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Abstract A Monte Carlo-based power analysis is proposed for t-test to deal with
non-normality and heterogeneity in real data. The step-by-step procedure of the
proposed method is introduced in the paper. For comparing the performance of
the Monte Carlo-based power analysis to that of conventional pooled-variance t-
test, a simulation study was conducted. The results indicate the Monte Carlo-based
power analysis provided well-controlled empirical Type I error rate, whereas the
conventional pooled-variance t-test failed to yield nominal-level Type I error rate.
Both an R package and its corresponding online interface are provided to implement
the proposed method.

Keywords Power analysis • Monte Carlo simulation • Non-normality • Hetero-
geneity

Power analysis is widely used for sample size determination (e.g., Cohen 1988).
With appropriate power analysis, an adequate but not “too large” sample size is
determined to detect an existing effect. The conventional method for power analysis
for the t-test is limited by two strict assumptions: normality and homogeneity
(two-sample pooled-variance t-test). The two-sample separated-variance t-test (also
known as the Welch’s t-test; Welch 1947) tolerates heterogeneity but still assumes
normally distributed data. Thus, the corresponding exact power solution for the
separated - variance t-test assumes normality with either numerical integration of
noncentral density function or approximation (Moser et al. 1989; Disantostefano
and Muller 1995).

Practical data in social, behavioral, and education research are rarely normal
or homogeneous (Blanca et al. 2013; Micceri 1989). This poses challenges on
statistical power analysis for the t-test (Cain et al. in press). To deal with the
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problems, we develop a general method to conduct power analysis for t-test through
Monte Carlo simulation. The method can flexibly take into account non-normality
in one-sample t-test, two-sample t-test, and paired t-test and unequal variances in
two-sample t-test. We provide an R package as well as an online interface for
implementing the proposed Monte Carlo-based power analysis procedure.

1 One-Sample t-Test

The one-sample t-test concerns whether the population mean � is different from a
specific target value �0 (usually �0 D 0). Thus, the null hypothesis is

H0 W � D �0:

The alternative hypothesis can be either two-sided (Ha1) or one-sided (Ha2 or
Ha3):

Ha1 W � ¤ �0;

Ha2 W � > �0;

or Ha3 W � < �0:

The statistic given sample size n, t D
�

y ��0

s
p

1
n

, follows a t distribution with degrees

of freedom n � 1 under the normality assumption, where s is the sample standard
deviation. When the normality assumption is violated, the t statistic does not follow
a t distribution any more. When sample size increases, the statistic approximately
follows a normal distribution. However, power analysis is less meaningful with a
huge sample size because the power would be always 1.

Non-normality can take many forms. In this study, we focus on continuous
variables with skewness and kurtosis different from a normal distribution (e.g.,
Cain et al. in press). With such non-normal data, it is extremely difficult to use
an analytical formula to calculate power as in traditional power analysis. Instead,
a Monte Carlo simulation method can be conveniently used (e.g., Muthén and
Muthén 2002; Zhang 2014). The basic procedure of the Monte Carlo method is
to first simulate the empirical null distribution of a chosen test statistic with the first
four moments under the null distribution to get the critical value for null hypothesis
testing and then simulate the distribution of the test statistic under the alternative
hypothesis. Finally, the power can be estimated using the empirical distribution
under the alternative hypothesis and the empirical critical value.

To use the Monte Carlo method, information regarding the first four moments is
needed. Specifically, we need the population mean (�) and standard deviation (� ).

In addition, we need the population skewness �1 D E
h� x��

�

�3
i

D �3

�3 and kurtosis

�2 D E
h� x��

�

�4
i

D �4

�4 . For testing the population mean, the means under the null
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and alternative hypotheses should be different, denoted by �0 and �1, respectively.
However, we assume that the shapes of distributions under the null and alternative
are the same with the same standard deviation, skewness, and kurtosis in this study
although they can be different. In practice, the population statistics are unknown,
but they can be decided based on meta-analysis or literature review (e.g., Schmidt
and Hunter 2014).

