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SAMPLE SIZE AND MEASUREMENT
OCCASION PLANNING FOR LATENT
CHANGE SCORE MODELS THROUGH
MONTE CARLO SIMULATION1

Zhiyong Zhang & Haiyan Liu

Introduction

Longitudinal data collection and data analysis are becoming a norm for psycho-
logical research (e.g., Grimm, Ram, & Estabrook, 2016; McArdle & Nesselroade,
2014). A longitudinal design often involves data collection on multiple vari-
ables from multiple participants at multiple times. Despite the increased cost
and complexity, there are many advantages to collecting longitudinal data. For
example, a longitudinal design naturally enables a researcher to study change and
related phenomena. In addition, inter-individual differences in change can also be
investigated.

Growth curve models are probably the most widely used technique for ana-
lyzing longitudinal data, benefiting from the fact that a growth curve model
can be fitted from a structural equation modeling (SEM) framework (e.g.,
McArdle, 1986, 1998; McArdle & Anderson, 1990; McArdle & Bell, 1998;
McArdle & Epstein, 1987; McArdle & Hamagami, 1992; McArdle & Nesselroade,
2014). With the increasing use of longitudinal design, it is not surprising that more
and more complex models and methods have been developed. For example, in
order to deal with missing data, full information maximum likelihood methods,
multiple imputation, and Bayesian methods have been developed and used (e.g.,
Enders, 2011; Lu, Zhang, & Cohen, 2013). To deal with non-normal data, robust
methods have been proposed (e.g.,Yuan & Zhang, 2012; Zhang, 2013; Zhang,
Lai, Lu, & Tong, 2013).

A difficult issue in longitudinal research is to model the nonlinear trajectory of
data. With more data collection, a linear growth curve model is often not suffi-
cient. When moving to nonlinear models, issues such as computational difficulty
can arise (e.g., Grimm, Ram, & Hamagami, 2011; Wang & McArdle, 2008).
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Linearizing a nonlinear model provides an efficient way to deal with such dif-
ficulties. Although the method based on Taylor expansion is well known (e.g.,
Browne, 1993; Neale & McArdle, 2000), it is less well known that the latent
change score models (LCSMs) provide a potentially more efficient way to model
nonlinear trajectories.

Proposed by McArdle and colleagues, LCSMs combine difference equations
with growth curves to study change in longitudinal studies (e.g., McArdle, 2000;
McArdle & Hamagami, 2001; Hamagami & McArdle, 2007a; Hamagami, Zhang,
& McArdle, 2010). In such models, change is directly modeled, which is often the
focus of a longitudinal study. As we will show shortly, the models allow to easily
accommodate certain nonlinear growth trajectories. In addition to the univariate
LCSMs, bivariate LCSMs have also been proposed to model the inter-relationship
between two growth processes (e.g., McArdle & Hamagami, 2001).

Fitting a LCSM in the SEM framework is easy to understand but can be
tedious. It can be done with almost any SEM software. Recently, Ghisletta &
McArdle (2012) showed how to estimate a univariate LCSM using different
R packages, including Lavaan (Rosseel, 2012), OpenMx (Boker, Neale, Maes,
Wilde, Spiegel, Brick & pthers, 2011), and sem (Fox, 2006). More recently, Zhang
et al. (2015) automated the estimating procedure for the typical univariate and
multivariate LCSMs through an R package RAMpath that is developed based on
RAM notations (Boker, McArdle, & Neale, 2002; McArdle & Boker, 1990).

The importance of conducting statistical power analysis at the beginning of a
study is universally accepted (e.g., Cohen, 1988; Hedges & Rhoads, 2010). With-
out adequate statistical power, the validity of statistical conclusions from all kinds
of research is endangered (e.g., Cohen, 1988; Hedges & Rhoads, 2010; Myors
& Wolach, 2014; Shadish, Cook, & Campbell, 2002). For example, without a
carefully planned sample size, a study can easily fail to detect an existing effect
by chance, which in turn creates problems for replication or cross-validation.
Although there are studies on sample size planning and power calculation for
growth curve analysis (e.g., Zhang & Wang, 2009), we are not aware of any
discussion on such design issues for LCSMs.

To fill the gap, this study proposes a Monte Carlo based method to determine
the required sample size and/or the number of measurement occasions for both
univariate and bivariate LCSMs. The method can obtain the power for testing
each individual parameter of the models such as the change rate and coupling
parameters. We also implement the Monte Carlo procedure in a free R package
RAMpath (Zhang et al., 2015).

