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Preface

This volume represents presentations given at the 84th Annual Meeting of the
Psychometric Society, organized by Centro de Extensión at the Pontificia Univer-
sidad Católica de Chile, in Santiago, Chile, on July 15–19, 2019. The meeting
attracted 411 participants, and 383 papers were presented, of which 84 were part
of a symposium. There were 4 preconference workshops, 11 keynote presentations,
8 invited presentations, 2 career-ward presentations, 4 state-of-the-art presentations,
66 poster presentations, 1 dissertation award winner, and 19 symposia.

Since the 77th meeting in Lincoln, Nebraska, Springer has published the
proceedings volume from the annual meeting of the Psychometric Society to allow
presenters to spread their ideas quickly to the wider research community while
still undergoing a thorough review process. The previous seven volumes of the
meetings in Lincoln, Arnhem, Madison, Beijing, Asheville, Zurich, and New York
were enthusiastically received, and we expect these proceedings to be successful as
well.

The authors of these proceedings were asked to use their presentations at
the meeting as the bases of their chapters, possibly extended with new ideas or
additional information. The result is a selection of 28 state-of-the-art chapters
addressing a diverse set of psychometric topics, including but not limited to item
response theory, factor analysis, hierarchical models, and computerized adaptive
testing.

Umeå, Sweden Marie Wiberg
Amsterdam, Noord-Holland, The Netherlands Dylan Molenaar
Santiago, Chile Jorge González
Evanston, IL, USA Ulf Böckenholt
Madison, WI, USA Jee-Seon Kim
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Stories of Successful Careers
in Psychometrics and What We Can
Learn from Them

Carolyn J. Anderson, Susan Embretson, Jacqueline Meulman, Irini Moustaki,
Alina A. von Davier, Marie Wiberg , and Duanli Yan

Abstract This paper was inspired by the presentations and discussions from the
panel “Successful Careers in Academia and Industry and What We Can Learn
from Them” that took place at the IMPS meeting in 2019. In this paper, we
discuss what makes a career successful in academia and industry and we provide
examples from the past to the present. We include education and career paths as well
as highlights of achievements as researchers and teachers. The paper provides a brief
historical context for the representation of women in psychometrics and an insight
into strategies for success for publishing, for grant applications and promotion.
The authors outline the importance of interdisciplinary work, the inclusive citation
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approaches, and visibility of research in academia and industry. The personal stories
provide a platform for considering the needs for a supportive work environment for
women and for work-life balance. The outcome of these discussions and reflections
of the panel members are included in the paper.

Keywords Advice · Career paths · Psychometrics history · Gender gap

1 Introduction

In recent years, society has started to shift its narrative about scientists from the
lonely genius (usually a white man) to more diverse images of the researchers,
authors of papers, and to their supportive environment. The IMPS19 session, “Sto-
ries of Successful Careers in Psychometrics and What We Can Learn from Them,”
is part of this expansion of acknowledgment of the contributions of contemporary
fellow scientists to the field of psychometrics and their individual paths to successful
careers. This proceedings volume provides a snapshot of the interests of members
of the Psychometric Society in 2019 and as such it encompasses a historical and
social perspective on ideas, creators, and life stories that are being mingled with the
psychometric papers that these authors published in this volume or elsewhere.

In this paper, we loosely follow the structure of the symposium and allow the
contributors to speak to her professional successes and to the personal context in
which these successes took shape. The professional successes include breakthrough
research ideas and projects, leadership acknowledgment, and social impact. The
scientists will also share their lessons learned for the next generations of psychome-
tricians. The team of established scientists is comprised of seven women from six
countries, who now live and work across four countries. Some of these stories speak
to the geopolitical influence, the immigrant’s experience, the struggle to publish in
a foreign language, and the struggle to be authentic in a professional world with
relatively narrow expectations.

There are many socio-historical, political, and cultural conditions that have led to
marginalization of women in technical domains. STEM subjects in some societies
are highly gendered often based on a belief that boys are better at math than girls due
to biological differences. In the USA, women earn fewer PhDs in STEM domains
and only 31.5% of women earned PhDs in mathematics and computer (Okahana and
Zhou 2017). School and parental guidance have also contributed to the gender gap
in STEM. Girls and boys often grow up with the idea that they will be bad and good
at math, respectively (e.g., Math class is tough! Barbie is for girls) and that girls do
not belong in a technical environment. All those reasons are in addition to systemic
and structural biases such as opportunities for training, and later on, for recruiting.

An article published in The Guardian by Carol Black and Asiya Islam in 2014
is a response to over 50 senior Cambridge academics called on the university to
change its staff appointment procedure because the existing system favored men.
They stated that “Despite accounting for 45% of the academic workforce, women
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hold only 20% of professorships in UK universities, and just 15.3% of such posts
in Cambridge” (Black and Islam 2014). Though more women enter university
than men and there is an almost equal representation of women and men at lower
professional levels, only 27.5% of senior managers in higher education and 20.5%
of professors in the UK are women. Worse, only 1.1% of senior managers in higher
education and 1.4% of professors in the UK are black and minority ethnic women.

One would expect that in more gender-equal societies the gender gap in STEM
scores and in higher managerial or academic positions is smaller. Different systems
for tenure and promotion also lead to different outcomes. It looks like the problem
is universal. This imbalance is spread in the world and the causes are often blatantly
attributed to narrow views of women’s roles in society: The Guardian reported
in June 2019, that after a medical school in Japan admitted rigging admission
procedures to give men an unfair advantage, once the system became fair, women
have outperformed their male counterparts in entrance examinations (McCurry
2019).

2 History

This section provides a brief historical tribute to women who have contributed to
psychometrics and related disciplines. It is by no means complete or exhaustive.
Psychometrics was founded by Thurstone’s vision for a mathematical underpinning
for psychological research. The Psychometric Society was founded in 1935 by
Louis Thurstone, Jack Dunlap, Paul Horst, Albert Kurtz, Marion Richardson, and
John Stalnaker. Paul Horst and Albert Kurtz founded the journal in 1936 with the
mission to create a journal that will be mathematically oriented to develop and
disseminate work in psychological measurement. Much before that, Gauss in 1809
presented the theory of errors of observation following the normal distribution,
Bessel’s presented “a personal equation” to correct observations for differences
among observers, Galton in 1884 designed an apparatus to measure a variety of
bodily dimensions, Cattell in 1889 established a laboratory of psychology with an
interest in psychometric measures.

Where are the women in all those initiatives and contributions? At a time
when women were destined to get married and bear children, Florence Nightingale
(1820–1910), who was self-educated in statistics, pioneered in visual statistical
graphs called Nightingale Rose Diagram or Polar Area Diagram. She was the
first female member of the Royal Statistical Society and the founder of the
nursing profession. Florence Nightingale David (1909–1993), named after Florence
Nightingale, studied mathematics at Bedford College for Women after failing to
go to University College of London. She published the Tables of the Correlation
Coefficient, as well as Combinatorial Chance (with D.E. Barton) and Games, Gods
and Gambling: The Origins and the History of Probability. She chaired the statistics
department at the University of California, Berkeley, then founded the statistics
department at the University of California, Riverside.
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Ethel Elderton (1878–1954) is a true hidden figure, a female researcher who
worked with Galton and Pearson in eugenics research. In 1905 she resigned her
teaching post to become Galton’s assistant. Subsequently, she became a Galton
Scholar and Fellow and Assistant Professor at University College London. In the
same period, Gertrude Mary Cox (1900–1978) dreamed to be a missionary and
saving souls in far-off lands. To be qualified as a missionary, she became a student
of George Snedecor then published Experimental Design (Cochran and Cox 1957).
She was the first female department chair in a men’s world and started the well-
known North Carolina “Research Triangle.” In psychometrics, Thelma Thurstone
(1897–1993) a psychometrician herself combined the theory of intelligence with its
measurement to design instructional materials, like the tests she developed for the
American Council on Education from 1924 to 1948. In 1955, Thelma Thurstone was
asked to assume the directorship of the Psychometric Laboratory upon the death of
her husband in order to continue his funded research projects. Barbara Stoddard
Burks (1902–1943) worked in behavioral genetics and intelligence and was the first
one who used a graph to represent a mediator. Her first paper published in 1926 was
on the inadequacy of the partial and multiple correlation technique. Anne Anastasi
(1908–2001) is known as the “test guru” psychometrician and the psychology’s
female voice. She pioneered the development of psychometrics and chaired the
department of psychology at the male-dominated school at Fordham University,
and she won many awards including The American Psychological Foundation’s
Gold Medal for Life Achievement. Her books on Differential Psychology, Fields
of Applied Psychology, and Psychological Testing (with 7 editions) influenced
generations of psychometricians. Fordham University established a special position
named Anne Anastasi Chair Professor.

