
Chapter 21
Model Selection Criteria for Latent Growth
Models Using Bayesian Methods

Zhenqiu (Laura) Lu, Zhiyong Zhang, and Allan Cohen

Abstract Research in applied areas, such as statistical, psychological, behavioral,
and educational areas, often involves the selection of the best available model from
among a large set of candidate models. Considering that there is no well-defined
model selection criterion in a Bayesian context and that latent growth mixture
models are becoming popular in many areas, the goal of this study is to investigate
the performance of a series of model selection criteria in the framework of latent
growth mixture models with missing data and outliers in a Bayesian context. This
study conducted five simulation studies to cover different cases, including latent
growth curve models with missing data, latent growth curve models with missing
data and outliers, growth mixture models with missing data and outliers, extended
growth mixture models with missing data and outliers, and latent growth models
with different classes. Simulation results show that almost all the proposed criteria
can effectively identify the true models. This study also illustrated the application of
these model selection criteria in real data analysis. The results will help inform the
selection of growth models by researchers seeking to provide states with accurate
estimates of the growth of their students.

21.1 Introduction

Traditional criteria are available for researchers to select the best-fit model from
among a large set of candidate models. Akaike (1974) proposed the Akaike’s
information criterion (AIC), which offers a relative measure of the information lost.
For Bayesian models the Bayes factor, which is the ratio of posterior odds to prior
odds, can work for both hypothesis testing and model comparison. But the Bayes
factor is often difficult or impossible to calculate, especially for models that involve
random effects, large numbers of unknowns or improper priors. To approximate
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the Bayes factor, Schwarz (1978) developed the Bayesian information criterion
(BIC, sometimes called the Schwarz criterion). To obtain more precise criteria,
Bozdogan (1987) proposed the consistent Akaike information criterion (CAlC), and
Sclove (1987) proposed the sample-size adjusted Bayesian information criterion
(ssBIC). The deviance information criterion (DIC, Spiegelhalter et al. 2002) is a
recently developed criterion designed for hierarchical models. It is based on the
posterior distribution of the log-likelihood and is useful in Bayesian model selection
problems where the posterior distributions have been obtained by Markov chain
Monte Carlo (MCMC) simulation. DIC is usually regarded as a generalization of
AIC and BIC. It is defined analogously to AIC or BIC with a penalty term of the
number equal to effective model parameters in Bayesian models. In practice, rough
DIC (RDIC or DICV in some literature, e.g., Oldmeadow and Keith 2011) is an
approximation of DIC. The mathematical forms of AIC, BIC, CAIC, ssBIC, and
DIC are closely related to each other. They all try to find a balance between accuracy
and complexity of the fitting model. The accuracy of a model can be shown by
a deviance D(θ) = −2log( f (y|θ))+C for some constant C where θ is a vector of
model parameters. For all the criteria above, the model with a smaller criterion value
is better supported by data.

Bayesian approach is becoming increasingly important in estimating models
as it provides many advantages in dealing with complex statistical models with
complicated data structure (e.g., Dunson 2000). However, there is no well-defined
model selection criterion in a Bayesian context (e.g., Celeux et al. 2006). There
are at least three problems. First, in a Bayesian context there are two versions of
deviance because the Bayesian procedure generates Monte Carlo Markov chains
for each parameter. One version is the posterior estimate which can be expressed
as D(θ̂) = −2log(p(y|Eθ |y[θ ]))+C, which is analogous to a frequentist estimate.
It can be estimated by adopting a point parameter estimate of θ . Another version
is the Monte Carlo estimate of the expected deviance, which can be calculated as
D(θ) = Eθ |y[−2log(p(y|θ))]+C, which is based on Bayesian iterations. It can be
estimated as the posterior mean across a converged Markov chain. Conceptually,
D(θ) is the average of all deviances, and D(θ̂) is the deviance of the average of
all estimates. The second problem is related to the complexity of the raw data.
The data often come from heterogeneous populations which almost unavoidable
contain outliers and attrition. The estimates from mis-specified models may result
in severely misleading conclusions. The third problem relates to the likelihood
function. When latent variables are considered in statistical models, the likelihood
function can be an observed-data likelihood function, a complete-data likelihood
function, or a conditional likelihood function (Celeux et al. 2006). Furthermore, if
data come from heterogeneous populations, the class membership indicator may
have different versions, for example, a posterior mode or a posterior mean. Also,
with missing data, the likelihood functions have different ways to construct.

To address these problems, new criteria are expected. As latent growth mod-
eling is becoming increasingly popular in applied research, such as in statistical,
psychological, behavioral, and educational areas, in this study we consider to use
latent growth models to test the performance of proposed model selection criteria.
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Specifically, the goal of this paper is to examine the performance of the Bayesian
model selection criteria with more general growth models, such as non-normally
distributed growth models, robust growth mixture models, and robust extended
growth mixture models. Lu et al. (2013b) proposed a series of Bayesian criteria,
based on the traditional model selection criteria. However, in Lu et al. (2013b)
the performances of these criteria were investigated when data are non-mixture,
normally distributed, and with simple non-ignorable missingness. And only latent
growth models were used. In this study, data are more complex. We conduct five
simulation studies. The results will help inform the selection of growth models by
researchers seeking to provide people with accurate estimates of growth across a
variety of possible contexts.