In the rest of the chapter, we first present the univariate and bivariate LCSMs.
Then, we introduce the Monte Carlo based method for power analysis. After that,
we show how to conduct power analysis for LCSMs through several examples
using our developed software. We conclude the chapter with discussion and future
directions.
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A Univariate Latent Change Score Model

Let Y [t]n denote the data from the nth (n = 1, . . . ,N ) participant at time t (t =
1, . . . ,T ) of a sample consisting of N participants measured for T times. The first
part of an LCSM is a measurement error model where an observed score Y [t]n

is the sum of the latent true score y[t]n and the measurement error/uniqueness
score ey[t]n:

Y [t]n = y[t]n + ey[t]n. (9.1)

It is generally assumed that the error follows a normal distribution with mean 0
and variance varey. The second part of the model builds the relationship between
consecutive latent true scores so that the current score at time t is equal to the
sum of the true score at the previous time t −1 and the change score, dy[t]n, from
time t − 1 to time t:

y[t]n = y[t − 1]n + dy[t]n. (9.2)

This effectively defines the change score as

dy[t]n = y[t]n − y[t − 1]n. (9.3)

Note that in the classic LCSM, the relationship between consecutive latent true
scores is deterministic, although it is not required to be so. The third part of
the model concerns the modeling of the difference scores. One way is to model
the difference score at time t as the sum of a linear constant effect ys and the
proportional change from time t − 1 such that

dy[t]n = ysn +βy × y[t − 1]n, (9.4)

where βy is a compound rate of change.
Given the three part of the model, we can model the observed score as

Y [t]n = y[t]n + ey[t]n

= y[t − 1]n + dy[t]n + ey[t]n

= (1 +βy)y[t − 1]n + ysn + ey[t]n. (9.5)

Successively expressing the above equation will lead to

Y [t]n = (1 +βy)y[t − 1]n + ysn + ey[t]n

= (1 +βy)(y[t − 2]n + dy[t − 1]n)+ ysn + ey[t]n

= (1 +βy)
2y[t − 2]n + (1 +βy)ysn + ysn + ey[t]n

= (1 +βy)
t−1y[1]n +[1 + (1 +βy)+ . . .+ (1 +βy)

t−2]ysn + ey[t]n

= (1 +βy)
t−1y0n +[1 + (1 +βy)+ . . .+ (1 +βy)

t−2]ysn + ey[t]n (9.6)
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where y0n is the initial latent score and note that the latent score at time t follows

y[t]n = (1 +βy)
t−1y0n +[1 + (1 +βy)+ . . .+ (1 +βy)

t−2]ysn. (9.7)

Clearly, the observed and latent scores behave as a nonlinear function of time and
therefore can capture the nonlinear trajectory, except when βy = 0. To visually
show this, we plot the latent scores with different values for βy in Figure 9.1. The
basic LCSM can only handle this specific type of nonlinearity with exponential
changes. For other types of nonlinearity, more complex LCSMs are needed.

The initial latent score and the linear constant change score can be correlated.
In the model, they are assumed to have a bivariate normal distribution(

y0n

ysn

)
∼ MN

[(
my0
mys

)
,
(

vary0 vary0ys
vary0ys varys

)]
(9.8)

with MN denoting a multivariate, here bivariate, normal distribution. Therefore,
the initial latent score follows a normal distribution with mean my0 and vari-
ance vary0 and the constant change score also follows a normal distribution with
mean mys and variance varys. The covariance between them is vary0ys with the
correlation expressed as

ρy0ys = vary0ys√
vary0 × varys

. (9.9)
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FIGURE 9.1 The trajectory plot of latent scores y[t] from time 1 to time 5 with
different βy values.
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FIGURE 9.2 Path diagram for a univariate latent change score models.

Using a path diagram, this model is portrayed in Figure 9.2. In the path dia-
gram, squares represent observed variables, while circles represent latent variables.
A single-headed arrow is for deterministic parameters such as regression coef-
ficients, or factor loadings, while a double-headed arrow represents stochastic
parameters such as variance and covariance. A triangle represents a constant. Any
arrow originating from the triangle represents an intercept or mean of variables
pointed by the arrow. We matched the notations in the formulas and in the path
diagram. For simplification, we removed the brackets and the subscripts for the
variables in the path diagram.

A Bivariate Latent Change Score Model

A bivariate LCSM is first a combination of two univariate LCSMs. Above and
beyond that, it allows the two processes represented by the LCSMs to interact
with each other. Let Y [t]n and X[t]n denote the observed data on the two vari-
ables X and Y , respectively, from the nth (n = 1, . . . ,N ) participant at time t
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(t = 1, . . . ,T ) of a sample consisting of N participants measured for T times. For
the measurement error part of the model, we have

Y [t]n = y[t]n + ey[t]n

X[t]n = x[t]n + ex[t]n,
(9.10)

where ey[t]n follows a normal distribution with mean 0 and variance varey and
ex[t]n follows a normal distribution with mean 0 and variance varex. For the latent
score from time t − 1 to time t, we have

y[t]n = y[t − 1]n + dy[t]n

x[t]n = x[t − 1]n + dx[t]n,
(9.11)

with dy[t]n and dx[t]n denoting the latent change scores for the two variables,
respectively.

