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Abstract—Longitudinal social network clustering is an
emerging research area with many applications. Previous
research typically focuses on the development of the clusters
in the longitudinal network. In this paper, we propose an
alternative method for longitudinal social network clustering,
in which we assume that the clustering and the evolution of
the network are the results of its inner structure, the strength
of the ties among the nodes in the network. We estimate the
strength of the ties based on the evolution of the network over
time through a continuous Markov process and then clustering
the network based on the strength of the ties of the whole
network. A simulation study shows that the proposed method
performs well under a variety of conditions. The application
of the method is illustrated through the analysis of a real set
of data.

Keywords-Longitudinal network; clustering; stochastic actor-
oriented model; Bayesian method

I. INTRODUCTION

A social network is a systematic depiction of the living
context of individuals. Focusing on the relationship among
social entities, social network analysis is widely used in the
social and behavioral sciences. A network can be charac-
terized as a set of nodes joined in pairs by edges or ties
[1]. Specifically, each node in the network represents an
individual, also called an actor; and a directed or undirected
tie between two nodes describes the relationship between
them in reality. Typically, a binary variable Xij is used
to denote the relationship, with 1 indicating the existence
of a tie from node i to node j, and 0 not. A complete
social network can be represented as an adjacency matrix
X = (Xij) , i, j = 1, . . . , g with g being the total num-
ber of nodes in the network. If a social network evolves
throughout time, a longitudinal social network is observed
and can be represented by a series of adjacency matrix
X (tl) = (Xij (tl)) for l = 1, ...,M, where M is the total
number of times that the network is observed and tl denotes
the time when the network is observed.

Network clustering, or community detection, is an active
research field in network analysis [2]. Clustering can be
conducted for both undirected and directed social networks.
Directed social networks are more common in the social and
behavioral sciences and they usually contain more informa-
tion. For example, in studying a friendship network, only a
directed network can reflect the orientation of relationships.

Two popular approaches have been proposed to cluster the
directed networks. One approach is to extend the existing
methods for undirected networks to the directed ones such
as the methods based on modularity [3], cut-based measures
[4], and spectral clustering [5]. Another approach to cluster-
ing directed networks is through transformation. The typical
method is to cluster different communities via a two-step
procedure [6]. In the first step, a directed network is “sym-
metrized”, and in the second step, the resulting symmetrized
matrix is clustered by selected undirected clustering algo-
rithms. By symmetrizing a network, we can transform the
directed network into an undirected and weighted network.

While static network clustering (directed or undirected)
has already been studied extensively [7], [8], dynamic net-
work clustering received relatively less attention. Previous
methods generally conduct dynamic network clustering us-
ing a two-step procedure: (1) identifying the clusters based
on the static snapshots of the time-evolving network, and (2)
detecting the change points throughout the time according
to the different partitions over time [8].

Other dynamic network clustering approaches are also
available, which only differ in specific methods of clustering
a static snapshot and detecting the change point in the
two-step procedure. The existing methods have focused on
networks in which ties are regarded as brief events such
as email and cell-phone communications among actors.
However, in many social networks on friendship, trust, and
cooperation, a tie or relationship often builds gradually
and endures over time as opposed to being created and
terminated spontaneously. For such networks, the two-step
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procedure may not be appropriate for at least two reasons.
First, the current states of a network cannot be regarded as
a snapshot captured from its evolution. A network observed
at the current time depends on previous networks and can
also predict future networks. Simply dividing the dynamic
network evolution process into discrete parts without con-
sidering its inner causality may ignore important evolution
information. Second, the existing methods may not reflect
the tendency of components forming different communities
at the macroscopical level, and do not provide informative
and intuitive indications on the inside structure of a network
extracted from the observed changes.

Therefore, the purpose of this study is to propose a new
dynamic network clustering method to better cluster longi-
tudinal networks by integrating the information of dynamic
transition in the structure of social networks. In the rest
of the paper, we first present our proposed method. Then,
through a simulation study, we evaluate factors that affect the
clustering performance. After that, we show its application
by clustering a real longitudinal social network. Finally, we
discuss future directions and limitations of the study.