Another important contributor is Dorothy Adkins (1912–1975), an American
psychologist who was interested in new (at the time) statistical techniques of
factor analysis. She applied factor analytic techniques in order to examine and
better understand curriculum, program evaluation, and affect in children. She was
also co-editor of Psychometrika with Paul Horst (1958–1959, 1963–1966) and
president of the Psychometric Society in 1949–1950. Forty-five years later Fumiko
Samejima became the next female president of the society (1996–1997) who is
known for her work on Item Response Theory (IRT) models for polytomous data.
A few more women followed as presidents of the society, Susan Embretson (1998–
1999), Jacqueline Meulman (2002–2003), Sophia Rabe-Hesketh (2014–2015), and
Irini Moustaki (president-elect, 2020–2021). Susan Embretson was the first to
integrate cognitive theory into IRT and test design whereas Jacqueline Meulman
made significant contributions in the area of multivariate data analysis with optimal
transformations of variables, and multidimensional scaling.

Many women without a PhD also made significant contributions. At Harold
Gulliksen’s Gold Medal Award for Lifetime Achievement in Psychological Science
(1991), he acknowledged his wife as his significant collaborator who did the
programming and analyses for him. Similarly, Marilyn Wingersky worked mostly
with Fred Lord and implemented algorithm, statistical models, and developed the
LOGIST software for estimating latent traits and item parameters. Martha Stocking,

https://www.apa.org/about/governance/president/anastasi-pubs
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without a doctorate, also worked with Fred then furthered her contributions on com-
puterized adaptive testing (CAT) research and development including automated
test assembly (ATA) using weighted deviation and the conditional item exposure
control algorithm with Charlie Lewis. Kikumi Tatsuoka (1930–2016) received her
PhD later in life, after raising her children; she developed the Rule-Space model for
diagnostic assessment. Dorothy Thayer has been an instrumental behind the scene
figure. She worked with Mel Novick, Don Rubin, Paul Holland, Rebecca Zwick,
Charlie Lewis, and Alina von Davier, and published numerous numbers of papers
with them, always as the second author. Among other researchers we would like
to note is Frances Swineford (1909–1997) who in 1937 together with Holzinger
introduced the bifactor model (one general factor and multiple group factors) for
mental abilities (Holzinger and Swineford 1937). Again, this oversight has been
characteristic of the scientific world in the twentieth century. As discussed in Yong
(2019) and Huerta-Sanchez and Rolfs (2019), our colleague professor Margaret
Wu from Melbourne has been only thanked for an algorithm that she co-created
to compute the “Watterson estimator.”

Finally, a very important initiative in 2004 is the Psychology Feminist Voices
project directed by Alexandra Rutherford at York University in Toronto, Canada
which aims to collect, preserve, and share the narratives of diverse feminist
psychologists from all over the world (see http://www.feministvoices.com/about).

3 The Impact of the Structure of Society and Academia

3.1 Societal Structures

The structure of a society is important when pursuing an academic career. To have
well-organized paid maternal and paternal leave tend to enhance gender equality.
In the past, more men than women earned PhDs, but now in many countries
many universities and colleges have more women than men earning PhD degrees
(Okahana and Zhou 2017). The balance between work and family has gained
attention with both men and women working. Mason and Wolfinger (2013) have
examined the relationship between family formation and academic careers of men
and women, including an examination of the family sacrifices women often have
to make to get ahead in academia and consider how gender and family interact to
affect promotion to full professor, salaries, and retirement. Although their research
is from the USA it is seen in many countries that even if women and men work a
similar number of hours, women tend to take more responsibility for their family.
They concluded that men can get a career advantage when having children but for
women it can be a career killer. Those women who advance through the faculty
ranks tend to pay a high price by being less likely to be married with children. For
a woman to facilitate her career it is thus important to be in a relationship which

http://www.feministvoices.com/about
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believes in equality and to work in a country where the society helps women and
men with this equality by, for example, paid maternal and paternal leave.

3.2 Academic Structures

It is not just the structure of the society which is important but also the academic
structure. To have open calls and transparency in the career system is typically
viewed as a way to frame gender equality. van den Brink et al. (2010) examined
transparency in the Netherlands and concluded that transparency and accountability
should be deployed to their full potential. In their study, transparency was limited to
recruitment protocols, but transparency should also imply making the process and
decisions more visible for the larger academic society, which is the case in Sweden
and Finland.

Internal structures are also important. To be part of a supportive work envi-
ronment, and to have role models, mentors, and colleagues all greatly enhance
the chances of being able to pursue an academic career. Receiving constructive
feedback is essential for career development for everyone. However, when Rubini
and Menegatti (2014) examined the language in academia, they concluded that
judgments of female applicants in academic personnel selection were formulated
using negative terms at a more abstract level and positive terms at a more concrete
level than those of male applicants. They also found that linguistic discrimination
was perpetrated only by male committee members. The discrimination was mainly
based on the use of negative adjectives and thus this could be a hindrance for
women’s academic careers. To counteract this tendency, institutions often try to
have men and women represented on different committees; however, women should
make sure not to get stuck doing committee work because they need a woman. It is
important to say yes to exciting new projects and collaborations and often say no
to the role of “female representative” unless you feel they asked you due to your
competence. In summary, choose your service and work wisely.

4 Personal Reflections

In this section, each of the panel members has sketched a short biography together
with some personal reflections.

4.1 Personal Reflection by Carolyn J. Anderson

Themes throughout CJA’s career have included accepting opportunities that were
offered to her and following her interests. Curiosity has been a driving force in her
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career. In college, CJA was introduced to quantitative psychology by Bill Meredith
and Barb Mellers at the University of California at Berkeley and took Bill’s graduate
seminars on factor analysis and latent class analysis. CJA was hooked!

CJA’s first major challenge was choosing a dissertation topic upon which she
built a career in academia. The University of Illinois at Urbana-Champaign (UIUC)
was an ideal environment to pursue a PhD due to the breadth and depth of expertise
of the faculty. Before CJA’s ideas solidified, she did research on judgment and
decision making with Michael Birnbaum and Elke Weber, and social network
analysis with Stanley Wasserman. Stanley agreed to be her advisor and allowed
her the freedom and support to pursue and explore whatever interested CJA.
Starting with two papers by Leo Goodman that Stanley recommended, CJA read
backward, forward, and side-ways in literatures on categorical data analysis, matrix
decompositions, graphical models, optimal scaling, and computing algorithms.
CJA’s dissertation encompassed all of these areas and earned her the Psychometric
Society and APA Division 5 Dissertation awards.

Dual career couples can face many challenges, especially finding positions in
the same city and having a family. CJA was offered a tenure track position at
UIUC and accepted it because she was expecting her first child and both parents
would be employed. The policies at UIUC were nonexistent regarding childbirth and
family policy. When CJA began, 80% of the tenured faculty in her primary college
were men and attitudes of some senior faculty were not supportive of women. For
example, after being denied a release from teaching due to childbirth, she was asked
“doesn’t it bother you that someone else is raising your child?”. Fortunately, she also
had very supportive colleagues. Stanley Wasserman and Rod McDonald stepped up
and taught her courses until she was able to return to work.

After a rocky start, 15 months of little to no sleep, and becoming visually
disabled, she needed to jump start her research program. She went back to the
literature, including original sources. Typographic errors in a paper had carried
through the literature and after correcting them it became obvious that row-column
association models and their extensions were standard item response models. This
led to an NSF grant and papers on graphical models and latent variables models
starting with Anderson and Vermunt (2000).

4.2 Personal Reflection by Susan Embretson

SE’s research direction has focused on understanding the cognitive processes,
skills, and strategies that are involved in responding to test items. Her research
has included developing item response theory models, perspectives on the validity
concept, examining the impact of item design on test correlates and developing
automatic item generators. SE has received career awards for this research, the
2019 Career Award for Lifetime Achievement from the Psychometric Society, the
2018 Saul Sells Award for Distinguished Multivariate Research from the Society for
Multivariate Experimental Psychology, the 2013 Career Contribution Award from
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the National Council on Measurement in Education, and the 2011 Distinguished
Lifetime Achievement Award from the American Educational Research Associa-
tion: Assessment and Cognition Division, as well as several scientific contribution
awards. Although her personal journey to her research program was not direct, her
interests in the topic began in high school after taking the Preliminary Scholastic
Aptitude Test. Unfortunately, her score was not high enough to qualify for a Merit
Scholarship. Why were test items involving Victorian novel vocabulary on a college
admissions test? She complained to her high school counselor and a few weeks later,
two individuals from the University of Minnesota came to administer an individual
intelligence test. Shortly afterwards she received a full scholarship. Al Johnson, an
engineer who built skyscrapers, decided he could fund ten students per year. He
probably did not read Victorian novels either.