For the one-sample test, the following step-by-step procedure can be used to
obtain the power for a given sample size n for testing:

H0 W � D �0vs:H1 W � D �1:

1. Given the mean (�0), standard deviation (� ), skewness (�1), and kurtosis (�2),
generate R0 sets of non-normal data, each with the sample size n. R0 should be
sufficiently large, and we recommend a minimum value 100,000.

2. Calculate the mean and variance for each of the R0 datasets denoted as Ny0j and

s2
0j, j D 1, : : : , R0. Calculate the statistics t�0j D Ny0j��0

s2
0j

p
1
n

. Obtain the critical value

c˛ according to the prespecified Type I error rate ˛, typically 0.05, and the
alternative hypothesis. For example, if the alternative hypothesis is Ha2, c˛ is
the 100(1 � ˛)th percentile of t�0j

0s.
3. Generate R1 sets of non-normal data, each with the sample size (n), mean (�1),

standard deviation (� ), skewness (�1), and kurtosis (�2). We recommend a
minimum value 1000 for R1.

4. Calculate the mean and variance for each dataset in Step (3) and denote them as
Nyai and s2

ai; i D 1; : : : :; R1, and calculate the corresponding statistic t�ai D Nyai��0

s2
ai

p
1
n

statistic.
5. The power is estimated as the proportion that t�ai is greater than the critical value

c˛: � D #
�
t�ai > c˛

�
=R1.

The Monte Carlo procedure works equally for the normal data, in which the data
in Steps (1) and (3) can be generated from normal distributions. The procedure
above also works for the paired samples where the population mean, standard
deviation, skewness, and kurtosis of the difference scores are used.

2 Two-Sample t-Test

The two-sample t-test is used to test whether two independent population means are
equal. The null hypothesis is

H0 W �1 � �2 D 0:

The alternative hypothesis can be either two-sided or one-sided:

Ha1 W �1 � �2 ¤ 0;
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Ha2 W �1 � �2 > 0;

or Ha3 W �1 � �2 < 0:

The pooled-variance t-test where the statistic tpooled D Ny1�Ny2r
.n1�1/s21C.n2�1/s22

n1Cn2

q
1

n1
C 1

n2

follows a t distribution with degrees of freedom n1 C n2 � 2, where n1 and n2 are
sample sizes for the two independent samples. Ny1 and Ny2 are the sample means
and s2

1 and s2
2 are the sample variances of the two groups, respectively. The

pooled t-test assumes homogeneity and normality. When the variances of the two
groups are not the same, the separated-variance t-test should be used where the
test statistic t D Ny1�Ny2r

s21
n1

C s22
n2

follows a t distribution with the degrees of freedom

.s2
1=n1Cs2

2=n2/
2

.s2
1=n1/

2
=.n1�1/C.s2

2=n2/
2
=.n2�1/

. As for the one-sample t-test, when the normality

assumption is violated, the distribution of the statistic is not a t distribution.
Therefore, the Monte Carlo-based method could be used for power analysis.

As in one-sample t-test, we assume that the shapes of the data distribution for
each group under the null and alternative are the same with the same standard
deviation, skewness, and kurtosis, which can be estimated from meta-analysis or
based on literature review. The step-by-step procedure for the two-sample t-test
power calculation with given sample sizes n1 and n2 for the two groups is given
below:

1. Let �10 and �20 be the means of the two groups under the null hypothesis,
typically, �10 � �20 D 0. Given the population means (�10 and �20), standard
deviations (�1 and �2), skewness values (�11 and �12), and kurtosis values for
two groups (�21 and �22), generate R0 sets of non-normal data, one with sample
size n1 and another with sample size n2. We recommend a minimum value
100,000 for R1.

2. For the R0 sets of data from previously simulated data pool, calculate the mean
and variance of each group for each dataset denoted as Ny01j, Ny02j, s2

01j, and s2
02j,

j D 1, : : : , R0. Calculate the separated-variance test statistics t�0j D Ny01j�Ny02jr
s201j
n1

C s202j
n2

.

Obtain the critical value c˛ according to the prespecified Type I error rate ˛ and
the alternative hypothesis.

