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Moments are quantitative measures of a distribution function. Formally, the nth moment about a value c of a 

distribution f(x) is defined as 

μn = E[(x − c)n] =

{ ∑ (x − c)nf(x) Discrete distibution

∫(x − c)nf(x)dx Continuous distribution }.
When c = 0, they are called the raw moments, and when c is set at the mean of the distributions, they are 

called central moments. The first raw moment is the mean and the first central moment is 0. For the sec

ond and higher moments, the central moments are often used. For some distributions, their moments can be 

flexibly obtained through their moment-generating functions. Certain distributions can be uniquely determined 

by a few moments. For example, a normal distribution can be determined by its first two moments. Although 

higher moments of a distribution can be available, the first four moments are of great interest to researchers. 

The remainder of this entry defines and describes those first four moments. 

The first raw moment μ1 = E(x) = μ is the mean of a distribution and the first central moment is equal to zero. 

Mean is a popular measure of the central tendency of a distribution, especially for symmetric distributions. 

The second central moment μ2 = E[(x−μ)2] = σ2 is the variance of a distribution and is often denoted by σ2. 

Variance is a frequently used measure of deviation from the central tendency. 

The third central moment μ3 = E[(x−μ)3] is related to the skewness (γ1) of a distribution: 

γ1 = E[(x − μ
σ )

3

] =
μ3

σ3 .

The skewness just defined is also called the third standardized moment and sometimes referred to as Pear

son’s moment coefficient of skewness. Skewness measures the degree of asymmetry of a distribution. For 

symmetric distributions such as normal and Student’s t distributions, their skewness is 0. If the left tail of a 

distribution is longer than its right tail, the distribution has negative skew and the skewness is negative. If 

the right tail of a distribution is longer than its left tail, the distribution has positive skew and the skewness is 

greater than 0. 

The fourth central moment μ4 = E[(x−μ)4] is related to the kurtosis (γ2) of a distribution: 

γ2 = E[(x − μ
σ )

4

] =
μ4

σ4 ,
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which is also called the fourth standardized moment. Kurtosis is associated with the tail, shoulder, and 

peakedness of a distribution. Generally, kurtosis increases with peakedness and decreases with flatness, 

while many have argued that kurtosis has as much to do with the shoulder and tails of a distribution as it does 

with the peakedness. The kurtosis of a normal distribution is 3. Distributions with a kurtosis less than 3 are 

said to be platykurtic, whereas distributions with a kurtosis greater than 3 are said to be leptokurtic. Skewness 

and kurtosis are often used in testing the normality of a distribution. 

Table 1 summarizes the first four moments for commonly used distributions. 

See also Distributions; Kurtosis; Skewness; Variance 
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Table 1 Mean, Variance, Skewness, and Kurtosis for Commonly Used Distributions 

Distribution Mean Variance Skewness Kurtosis 

Bernoulli (p) p p(1-p) 
1 − 2p

√p(1 − p)  

1 − 3p(1 − p)
p(1 − p)  

Poisson (λ) λ λ λ−1/2 λ−1 + 3 

Exponential (λ) λ−1 λ−2 2 9 

Normal (µ,σ2) µ σ2 0 3 

t(v) 0 v/(v − 2) 0 (3v − 6)/(v − 4) 

Uniform (a,b) (a + b)/2 (b − a)2/12 0 1.8 
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