II. LONGITUDINAL SOCIAL NETWORK CLUSTERING

For a longitudinal friendship network, the strength of the
friendship, or ties, is crucial and, therefore, we propose to
cluster based on such strength of ties. The strength of the
ties measures the intensity and tendency of the connection
between two actors. It is the comprehensive result of various
unknown latent variables or factors [9]. In the literature, a
number of models based on the distance measure have been
proposed to measure the strength of the ties considering
the latent variables or the topology of a social network
[10]–[16]. The general idea of this paper is to evaluate the
strength of the ties according to how a network evolves
throughout time. To measure the strength of a tie of two
actors, we assume that the tie follows a continuous Markov
process. The strength of this tie can then be measured by
the parameters, or a function of them, of the probability
distributions of the Markov process. Using the estimated
strength of ties, we can form an undirected and weighted
adjacency matrix. Then, a spectral analysis algorithm [17],
[18] based on k-medoids algorithm [19] can be used to
cluster the longitudinal network based on the undirected and
weighted adjacency matrix.

In the rest of this section, we will first discuss the basic
assumptions of our method and how we evaluate the strength
of the ties based on the probability distribution of the
Markov process. After that, we will propose a Bayesian
parameter estimation method of the strength and illustrate
its use through a data experiment. Then, we will briefly
introduce the spectral clustering algorithm.

A. Assumptions

Let Xij(t) = 1 denote the existence of a tie between
actors i and j at time t, and Xij(t) = 0 not. To estimate
the strength of a tie, we assume that the tie follows a
weakly stationary continuous Markov process with the rate
λ0 switching from 0 to 1, e.g., forming a tie from one
time to the next time, and rate λ1 for switching from 1
to 0, e.g., breaking a tie from one time to the next time.
Both Xij(t) and Xji(t) are assumed to be independent
and identically distributed stochastic processes. Our strength
measure focuses on the evolution of a tie throughout the
time. Let Plk(∆t) be the probability for the Markov process
transferring from state l to state k (l = 0, 1, k = 0, 1), over
a time interval ∆t, that is, the Markov process begins at
state l at certain time point t0 and ends at state k at time
t0 +∆t. According to [20], solving the Kolmogorov forward
equation

d

d∆t
P00(∆t) = λ1P01(∆t)− λ0P00(∆t)

= −(λ0 + λ1)P00(∆t) + λ1

leads to the transition probability

P00(∆t) =
λ1

λ0 + λ1
+

λ0

λ0 + λ1
e−(λ0+λ1)∆t.

Similarly, we have

P11(∆t) =
λ0

λ0 + λ1
+

λ1

λ0 + λ1
e−(λ0+λ1)∆t.

Given P01(t) = 1− P00(t), we have:

λ0 = −P01(∆t)× ln(P11(∆t)− P01(∆t))

∆t(1 + P01(∆t)− P11(∆t))
, (1)

λ1 = − (1− P11(∆t))× ln(P11(∆t)− P01(∆t))

∆t(1 + P01(∆t)− P11(∆t))
. (2)

Because the Markov process is irreducible and aperiodic,
we have

θ0 = lim
∆t→∞

P00(∆t)=
λ1

λ0 + λ1
,

which can be interpreted as the portion of the time that
a process stays at a state in the long run. The quantity
θ1 = lim∆t→∞ P11(∆t)= λ0

λ1+λ0
can be used to measure

the strength of the tie between two actors in a social
network considering not only the transition rate but also the
probability of the stationary distribution. The higher its value
is, the stronger the tie is.

For illustration, consider two longitudinal social networks
with two actors with the information of the ties shown
below:

Network1 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],

Network2 = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
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with 1 representing a tie between the two actors. There
are 12 waves or times of data in both networks. In the
first network, a tie is not observed in the first six time
points but observed in the last six time points. On the
other hand, the tie in the second network builds and breaks
alternatively. Although the total number of ties observed in
the two networks are the same, they display distinct patterns.
If the tie represents the friendship of two actors, it is clearly
not stable in the second network. The first network shows
a stable friendship after building up. The two individuals
in the network may not have enough interaction to form
a friendship with each other in the first six time points.
However, once they build the friendship, they maintain
it. Intuitively, we should believe that the tie in the first
network is stronger than that in the second network. The
statistic, λ1

λ0+λ1
, provides a good measure of the strength in

distinguishing the different patterns as we will show later.
Note that the way a tie strength is defined values the

continuation and duration of the longitudinal dyadic relation-
ship. It works best for friendship network when identifying
the common cause underlying a longitudinal network. If the
purpose of the network analysis changes, the current tie
strength estimation might not be appropriate anymore.