21.2 Robust Growth Models with Non-ignorable Missingness

Our investigation of the performance of the Bayesian selection criteria involves
fitting growth models to complex data. In this section, different types of growth
models are briefly introduced. Given the fact that the data used in growth models
are almost inevitably contain attrition (e.g., Little and Rubin 2002; Yuan and Lu
2008; Lu et al. 2011) and outliers (e.g., Maronna et al. 2006), different types of
growth models are developed, which include traditional latent growth curve models
with missing data (Lu et al. 2013b), robust growth curve models (Zhang et al. 2013)
with missing data (Lu et al. 2013a), growth mixture models (e.g., Bartholomew
and Knott 1999) with missing data (Lu and Zhang 2014), extended growth mixture
models (EGMMs, Muthén and Shedden 1999) with missing data (Lu and Zhang
2014), and robust growth mixture models with missing data (Lu and Zhang 2014).

In the following, we discuss three types of models: traditional growth models
(including growth curve models, growth mixture models, and extended growth
mixture models), robust growth models (including three types of robust models),
and models that account for missingness (we mainly focus on non-ignorable
missingness). By combining different elements of these models, it becomes possible
to consider a series of growth models with a variety of missing data mechanisms and
contaminated data.

21.2.1 Traditional Growth Models

The density for a latent growth curve model is

{
yi = Λη i + ei ,

η i = ˇ+�i ,
(21.1)
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where yi is a T × 1 vector of outcomes for participant i(i = 1, . . . ,N), η i is a q× 1
vector of latent effects, Λ is a T × q matrix of factor loadings for η i, ei is a T × 1
vector of residual or measurement errors, ˇ is a q×1 vector of fixed-effects, and �i

captures the variation of η i. We have to note that ei and �i are usually assumed
normally distributed but not necessary. When data have outliers and are heavy-
tailed, this assumption might cause estimate biases. To reduce the effects of outliers,
we adopt robust models in this study.

The density function of a growth mixture model is

f (yi) =
K

∑
k=1

πk fk(yi), (21.2)

where πk is the invariant class probability (or weight) for class k satisfying 0 ≤ πk ≤
1 and ∑K

k=1 πk = 1 (e.g., McLachlan and Peel 2000), and fk(yi)(k = 1, . . . ,K) is the
density of a latent growth model for class k.

For extended growth mixture models (EGMMs, Muthén and Shedden 1999), πk

is not invariant across individuals. It is allowed to vary individually depending on
covariates, so it is expressed as πik(xi). If a probit link function is used, then

⎧⎨
⎩

πi1(xi) = Φ(X ′
i '1),

πik(xi) = Φ(X ′
i 'k)−Φ(X ′

i 'k−1), (k = 2,3, . . . ,K −1)
πiK(xi) = 1−Φ(X ′

i 'K−1),

(21.3)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal
distribution, and Xi = (1,x′i)′ with an r × 1 vector of observed covariates xi. Note
that Φ(X ′

i 'k) = ∑k
j=1 πi j(xi) and Φ(X ′

i 'K)≡ 1.
A dummy variable zi = (zi1,zi2, . . . ,ziK)

′ is used to indicate the class mem-
bership. If individual i comes from group k, zik = 1 and zi j = 0 (∀ j �= k).
zi is multinomially distributed (McLachlan and Peel 2000, p. 7), that is, zi ∼
MultiNomial(πi1,πi2, . . . ,πiK).

21.2.2 Robust Growth Models

When data have outliers and are heavy-tailed, robust methods are used to reduce the
effects of outliers. As t-distributions are more robust than normal distributions, the
following are robust growth models (Lu et al. 2013a; Zhang et al. 2013).

(1) t-Normal (TN) model in which the measurement errors are t-distributed and the
latent random effects are normally distributed,

{
ei ∼ MtT (0,� ,ν),
�i ∼ MNq(0,Ψ),

(21.4)
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where MtT (0,� ,ν) is a T -dimensional multivariate t-distribution with a scale
matrix � and degrees of freedom ν , and MNq(0,Ψ) is a q-dimensional
multivariate Normal distribution with a covariance matrix Ψ .

(2) Normal-t (NT) model in which the measurement errors are normally distributed
but the latent random effects are t-distributed,

{
ei ∼ MNT (0,�),

�i ∼ Mtq(0,Ψ ,u).
(21.5)

(3) t-t (TT) model in which both the measurement errors and the latent random
effects are t-distributed,

{
ei ∼ MtT (0,� ,ν),
�i ∼ Mtq(0,Ψ ,u).

(21.6)

21.2.3 Non-ignorable Missingness

To build models with non-ignorable missingness, selection models (Glynn et al.
1986; Little 1993, 1995) are used. For individual i, let mi = (mi1,mi2, . . . ,miT )

′ be a
missing data indicator for yi, with mit = 1 when yit is missing and 0 when observed.
Let τit = p(mit = 1) be the probability that yit is missing. Then mit ∼ Bernoulli(τit),
so its density function is f (mit) = τmit

it (1− τit)
(1−mit ). The missingness probability

τit can have different forms. Lu and Zhang (2014) proposed the following non-
ignorable missingness mechanisms for mixture models.