SE began her studies with a goal to major in psychology. However, the required
research experiences in the introductory course, which included running rats in
mazes and learning nonsense syllables, did not pique her interest. She changed her
major to Spanish, but after learning to speak the language, she found that she was
not as enthusiastic about the literature and could not envision being a high school
language teacher. By this time, she had a young daughter and a husband, which
involved 2 h commuting as they could afford only one car. One very cold winter
day, she decided to drop out of school. She hoped that the world of business would
suit her better. It did not. After 6 months of the world of work, she decided to take
two night school classes: Individual Differences and Psychological Statistics. Wow!
SE found her interests. She returned full time to the University of Minnesota and,
fortunately, the Al Johnson Foundation decided that they could fund her again and
she finished in a little over 1 year.

SE applied for graduate school at the University of Minnesota. Required was a
test used to select students for fellowships, the Miller Analogy Test. She remembers
the test well. Why is knowing the answer to analogies such as “Moscow: Vodka::
Copenhagen:?” measuring aptitude? She did not know what the Danes drank. Again
her score was not high. Despite that, she was selected, primarily because her
Bachelor of Arts degree was awarded summa cum laude.

Her graduate career was exciting, as IRT was just entering the field and she was
able to pursue her research interests in cognition and measurement. She delayed
finishing by 1 year and then took a post doc position for 1 year so that her husband
could finish his PhD. Afterwards she interviewed at the University of Georgia.
However, the available teaching topic was not her major interest and the work-
family balance did not work out. Thus with difficulty, she turned down their offer
even though nothing else was pending. This was a good decision, as good luck
came in a couple of weeks! The University of Kansas offered her a position to
ease into teaching graduate statistics, and she could pursue whatever research topic
interested her so long as it was successful. Also, women’s expertise in quantitative
methods was not questioned, since Julie Shafer had been teaching statistics there. SE
accepted the offer, to which she attributed much of her success. She spent 30 years
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there and pursued her research interests with enthusiasm. Her current position at the
Georgia Institute of Technology has been successful due to the solid base of research
and teaching that she built at KU. In summary, SE characterizes her personal journey
as involving some good luck, some good decisions, and lots of persistence.

4.3 Personal Reflection by Jacqueline Meulman

After JM was drawn into psychometrics while studying its history, preparing an
undergraduate course in History of Psychology as TA at Leiden University, she
abandoned everything else by becoming an RA at the Leiden Department of Data
Theory in 1978. This department was founded at Leiden University in 1970 by
the late John P. van de Geer, and its mission was the development of new and
innovative methods for statistical multidimensional data analysis. Later on, Jan de
Leeuw added to its mission the implementation in software for multivariate analysis
of categorical data, and for multidimensional scaling and unfolding. JM had found
the topic in statistics that she would cherish for the next 40+ years to come.

Like Jan de Leeuw and Willem Heiser, JM visited the famous AT&T Bell
Telephone Laboratories in Murray Hill, NJ. The year 1982 that she spent in Doug
Carroll’s group in Mike Wish’s department Computer-Aided Information Systems
changed her life. Doug was a superb mentor who introduced her to all her heroes in
psychometrics and beyond. It was Paul Tukey, the nephew of Bell Labs’ Associate
Executive Director John Tukey, who told her she was not a psychometrician, but a
statistician. After returning to the Department of Data Theory in 1983, JM finished
her dissertation in 1986 (advisors Jan de Leeuw and John P. van de Geer), and
was awarded a 5-year fellowship from the Royal Netherlands Academy of Arts and
Sciences, which allowed her to continue her career at the department that she loved.

In 1987, John P. van de Geer retired, and Jan de Leeuw took a position at UCLA,
and Willem Heiser and JM were left some big shoes to fill. Their efforts resulted
in Albert Gifi’s Nonlinear Multivariate Analysis published by Wiley in 1990,
and the incorporation of the associated software programs in the SPSS package
CATEGORIES (also from 1990 onwards).

A next important period in JM’s career started in 1992, by visiting the University
of Illinois at Urbana-Champaign, where she was teaching and started collaborating
with Larry Hubert. In 1994, JM was awarded the prestigious PIONEER Award
by the Netherlands Organization for Scientific Research (NWO), which allowed
her to start her own research group in Leiden, as well as spending time in
Champaign-Urbana, where she had been appointed as Adjunct Professor in 1993.
The collaboration with Larry Hubert and Phipps Arabie (in the so-called HAM
team) resulted in a number of papers and two books.

In the meantime, Willem van Zwet, who was Professor of Mathematical Statistics
in the Mathematical Institute in Leiden, took it upon him to support JM to become
full professor. Her Chair was called Applied Data Theory, and she was leading a
group of assistant professors, postdocs, and PhD students; the group was still called
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Data Theory, but was relocated at the Department of Education. This association
did not develop into a good synergy, and after a number of difficult years, the
Data Theory Group left the Department of Education. However, good things also
happened in this period: JM was elected as President of the Psychometric Society
(in 2001), and as Member of the Royal Netherlands Academy of Arts and Sciences
(in 2002).

In 2006, JM was offered a position in statistics at the Leiden Mathematical
Institute for one day a week, and this appointment was extended to a full-
time position with a Chair in Applied Statistics in 2009. In the meantime, the
collaboration with SPSS had resulted in many new software programs, and royalties
for Leiden University (first shared with Willem Heiser, and later under full control
of JM) that increased to very impressive figures. The latter made it possible for
JM to start anew within the Mathematical Institute (MI), with appointing assistant
professors and a group of PhD students. At the MI, JM developed with Richard
Gill, and later Aad van der Vaart, a new Master program called Statistical Science
(for the Life and Behavioral Sciences), in collaboration with other statisticians from
the Leiden University Medical Center, the Methodology & Statistics Division at the
Leiden Institute of Psychology, and Wageningen University and Research Center.
From 2011 to 2016, JM was President of the Netherlands Society of Statistics and
Operations Research, and she was appointed in the Department of Statistics at
Stanford University, first in 2009 as Visiting, and later in 2017 as Adjunct Professor.
The above story may sound as a dream, but the path has known many large obstacles,
professional as well as medical. JM had to work very hard to pursue her ideals. But
all is well that ends well: JM was honored with the Psychometric Society’s Career
Award for Life Time Achievement 2020.

4.4 Personal Reflection by Irini Moustaki

IM studied Statistics and Computer Science at the Athens University of Economics
and Business and continued her studies at the London School of Economics from
where she received a masters and PhD in Statistics. Initially, her PhD thesis
was on sample surveys and variance estimators under the supervision of Colm
O’Muircheartaigh but as soon as Colm was awarded a state grant as a co-investigator
with David Bartholomew and Martin Knott on the Analysis of Large and Complex
Data Sets, IM started working on latent variable models for mixed data closely also
with Knott and Bartholomew. At LSE she has been very fortunate to have had a
very supportive and encouraging environment in which to study and later to work.
A year before she received her PhD, she got an appointment as a temporary lecturer
at LSE and a year later a tenure track position in the same department. The Statistics
Department at the time had no female professors and only one female lecturer. IM
also spent a period of 5 years at the Athens University of Economics and Business as
Assistant and Associate Professor before returning to LSE again in 2007 as associate
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professor and in 2013 became a full professor. IM served both as head and deputy
head in her department at LSE.

A turning point in her PhD studies was when she attended the IOPS meeting
in Tilburg as a PhD student to discover to her surprise a whole community of
researchers working on models with latent variables. At LSE and in the UK in
general there wasn’t much of a psychometric tradition or use of latent variable
modeling in social sciences. The second opportunity came when her supervisor
encouraged her to attend a workshop by Karl Joreskog on SEM in Heidelberg.
This is also the place when she met with Alina and Matthias von Davier and also
started a conversation with Karl Joreskog on IRT and SEM that later on led to
two papers and a long-term friendship. The Psychometric meetings and community
provided her with an academic family which allowed her to discuss her research
developments, make collaborators, and make valuable friendships. IM is indebted
to the continuous support she received in her early career by Martin Knott at the
LSE, who trusted her capabilities and generously exchanged ideas of research and
projects. Her collaborations with researchers from LSE but also other places in
Europe and beyond led to publications in the areas of missing values, detection
of outliers, and composite likelihood estimation. The highlights of her career were
when she received an honorary doctorate from the University of Uppsala on the
recommendation of her collaborators and friends Fan Wallentin and Karl Joreskog,
served as the editor-in-chief of Psychometrika, and honored to be the president-elect
of the Psychometric Society. The Psychometric Society has continuously provided
a stimulated intellectual environment for her. Further to her teaching and research,
IM finds the mentoring of junior academics and PhD students a very important part
of her job.