B. A Bayesian Estimator

Bayesian estimation methods can be used to
estimate λ0/(λ1 + λ0) from data collected for a
network. For an observed longitudinal network,
we have data Xij(t1), Xij(t2), ..., Xij(tM ) and
Xji(t1), Xji(t2), ..., Xji(tM ). The time intervals between
two consecutive observations is 4t = tl+1 − tl, ∀l ∈
{1, 2, ...,M − 1}. Define

Nhk(ij) = # {(i, j) | Xij(tl) = h,Xij(tl+1) = k} ,

h, k ∈ {0, 1} l ∈ {1, 2, ...,M − 1}

and

Nhk(ji) = # {(j, i) | Xji(tl) = h,Xji(tl+1) = k} ,

h, k ∈ {0, 1} l ∈ {1, 2, ...,M − 1}.

For example, N01(i,j) is the number of the 0-to-1 transi-
tions of ties from i to j. Since

Nhk = Nhk(ij) +Nhk(ji), h, k ∈ {0, 1},

we have:

N01 ∼ B(N01 +N00, P01(4t)),

N11 ∼ B(N11 +N10, P11(4t)),

where B represents a binomial distribution. From Equations
(1) and (2), we have

λ0

λ1 + λ0
=

P01(∆t)

1− P11(∆t) + P01(∆t)
.

To simplify the notation, let p = P01(4t), n = N00+N01

and k = N01. We denote the prior distribution and the
posterior distribution of p as π(p) and π(p | n, k) respec-
tively. Any informative or uninformative prior distribution
can be used here. However, the same prior should be used
in the estimation of the tie strength for all pairs of actors. To
reduce the influence of priors, Jeffreys prior [21] is chosen
for p in this study, that is π(p) ∼ Beta( 1

2 ,
1
2 ). Using Bayes

Theorem, the posterior is

π(p | n, k) ∝ π(p)π(n, k | p) ∝ Γ (1)

Γ
(

1
2

)
Γ
(

1
2

)p− 1
2 (1− p)− 1

2

× n!

k!(n− k)!
pk(1− p)n−k,

which is also a Beta distribution Beta(k + 1
2 , n− k + 1

2 ).
With the posterior distribution, an estimate of P01 through

the posterior mean is

P̂01 = p̂ =

∫
p⊆(0,1)

p
Γ (n+ 1)

Γ
(
k + 1

2

)
Γ
(
n− k + 1

2

)pk− 1
2×

(1− p)n+k− 1
2 dp =

1
2 + k

1 + n
=

1
2 +N01

1 +N00 +N01
.

Similarly, we have:

P̂11 =
1
2 +N11

1 +N10 +N11

Then we have

λ̂0

λ0 + λ1
=

P̂01

1− P̂11 + P̂01

=

1
2 +N01

1+N00+N01

1−
1
2 +N01

1+N00+N01
+

1
2 +N11

1+N10+N11

.

This Bayesian estimation has two important advantages.
First, it is robust and easy to calculate without numeric prob-
lem that might happen if maximum likelihood estimation
is used. Second, it can handle missing data in network by
simply removing the missing values.

C. Illustration of the Bayesian Estimation

We illustrate the Bayesian estimation of the strength of
a tie through some simple data examples shown in Table I.
Suppose that the tie represents the friendship between two
individuals. Then, the data such as 1,1,1,1,0,0,0,0 in the table
indicate that two individuals are friends from time 1 to time 4
but are not friends any more from time 5 to time 8. Using the
Bayesian method, the strength of the friendship is 0.2941.
A naive measure could be the simple ratio of ties of all time
points, which is 0.5 in this case.