(1) Latent-Class-Intercept-Dependent (LCID) missingness in which τit is a function
of latent class, covariates, and latent individual initial levels. For example,
students are more likely to miss a test if their starting levels of that course are
low. We model it as follows.

τit = Φ(z′i�zt + IiγIt +x′i�xt), (21.7)

where Ii is the latent initial levels for individual i, γIt is the coefficient for Ii, �zt

is the coefficient for class membership, and �xt are coefficients for covariates.
For non-mixture homogenous growth models, LCID can be simplified to
Latent-Intercept-Dependent (LID) without the class membership indicator zi

and expressed as τit = Φ(γ0t + IiγIt +x′i�xt), where γ0t is the intercept.
(2) Latent-Class-Slope-Dependent (LCSD) missingness in which τit is a function

of latent class, covariates, and latent individual slopes of growth. For example,
students are more likely to miss a test if they have slow growth of the course. In
this case, τit can be modelled as

τit = Φ(z′i�zt +SiγSt +x′i�xt), (21.8)
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where Si is the latent slope for individual i, and γSt is the coefficient for Si.
Similarly, for non-mixture homogenous growth models, LCSD is simplified to
Latent-Slope-Dependent (LSD) case as τit = Φ(γ0t +SiγSt +x′i�xt).

(3) Latent-Class-Outcome-Dependent (LCOD) missingness in which τit is a func-
tion of latent class, covariates, and potential outcomes that may be missing. For
example, a student who feels he/she is not doing well on the test may be more
likely to give up taking the rest of the test. We express τit as

τit = Φ(z′i�zt + yitγyt +x′i�xt), (21.9)

where yit is the potential outcomes for individual i at time t, and γyt is the
coefficient for yit . And LCOD can be simplified to Latent-Outcome-Dependent
(LOD) for non-mixture homogeneous growth models with a probability of
missingness τit = Φ(γ0t + yitγyt +x′i�xt).

In a more general framework, LCID and LCSD can be further encompassed
into Latent-Class-Random Effect-Dependent missingness as intercept and slope
are different random effects according to different situations under consideration.
And for non-mixture structure, LID and LSD are encompassed into Latent-Random
Effect-Dependent missingness.

21.3 Bayesian Selection Criteria

Based on Lu et al. (2013a), model selection criteria are proposed in the framework
of Bayesian growth models with missing data. The definitions of selection criteria
are listed in Table 21.1. The model selection criteria in the table are based on two
versions of deviance in the Bayesian context, ED|y[D(θ)] and D(Eθ |y[θ ]). As we
have discussed in the introduction section, Eθ |y[D] is the expected value of all the
deviances, and D(Eθ |y[θ ]) is the deviance score based on the expected parameters.
For different models, the detailed mathematical form of these two deviances is
different. In this paper, we focus on both homogeneous and heterogenous latent
growth models with non-ignorable missing data.

(1) We first look at the homogeneous growth curve models with non-ignorable
missing data. One version of deviance, ED|y[D(θ)], is approximated by

ED|y[D(θ)]≈ D(θ) =− 2
S

S

∑
s=1

N

∑
i=1

T

∑
1=t

l(s)it (θ |y,m)

=− 2
S

S

∑
s=1

N

∑
i=1

T

∑
1=t

[
(1−m(s)

it )l(s)it (y)+ l(s)it (m)
]
, (21.10)
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Table 21.1 Model selection
criteria

Criterion(Index) = Deviance + Penalty

Dbar.AICa D(θ)b 2 p

Dbar.BICc D(θ) log(N) p

Dbar.CAIC D(θ) (log(N)+1) p

Dbar.ssBIC D(θ) log((N+2)/24) p

RDIC D(θ) var(Dbar)/2

Dhat.AIC D(θ̂)d 2 p

Dhat.BIC D(θ̂) log(N) p

Dhat.CAIC D(θ̂) (log(N)+1) p

Dhat.ssBIC D(θ̂) log((N+2)/24) p

DICe D(θ̂) 2 pD
a p is the number of parameters, which are on the same
level as the likelihood value is.
bD(θ) is shown as in Eq. (21.10) for growth curve
models and as in Eq. (21.13) for growth mixture
models. It is one type of the approximations of the
deviance score.
cN is the sample size.
dD(θ̂) is shown as in Eq. (21.12) for growth curve
models and as in Eq. (21.14) for growth mixture mod-
els
e pD = D(θ)−D(θ̂)

where S is the number of iterations for converged Markov chains, l(s)it (θ |y,m) =

log(L(s)
it (θ |y,m)) is a conditional joint loglikelihood function (see, Celeux et al.