4.5 Personal Reflection by Alina von Davier

AvD studied mathematics at the University of Bucharest and at the end of the studies
was fortunate to experience the political change in a country that had been under an
authoritarian regime for a long time. The political changes brought opportunities and
hope and AvD went to work for a research institute (The Institute of Psychology of
the Romanian Academy) instead of teaching math at a high school, as would have
been the case under the previous system. Further on, she went to do her PhD in
Germany. She started her work on falsifying causal hypotheses with Rolf Steyer,
but she discovered interesting singularity points in the testing of hypotheses that
captured her interest, and therefore her dissertation ended up back in mathematics,
with a second advisor, Norbert Gaffke. In the 5 years she lived in Germany, she also
learned German, married MvD, and had a son—efficiently, as she likes to describe it.

The von Daviers moved to the US and specifically to ETS, where their interests
found a good match with the company’s needs. ETS provided an incredible
intellectually rich environment for the development and exploration of one’s ideas.
Her research journey went from research in test equating, to adaptive testing, and
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to the measurement of collaborative problem solving and other complex constructs.
She was fortunate to work closely with Paul Holland, Charlie Lewis, and Shelby
Haberman. She also became increasingly involved with the operational testing and
with the implementation of new methodologies and technologies. In 2015, she
introduced the concept of Computational Psychometrics to define the blend of
psychometric theory with the data-driven discovery. She moved to ACT in 2016 to
establish and lead an innovation hub to help transform the company. With this move,
a special opportunity was offered to her to redefine what the educational experience
means in the twenty-first century and how psychometrics can be the foundation
for the learning, measurement, and navigation efforts to support this experience for
everyone everywhere.

4.6 Personal Reflection by Marie Wiberg

MW has in her career been driven by curiosity and she loves to try to solve new
challenges and to collaborate with other curious persons. MW started her PhD in
Statistics but worked at an educational measurement department where she came
into contact with real test problems. From networking at conferences, she ended up
as a visiting researcher with Professor Ramsay at McGill University and then moved
on to do a postdoc with professor van der Linden at the University of Twente. These
two research experiences had a major impact on her future career path. The work
with nonparametric item response theory with Ramsay, which they both thought was
an “easy” problem to solve, took more than 12 years to solve, but several papers and
workshops have followed in recent years. An important lesson is that good ideas
and how to solve them may take a while. The work in the Netherlands rerouted her
to different test equating problems—a path she still follows and led to successful
collaborations with researchers from around the world. Most of her collaborations
spring from brief meetings at conferences where many new ideas have emerged.
Since the start of her PhD program, MW has had an interest to work with real
empirical test data (including national tests, admissions test, and the large-scale
assessments TIMSS and PISA). MW recommends everyone who has a chance to
work with real data to take the opportunity as many theoretical research problems
may emerge. MWs work has been recognized nationally through large research
grants and she has been a member of the Young Academy of Sweden which is an
academy for talented young researchers within all research fields. Internationally,
she has coauthored a test equating book (González and Wiberg 2017), worked as an
associate editor for the Journal of Educational Measurement and is currently editor
of the IMPS proceedings.
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4.7 Personal Reflection by Duanli Yan

DY has been very fortunate to have many distinguished teachers and mentors
who have had great influence through the decades on her career and life. DY
became interested in statistics and optimization after earning her bachelor’s degree
in computer science and applications. When she completed her dual masters in
statistics and in operations research in the statistics department at Penn State
University, Professor C. R. Rao tried to persuade her to stay and do a PhD with
him. However, she had been in school for almost all of her life by that time, and she
wanted to work. Soon after she started working at ETS, she realized that she should
have done a PhD.

While working at ETS, she learned the Rule-space model for cognitive diagnoses
from Kikumi Tatusoka who came to ETS to join Charlie Lewis, her former
dissertation advisor at the University of Illinois. DY learned many things from
Bob Mislevy and they have been leading an annual NCME training session based
on their book Bayesian Networks in Educational Assessment since 2002 (Almond
et al. 2015). Charlie introduced DY to the world of CAT and they developed the
tree-based CAT algorithm. She was always impressed by how Bob and Charlie
solved problems. She was also impressed about 20 years ago, when Charlie hosted
his former dissertation advisor John Tukey (from Princeton University in 1970)
at ETS once a month to consult on their projects. DY brought modern computer
outputs with analyses results and plots to show John. John didn’t look at those
outputs, instead he took a piece of paper and a pencil then started to draw a stem-
leaf graph, and he asked everyone what they thought the results should be, which
were the results DY produced after hours of computing! DY was astonished by
how he explained things from his head, which is the way Charlie writes out the
equations from his head at any point! She wanted to learn more. So, she later
followed Charlie to Fordham University to finish her PhD in Psychometrics with
her dissertation on computerized multistage testing (MST) which was co-advised by
Charlie Lewis and Alina von Davier. They subsequently published a book (Yan et
al. 2014) and DY received the 2016 AERA Significant Contribution to Educational
Measurement and Research Methodology Award. DY was also honored to receive
2011 ETS Presidential Award, 2013 NCME Brenda Loyd Dissertations Award, and
2015 IACAT Early Career Award. Currently, she is responsible for ETS’s automated
scoring systems evaluations and analyses including a Handbook of Automated
Scoring: Theory into Practice (Yan et al. 2020).

During her career, DY faced many challenges such as work and life balance
including operational work versus research and development, schedule conflicts,
family, and child raising. From her work on many operational programs and
research and development projects, she gained experiences dealing with real-world
practical issues and finding solutions. These helped her to create more innovative
research questions and to develop and implement systems that increase accuracy
and efficiency by using optimization and automation. Her daughter Victoria Song
often slept on her desk or on the office floor. She grew up at ETS, volunteered
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and interned at ETS, and is working on her dissertation advised by Fordham Anne
Anastasi Chair Professor David Budescu. All DY’s learnings and experiences are
good lessons in her life. She appreciates her mentors who had great influence in her
career and life.

5 Advice, Recommendations, and Lessons Learned

Although we all have worked at different academic departments and in different
countries, we still have similar experiences and we have learned many things during
our journeys. The some of the lessons all seven of us have learned are described
below.

5.1 Things to Do

Dare to say yes to exciting projects and decline administrative committees if they
just need a woman and not specifically your competence.

Try to find a supportive work environment with people you can be on the same
level with. When you are young try to find a good mentor and once you are older
try to be a good mentor: keep an open mind and learn. You never know when they
become fruits in your life.

Work with people you enjoy spending time with and those you dare to say that
you do not understand what they mean. It is more fun and it is more rewarding for
both partners.

Don’t be afraid to collaborate with new people. Some of the best collaborations
come from just listening to a conference presentation and suggesting to collaborate
with a joint topic, even if none of the people knew each other before.

Probably the most important lesson to share with junior psychometricians is to
believe, respect, and acknowledge one’s own ideas and at least in so much as to
try them out. This would start by just writing down the idea, and then write the
computer code, prove the theorem, and/or test the result empirically.

The “just do it!” approach is usually good. Even if an idea is not valuable but by
trying them out one builds both expertise and confidence. It is tempting for a novice
to talk about an idea but not pursue it, even in the face of statements in the literature
that it is not possible, not feasible, or not true.

We all believe that for an academic career, what you study is your choice and
therefore it is important to choose what interests you. Always go back to original
sources and thoroughly read the literature. Do not rely solely on search engines
because you might miss connections between different literatures.

Balancing family and career is possible, challenging, and rewarding. Finding
a balance that works can be the harder part and this will change over time. A
supportive husband or partner, friends, mentors, and colleagues, as well as a flexible
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work schedule are invaluable. When looking for a position, consider the attitudes
toward working women and family policies at the institution and laws within that
country. For example, several of us choose to be parents and to be professors. The
choice to be a parent can impact research productivity but recognize that this is
temporary and does not imply that you are not serious about your career. It is not
strange that there might be gaps in productivity, which coincide with major life
events. Life does not always conform to an academic calendar. But planning can
help your career a lot even when life events happen.

5.2 Things Not to Do

During our careers, there are also things we have learned that is better to avoid, and
below is a short list of some “don’ts”:

Don’t say yes to committees just because they need to fill the female or minority
spot, unless you really want to do the work.

Don’t say no to something you wish to do because you have never done it before
or you are unsure about your capacity. If you are interested in the topic you will
learn during the process.

Don’t let shyness or modesties stand in your way of your achievements. Many of
us may be introverts and find it uncomfortable to present our work in public;
however, recognize that those who are in the audience want to hear about your
accomplishments.

Don’t just hang with the crowd you know at conferences. Try to meet and engage
with new people in the area which interest you.