Table I shows three types of relationship between two
individuals. For the first type of data, the Bayesian method
can better distinguish the difference in the relationship
while the ratios are exactly the same. The second type of
data shows a remarkable change (from 0 to 1 or from 1
to 0) at the last one or two waves. Our method values
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Table I
DATA EXPERIMENT

Type Data Ratio Bayesian

1

1,1,1,1,0,0,0,0 0.5000 0.2941
0,0,0,0,1,1,1,1 0.5000 0.7059
0,1,0,1,0,1,0,1 0.5000 0.5070
1,0,1,0,1,0,1,0 0.5000 0.4930

2

1,1,1,1,1,0 0.8333 0.6667
1,1,1,1,1,0,0 0.7143 0.5000
0,0,0,0,0,1 0.1667 0.3333

0,0,0,0,0,1,1 0.2857 0.5000

3

0,0,0 0 0.2500
0,0,0,0,0,0 0 0.1429

1,1,1 1 0.7500
1,1,1,1,1,1 1 0.8571

the current data more than the previous data because it
is assumed the current relationship will influence future
relationship more. Compared with the data 0,0,0,0,0,1, the
data 0,0,0,0,0,1,1 provide more information about the tie
between these two actors. Therefore, the estimated strength
is higher for 0,0,0,0,0,1,1. Furthermore, comparing the data
1, 1, 1, 1, 1, 0, 0 with the data 0, 0, 0, 0, 0, 1, 1, the ratio of ties
of the first set of data is much larger than that of the second
data set. However, the data 1, 1, 1, 1, 1, 0, 0 indicate that the
tie breaks and, the data [0, 0, 0, 0, 0, 1, 1] indicate that the
tie forms during the last two waves. Therefore, our method
estimates the same strength of the ties. The third type of
data shows our method is less influenced by extreme data
than the use of ratios.

D. Spectral Clustering

Given a longitudinal social network, the strength of the
relationship between any two actors i and j can be estimated
using our Bayesian method. Then, we can form an undi-
rected strength matrix with diagonals being 0 to represent
the strength of friendship among all actors. With the strength
matrix, the existing methods for valued network clustering
can be used to detect clusters among the actors. In this
study, the spectral clustering is used in two steps. First,
we transform the undirected strength matrix into a set of
points in a distance space, whose coordinates are elements
of eigenvectors. Second, we cluster the points via standard
techniques such as k-medoids clustering.

Given the strength matrix W with g actors, where wij =
wji ≥ 0, i = 1, . . . , g, j = 1, . . . , g. The degree of an actor
di is defined as di =

∑g
j=1wij . The degree matrix D is

defined as a diagonal matrix with the degrees d1, ..., dg on
the diagonal. With the information, the following algorithm
can be used to conduct the spectral clustering.

1) Compute the Laplacian matrix L = D−W.
2) Compute the m eigenvectors u1, ..., um corresponding

to m smallest eigenvalues of L.
3) Define U ⊆ Rg×m be the matrix containing

u1, . . . , um as columns.

4) Let yi be the vector corresponding to the i-th row of
U, which is the coordinate of the actor i in the distance
space.

5) Cluster the points with coordinates yi, i = 1, . . . , g in
Rm into k clusters based on k-medoids algorithm.

III. SIMULATION STUDY

To evaluate the performance of our method, we conduct a
simulation study based on the actor-based model [22], [23].
The actor-based model is chosen for the purpose of generat-
ing longitudinal networks because of their popularity in the
social and behavioral literature. However, our model should
work for longitudinal networks generated by other models
such as the actor-level models. The actor-based model was
chosen for illustration. In the section, we first introduce the
actor-based model and then present our simulation study.

A. Actor-based model

The actor-based model integrates several micro-
mechanisms of a network [23]. In a stochastic actor-based
model, a tie between two existing actors is typically
regarded as, but not restricted to, the friendship between
them, directed from one to another. A tie from i to j is
interpreted as the actor i views j as a friend. The actors, in
principle, control their outgoing ties but are also subject to
constraints. At a given moment stochastically determined
in the model, only one actor is allowed to change one tie.