2006) of y and m, mit is the missing data indicator for individual i at time t
with a likelihood function likt(m) = mit log(τit)+ (1−mit)log(1− τit), where
τit is the missing data rate for individual i at time t and is defined differently for
different missingness models as in the previous section. When yit is missing, the
corresponding likelihood is excluded. So combining y and m, the conditional
likelihood function of a selection model with non-ignorable missing data can
be expressed as

Lit(θ |y,m) = [ f (yit |η i)(1− τit)]
(1−mit ) τmit

it , (21.11)

And the other version of deviance, D(Eθ |y[θ ]), is approximated by

D(Eθ |y[θ ])≈ D(θ̂) =−2
N

∑
i=1

T

∑
t=1

[
(1−mit)lit(y|θ̂)+ lit(m|θ̂)] , (21.12)

where θ̂ is the posterior mean of parameter estimates across S iterations.
(2) For growth mixture models with missing data, Eθ |y[D] is expressed as
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ED|y[D(θ)]≈ D(θ) =−2
S

S

∑
s=1

N

∑
i=1

K

∑
k=1

z(s)ik

T

∑
1=t

[
(1−mit)l

(s)
ikt (y)+ l(s)ikt (m)

]
, (21.13)

where zi = (zi1,zi2, . . . ,ziK) is the class membership indicator which follows

a multinomial distribution, zi ∼ MultiNomial(πi1,πi2, . . . ,πiK), and z(s)ik is the
class membership estimated at iteration s. And

D(Eθ |y[θ ])≈ D(θ̂) =−2
N

∑
i=1

K

∑
k=1

ẑik

T

∑
t=1

[
(1−mit)likt(y|θ̂)+ likt(m|θ̂)] , (21.14)

where ẑik is the posterior mode of class membership, θ̂ is the posterior mean
of parameter estimates across all S iterations. In both the D(θ) and D(θ̂)
definitions of deviance, likt(y) and likt(m) are the conditional loglikelihood
functions for yit and mit , respectively, for individual i in class k at time t.

If people calculate deviance scores using D(θ̂), then D(θ) is the sum of an
approximation of the deviance score (D(θ̂)) and some penalties. The difference
between D(θ) and D(θ̂) can be quantified by a statistic called pD (Spiegelhalter
et al. 2002),

pD = D(θ)−D(θ̂). (21.15)

Based on the Jensen’s inequality (Casella and George 1992), when D(θ) is convex,
then D(θ) ≥ D(θ̂) and as a result pD is positive. When D(θ) is concave, then
D(θ)≤ D(θ̂) and pD is negative.

21.4 Simulation Studies

In this section, five simulation studies are conducted to evaluate the performance of
the Bayesian criteria. For each study, four waves of complete data were generated
first and then missing data were created on each occasion according to pre-designed
missing data rates. After data are generated, full Bayesian methods are used by
adopting uninformative priors, obtaining conditional posterior distributions through
application of a data augmentation algorithm, generating Markov chains through a
Gibbs sampling procedure, conducting convergence testing, and making statistical
inference for model parameters. For all simulations, the software OpenBUGS is
used for the implementation of Gibbs sampling, and R codes are written for data-
generation, convergence testing, and parameter estimation.

The five studies are designed such that the data complexity increases from study
1 to study 5. Studies 1–2 focus on non-mixture growth data and thus, latent growth
curve models with missing data are used. Studies 3–5 focus on mixture growth data
and thus, growth mixture models with missing data are used. Simulation factors
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include measurement error distributions, random effect distributions, missingness
patterns, sample size, and class separation (Anderson and Bahadur 1962). Under
each condition, 100 converged replications are used to calculate the model selection
proportion. Table 21.2 lists the design details.

Study 1 investigated the performance of the Bayesian criteria when data were
non-mixture homogenous, normally distributed with non-ignorable missingness.
The true model was NN-XS, which was the model with normally distributed
measurement errors (ei) at level 1 and random effects (�i) at level 2, with
missingness depending on covariate x and latent slope S. Specifically, ei ∼MN(0, I),
η i ∼ MNq(ˇ,Ψ) where ˇ = (Intercept,Slope) = (1,3) and Ψ was a 2 by 2
symmetric matrix with Var(I) = 1, Cov(I,S) = 0, and Var(S) = 4. For miss-
ingness, the bigger the latent slope was, the higher the missing data rate would
be. The missingness probit coefficients were set as γ0 = (−1,−1,−1,−1), γx =
(−1.5,−1.5,−1.5,−1.5), and γS = (0.5,0.5,0.5,0.5). For example, if a participant
had a latent growth slope 3, with a covariate value 1, then his or her missing
probability at each wave was τ ≈ 16%; if the slope was 5, with the same covariate
value, the missing probability increased to τ = 50%; but if the slope was 1, then
the missing probability decreased to τ = 2.3%. The covariate x was also generated
from a normal distribution, x ∼ N(1,sd = 0.2). In study 1, totally there were 16
conditions with 4 missingness mechanisms (XS non-ignorable, XY non-ignorable,
XI non-ignorable, and ignorable) combined with 4 levels of sample size (1,000,
500, 300, and 200). Table 21.3 lists the model selection proportions across 100
replications for each of these criteria across all conditions in study 1. The largest
proportion across four missingness models is indicated in the shaded cell for each
criterion. When sample size is relatively large, 1,000 or 500, all of the model
selection criteria, except for the rough DIC (RDIC), correctly identify the true model
with 100 %. When sample size becomes smaller, 300 or 200, except for the RDIC,
all of the model selection criteria choose the true model with certainty above 93 %.
Comparing the criteria defined based on Dbar with those defined based on Dhat, one
can see that the former performs a little bit better.

