{
mit logΦ(ω ′

iγt)+ (1−mit) log[1−Φ(ω ′
iγt)]

}]
.

where Φ(ω ′
iγt) is defined by Eqs. (4), (5), or (6).

(5) By expanding the terms inside the exponential part and combining similar
terms, the conditional posterior distribution for η i, i = 1,2, . . . ,N, is derived
as a Multivariate Normal distribution,

η i|φ ,Ψ ,β ,yi ∼ MN(μηi,Σηi),

where μηi =
(

1
φ Λ ′Λ +Ψ−1

)−1(
1
φ Λ ′yi +Ψ−1β

)
, and Σηi =

(
1
φ Λ ′Λ +Ψ−1

)−1
.

(6) The conditional posterior distribution for the missing data ymis
i , i = 1,2, . . . ,N,

is a normal distribution,

ymis
i |η i,φ ∼ MN [Λη i,IT φ ] ,

where IT is a T ×T identity matrix. The dimension and location of ymis
i depend

on the corresponding mi value.
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