According to [22], the stochastic actor-based model is
based on several fundamental assumptions. First, the time
parameter t is a continuous variable, suggesting that al-
though observations are made at discrete time points, the de-
velopment of a social network is the result of a continuous-
time process. Second, the changing network is regarded as
the outcome of a Markov process. Since the network ties are
defined as states (like friendship) that tend to endure over
time [22], the current states of the network fully mediate its
future development in any given time. Third, the outgoing
ties of each actor in the network are under her/his control.
However, this does not mean that actors are able to change
their ties at will, but are subject to the network structure.
Fourth, at a given moment, only one selected actor has the
chance to change one outgoing tie.

The objective function is a critical part of the actor-based
model [22]. The objective function is defined as a linear
combination of the components of the network as in,

fi (β, x) =
∑
k

βksik (x) ,

where fi (β, x) is the objective function for actor i that
depends on the state x of the network. The function sik (x)
represents a component, or the so-called effect, of the
network, indicating a specific tendency of change in the
network. The parameter βk is the weight of each effect
sik (x). If βk = 0, it indicates that the corresponding

1693



effect has no influence on network evolution. If the βk is
positive, the network tends to move towards the direction
guided by the corresponding effect, and if βk is negative,
the network would “show resistance” to change into the
direction indicating by the effect. [22] suggested the choice
of effects included in the model can be guided by the
observed data although some basic effects are almost always
included in models, such as the density, reciprocity and
transitivity.

The density of an actor is the number of friends she/he
nominates. It reflects the tendency for an actor to establish
a relationship with others in the network. Reciprocity mea-
sures an actor’s tendency toward reciprocation of choices.
Since friendship tends to follow the reciprocation norm,
there is almost always a significant positive evidence for
reciprocity in friendship network [24]. The actor-based
model also allows complicated dependencies between ties
such as the network’s tendency toward transitivity. A “my
friend’s friend is my friend” situation is a common phe-
nomenon, forming a triadic closure structure where two
paths tend to become closed. The transitive triplets is a
common measure of a network’s transitivity by counting the
number of the pattern (i, h, j), in which three actors are tied
as i→ j, j → h, i→ h. [22].

B. Simulation Design

Our simulation is based on networks generated from the
actor-based model. Several factors that potentially influ-
ence clustering accuracy are considered in our simulation.
First, we simulate networks with 2, 3, 5, and 10 clusters,
respectively. Second, for each cluster, we consider three
different sizes: 10, 20 and 30 actors. Therefore, for a network
with 2 clusters each with size 10, there are a total of 20
actors in the network. Third, within each cluster, longitudinal
social networks are simulated from the stochastic actor-
based model using the method discussed in [22]. Two
effects, reciprocity and transitivity, are considered in the
objective function. The coefficients of the two effects are
set at [3,3], [1,5], and [5,1], respectively. Fourth, 6 levels of
cluster separation are considered: 0, 1%, 2%, 5%, 10%, and
20%. The value 0 means there is no between cluster ties,
indicating actors from two clusters have no relationship at
all. 20% means that 20% of all potential ties in a network is
added randomly to the network. Therefore, 20% represents a
condition with a significant amount of noise. Fifth, we also
allow the ties among actors between clusters to endure over
time. Specifically, such ties have the probability of 0.2, 0.5,
and 1, respectively, to exist from one wave to the next wave.
For convenience, we call this transitive probability. Sixth, the
waves of data in the longitudinal network are 2, 3, 5, and 10,
respectively. Based on the 6 factors, for each combination (4
number of clusters × 3 different sizes × 3 sets of coefficients
× 6 levels of separations × 3 different transitive probability
× 4 different waves = 2592 combinations in total) of their

levels, we generate 100 longitudinal social networks and use
our clustering method to identify the clusters.

C. Results

To analyze the influence of the 6 factors on the clustering
accuracy, we first conducted an ANOVA analysis with the
clustering accuracy as the outcome. The result showed
that the number of clusters, the size of the network, the
level of cluster separation and the number of waves were
significantly related to the clustering accuracy. On the other
hand, the transitive probability and the effect coefficients
were insignificant. In order to show the effect of each factor
graphically, we varied one factor but fixed the other factors
to be the same. Then, we sorted the average accuracy and
plotted them according to the different levels of the factor
of interest.