Don’t only attend sessions in your own area. Attending other sessions is an
opportunity to learn and expand your knowledge.

Don’t be selfish in collaborations, especially with younger researchers. Your
generosity most likely will be rewarded later.

Don’t discount or underestimate your knowledge. If you are in a meeting you are
probably there as an expert.

Don’t always believe what you read in the literature. Knowledge and understanding
evolve over time, and mistakes do sometimes slip by reviewers and editors.

Don’t despair if you get a reject/revise on a submitted paper. This means a bit more
work and it will probably get published.

6 Future Directions

In the future, it is important to help our peers: to support young researchers and
to help to build organizational structures to promote a healthy career. As senior
researchers we should be aware of gender inequalities and make sure that scientific
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conference program organizers make significant efforts to represent both genders
and their scientific contributions in the keynote and invited talks. This goal serves
to promote and acknowledge the work done by women researchers but also very
importantly for creating role models for the younger generations. On one hand, we
would like to acknowledge that we are fortunate to see how the science environment
is changing and becoming more inclusive, while preserving and applying the high
standards to all. On the other hand, it is crucial to continue to address the issues of
gender and other inequalities that characterize most aspects of our jobs including
recruitment, promotions, opportunities for collaborations, publishing our work,
and other contributions to our respective working environments. Part of it is to
understand that gender inequality has a negative impact on our profession and
society. If we believe that our fields are exciting and important and that impact
our and future generations then we should get all the talent we can get. There are
many historical reasons as discussed in the introduction for the gender gap. We need
to continue addressing how important it is for our generation of women to take an
active role in promoting women’s work and contributions, for mentoring women
to help them progress and get promoted. Achieving these goals that are within our
means can create a more balanced and healthy working environment and society
for all.

There are also many systematic initiatives from recognized professional bodies.
The London Mathematical Society (LMS) is committed to actively addressing the
issues facing women in mathematics. It is concerned about the loss of women from
mathematics, particularly at the higher levels of research and teaching, and at the
disadvantages and missed opportunities that this represents for the advancement of
mathematics. The LMS Council Statement on Women in Mathematics recognizes
the need to give active consideration to ensuring that men and women are treated
equally in their prospects, recognition, and progression.

The Association for Women in Mathematics’ purpose (1971) is to encourage
women and girls to study and pursue careers in the mathematical sciences, and
to promote equal opportunity and equal treatment of women and girls in the
mathematical sciences. There is also the “This is Statistics” campaign to pitch
Big Data professions to middle and high school girls and minorities. This is very
important since Data Science and Big Data analysis is an emerging field. Other
initiatives include a yearly conference: Women in Statistics and Data Science (since
2016). The R-Ladies is a worldwide organization whose mission is to promote
gender diversity in the R community.

Among the things we do and we should continue doing: address stereotyping
in educational and training choices at school (and at home) at a young age, adopt
teaching strategies to increase engagement of girls in mathematics, act as role
models, achieve a better gender balance of teaching at all levels of education, and
promote STEM professions among young women. In addition, we should organize
and run regular workshops at conferences with themes that provide training on
leadership skills (how to be influential and impactful): career events and workshops
focusing on female students and junior academics on how to empower women
and minorities. The importance of role models: strong representation of women
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in keynote and invited talks as well as larger representation of women in editorial
boards and editorships.

It is not enough to increase the quotas for female participation. We also need to
create an environment in which women will have an equal voice and can prosper in
their careers and personal lives, which is linked to the rate and time of promotions
for women. To quote the character from Ratatouille, “anyone can be a chef, but not
everybody can be a chef.”
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Developing a Concept Map for Rasch
Measurement Theory

George Engelhard Jr and Jue Wang

Abstract The purpose of this paper is to identify and describe the key concepts of
Rasch measurement theory (Rasch G, Probabilistic models for some intelligence
and attainment tests. Danish Institute for Educational Research, Copenhagen.
(Expanded edition, Chicago: University of Chicago Press, 1980), 1960/1980). There
have been several taxonomies describing item response theory (Kim S-H et al., A
taxonomy of item response models in Psychometrika. In: Wiberg M, Culpepper
S, Janssen R, Gonzáles J, Molenaar D (eds) Quantitative psychology: 83rd annual
meeting of the Psychometric Society. Springer, New York City, pp 13–23, 2019;
Thissen D, Steinberg L, Psychometrika 51:567–577, 1986; Wright BD, Masters
GN, Rating scale analysis: Rasch measurement. MESA Press, Chicago, 1982), and
this paper extends these ideas with a specific focus on Rasch measurement theory.
Rasch’s measurement work reflects a key milestone in a paradigmatic shift from
classical test theory to item response theory (van der Linden WJ, Handbook of item
response theory, volume 1: models. CRC Press, Boca Raton, 2016). We include a
categorization of measurement models that are commonly viewed as Rasch models
(dichotomous, rating scale, partial credit, and many-faceted), as well as extensions
of these models (mixed, multilevel, multidimensional, and explanatory models).
Georg Rasch proposed a set of principles related to objectivity and invariance that
reflect foundational concepts underlying science. Rasch measurement theory is the
application of these foundational concepts to measurement. Concept maps provide
useful didactic tools for understanding progress in measurement theory in the human
sciences, and also for appreciating Rasch’s contributions to current theory and
practice in psychometrics.
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1 Introduction

The concept of “objectivity” raises fundamental problems in all sciences. For a statement
to be scientific, “objectivity” is required. (Rasch 1964, p. 1)

Rasch described several models for measurement that he developed to address
problems encountered in his research work. His seminal book entitled Probabilistic
Models for Some Intelligence and Attainment Tests (Rasch 1960/1980) introduced
several models of measurement including models for misreadings, reading speed,
and item analysis. These models became the basis for numerous advances in
measurement theory.

Rasch measurement theory has been described as “a truly new approach to
psychometric problems . . . [that yields] non-arbitrary measures” (Loevinger 1965,
p. 151). As pointed out by van der Linden (2016), the first chapter of Rasch’s book is
required reading for anyone seeking to understand the transition from classical test
theory to item response theory (IRT). In his words, “One of the best introductions
to this change of paradigm is Rasch (1960/1980, Chapter 1), which is mandatory
reading for anyone with an interest in the subject” (van der Linden 2016, p. xvii).
Wright (1980) commented that Rasch’s psychometric methods “go far beyond
measurement in education or psychology. They embody the essential principles of
measurement itself, the principles on which objectivity and reproducibility, indeed
all scientific knowledge, are based” (p. xix). This study explores what Rasch did to
receive these accolades.

In order to explore current perspectives on Rasch measurement theory, we
conducted a Web of Science search using the topic phrase “Rasch measurement
theory”. This bibliometric search was limited to the twenty-first century (2000–
2019), and 754 references were identified. Figure 1 shows frequency of articles
related to Rasch measurement theory. It is also interesting to note the distribution of
these articles over various fields with psychology (N = 240), health care sciences
(N = 125), and educational research (N = 109) identified as the top three areas.

The purpose of this study is to identify the key concepts that define Rasch
measurement theory. Specifically, the following questions guide our research: (a)
What is Rasch measurement theory? (b) What are the key concepts that define Rasch
measurement theory?

2 What Is Rasch Measurement Theory?

One way to define Rasch measurement theory is by the specific models for
measurement proposed by Rasch, and also the models that are considered extensions
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Fig. 1 Frequency of articles on Rasch measurement theory (Web of Science)

Fig. 2 Commonly used Rasch Models. θn= person ability measure; δi= difficulty of item i; δik=
difficulty of step k of item i (assuming unique scale structure of each item); τ k= difficulty of step
k (assuming common scale structure among all items); λm= scoring severity of rater m

of the unidimensional Rasch model. One of the earliest taxonomies of Rasch
models is offered by Wright and Masters (1982). They described a family of Rasch
models designed to analyze dichotomous and polytomous responses obtained from
persons based on items that are developed to represent a unidimensional continuum.
Specifically, Wright and Masters (1982) described five Rasch models: Dichotomous,
Partial Credit, Rating Scale, Binomial Trials, and Poisson Count. Linacre (1989)
extended this family of Rasch models to include raters. Figure 2 describes the most
commonly used Rasch models.

Kim and his colleagues (2019) categorized IRT articles appearing in Psy-
chometrika from 1960s to 2010s. They identified 157 articles related to Rasch
measurement theory. About 41.64% of the total IRT articles in Psychometrika are
related to Rasch measurement theory. Figure 3 shows the frequency of articles on
Rasch measurement theory over time by model type.
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Fig. 3 Frequency of articles on Rasch models over time published in Psychometrika (Kim et al.
2019). Total (black solid line) shows the frequency of all Rasch models over time. Further
bibliometric evidence shows that Rasch measurement theory continues to influence measurement
research as provided by Aryadoust and Tan (2019)

There have been numerous extensions to Rasch models. Here is a partial list
of the extensions: (a) mixed Rasch model (Rost 1990), (b) multilevel Rasch
measurement model (Adams et al. 1997b), and (c) multidimensional random coeffi-
cients multinomial logit models (Adams et al. 1997a). Since research continues on
extensions to Rasch measurement theory, this list should be considered incomplete.