Study 2 investigated the performance of these criteria when data were non-
mixture homogeneous with outliers and non-ignorable missingness. The main
difference between study 2 and 1 was that the data for study 2 contain outliers
such that they are not normally distributed. So robust growth curve models were
used. The true model was TN-XS, which means measurement errors (ei) at level 1
followed a t-distribution. Specifically, ei were generated from a t distribution with
5 degrees of freedom and a scale matrix I, i.e., ei ∼ Mt(0, I,5). Other settings were
kept the same as those in study 1. In this study, totally 32 conditions were considered
with 4 data distributions (NN, TN, NT, and TT), 4 missingness patterns (XS non-
ignorable, XY non-ignorable, XI non-ignorable, and ignorable), and 2 levels of
sample size (1,000 and 500). Table 21.4 lists the model selection proportions. The
largest proportion across 16 missingness models is indicated in the shaded cell for
each criterion. Except for the RDIC, all of the model selection criteria correctly
identify the true model. TT-XS is a competing model, which also gains high
selection probabilities. This is because the normal distribution is almost identical
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to a t-distribution with large degrees of freedom. The degrees of freedom of t is also
estimated by the model. Also, the Dbar-based criteria perform a little bit better than
the Dhat-based criteria. Among them, Dbar-based BIC and CAIC perform best.

Study 3 was designed for mixture data with outliers and non-ignorable missing
data. As data were mixture, growth mixture models were used. In this study, the
true model was 2-class mixture TN-XS RGMM. Only intercepts of these 2 classes
were different, with 5 for class 1 and 1 for class 2. Other settings for each class
were the same as in study 2. Both classes have t5 distributed measurement errors.
Based on Anderson and Bahadur (1962), the class separation is around 2.7. In this
study, we assumed they are traditional mixture models, i.e., class probabilities were
fixed. We were fixed as (50 %, 50 %) in this study. Similar as in study 2, there
were 32 conditions considered with 4 data distributions (NN, TN, NT, and TT),
4 missingness patterns (XS non-ignorable, XY non-ignorable, XI non-ignorable,
and ignorable), and 2 levels of sample size (1,000 and 1,500). As mixture data
require more data to obtain estimates, we increased the sample size. Table 21.5
shows the results for study 3. The shaded cell indicates the largest proportion across
16 missingness models for each criterion. Again, almost all of the model selection
criteria correctly identify the true model. And the Dbar-based criteria perform a
little bit better than the Dhat-based criteria. Specifically, Dbar-based BIC and CAIC
perform best among these criteria, and then Dbar-based ssBIC also performs well.

Study 4 extended study 3 such that the class probabilities were not fixed. Instead,
they depended on values of covariates. Also, the non-ignorable missingness in
this study was allowed to depend on the corresponding observations’ latent class
membership. The true model in this study was 2-class mixture TN-CXS robust
extended growth mixture models (REGMM). The differences between this study
and study 3 were (1) the class proportions in this study were predicted by the
value of covariate x; (2) the missing data rates were predicted by the latent class
membership; (3) both medium size, 2.7, and small size, 1.7, class separations were
used. Specifically, for small class separation, the intercept for class 1 was 3.5 and
the intercept for class 2 was 1. To simplify the simulation, based on the findings in
study 3, 5 competing mixture models (TN-CXS, TT-CXS, TN-CX, NN-CXS, and
NN-CX) were chosen to fit the data. Totally, we considered 20 conditions with 5
mixture models, 2 levels of sample size (1,500 and 1,000), and 2 levels of class
separation (2.7 and 1.7). Table 21.6 shows the model selection proportions in study
4. Again, almost all of the model selection criteria correctly identify the true model.
Specifically, Dbar-based BIC and CAIC perform best among these criteria.

Study 5 focused on the number of classes. In this study, different growth curve
models with different numbers of classes were fitted and compared. In total, 9
conditions were considered, including 3 models (TN-XS, TT-XS, NN-XS) and 3
numbers of classes (1, 2, and 3). The true model was the 2-class mixture TN-XS
model. The simulation results for study 5 were presented in Table 21.7. Among these
criteria, Dhat-based criteria perform better than Dhbar-based criteria. Specifically,
Dhat-based BIC and CAIC perform best, and ssBIC and AIC also provide high
certainty.
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Table 21.4 Model selection proportion in study 2

N= 1,000 N= 500
Non-ignorable Non-ignorable

Criterion XSa XY XI Ignorable XS XY XI Ignorable

Dbar.AIC TNb 0.519 0.000 0.000 0.000 0.597 0.013 0.000 0.000
TTc 0.469 0.000 0.000 0.012 0.377 0.000 0.000 0.000
NTd 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
NNe 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000

Dbar.BIC TN 0.781 0.000 0.000 0.000 0.855 0.013 0.000 0.000
TT 0.200 0.000 0.000 0.019 0.113 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000

Dbar.CAIC TN 0.819 0.000 0.000 0.000 0.888 0.012 0.000 0.000
TT 0.162 0.000 0.000 0.019 0.075 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.019 0.000 0.000 0.000

Dbar.ssBIC TN 0.625 0.000 0.000 0.000 0.631 0.012 0.000 0.000
TT 0.362 0.000 0.000 0.012 0.338 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000