The innovative part of the bivariate LCSM is to allow the latent score of one
variable to influence the change score of another variable. Specifically, we model
the change scores as

dy[t]n = ysn +βy × y[t − 1]n + γyx[t − 1]n

dx[t]n = xsn +βx × x[t − 1]n + γxy[t − 1]n
(9.12)

where γy and γx are called coupling parameters. γy represents the effect of x on the
change score of y and γx represents the effect of y on the change score of x. We let
x0 be the initial latent score and xs be the constant change for x. A multivariate
normal distribution is assumed for the initial latent scores and constant changes
for the two variables such that⎛

⎜⎜⎝
y0n

ysn

x0n

xsn

⎞
⎟⎟⎠ ∼ MN

⎡
⎢⎢⎣

⎛
⎜⎜⎝

my0
mys
mx0
mxs

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

vary0 vary0ys varx0y0 vary0xs
vary0ys varys varx0ys varxsys
varx0y0 varx0ys varx0 varx0xs
vary0xs varxsys varx0xs varxs

⎞
⎟⎟⎠

⎤
⎥⎥⎦ .

(9.13)

Using a path diagram, a bivariate LCSM is portrayed in Figure 9.3.

Statistical Power Analysis Based on Monte Carlo Simulation

Statistical power analysis concerns the power of a test to detect an effect differ-
ent from the null. For a model with a set of parameters θ, one can conduct
power analysis for one or a subset of parameters, denoted by τ , to investigate
whether they are equal to 0 or known values τ0. Therefore, the null and alternative
hypotheses of interest are

H0 : τ = τ0 vs. H1 : τ �= τ0. (9.14)

Existing procedures for power evaluation are mostly based on the Wald test or the
likelihood ratio test. The Wald test statistic is defined as

T = (τ̂ −τ0)
′�̂−1(τ̂ −τ0) (9.15)
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FIGURE 9.3 The path diagram for a bivariate latent change score model.

where τ̂ is the parameter estimates in θ̂ corresponding to τ and �̂ is the covari-
ance matrix of τ̂ . The Wald test statistic can be compared to a critical value Cα

under the null hypothesis. If T > Cα, the null hypothesis is rejected. Under the
null hypothesis and the typical normality assumption, the Wald statistic asymptot-
ically follows a chi-square distribution (χ 2

q ) with the degrees of freedom q, where
q is the number of parameters in τ . Then, the critical value at the significance
level α is Cα = χ 2

q (1 −α). Note that when working with a single parameter, the
Wald test is the square of a Z test.

The likelihood ratio test works in the similar manner. In the likelihood ratio
test, one first estimates the model under the alternative hypothesis to get the value
of the likelihood function at L1. Then, one can estimate the model under the null
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hypothesis by fixing the parameters in γ to be γ0 to get the value of the likelihood
function at L0. The likelihood ratio test statistic is defined as

T = −2 ln
L0

L1
. (9.16)

The likelihood ratio test statistic is also compared to a critical value Cα to decide
whether a null hypothesis should be rejected. If T follows a chi-square distribution
with degrees of freedom q, the critical value is χ 2

q (1 − α). If T > Cα, the null
hypothesis is rejected.

By its definition, the statistical power is

π = Pr(reject H0|H1 is true)

= Pr(T > Cα|H1 is true),
(9.17)

where T can be the Wald statistic or the likelihood ratio test statistic. For simple
statistical analysis such as a t-test, one can obtain an analytical form for π and
therefore power and sample size planning can be conducted easily. However, for
LCSMs, both the Wald and the likelihood ratio test statistics are complex functions
of sample size and effect size. Therefore, the statistical power π is also a complex
function of these factors. Generally speaking, it is difficult or impossible to get a
tractable form of π so that the relationship between statistical power and sample
size can be easily evaluated.

To deal with the difficulty in power analysis for LCSMs, we use a Monte Carlo
simulation based method to approximate the power using the relative frequency
to reject the null hypothesis given the alternative hypothesis is true. Specifically,
the following procedure can be used.

(1) Decide the significance level. Usually, the default 0.05 can be used. Based on
that, get the critical value Cα. If only one parameter is tested, the Cα based
on the normal distribution is 1.96 for a z-test and 3.84 for the chi-squared
distribution for the Wald test.

(2) Specify a LCSM M1 under H1 with the hypothesized population parameter
values (θ).

(3) Generate a set of data with the sample size N and the number of mea-
surement occasions T from the model using random number generation
techniques.

(4) Fit Models M1 and M0, the model by setting τ = τ0, to the generated data
and obtain the Wald statistic using Equation (9.15) and/or the likelihood
ratio statistic using Equation (9.16).