In addition to defining Rasch measurement theory based on models for mea-
surement that specifically include Rasch’s name, a complementary approach is
to consider the key concepts that define Rasch measurement theory. These key
concepts considered in the next section are based on Rasch’s views of science and
the application of these concepts to measurement.

3 What Are the Key Concepts that Define Rasch
Measurement Theory?

Looking then for concepts [of measurement] that could possibly be taken as primary
it seems worthwhile to concentrate upon two essential characteristics of “scientific
statements” 1. they are concerned with “comparisons”; 2. the statements are claimed to
be “objective”; both terms of course calling for precise qualifications. (Rasch 1964, p.2)
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Fig. 4 Concept map for Rasch measurement theory

The overarching concepts that underly Rasch measurement theory are shown
in Fig. 4. The four panels represent conceptual clusters that are important for
understanding Rasch measurement theory including objectivity in science, invariant
measurement, psychometric models, and (Rasch) models for measurement. Panels
A through D in Fig. 4 are discussed in each section below

3.1 Objectivity in Science (Panel A)

Rasch was motivated by a desire to develop “individual-centered statistical tech-
niques in which each individual is characterized separately and from which, given
adequate data, the individual parameters can be estimated” (Rasch 1960/1980, p.
xx). In order to develop individual-centered statistical techniques, Rasch started with
a perspective on scientific statements that included a concern with comparisons and
objectivity.

Objectivity in science is based on objective statements that have several key
features including accessibility, intersubjectivity, independence, and invariance
(Nozick 1998, 2001). Objective statements are accessible from different angles
implying that they can be repeated by different observers and at different times.
Intersubjectivity implies that there is agreement among observers about a scien-
tific fact. Next, objective statements are independent of the particular observers.
Objectivity in science depends on objective statements that reflect accessibility,
intersubjectivity, independence, and most importantly invariance that implies the
first three characteristics.
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Rasch’s key insight was that principles of objectivity in science can also be
applied to objectivity in measurement. In order to examine objectivity Rasch
suggested that comparisons are a key concept in science. Rasch defined four
requirements as follows:

The comparison between two stimuli should be independent of which particular individuals
were instrumental for the comparison; and it should also be independent of which other
stimuli within the considered class were or might also have been compared.

Symmetrically, a comparison between two individuals should be independent of which
particular stimuli within the class considered were instrumental for the comparison; and
it should also be independent of which other individuals were also compared, on the same
or on some other occasion (Rasch 1977, pp. 331–332)

Rasch also recognized the importance of identifying the specific conditions under
which comparisons are invariant. Rasch’s view of specific objectivity reflects what
Nozick (2001) has pointed out in his work on invariance and objectivity:

What is objective about something, I have claimed, is what is invariant from different angles,
across different perspectives, under different transformations. Yet often what is variant is
what is especially interesting. We can take different perspective on a thing (the more angles
the better), and it notice which of its features are objective and invariant, and also notice
which of its features are subjective and variant (p. 102)

The next section expands on the requirements for specific objectivity based on the
idea of invariant measurement.

3.2 Invariant Measurement (Panel B)

The scientist is usually looking for invariance whether he knows it or not. (Stevens 1951, p.
20)

As pointed out in the previous section, Rasch’s views of objectivity can be
interpreted as part of the quest for stable and invariant measurement. In seeking
stable measures, Wright (1968) identified the following requirements based on
Rasch measurement theory:

First, the calibration of measuring instruments must be independent of those objects that
happen to be used for calibration. Second, the measurement of objects must be independent
of the instrument that happens to be used for the measuring (p. 87).

The first part of this quote refers to person-invariant item calibration. The basic
measurement problem addressed by sample-invariant item calibration is how to
minimize the influence of arbitrary samples of individuals on the estimation of item
scale values or item difficulties. The overall goal of person-invariant measurement
can be viewed as estimating the locations of items on a latent variable or construct
of interest.

The second part refers to item-invariant measurement of persons. In the case
of item-invariant measurement, the basic measurement problem is to minimize the
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influences of the particular items that happen to be used to estimate a person’s
location on the latent variable or construct. Overall, both item and person locations
should remain stable and consistent across various subsets of items and subgroups
of persons.

It is interesting to note that the concept of invariance has played a key role in
several theories of measurement (Engelhard 2013; Millsap 2011). The quest for
invariance emerged in the work of early measurement theorists from Thorndike
(1904) through Thurstone (1925, 1926) to Rasch (1960/1980). We view Rasch’s
concept of objectivity as essentially synonymous with the term invariance. Engel-
hard (2013) summarized five requirements of invariant measurement based on Rasch
measurement theory as follows.

Person measurement:

1. The measurement of persons must be independent of the particular items that
happen to be used for the measuring: Item-invariant measurement of persons.

2. A more able person must always have a better chance of success on an item
than a less able person: non-crossing person response functions.

Item calibration:

3. The calibration of the items must be independent of the particular persons
used for calibration: Person-invariant calibration of test items.

4. Any person must have a better chance of success on an easy item than on a
more difficult item: non-crossing item response functions.

Variable map:

5. Items and person must be simultaneously located on a single underlying latent
variable: variable map.

It is also important to recognize that Rasch specified the requirements of Rasch
measurement theory a priori. This implies that model-data fit should stress the model
over the data. In other words, we are confirming that a specific data set meets the
requirements of invariant measurement. Statistical modeling typically stresses the
reproduction of the data, and therefore privileges the data over the model.

3.3 Psychometric Models (Panel C)

Panel C (Fig. 4) embeds Rasch measurement theory in a broader historical story
during the twentieth century. It is useful to view the history of psychometric models
through two broad traditions: the test-score and scaling traditions.

The test-score tradition includes measurement theories that stress the total or sum
scores as implied by the label. Linear models are used to model the person scores,
and the goal is to estimate sources of error variance or uncertainty in scores—
essentially, these models stress the reduction of noise reflected in the estimates of
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error variance. Classical test theory is a clear example of measurement within the
test-score tradition.

The scaling tradition on the other hand focuses on the individual responses of
each person to each item. These item-person responses are modeled with non-linear
probability models (e.g., logistic models). Measurement theories within the scaling
tradition are used to define an invariant continuum with item and person locations
representing a latent variable. These models emphasize the signal as defined by the
invariant continuum. Most modern measurement theories including IRT (1PL, 2PL,
3PL), as well as Rasch measurement theory are within the scaling tradition. See
Engelhard (2013) for a more detailed description of these two research traditions in
measurement.

3.4 (Rasch) Models for Measurement (Panel D)

In a previous section, we listed measurement models that are included in the family
of Rasch models (Dichotomous, Partial Credit, Rating Scale, Binomial Trials,
Poisson Count, and Facets), and we also provided a brief list of extensions to the
Rasch model (e.g., Mixed Rasch model, Multilevel Rasch measurement model,
and Multidimensional random coefficients multinomial logit models). We have put
Rasch’s name in parentheses in this section because it is important to consider
whether or not some of these models should be considered part of Rasch measure-
ment theory. As pointed out by (Andersen 1995), “[Rasch] was very eager not to call
the model the ‘RM’. Instead, he suggested the name ‘models for measurement’ . . .

his suggested name had the clear purpose of stressing the most important property
of the model: that it solved a basic measurement problem in the social sciences, or
as it became later, in Georg Rasch’s opinion in all sciences.” (p. 384).

Rasch believed that he had developed a general framework for models for
measurement. A key part of Rasch’s distinctive contribution to methodology is
based on invariant comparisons within a frame of reference (Andrich 2018). In
Rasch’s words, “Let us imagine two collections of elements, O and A, denoted
here objects and agents . . . the results of any comparison of two objects within O is
independent of the choice of the agents Ai within A and also of the other elements
in the collection of objects O” (Rasch 1977, p. 77). The converse is also true for the
comparison of agents. Rasch’s view of additivity based on invariant comparisons
within a specific frame-of-reference can provide the basis for considering how
extensions to Rasch measurement theory fit within this framework. According to
Andrich (2018),

[Rasch articulated] the requirements of invariant comparison within an empirical, specified
frame of reference, and the rendering of these in a probabilistic mathematical framework,
being a very general and powerful theory of measurement relevant to both the natural and
social sciences (p. 88).
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4 Discussion

In 1977, when [Rasch] was primarily occupied with basic issues of philosophy of science,
he would, I think, have been very disappointed that the developments up through the 80s and
early 90s have been so much concerned with statistical techniques, while so few scientists
have worked on basic philosophical issues. (Andersen 1995, p. 389)

In order to answer the guiding research questions, we used several approaches.
First, we used bibliometric methods to document the continuing importance of
Rasch measurement theory. Next, we described previous classifications and tax-
onomies related to Rasch models. Finally, we stressed key concepts that help explain
Rasch’s continuing influence on measurement theory and practice.