3. Let �11 and �21 be the means of the two groups under the alternative hypothesis.
Generate R1 sets of non-normal data, each with the sample sizes (n1 and n2),
means (�11 and �21), standard deviations (�1 and �2), skewness values (�11

and �12), and kurtosis values (�21 and �22) for the two groups separately. We
recommend a minimum value 1000 for R1.
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4. Calculate the means and variances for each group in each dataset in Step (3)
and denote them as Nya1j, Nya2j, s2

a1j, and s2
a2j; i D 1; : : : :; R1, and calculate the

corresponding t�ai D Nya1j�Nya2jr
s2a1j
n1

C s2a2j
n2

statistic.

5. The power is estimated as the proportion that t�ai is greater than the critical value
c˛: � D #

�
t�ai > c˛

�
=R1.

3 Implementation

The Monte Carlo procedure for power analysis for the one-sample, paired-sample,
and two-sample analysis is implemented in an R package WebPower. Specifically,
the function wp.mc.t() is utilized. The basic usage of the function wp.mc.t()
has the following form:

wp.mc.t(n, R0, R1, mu0, mu1, sd, skewness, kurtosis,
alpha, type, alternative).

In the function, n is the sample size; mu0, mu1, sd, skewness, and
kurtosis are the mean under the null hypothesis, mean under the alternative
hypothesis, standard deviation, skewness, and kurtosis, with the default values 0,
0, 1, 0, and 3, respectively. R0 and R1 specify the total number of replications
under null and alternative hypotheses with the default value 100,000 and 1000,
respectively. alpha is the significance level with the default value 0.05. type
specifies the type of analysis such as one-sample test or two-sample test, and
alternative specifies the direction of the alternative hypothesis.

We briefly illustrate the application of the wp.mc.t function via three examples.
First, in a one-sample t-test, we are interested in whether the population mean
is equal to 0 with a two-sided alternative hypothesis. The population distribution
follows a normal distribution with mean equal to 0.5 and standard deviation equal
to 1. To calculate the power with sample size equal to 20, the R input is as follows:

wp.mc.t(nD20 , mu0D0, mu1D0.5, sdD1, skewnessD0,
kurtosisD3, type D c(“one.sample”), alternative D
c(“two.sided”)).

The power is 0.557 in this example.
Second, in a paired t-test, we plan to test whether the matched pairs have

equal means with one-sided alternative hypothesis (Ha : �D > 0). The mean, standard
deviation, skewness, and kurtosis of the difference scores are 0.3, 1, 1, and 6,
respectively. To calculate the power with sample size equal to 40, the specification
of the R function is as follows:

wp.mc.t(nD40 , mu0D0, mu1D0.3, sdD1, skewnessD1,
kurtosisD6, type D c(“paired”), alternative D
c(“larger”)).

The power is 0.657 in this example.
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Third, in a two-sample independent t-test, we plan to examine whether two
independent population means are equal with one-sided alternative hypothesis
(Ha : �1 � �2 < 0). The means for two groups are 0.2 and 0.5, standard deviations
for two groups are 0.2 and 0.5, skewnesses for two groups are 1 and 2, and kurtoses
for two groups are 4 and 6, respectively. To calculate the power with sample size
equal to 15 per group, the specification of the R function is as follows:

wp.mc.t(nDc(15, 15), mu1Dc(0.2, 0.5), sdDc(0.2, 0.5),
skewnessDc(1, 2), kurtosisDc(4, 6), type D c(“two.
sample”), alternative D c(“less”)).

The power is 0.879 in this example.
For those who are not familiar with R, an online application is also created to

conduct the same power analysis using a simple interface on this webpage: http://w.
psychstat.org/tnonnormal.

4 A Simulation Study

We conducted a simulation study to examine the performance of the Monte
Carlo-based power analysis for the two-sample analysis under the null hypothesis
H0 : �1 � �2 D 0. This is to investigate whether the Type I error can be well
controlled. The performance of the Monte Carlo method (MC) is also compared
with conventional pooled-variance t-test (CP).