(5) If the test statistic T > Cα, the null hypothesis H0 is rejected.
(6) Repeat Steps (2)–(5) for a total of R(R ≥ 1000) times.
(7) Suppose that out of the R replications, the null hypothesis H0 is rejected

r times. Then the statistical power with the sample size n is estimated by
π̂ = r

R .
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(8) For sample size planning, if π̂ is smaller than the desired power, say 0.8,
one can increase the sample size or the number of measurement occasions
to repeat Steps (2) and (7) to recalculate the power. Otherwise, the sample
size or the number of measurement occasions can be set to a smaller value.

The above Monte Carlo simulation based method for statistical power analysis has
been widely used in the literature for mediation analysis and SEM (e.g., Muthén &
Muthén, 2002; Thoemmes, MacKinnon & Reiser, 2010; Zhang & Wang, 2009;
Zhang, 2014). This procedure is especially effective for complex models. For
example, Muthén and Muthén (2002) illustrated how to use Mplus to conduct
statistical power analysis for structural equation models using such a procedure.
Zhang and Wang (2009) focused on how to conduct statistical power analysis for
growth curve models with and without missing data. Thoemmes et al. (2010) dis-
cussed how to apply the procedure in mediation analysis. Zhang (2014) extended
Theommes et al. for the analysis of missing data and non-normal data.

For a typical power analysis for LCSM, a single parameter is often of interest.
For example, one may be only interested in the parameter β in the model. In this
case, the power can be calculated using the above procedure based on the Z test.
Since Monte Carlo simulation is conducted, when estimating the power for one
parameter, power for all the other parameters can also be calculated without much
extra effort. Therefore, in our software, we output the power for all parameters in
a LCSM model as we will show in our examples.

Software for Power Analysis for Latent Change Score Models

Although the idea of Monte Carlo simulation based power analysis is straightfor-
ward, it would still need the software to implement it to make it useful. Recently,
Zhang et al. (2015) developed the R package RAMpath that can estimate both
univariate and bivariate LCSMs. We expanded RAMpath so that it can carry
out power analysis for LCSMs. To further simplify power analysis for researchers
who might not be familiar with R, we also developed online software based on
RAMpath.

R Package

The R package RAMpath is now on CRAN and therefore it can be installed
directly within R as a typical package. For example, to install it, use the
R code install.packages("RAMpath"). To use the package within R, use
library("RAMpath"). There are three functions in the package for power
analysis: powerLCS, powerBLCS, and plot.

The function powerLCS is used to conduct power analysis for univariate
LCSMs. The basic usage of the function is given below:

powerLCS(N = 100, T = 5, R = 1000, betay = 0, my0 = 0,
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mys = 0, varey = 1, vary0 = 1, varys = 1,
vary0ys = 0,alpha = 0.05, ...)

In the function, N is the sample size and T is the number of measurement
occasions. Both of them can be a single value or a vector. For example, using
N=c(100,200,500) will calculate power for the three provided sample sizes. R is
the number of Monte Carlo simulation used to estimate the power. A larger R
will provide more accurate power estimation but also take more computing time.
As a rule of thumb, at least 1,000 should be used. alpha is the significance level
for testing the hypothesis of the model parameters. The default value is 0.05.

To obtain statistical power, the population parameter values have to be pro-
vided. Such values can be decided based on literature review, pilot study, expert
opinions, etc. By default, all the mean, intercept, and covariance parameters are
set at 0 and all the variance parameters are set at 1. Those values typically have
to be changed in real power analysis. Note that the name of each parameter
corresponds to that used in the path diagram in Figure 9.2. In addition to the
basic input, for advanced users, other information can be provided to control the
parameter and standard error estimation methods. For example, the options used
in Lavaan to control model estimation can be used directly within the function.
More information can be found in the help document of the R package.

The output of the R function includes four main pieces of information for
each parameter in the model. The first is the Monte Carlo estimate (mc.est). It is
calculated as the mean of the R sets of parameter estimates from the simulated data.
Note that the Monte Carlo estimates should be close to the population parameter
values used in the model. The second is the Monte Carlo standard deviation
(mc.sd), which is calculated as the standard deviation of the R sets of parameter
estimates. The third is the Monte Carlo standard error (mc.se), which is obtained
as the average of the R sets of standard error estimates of the parameter estimates.
Last, mc.power is the statistical power for each parameter.

The function powerBLCS is used to conduct power analysis for bivariate
LCSMs. The basic usage of the function is given below. It is the same as for
the univariate LCSMs.

powerBLCS(N=100, T=5, R=1000 , betay=0, my0=0, mys=0,
varey=1, vary0=1, varys=1, vary0ys=0, betax=0, mx0=0,
mxs=0, varex=1, varx0=1, varxs=1, varx0xs=0,
varx0y0=0, varx0ys=0, vary0xs=0, varxsys=0, gammax=0,
gammay=0, alpha =0.05 , ...)