RDIC TN 0.000 0.000 0.106 0.000 0.000 0.000 0.094 0.000
TT 0.000 0.000 0.100 0.000 0.000 0.000 0.113 0.000
NT 0.000 0.000 0.394 0.000 0.000 0.000 0.390 0.000
NN 0.000 0.000 0.400 0.000 0.000 0.000 0.403 0.000

Dhat.AIC TN 0.544 0.000 0.000 0.000 0.547 0.025 0.000 0.000
TT 0.506 0.006 0.000 0.000 0.447 0.019 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.BIC TN 0.675 0.006 0.000 0.000 0.717 0.025 0.000 0.000
TT 0.319 0.000 0.000 0.000 0.245 0.013 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.CAIC TN 0.700 0.006 0.000 0.000 0.788 0.025 0.000 0.000
TT 0.294 0.006 0.000 0.000 0.169 0.012 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.ssBIC TN 0.575 0.006 0.000 0.000 0.588 0.025 0.000 0.000
TT 0.419 0.006 0.000 0.000 0.369 0.012 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DIC TN 0.325 0.000 0.000 0.000 0.415 0.006 0.000 0.000
TT 0.462 0.000 0.000 0.194 0.409 0.000 0.000 0.000
NT 0.012 0.000 0.000 0.000 0.088 0.000 0.000 0.000
NN 0.006 0.000 0.000 0.000 0.082 0.000 0.000 0.000

aOther abbreviations are as given in Table 21.3
bGrowth model with t-distributed measurement errors and normally distributed random effects
cGrowth model with t-distributed measurement errors and t-distributed random effects
dGrowth model with normally distributed measurement errors and t-distributed random effects
eGrowth model with normally distributed measurement errors and random effects



334 Z. Lu et al.

Table 21.5 Model selection proportion in study 3

N= 1,500 N= 1,000

Non-ignorable Non-ignorable

Criterion XS XY XI Ignorable XS XY XI Ignorable

Dbar.AIC TN 0.621 0.000 0.000 0.000 0.593 0.000 0.000 0.000

TT 0.357 0.000 0.000 0.000 0.314 0.000 0.000 0.000

NT 0.000 0.000 0.000 0.000 0.021 0.000 0.000 0.000

NN 0.021 0.000 0.000 0.000 0.071 0.000 0.000 0.000

Dbar.BIC TN 0.864 0.000 0.000 0.000 0.843 0.000 0.000 0.000

TT 0.114 0.000 0.000 0.000 0.064 0.000 0.000 0.000

NT 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000

NN 0.021 0.007 0.000 0.000 0.079 0.000 0.000 0.000

Dbar.CAIC TN 0.893 0.000 0.000 0.000 0.857 0.000 0.000 0.000

TT 0.079 0.000 0.000 0.000 0.043 0.000 0.000 0.000

NT 0.000 0.000 0.000 0.000 0.007 0.007 0.000 0.000

NN 0.021 0.007 0.000 0.000 0.086 0.000 0.000 0.000

Dbar.ssBIC TN 0.729 0.000 0.000 0.000 0.750 0.000 0.000 0.000

TT 0.250 0.000 0.000 0.000 0.157 0.000 0.000 0.000

NT 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000

NN 0.021 0.007 0.000 0.000 0.079 0.000 0.000 0.000

RDIC TN 0.071 0.000 0.000 0.000 0.143 0.000 0.000 0.000

TT 0.086 0.000 0.000 0.000 0.071 0.000 0.000 0.000

NT 0.450 0.000 0.000 0.000 0.393 0.007 0.000 0.000

NN 0.393 0.000 0.000 0.000 0.379 0.007 0.000 0.000

Dhat.AIC TN 0.586 0.000 0.000 0.000 0.621 0.000 0.000 0.000

TT 0.379 0.000 0.000 0.000 0.329 0.000 0.000 0.000

NT 0.014 0.000 0.000 0.000 0.014 0.007 0.000 0.000

NN 0.014 0.007 0.000 0.000 0.057 0.000 0.000 0.000

Dhat.BIC TN 0.757 0.000 0.000 0.000 0.793 0.000 0.000 0.000

TT 0.207 0.000 0.000 0.000 0.121 0.000 0.000 0.000

NT 0.007 0.000 0.000 0.000 0.007 0.007 0.000 0.000

NN 0.021 0.007 0.000 0.000 0.071 0.000 0.000 0.000

Dhat.CAIC TN 0.757 0.000 0.000 0.000 0.814 0.000 0.000 0.000

TT 0.207 0.000 0.000 0.000 0.100 0.000 0.000 0.000

NT 0.007 0.000 0.000 0.000 0.007 0.007 0.000 0.000

NN 0.021 0.007 0.000 0.000 0.071 0.000 0.000 0.000

Dhat.ssBIC TN 0.586 0.000 0.000 0.000 0.664 0.000 0.000 0.000

TT 0.379 0.000 0.000 0.000 0.250 0.000 0.000 0.000

NT 0.014 0.000 0.000 0.000 0.014 0.007 0.000 0.000

NN 0.014 0.007 0.000 0.000 0.064 0.000 0.000 0.000

DIC TN 0.507 0.000 0.000 0.000 0.364 0.007 0.000 0.000

TT 0.371 0.000 0.000 0.000 0.286 0.000 0.000 0.000

NT 0.043 0.036 0.000 0.000 0.129 0.029 0.007 0.000

NN 0.043 0.000 0.000 0.000 0.150 0.029 0.000 0.000

Abbreviations are as given in Table 21.3
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Table 21.7 Model selection proportion in study 5