The following conclusions can be drawn from our simula-
tion study. First, for the majority of conditions, the clustering
accuracy was high. For example, in more than 85% of
the 2592 conditions, the clustering accuracy was greater
than 90%, indicating 90% of the actors were clustered into
the desired cluster. Only in about 5% of the conditions,
the clustering accuracy was lower than 80%. Second, the
clustering accuracy did not seem to vary much according to
the transitive probability and the effect coefficients. Third,
the number of clusters was negatively related to the accuracy.
With more clusters, it became more difficult to cluster the
actors. Fourth, our clustering method was more accurate with
smaller networks than bigger networks. Fifth, the clustering
accuracy was high when the cluster separation was high. For
example, when the class separation is 0, indicating complete
separation, the accuracy was almost 1 all the time. Sixth,
with the increase of the number of waves, the clustering
accuracy became better.

IV. REAL DATA ANALYSIS

To illustrate the application of our clustering method,
we use a network of college students, which was initially
studied by [25]. The data were collected in 1994 and 1995,
started with 56 students at a university in the Netherlands.
The students were asked to answer a questionnaire 7 times
throughout an academic year. Some students dropped out
during the academic year, and were removed from the data
set. Students replying to the questionnaire less than 4 times
were also removed, which led to a network with 32 students.
In addition, one student reported no friendship relation with
any other students in the network and was also removed in
the current analysis. Therefore, the total number of students
in the real data analysis is 31. The estimated strength of
friendship among any pair of students was put together into
a matrix, which is displayed in Figure 1. In the figure, the
darker color represents stronger friendship. The estimated
strength ranged from 0.07 to 0.95. This matrix is used to
group students into different clusters.
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Figure 1. Strength matrix estimated for the 31 students from the 7 waves
of data

Firstly, we decided on the number of clusters based on
the Calinski-Harabasz Criterion [26], which performed best
among a set of criteria in the simulation carried out by
[27]. According to the Calinski-Harabasz Criterion, retaining
two clusters provides the largest Calinski-Harabasz value.
Therefore, we clustered the network into two clusters, one
was 10-centered, which means the 10th actor was the focus
of this group, and the other was 19-centered. The two
clusters are also shown in Figure 2. The 10-centered cluster
contained 17 actors and the 19-centered cluster consisted of
14 actors.

To illustrate the potential structural difference between the
two clusters, we fit the actor-based model to each cluster
and the overall data. In the model, three effects were con-
sidered: density, reciprocity, and popularity. The estimated
coefficients for the three effects are shown in Table II. For
the first cluster, density effect and reciprocity effect were
significant, but the popularity effect was insignificant. For
the second cluster group, all three effects were significant.
Furthermore, the direction of the density effect was opposite
for the two clusters. When fitting the model to all data,
reciprocity effect and popularity effect were significant while
the density effect was not. The results showed the structural
difference between the two clusters and also justified the
existence of the two clusters. The two clusters are shown in
Figure 2(a).

In the literature, other strategies have been used to cluster
longitudinal networks. For example, for one method, one
can cluster the networks based on the static, last wave of
data. For another, one can first aggregate the longitudinal

Table II
RESULTS FROM THE ACTOR-BASED MODEL FOR EACH CLUSTER AND

OVERALL NETWORK

Estimate Standard Error Sig. Level
Clustering based on tie strength

Cluster 1
Density -1.61 0.363 ***
Reciprocity 2.21 0.226 ***
Popularity -0.22 0.191
Density 1.26 0.545 ***

Cluster 2 Reciprocity 2.27 0.312 ***
Popularity -0.78 0.258 ***
Clustering based on the last wave of data

Density 2.06 1.185
Cluster 1 Reciprocity 3.32 0.832 ***

Popularity -1.33 0.649 *
Density -0.42 0.340

Cluster 2 Reciprocity 2.47 0.205 ***
Popularity -0.66 0.198 ***

All data
Density -0.33 0.200
Reciprocity 2.23 0.122 ***
Popularity -0.38 0.088 ***

Note. * significant at alpha level 0.05, *** significant at alpha level 0.001.

networks together and then cluster the aggregated network
[28]. For comparison, we also applied the two methods to
this set of real data.