The function plot is used to generate a power curve, which has the form
plot(x, parameter, ...). The first input of the function, x, is the output from
either powerLCS or powerBLCS. In the input of the function for power analysis,
either the sample size N or the number of occasions T should be a vector. The
second input is the name of a parameter to plot its power curve. Since there are
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multiple parameters in a LCSM, one can generate a plot for each model parame-
ter. The name of a parameter should match the one in powerLCS or powerBLCS.
This function will generate one or multiple line plots in which power is shown
on the y-axis and sample size or the number of occasions is shown on the x-axis.

Online Interface

In order to help researchers who are not familiar with R, we also provide a Web-
based interface for power analysis for LCSMs. The URL for the univariate LCSMs
is http://psychstat.org/lcsm and for the bivariate LCSMs is http://psychstat.org/
blcsm.

The Web interface for the univariate LCSMs is shown in Figure 9.4. Since
the interface is built on the R function shown earlier, it requires the same input
information and gives the same output. For both sample size and number of
occasions, multiple values can be provided in two ways to calculate power for
each given value. We discuss this using the sample size as an example since the
same method is used for the number of occasions. First, multiple sample sizes can
be provided and separated by spaces. For example, inputting 100 150 200 will

FIGURE 9.4 The online interface for power analysis for univariate latent change score
models.
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calculate power for the three sample sizes 100, 150, and 200. Second, a sequence
of sample sizes can be generated using the method s:e:i with s denoting the starting
sample size, e as the ending sample size, and i as the interval. Note that the values
are separated by a colon “:”. For example, 100:150:10 will generate a sequence of
sample sizes: 100 110 120 130 140 150.

The interface for the bivariate LCSMs is similar and is not provided here for
the sake of space.

Examples

In this section, we show how to carry out power analysis for both univariate and
bivariate LCSMs through several examples.

Example 9.1: Type I Error Rate Investigation for a Univariate LCSM

Note that if the null hypothesis is true, the Monte Carlo procedure will yield the
type I error rate. For example, suppose the parameter βy = 0 in the population.
Then the estimated power for it should be the same as the significance level,
typically 0.05. For illustration, we set the population parameter values to those
shown in the second column of Table 9.1. Therefore, if we conduct a power
analysis based on those parameter values, we will obtain the type I error rates for
betay, my0, mys, and vary0ys. If our Monte Carlo procedure performs well, we
expect the type I error rates to be close to the alpha level used.

The R code for conducting the analysis is shown in Code 9.1. Note that the
significance level is set at 0.05 and therefore, we expect that the estimated values
in the power column are close to 0.05.

Code 9.1 R input script for Example 9.1.
powerLCS(N = 100, T = 5, R = 1000, betay = 0, my0 = 0,

mys = 0, varey = 1, vary0 = 1, varys = 1,
vary0ys = 0,alpha = 0.05)

TABLE 9.1 Population parameter values used in Examples 9.1 to 9.4.

Example 9.1 Example 9.2

betay 0 0.1
my0 0 20
mys 0 1.5
varey 1 9
vary0 1 2.5
varys 1 0.05
vary0ys 0 0
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The output of the R code is given in Code 9.2. First, the estimate for each
parameter is very close to the true population parameter values, as can be seen in
the column named mc.est. This indicates that the power calculation procedure
runs well. Second, the Monte Carlo standard errors are close to the corresponding
Monte Carlo standard deviations, another indicator that the power calculation is
trustworthy. Third, as expected, the power for betay, my0, mys, and vary0ys is
close to 0.05, the nominal type I error rate. Overall, this suggests that the Monte
Carlo based method can provide well-controlled type I error rate.

Code 9.2 Type I error rate and power for parameters in Example 9.1.
pop.par mc.est mc.sd mc.se mc.power N T

betay 0 0.001 0.056 0.056 0.046 100 5
my0 0 0.001 0.129 0.126 0.056 100 5
mys 0 0.002 0.105 0.105 0.044 100 5
varey 1 0.994 0.083 0.081 1.000 100 5
vary0 1 0.990 0.236 0.230 1.000 100 5
vary0ys 0 -0.005 0.136 0.136 0.044 100 5
varys 1 1.006 0.227 0.227 1.000 100 5

Example 9.2: Power Analysis for a Univariate LCSM

To conduct a power analysis, one has to specify the population parameter values
for the model. Zhang et al. (2015) included an example on using a univariate
LCSM model to analyze the WISC data (see McArdle & Nesselroade, 2014).
In order to plan a future study with the sample size 100 and 5 measurement
occasions, we use the estimates as our population parameter values. Column 3 in
Table 9.1 shows the roundup parameter estimates being used in our example.