2 CLASSES 1 CLASS 3 CLASSES

Criterion TN-XS TT-XS NN-XS TN-XS TT-XS NN-XS TN-XS TT-XS NN-XS

Dbar.AIC 0.000 0.000 0.057 0.393 0.129 0.000 0.021 0.007 0.393

Dbar.BIC 0.000 0.000 0.036 0.821 0.064 0.000 0.000 0.000 0.079

Dbar.CAIC 0.000 0.000 0.036 0.864 0.043 0.000 0.000 0.000 0.057

Dbar.ssBIC 0.000 0.000 0.057 0.593 0.100 0.000 0.000 0.000 0.25

RDIC 0.036 0.014 0.2 0.014 0.014 0.679 0.014 0.014 0.014

Dhat.AIC 0.621 0.343 0.064 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.BIC 0.793 0.136 0.071 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.CAIC 0.814 0.114 0.071 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.ssBIC 0.664 0.264 0.071 0.000 0.000 0.000 0.000 0.000 0.000

DIC 0.000 0.000 0.000 0.164 0.193 0.121 0.000 0.000 0.521

Abbreviations are as given in Table 21.3

21.5 Application

In this section, a real data set on mathematical growth is analyzed to demonstrate
the application of the criteria. The same sample that has been analyzed in Lu
et al. (2011) is used here. It is a mathematical ability growth sample from the
NLSY97 survey (Bureau of Labor Statistics, U.S. Department of Labor 1997),
which were collected from N = 1,510 adolescents yearly from 1997 to 2001 when
each adolescent was administered the Peabody Individual Achievement Test (PIAT)
Mathematics Assessment to measure their mathematical ability. There are some
outliers at all five grades. Lu et al. (2011) conducted a power transformation
to normalize the sample and assumed the data are normally distributed without
outliers. In this study, however, we use the original non-transformed data with
outliers, so robust methods are used. Also, different non-ignorable missingness
mechanisms are considered. Overall, the means of mathematical ability increased
over time with a roughly linear trend. The missing data rates range from 4.57 to
9.47 %, and the raw data show the missing pattern is intermittent. About half of the
sample is female.

The analysis is conducted following the steps in Table 21.8. In step 1, a tentative
model (the TT-ignorable model) is fitted to the data. Gender is a covariate. The
estimates of degrees of freedom of t for both classes are 2.342 and 3.263 for
measurement errors and 75.65 and 50.96 for random effects, which indicates
that measurement errors are t distributed while random effects are approximately
normally distributed (i.e., a TN model). And then in step 2, to compare models
with different non-ignorable missingness and numbers of classes, 10 models are
fitted to the data. During estimation we use uninformative priors which carry little
information for model parameters. A burn-in period is run first to ensure estimates
are based on the Markov chains that have converged. For testing convergence, the
history plot is examined and the Geweke’s z statistic (Geweke 1992) is checked
for each parameter. The Geweke’s z statistics for all the parameters are smaller than
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Table 21.8 Steps and fitting models in real data analysis

Step 1: Fit a tentative 2 classes model, and check
the estimated df of t

ei η i missingness

Model N T N T C X I S Y
TT-ignorable � �

Step 2: Try models with different missingness and
number of classes

2 Classes RGMMs
TN-X � � �
TN-XI � � � �
TN-XS � � � �
TN-XY � � � �
2 Classes REGMMs
TN-CX � � � �
TN-CXI � � � � �
TN-CXS � � � � �
TN-CXY � � � � �
3 Classes GMMs
NN-X � � �
4 Classes GMMs
NN-X � � �

Step 3: Compare selection criteria

Step 4: Interpret results obtained from the selected model

Abbreviations are as given in Table 21.2

1.96, which indicates converged Markov chains. To make sure all the parameters are
estimated accurately, the next 50,000 iterations are then saved for data analysis. The
ratio of Monte Carlo error (MCerror) to standard deviation (S.D.) for each parameter
is smaller than or close to 0.05, which indicates parameter estimates are accurate
(Spiegelhalter et al. 2003). In step 3, model selection criterion is used to compare the
ten models. The indices are listed in Table 21.9. And in step 4, the results obtained
from the final selected model are interpreted.