In returning to the guiding questions, many psychometricians when queried about
“What is Rasch measurement theory?” tend to respond that it is a “logistic model
with a slope of one and of course no lower asymptote”. In this study, we argue that
Rasch models represent a philosophy of measurement that includes the application
of basic scientific concepts to models of measurement. The careful consideration
of key concepts regarding invariant measurement identified by Rasch, and their
realization in different measurement models is one of the challenges that remains
for the next generation of measurement theorists. It is our hope that others will take
on the challenge and extend the start that we made in this chapter.

The second guiding question is: What are the key concepts that define Rasch
measurement theory? We have identified Rasch’s quest for individual-level statis-
tics, invariant comparisons, and specific objectivity as key aspects of his measure-
ment theory. Invariant measurement offers both item-invariant person measurement
and person-invariant item calibration. This aligns with Rasch’s views of objec-
tive comparison and specific objectivity. Rasch measurement theory realizes the
requirements of invariant measurement through the formation of a unidimensional
scale based on a close examination of particular items. A key feature of Rasch
measurement theory is seeking for the best scale that is defined by the good-quality
items, instead of increasing the model complexity to fit the data.

In summary, we view Rasch measurement theory as representing scientific prin-
ciples based on the concept of specific objectivity (invariant comparisons) applied
to models for measurement. As Messick (1983) defined, “Theories of measurement
broadly conceived may be viewed as loosely integrated conceptual frameworks
within which are embedded rigorously formulated statistical models of estimation
and inference about the properties of measurements and scores” (p. 498). The
statistical models serve as tools to provide meaningful scores based on conceptual
frameworks. Rasch measurement theory aims to create invariant scales and provide
objective measures. Future research should consider the key characteristics that
define whether or not a model for measurement meets the requirements of Rasch
measurement theory.
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Person Parameter Estimation for IRT
Models of Forced-Choice Data: Merits
and Perils of Pseudo-Likelihood
Approaches
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Abstract The Thurstonian IRT model for forced-choice data (Brown A, Maydeu-
Olivares A, Educ Psychol Measur 71:460–502, 2011) capitalizes on including
structural local dependencies in the structural equation model. However, local
dependencies of pairwise comparisons within forced-choice blocks are only con-
sidered for item parameter estimation by this approach but are explicitly ignored by
the respective methods of person parameter estimation. The present paper introduces
methods of person parameter estimation (MLE, MAP, and WLE) that rely on the
exact likelihood of the response pattern that adequately considers local stochastic
dependencies by multivariate integration. Moreover, it is argued that the common
practice of ignoring local stochastic dependencies for person parameter estimation
can be understood as a pseudo-likelihood approach (based on the independence
likelihood) that will lead to similar estimates in most applications. However,
standard errors and Bayesian estimation techniques are affected by falsely precise
inference based on the independence likelihood. Fortunately, these distortions
can be amended almost completely by a correction factor to the (independence)
pseudo-likelihood for MLE and MAP estimation. Moreover, unbiased weighted
(pseudo-)likelihood estimation becomes feasible without facing the prohibitive
computational burden of weighted likelihood estimation with the proper likelihood
based on multivariate integration.
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1 Introduction

Requiring respondents to assign ranks to questionnaire items that reflect their pref-
erence within a block of items (i.e., the forced-choice method) potentially reduces
or eliminates item response biases (e.g., acquiescence, extreme responding, central
tendency responding, halo/horn effect, social desirable response style) typically
associated with direct responses (like Likert-type or Yes/No ratings). However,
the ipsative nature of forced-choice data results in problematic psychometric
properties of classical scoring methods (e.g., sum scores), i.e., construct validities
and criterion-related validities, and reliabilities are distorted (Brown and Maydeu-
Olivares 2013). Recently, Brown and Maydeu-Olivares (2011) proposed an IRT
approach to modeling and analyzing forced-choice data that effectively overcomes
these problems by binary coding and considering local dependencies of the binary
response indicators in the process of estimating the structural model parameters,
i.e., item parameters and latent trait correlations. However, the proposed methods
of person parameter estimation explicitly neglect local dependencies of the binary
response indicators that arise in blocks with more than two items.

Moreover, the approach of Brown and Maydeu-Olivares (2011, 2013) for
quantifying the precision of the person parameter estimates relies on directional
information derived from the curvature of the log-likelihood (of the observed binary
comparison) in direction of the latent trait under consideration. This approach is
generally not suited because it allows only very limited information about the
precision of the estimates:

• The correlation of the estimation errors with respect to different dimensions
cannot be quantified (cf. Brown and Maydeu-Olivares 2018).

• The inverse of directional information in the direction of the latent trait equals
the squared standard error of vector-valued maximum likelihood estimates only
under special circumstances (namely, if an eigenvector of the Fisher Information
matrix points into the respective direction in latent space which happens only in
case of zero correlations with the errors with respect to the other traits).

The precision of a vector-valued maximum likelihood estimate can be quantified
by the (expected or the observed) Fisher information matrix whose inverse equals
the asymptotic covariance of the estimator. Brown and Maydeu-Olivares (2018)
used this approach to extend the Thurstonian IRT model to graded preference
data, but the proposed method of person parameter estimation for ranking data still
neglects local dependencies of binary response indicators.

Nevertheless, the empirical findings of Brown and Maydeu-Olivares (2011)
demonstrate that their estimation technique shows good parameter recovery but with
moderate overestimation of the precision. An explanation for these observations
can be found in the literature of composite likelihood methods (see Varin et al.
2011 for an overview). Approximation of the likelihood by a product of marginal
likelihoods (i.e., the independence likelihood according to Chandler and Bate 2007)
generally leads to consistent estimators. However, the respective estimators lack the
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property optimal efficiency of the genuine maximum likelihood estimator (Lindsay
1988). Moreover, the inverse of the sum of the Fisher information with respect to all
marginal likelihood functions cannot be expected to be a consistent estimator of the
covariance matrix of the maximum independence likelihood estimator (Chandler
and Bate 2007).

In this paper, the genuine maximum likelihood estimator considering local
dependencies (Yousfi 2018) and a calibrated maximum composite likelihood esti-
mator of the latent trait will be introduced, and adequate estimates of the precision
will be provided. Several estimation techniques for the latent trait emerge from the
respective analyses.

2 Thurstonian MIRT Model of Forced-Choice Data

2.1 Notation

( ) is used to extract elements from vectors or matrices. The entries in the brackets
are positive integers and refer rows and columns, respectively.

〈 〉 is used to extract parts from vectors or matrices, respectively. The entries
in the brackets are vectors of positive integers and refer to rows and columns,
respectively.

The sign • (i.e., a bold dot) indicates that all rows or columns are extracted.

2.2 Binary Coding of Forced-Choice Data

Let yb be a random variable whose values denote the response of a person to the

forced-choice block b which consists of nb items. For instance, yb =
⎛
⎝

2
3
1

⎞
⎠ would

indicate that the respondent shows the strongest preference for the third item of
block b and the lowest preference for second response options. The response pattern
to a full forced-choice questionnaire of K blocks can be described by a sequence of
K rankings Y : (y1, . . . , yb, . . . , yK.).

Let Yb be a random quadratic matrix of dimension nb × nb, whereby the entry
in p-th row and the q-th column refers to the binary response variable ypq : Yb(p, q)
with:

Yb(p,q) =
{

1 if yb(p) > yb(q)

0 if yb(p)≤yb(q)
(1)
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Brown and Maydeu-Olivares (2011) referred only to the entries above the
diagonal of Yb which results in a full description of the data as ypq = 1 − yqp.

2.3 Model Equations

Thurstone’s law of comparative judgment states that the observed binary compar-
isons of the items (i.e., the entries of Yb) are determined by a vector of latent utilities
tb ∈ R

nb in the following way:

Yb(p,q) =
{

1 if tb(p) − tb(q) ≥ 0
0 if tb(p) − tb(q) < 0

(2)

For each pattern of latent traits (i.e., true factor scores) θ ∈ R
m, the entries in tb

are assumed to be multivariate normally distributed:

tb ∼ N
(
μb + Λbθ,Ψ b

)
(3)

The vector μb ∈ R
nb refers to the intercepts of items and the real (m × nb)

matrix �b refers to the factor loadings of the items of block b. �b is the covariance
matrix of the latent utility residuals that reflect the stochastic nature of the observed
response for a given trait pattern. �b is usually assumed to be diagonal. ftb is the
probability density function of tb.