The R code for conducting the analysis is shown in Code 9.3 and the output
of the R code is given in Code 9.4. From the output, we can see that the power to
detect the parameter betay to be significant with a sample size 100 and a number
of measurement occasions 5 is about 0.664. The power for another parameter, the
constant change mys, is 0.274. Since often one hopes to get a power at least 0.8,
a larger sample size is needed for this study. In addition, for studying power for
different parameters, different sample sizes are often required.

Code 9.3 R input script for Example 9.2.
powerLCS(N = 100, T = 5, R = 1000, betay = 0.1,

my0 = 20, mys = 1.5, varey = 9, vary0 = 2.5,
varys = .05, vary0ys = 0, alpha = 0.05)

Code 9.4 Power for parameters in Example 9.2.
pop.par mc.est mc.sd mc.se mc.power N T

betay 0.10 0.103 0.043 0.044 0.664 100 5
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my0 20.00 19.999 0.324 0.319 1.000 100 5
mys 1.50 1.418 1.106 1.120 0.274 100 5
varey 9.00 8.961 0.724 0.732 1.000 100 5
vary0 2.50 2.463 1.151 1.139 0.583 100 5
vary0ys 0.00 -0.004 0.408 0.403 0.048 100 5
varys 0.05 0.053 0.173 0.175 0.050 100 5

Example 9.3: Generate a Power Curve for Different Sample Sizes
for a Univariate LCSM

Example 9.2 above showed that a larger sample size was needed in order to get
sufficient power for parameters betay and mys. Although one can try a difference
sample size greater than 100, for convenience, we can generate a power curve
with different sample sizes. For example, Figure 9.5 shows the power curves for
the two parameters betay and mys with sample sizes ranging from 100 to 200
with an interval 10. From the plot, we can easily see that to get a power 0.8 for
the parameter betay, a sample size about 150 is needed. On the other hand, a
sample size larger than 200 is needed for the parameter mys to have a power 0.8,
with the exact number undecided based on the plot.

The R code for generating the power curve is shown in Code 9.5. Note that
in the plot function, we refer to a specific parameter directly using its name. In
the input, seq(100, 200, 10) generate a sequence of sample sizes and in the
output, power for each sample size is provided. Code 9.6 shows the output when
the sample sizes are 100 and 200 only to save space.
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FIGURE 9.5 Power curve for betay (left plot) and mys (right plot) along with the
sample size in the univariate latent change score model.



“Chapter09” — 2018/8/8 — 14:45 — page 203 — #15

Power Analysis for LCSM 203

Code 9.5 R input script for power curve in Example 9.3.
res <- powerLCS(N = seq (100, 200, 10), T = 5,

R = 1000, betay = 0.1, my0 = 20, mys = 1.5,
varey = 9, vary0 = 2.5, varys = .05, vary0ys = 0,
alpha = 0.05)

plot(res , 'betay ')
plot(res , 'mys ')

Code 9.6 Output for generating power curves in Example 9.3.
$`N100 -T5`

pop.par mc.est mc.sd mc.se mc.power N T
betay 0.10 0.100 0.044 0.044 0.627 100 5
my0 20.00 20.002 0.331 0.319 1.000 100 5
mys 1.50 1.505 1.136 1.119 0.287 100 5
varey 9.00 8.970 0.744 0.732 1.000 100 5
vary0 2.50 2.489 1.218 1.146 0.599 100 5
vary0ys 0.00 -0.009 0.413 0.403 0.059 100 5
varys 0.05 0.054 0.176 0.175 0.050 100 5

....

$`N200 -T5`
pop.par mc.est mc.sd mc.se mc.power N T

betay 0.10 0.100 0.031 0.031 0.915 200 5
my0 20.00 20.002 0.225 0.226 1.000 200 5
mys 1.50 1.505 0.790 0.791 0.487 200 5
varey 9.00 8.971 0.532 0.518 1.000 200 5
vary0 2.50 2.480 0.803 0.808 0.904 200 5
vary0ys 0.00 0.005 0.283 0.283 0.049 200 5
varys 0.05 0.051 0.125 0.122 0.054 200 5

Example 9.4: Generate a Power Curve for Different Number of
Occasions for a Univariate LCSM

For LCSMs, power is not only related to the sample size but also the number of
measurement occasions. With the increase of the number of occasions, one would
expect the increase of power. For example, Figure 9.6 shows the power curves for
the two parameters betay and mys with the number of occasions ranging from 4
to 10 with an interval 1 and with the fixed sample size 100. From the plot, we
can easily see that the power increases along with the number of measurement
occasions. For example, for the same sample size 100, the power is less than 0.2
with 4 occasions of data but increases to more than 0.8 with 7 occasions of data
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FIGURE 9.6 Power curve for betay (left plot) and mys (right plot) along with the
number of measurement occasions in the univariate latent change score model.

for the parameter mys. The R code for generating the power curve is shown in
Code 9.7.