The two clusters based on the last wave of the static
network are displayed in Figure 2(b) and based on the
aggregated network are displayed in Figure 2(c). Visually,
we can see that there exists a difference in the members
of each clustering strategy. Furthermore, the Cohen’s κ [29]
is 0.47 between our method and the results from the last
wave of the network, and 0.36 between our method and the
aggregated network, respectively. Therefore, the agreement
in clustering is only fair to moderate [30].

We also fitted the actor-based model to each cluster
identified using either the last wave of network or the
aggregated network. The model did not converge for the
aggregated network and therefore no results were reported.
The results based on the last wave of data are shown in Table
II. For both clusters, the density effect was not significant
but the reciprocity and popularity effects were significant,
similar to the use of all students’ data. Therefore, clustering
only based on the last wave of data showed a less clear
difference between the two clusters comparing to the use of
our method based on the tie strength.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed a new method for longitudinal
social network clustering. Previous researches on the cluster-
ing of longitudinal networks mainly focused on investigating
how clusters form, evolve and die by analyzing the time
snapshots of a dynamic network [2], [31], [32]. [33] kept
track of the clusters by analyzing the nodes and the cluster
they belonged to. [34] reformulated the known clustering
techniques for a static network to the framework for a
longitudinal network by incorporating temporal smoothness.
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(c) Aggregated network

Figure 2. The plots of the clusters identified by different methods.

Our method focused on estimating the strength of the
ties according to the evolution throughout time. Once the
strength is estimated, the existing clustering methods can be
applied such as the spectral clustering method used in the
current study.

A simulation study showed that our method can identify
the correct clusters in most conditions evaluated. It also
showed that the clustering accuracy was influenced by the
number of clusters, the size of the network, the level of
cluster separation and the number of waves. Furthermore,
we identified two clusters in the data collected by [25],
which are widely used for longitudinal network analysis.
The analysis of each cluster through the actor-based model
indicated the structural difference in the two clusters.

Our method has many advantages. First, the strength
among ties can be estimated easily. The Bayesian estimation
has a simple form as the ratio of frequencies. Second, the
Bayesian method can effectively deal with extreme cases.
Because of the use the prior, even uninformative, the extreme
cases can be adjusted to be more realistic. Third, once a
strength matrix is formed, many existing clustering algo-
rithms can be applied. In the current study, the k-medoids
clustering method was used. However, other methods can be
applied as well.

Our method can be expanded in many ways in the future.
First, we applied our method to the actor-based network data
in the current study. However, the same idea can be applied
to longitudinal networks generated using other mechanisms.
Second, the basic spectral clustering algorithm was used

after we obtained the weighted adjacency matrix. Future
studies can investigate better clustering algorithms that may
lead to better performance when applying our method. Third,
social network imputation has been studied in the literature
[35], [36] and our algorithm can also be applied since we
can estimate the distribution of the Markov Chain. Fourth,
we can consider effects such as reciprocity when evaluating
the strength of the ties and this might provide more accurate
clustering.

Like any other method, our proposed method is not
without caveats. First, in estimating the tie strength of a
pair of actors, we did not take into account the potential
relationship with or dependence on other actors. A potential
future study is to investigate how to estimate a partial tie
strength by removing the effect of other actors. Second,
the current study has focused on the use of the actor-based
model to illustrate the use of the proposed method. Many
other kinds of social networks such as the ones based on the
actor-level model can be investigated in the future. Third, we
only evaluated one way to measure the tie strength. Other
methods can be explored in the future. Even with these
caveats, we have shown that our method can perform well
both in simulation and real data situations. We hope that our
method can contribute to the growing body of approaches
for longitudinal network analysis.
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[36] A. Žnidaršič, A. Ferligoj, and P. Doreian, “Non-response
in social networks: The impact of different non-response
treatments on the stability of blockmodels,” Social Networks,
vol. 34, no. 4, pp. 438–450, 2012.

1697