As suggested by Dhat.CAIC, Dhat.ssBIC, Dhat.BIC, and Dhat.AIC, without
further substantive information, the TN-CXY model would appear to be a good
candidate for best-fitting model. Table 21.10 provides the results of the TN-CXY
REGMM model. It can be seen that (1) class 1 has a higher average initial level
but a smaller average slope; (2) class 2 has larger variations for initial levels and
slope; (3) the residual variance of class 2 is much larger than that of class 1; (4) in
class 1 the initial level and the slope are significantly negatively correlated at the
confidence level of 95 %; (5) the missingness is not related to gender because none
of the coefficients of gender are significant at the α level of 0.05; (6) at grade 11,
adolescents in class 2 are more likely to miss tests than those in class 1 because the
probit coefficient of class membership for grade 11 is significantly positive; and (7)
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Table 21.10 Estimates of TN-CXY REGMM in real data analysis

Parameter Mean S.D. MC.e./S.D.a Lowerb Upperc Geweke td
G

ro
w

th
cu

rv
e

pa
ra

m
et

er
s

C
la

ss
1

Intercept 8.647 0.037 0.026 8.572 8.717 0.007
Slope 0.229 0.009 0.023 0.211 0.247 0.014
Var(I) 0.234 0.028 0.024 0.183 0.293 −0.009
Var(S) 0.014 0.002 0.018 0.011 0.017 0.004
Cov(I,S) −0.036 0.006 0.022 −0.049 −0.026 −0.005
Var(e) 0.044 0.004 0.031 0.037 0.053 0.024
d fy

e 2.386 0.205 0.043 2.118 2.900 0.050

C
la

ss
2

Intercept 6.196 0.047 0.020 6.103 6.287 0.054
Slope 0.315 0.011 0.022 0.295 0.336 0.036
Var(I) 1.326 0.084 0.017 1.167 1.497 0.020
Var(S) 0.034 0.004 0.022 0.027 0.042 0.010
Cov(I,S) 0.010 0.014 0.021 −0.018 0.037 −0.023
Var(e) 0.372 0.020 0.033 0.336 0.412 −0.061
d fy 3.200 0.195 0.040 2.850 3.600 −0.042

Pr
ob

it
pa

ra
m

et
er

s

C
la

ss ϕ10
f −0.214 0.119 0.051 −0.438 0.018 −0.039

ϕ11 −0.223 0.077 0.051 −0.372 −0.076 0.026

G
ra

de
7 γ∗01

g −0.711 0.532 0.066 −1.843 0.204 −0.255
γ∗11

h −0.132 0.216 0.058 −0.527 0.310 0.231
γx1

i −0.154 0.108 0.046 −0.368 0.058 0.008
γY 1

j −0.087 0.059 0.065 −0.190 0.038 0.251

G
ra

de
8 γ∗02 −1.157 0.446 0.064 −2.097 −0.447 −0.373

γ∗12 0.046 0.217 0.055 −0.345 0.489 0.347
γx2 0.113 0.114 0.046 −0.109 0.334 0.032
γY 2 −0.108 0.045 0.062 −0.188 −0.021 0.330

G
ra

de
9 γ∗03 −0.613 0.454 0.065 −1.519 0.163 −0.462

γ∗13 −0.057 0.181 0.056 −0.403 0.292 0.381
γx3 −0.147 0.094 0.046 −0.332 0.038 0.045
γY 3 −0.074 0.045 0.064 −0.155 0.022 0.459

G
ra

de
10

γ∗04 −0.032 0.512 0.066 −0.861 0.985 −0.426
γ∗14 −0.324 0.204 0.059 −0.732 0.029 0.362
γx4 0.059 0.101 0.047 −0.142 0.251 0.128
γY 4 −0.166 0.050 0.065 −0.266 −0.084 0.378

G
ra

de
11

γ∗05 −1.298 0.421 0.065 −2.130 −0.442 −0.192
γ∗15 0.341 0.176 0.055 0.015 0.708 0.159
γx5 −0.087 0.091 0.045 −0.263 0.083 0.001
γY 5 −0.019 0.040 0.064 −0.092 0.062 0.189

aRatio of MC error to standard deviation. A value around or less than 0.05 indicates that
the corresponding estimate is accurate (Spiegelhalter et al. 2003)
b,cThe lower 2.5 percentile and upper 97.5 percentile
dGeweke test t value. An absolute value less than 1.96 indicates that the corresponding
chain has passed the convergence test
eThe degrees of freedom of the multivariate-t
fThe probit coefficient of the class probability for class 1, defined in Eq. (21.3)
gThe probit coefficient of the class membership 1 at Grade 7, defined in Eq. (21.9)
hThe probit coefficient of the class membership 2 at Grade 7, defined in Eq. (21.9)
iThe probit coefficient of the covariate at Grade 7, defined in Eq. (21.9)
jThe probit coefficient of the potential output Y at Grade 7, defined in Eq. (21.9)
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at grades 8 and 10, students with higher potential scores are more likely to miss tests
than the students having lower scores because the probit coefficients of the potential
outcomes y at the two grades are significantly negative.

21.6 Conclusions and Future Research

Based on the results from the five simulation studies, one can conclude that (1)
almost all of the model selection criteria, except for the rough DIC (RDIC), can
correctly choose the true model with high certainty; (2) if the number of classes is
correctly identified, then the Dbar-based criteria perform better than the Dhat-based
criteria; if candidate models have different numbers of classes, then the Dhat-based
criteria might be used to select the best-fit model; (3) across five studies, CAIC
and BIC provide higher probabilities than those ssBIC, AIC, or DIC does. The
results will help inform the selection of growth models by researchers seeking
to provide people with accurate estimates of growth across a variety of possible
contexts. The real data analysis demonstrated the application of the criteria to typical
longitudinal growth studies such as educational, psychological, and social research.
Future research of this study includes proposing more effective model selection
criteria, such as Bayes factors, and testing their performance with more practice
statistical models, such as survival models.
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