Code 9.7 R input script for power curve with the number of occasions in Example
9.4.
res <- powerLCS(N = 100, T = 4:10, R = 1000,

betay = 0.1, my0 = 20, mys = 1.5, varey = 9,
vary0 = 2.5, varys = .05, vary0ys = 0,
alpha = 0.05)

plot(res , 'betay ')
plot(res , 'mys ')

Example 9.5: Power Analysis for a Bivariate LCSM

Power analysis can be similarly conducted for bivariate LCSMs. As an example,
we use the parameter estimates from a bivariate latent change score model in
Zhang et al. (2015) with some modification as population parameter values (see
Table 9.2).

The script in Code 9.8 shows the R code for power analysis for the bivariate
LCSM with the sample size 100. From the output in Code 9.9, we can see that
the parameter estimates are not very accurate. This is because the bivariate LCSM
requires a much larger sample size to provide accurate parameter estimates. In this
case, the statistical power obtained might not be accurate either.

Code 9.8 R input script for power analysis for bivariate latent change score model in
Example 9.5.
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TABLE 9.2 Population parameter values used in Example 9.5.

Parameter value Parameter value

betay 0.08 betax 0.2
gammax 0 gammay −0.1
my0 20 mx0 20
Mys 1.5 mxs 5
varey 9 varex 9
vary0 3 varx0 3
varys 0.05 varxs 0.6
vary0ys 0 varx0xs 0
varx0y0 1
vayx0ys 0
vary0xs 0
varxsys 0

powerBLCS(N=100, T=5, R=1000 , betay =0.08, my0=20,
mys=1.5, varey=9, vary0=3, varys=1,
vary0ys=0, alpha =0.05, betax =0.2, mx0=20,
mxs=5, varex=9, varx0=3, varxs=1, varx0xs=0,
varx0y0=1, varx0ys=0, vary0xs=0, varxsys=0,
gammax=0, gammay =-.1)

Code 9.9 Output for power analysis in Example 9.5.
pop.par mc.est mc.sd mc.se mc.power N T

betax 0.20 0.230 0.260 0.187 0.241 100 5
betay 0.08 0.164 0.572 0.435 0.081 100 5
gammax 0.00 -0.033 0.234 0.178 0.112 100 5
gammay -0.10 -0.175 0.641 0.458 0.075 100 5
mx0 20.00 20.004 0.336 0.326 1.000 100 5
mxs 5.00 5.933 7.848 5.615 0.167 100 5
my0 20.00 20.019 0.346 0.326 1.000 100 5
mys 1.50 0.451 6.933 5.321 0.156 100 5
varex 9.00 8.941 0.744 0.732 1.000 100 5
varey 9.00 8.939 0.749 0.720 1.000 100 5
varx0 3.00 3.029 1.243 1.222 0.739 100 5
varx0xs 0.00 -0.210 0.768 0.767 0.030 100 5
varx0y0 1.00 1.052 0.840 0.835 0.226 100 5
varx0ys 0.00 -0.012 0.668 0.601 0.017 100 5
varxs 0.60 2.343 6.805 2.687 0.090 100 5
varxsys 0.00 0.072 3.559 1.740 0.019 100 5
vary0 3.00 2.951 1.423 1.245 0.684 100 5
vary0xs 0.00 0.198 2.263 1.629 0.031 100 5
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vary0ys 0.00 -0.371 1.970 1.511 0.106 100 5
varys 0.05 1.415 3.730 2.096 0.024 100 5

Increasing the sample size will lead to more accurate results as shown in
Code 9.10 where the sample size is 500. In planning the sample size for LCSM
models, one should pay attention to the parameter estimates to make sure they are
accurate enough for power calculation. Specifically for the coupling parameters
gammax and gammay, the power and type I error are 0.057 and 0.271, respectively.

Code 9.10 Output for power analysis in Example 9.5 when the sample size is 500.
pop.par mc.est mc.sd mc.se mc.power N T

betax 0.20 0.2009 0.031 0.031 1.000 500 5
betay 0.08 0.0830 0.070 0.068 0.199 500 5
gammax 0.00 -0.0014 0.030 0.029 0.057 500 5
gammay -0.10 -0.1022 0.072 0.073 0.271 500 5
mx0 20.00 19.9911 0.145 0.145 1.000 500 5
mxs 5.00 5.0308 0.939 0.942 1.000 500 5
my0 20.00 19.9999 0.143 0.146 1.000 500 5
mys 1.50 1.4684 0.889 0.885 0.420 500 5
varex 9.00 8.9836 0.340 0.328 1.000 500 5
varey 9.00 8.9961 0.341 0.328 1.000 500 5
varx0 3.00 3.0052 0.524 0.523 1.000 500 5
varx0xs 0.00 -0.0144 0.222 0.230 0.047 500 5
varx0y0 1.00 1.0064 0.360 0.360 0.808 500 5
varx0ys 0.00 -0.0012 0.199 0.201 0.051 500 5
varxs 1.00 1.0312 0.180 0.189 1.000 500 5
varxsys 0.00 0.0028 0.161 0.163 0.045 500 5
vary0 3.00 2.9777 0.519 0.547 1.000 500 5
vary0xs 0.00 0.0072 0.286 0.294 0.035 500 5
vary0ys 0.00 -0.0135 0.252 0.257 0.043 500 5
varys 1.00 1.0246 0.260 0.253 0.999 500 5