We varied the following four factors in the simulation: normality of data (either
normal or non-normal), ratio of variance of group 1 to that of group 2 with �2

2 D 50

( �2
1

�2
2

D0.2, 1, 2, and 5), ratio of sample size of group 1 to that of group 2 ( n1

n2
D0.2,

1, and 2), and sample size of group 1 (n1D10, 50, and 100). The non-normal
data are generated from a Gamma distribution. Overall, a total of 72 conditions
(2 � 4 � 3 � 3) are evaluated.

The empirical Type I error rates are listed in Table 1. Clearly, the Monte Carlo-
based power analysis controlled the Type I error rates well around the nominal
level (˛ D 0.05) regardless of the shape of distribution, the level of heterogeneity

( �2
1

�2
2

), the ratio of sample size of group 1 to that of group 2 ( n1

n2
), and the sample

size of group 1 (n1). The conventional pooled-variance t-test only controlled the
Type I error rates at the nominal level under homogeneity and/or equal-sample-size
situations as expected. When two groups have different variance and sample sizes,
the conventional pooled-variance t-test yielded either too small rejection rate (e.g.,
0.002) or too large rejection rate (e.g., 0.242). Given that practical data are often
non-normal and heterogeneous, the Monte Carlo-based power analysis is therefore
recommended.

http://w.psychstat.org/tnonnormal
http://w.psychstat.org/tnonnormal
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Table 1 The empirical Type I error in Monte Carlo-based power analysis (MC) and conven-
tional pooled-variance t-test (CP) under the null hypothesis

�2
1

�2
2

D 0.2
�2

1

�2
2

D 1
�2

1

�2
2

D 2
�2

1

�2
2

D 5

n1

n2
n1 MC CP MC CP MC CP MC CP

Normal data
0.2 10 0.048 0.003 0.051 0.049 0.049 0.117 0.049 0.227
0.2 50 0.050 0.001 0.047 0.048 0.056 0.120 0.047 0.219
0.2 100 0.052 0.002 0.047 0.048 0.051 0.116 0.050 0.225
1 10 0.053 0.057 0.052 0.051 0.048 0.050 0.048 0.055
1 50 0.049 0.051 0.052 0.050 0.051 0.051 0.047 0.050
1 100 0.053 0.054 0.052 0.053 0.048 0.049 0.048 0.048
2 10 0.050 0.131 0.052 0.050 0.047 0.028 0.052 0.020
2 50 0.046 0.116 0.051 0.051 0.048 0.028 0.048 0.015
2 100 0.049 0.121 0.052 0.054 0.052 0.029 0.050 0.015
Non-normal data
0.2 10 0.050 0.005 0.047 0.048 0.049 0.109 0.050 0.234
0.2 50 0.051 0.003 0.046 0.046 0.053 0.119 0.051 0.242
0.2 100 0.050 0.002 0.047 0.050 0.049 0.119 0.047 0.224
1 10 0.050 0.065 0.052 0.047 0.053 0.056 0.052 0.103
1 50 0.047 0.055 0.049 0.049 0.049 0.049 0.049 0.067
1 100 0.052 0.052 0.048 0.048 0.044 0.048 0.048 0.062
2 10 0.047 0.131 0.053 0.047 0.048 0.038 0.045 0.072
2 50 0.049 0.122 0.049 0.048 0.051 0.032 0.050 0.034
2 100 0.050 0.120 0.050 0.050 0.046 0.029 0.050 0.027

5 Conclusion

To flexibly deal with non-normality and unequal variances in the real data, we
proposed a Monte Carlo-based power analysis procedure for one-sample t-test,
two-sample t-test, and paired t-test. Simulation results showed that the Monte Carlo-
based method achieved well-controlled Type I rate even when the assumptions
for the conventional power analysis do not hold. In contrast, when homogeneity
assumption does not hold and/or two groups have unequal sample size, the
conventional pooled-variance t-test could be either too liberal or too conservative.
Both an R package WebPower and an online application are provided for researchers
to easily carry out the Monte Carlo-based power analysis. The Monte Carlo-based
method can be generalized to power analysis for ANOVA, regression, structural
equation modeling, and multilevel modeling to handle non-normal data. Missing
data can also be considered in the Monte Carlo method.
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