Discussion and Future Directions

To complement the research on LCSMs, in this chapter, we discuss how to plan
the sample size and the number of measurement occasions for both univariate
and bivariate LCSMs. Specifically, we illustrate how to calculate power for each
individual model parameter of interest. Since the analytical solution to power is
intractable, we used a Monte Carlo based method. We also provided an R package
RAMpath and an online interface to carry out the power analysis procedure.

In calculating power, we need the information on the population parame-
ter values. Each value can be viewed as the unstandardized effect size for the
parameter of interest. We did not define the standardized effect size such as
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Cohen’s d (Cohen, 1988) for several reasons. First, given the complexity of
LCSMs, it is difficult to define a standardized effect size. Second, in general, it
is easier to specify the unstandardized effect size because when conducting a lit-
erature review, one can simply adopt the parameter estimates directly from the
published results. Third, if a researcher is interested in standardized measures,
he/she can use the standardized coefficients as the population parameter values
in conducting power analysis.

One way to streamline the specification of the population parameters is to
use the R-squared. For example, in a bivariate LCSM, the variance of the change
score is from three sources – the constant change, the own level score, and the level
score of the other variable. By changing the parameter values, one can quantify
the portion of variance explained by each source. On the other hand, depending
on the expected variance explained, one can set the parameter values. Using this
method, one can take advantage of the existing effect size cutoffs for R-squared,
namely, 0.02 for small, 0.13 for medium, and 0.26 for large effect sizes.

The current study can be improved in many ways in the future. First, in this
chapter, we have focused on the power analysis of a single model parameter, as this
is the most common situation. If a researcher wants to test multiple parameters
simultaneously, a procedure based on the likelihood ratio test can be developed as
for the growth curve analysis in Zhang & Wang (2009).

Second, in the current study, we have focused on the basic univariate and
bivariate LCSMs. Since their invention, the basic univariate and bivariate LCSMs
have been extended in many ways. For example, Hamagami and McArdle (2007b)
expanded the traditional specifications of univariate and bivariate LCSMs to the
parallel process change score model and the second-order LCSMs. Grimm, An,
McArdle, Zonderman, & Resnick (2012) extended latent difference scores to
allow for testing hypotheses where recent changes, as opposed to recent levels, are
a primary predictor of subsequent changes. The Monte Carlo procedure used in
this study can be flexibly extended to the more advanced models.

Third, the current study has assumed that the collected data will be complete.
However, in practice, missing data are almost not avoidable in longitudinal studies.
For example, Puma, Olsen, Bell, & Price (2009) found that student achievement
outcomes are often missing for 10–20% in studies funded by the National Center
for Education Evaluation and Regional Assistance. Missing data reduce power and
without careful consideration, a well-planned study can become under-powered;
taking into consideration that missing data in power calculation requires the spec-
ification of missing data generating mechanism that can be used in the data
generation step in our Monte Carlo method.

Fourth, in our Monte Carlo method, we have assumed that our data are
normally distributed. However, practical data often deviate from a normal
distribution. For example, Micceri (1989) evaluated 440 distributions of large-
sample achievement and psychometric measures and found that all of them were
non-normal. More recently, Blanca, Arnau, López-Montiel, Bono, & Bendayan
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(2013) evaluated non-normality using the skewness and kurtosis of 693 small
samples and found that 94.5 % of them violated the normality assumption. In
addition, Cain, Zhang, & Yuan (2016) reviewed 254 multivariate distributions of
data used in Psychological Science and the American Education Research Journal
and found that 68% multivariate distributions deviated from normal distributions.
Therefore, in the future, the influence of non-normal data should be considered
when estimating power.

Finally, the Monte Carlo based method can be very computationally intensive
because of the involvement of the Monte Carlo simulation. For example, it took
about 10 minutes on a modern desktop to complete the power analysis in Example
9.4. At the same time, the Monte Carlo method can be easily parallelized to take
advantage of modern hardware such as multi-core processors (e.g., Zhang, 2014).
In the future, the R package RAMpath can be improved with the capacity of
parallelization.

Note

1 The study was supported by a grant from from the Department of Education
(R305D140037). However, the contents of WebPower do not necessarily represent the
policy of the Department of Education, and you should not assume endorsement by the
Federal Government.
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