3 The Likelihood Function of a Forced-Choice Block

Let Db be the (random) matrix that transforms tb to the ordered vector of utilities,
i.e.,

tb〈yb〉 = Dbtb (4)

and let Tnb be a quadratic matrix with nb rows and columns, whereby:

Tnb(p,q) =
⎧⎨
⎩

1 if p ∈ {q, nb}
−1 if p = q − 1
0 otherwise

(5)
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Then the vector of utility-differences of items with subsequent ranks is given by:

db:= Tnb tb〈yb〉 = Tnb Dbtb ∼ N
(
Tnb Dbμb + Tnb DbΛbθ, Tnb DbΨ bD′

bT′
nb

)
(6)

The likelihood of yb (the response to block b) is given by (cf. Maydeu-Olivares
1999):

L (θ; yb) = L (θ; Yb) =
∫

Sb

ftb (x) dx =
∫

DbSb

ftbyb
(x) dx =

∫

Tnb DbSb

fdb (x) dx

(7)

Sb refers to the region of Rnb where the following system of nb − 1 inequalities
holds true:

Cbtb〈yb〉 ≥ 0nb−1 (8)

whereby 0nb−1 ∈ R
nb−1 is a vector of nb − 1 entries of 0 and Cb is a contrast matrix

with nb − 1 rows and nb columns with:

Cb(p,q) =
⎧⎨
⎩

1 if q = p

−1 if q = p + 1
0 otherwise

(9)

DbSb is the image of Sb with respect to the transformation described by Db (i.e.,
reodering the axes according the order of tb). TnbDbSb is the image of Sb after (a)
rotation of the first nb − 1 axes of the coordinate system of the utility space onto
axes that correspond to utility differences of items with subsequent ranks and (b)
rotation of last axis onto an axis that corresponds to the sum of all nb utilities.

Geometrically, Sb � R
nb and DbSb � R

nb are unbounded full-dimensional
polyhedral cones1 (whereby all facets intersect in the only edge). In contrast,
Tnb DbSb � R

nb consists of two neighbored orthants2 of the coordinate system
that results after (the oblique) rotation (and rescaling) in a way (a) that the first
nb − 1 coordinate axes correspond to utility differences of items with neighbored
ranks and (b) the last coordinate axis corresponds to the sum of all item utilities.
This facilitates integration by considering the set:

1Describing the respective region as parallelepiped (Maydeu-Olivares 1999) or parallelotope
(Yousfi 2018) is somewhat misleading as these figures are typically bounded and have more than
one edge at the boundary of their facets. The term “conic region” (Maydeu-Olivares 1999) might
also be misunderstood as usual three-dimensional cones are bounded and not polyhedral, i.e., they
do not have flat facets connected to the apex.
2Orthants are generalizations of quadrants to coordinate systems with more than two dimensions.
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{
db ∈ R

nb |db(i) > 0 for all i ∈ {1, . . . , nb − 1 }} (10)

that results by pre-multiplying TnbDb to all utility patterns that result in the observed
ranking (i.e., elements of Sb). Consequently, the likelihood of the observed ranking
can be expressed as an integral over an orthant region in R

nb−1:

L (θ; yb) = ∫
Tnb DbSb

fdb (x) dx =
∞∫

−∞

∞∫
0

. . .
∞∫
0
fdb

(
x1, . . . , xnb

)
dx1 . . . dxnb

=
∞∫
0

. . .
∞∫
0
fdbnb−1

(
x1, . . . , xnb−1

)
dx1 . . . dxnb−1

(11)

whereby fdb〈nb−1〉 refers to the marginal distribution of the first nb − 1elements of

db. This integral can be solved by the methods developed by Genz (2004), for blocks
with no more than 4 items, and Miwa et al. (2003), up to 20 items per block.

4 Person Parameter Estimation

4.1 Maximum Likelihood

Genuine Likelihood If local stochastic independence is given with respect to the
responses to different blocks, then standard numeric optimization methods can be
used to determine the maximum likelihood estimator of the latent trait vector:

MLE (Y) = argmaxθ L (θ; Y) = argmaxθ

K∏
b=1

L (θ; yb) (12)

The observed Fisher information is defined as:

I (θ; Y) := − ∂2

∂θ
� (θ; Y) =

K∑
b=1

− ∂2

∂θ
� (θ; yb) =:

K∑
b=1

I (θ; yb) (13)

whereby ∂2

∂θ
� (θ; yb) (i.e., the Hessian matrix of the log-likelihood

� (θ; Y) := loge L (θ; Y)) can be determined numerically by considering the log-
likelihood in the neighborhood of θ. Under usual regularity conditions, the inverse
of the (observed or expected) Fisher information is an asymptotically unbiased
estimator of the covariance matrix of the maximum likelihood estimator:

cov (MLE (Y) ; θ) 
 E
(
(I (θ; Y))−1|θ

)

 E

(
(I (MLE (Y) ; Y))−1|θ

)


 E
(
E
(
(I (MLE (Y) ; Y))−1|θ

))
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Independence Likelihood Person parameter estimates of Brown and Maydeu-
Olivares (2011) are based on the independence likelihood of item comparisons
within each block (i.e., the independence likelihood according to Chandler and Bate
2007):

Lind (θ; yb) :=
nb−1∏
p=1

nb∏
q=p+1

L (
θ; Yb(p,q)

)=
nb−1∏
p=1

nb−1∏
q=p+1

Yb(p,q)P
(
Yb(p,q) = 1|θ)

+ (
1 − Yb(p,q)

) (
1 − P

(
Yb(p,q) = 1|θ)) (14)

whereby

P
(
Yb(p,q) = 1|θ) = Φ

(
μb(p) − μb(q) + (

Λb〈p,•〉 − Λ〈q,•〉
)
θ√

Ψ b(p,p) + Ψ b(q,q)

)
(15)

and � denotes the cumulative distribution function of the standard normal distribu-
tion.

The respective estimating equation:

MLEind (Y):= argmaxθLind (θ; Y) = argmaxθ

K∏
b=1

Lind (θ; yb)

= argmaxθ

K∑
b=1

�ind (θ; yb) (16)

results in a consistent estimator of the latent trait vector θ, but (unless all blocks
consist of pairs) neither the observed nor the expected value of the inverse of
the negative Hessian matrix of independence log-likelihood at the maximum
independence likelihood estimator (MLEind) needs to be asymptotically equal to
the covariance of the estimator (Varin et al. 2011), i.e.,

cov (MLEind (Y) ; θ) �
 − ∂2

∂θ
�ind (θ; Y) =

K∑
b=1

nb−1∑
p=1

nb∑
q=p+1

I
(
θ; Yb(p,q)

)
(17)

Moreover, in contrast to the maximum likelihood estimator, the maximum inde-
pendence likelihood estimator does not have the property of maximum asymptotic
efficiency. However, the loss of efficiency needs not to be large (Varin et al. 2011;
Chandler and Bate 2007) and due to the substantially lower computational burden,
the maximum independence likelihood estimator MLEind(Y) can be an attractive
alternative, if no or only a cumbersome method of genuine maximum likelihood
estimation MLE(Y) is available.
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Actually, simulations show that MLE(Y) and MLEind(Y) hardly differ from
each other, whereby the intraclass correlation (ICC(2,1) according to Shrout and
Fleiss 1979) generally exceeds 0.99, if all blocks have the same size n. Moreover,
simulations suggest the following conjecture with respect to variability of the
maximum independence likelihood estimator3:

cov (MLEind (Y) ; θ) 
 n + 1

3

(
− ∂2

∂θ

K∑
b=1

�ind (θ; yb)

)−1


 (I (MLE (Y) ; Y))−1

(18)

Composite Likelihood This suggest fine-tuning the estimation by calibration4 of
the independence likelihood with adequate weights which results in the following
composite likelihood:

Lcomp (θ; Y) =
K∏

b=1

(Lind (θ; yb))
3

nb+1 (19)

The respective maximum composite likelihood estimator is:

MLEcomp (Y) := argmaxθ Lcomp (θ; Y) = argmaxθ

K∑
b=1

�ind (θ; yb)

nb + 1
(20)

Simulations suggest the following conjecture with respect to the precision of this
estimator:

cov
(
MLEcomp (Y) ; θ

) ≈ − ∂2

∂θ
log

(Lcomp
(
MLEcomp (Y) ; Y

))

=
(

3·
K∑

b=1

∑nb−1
p=1

∑nb
q=p+1 I

(
MLEcomp (Y) ; Yb(p,q)

)

nb + 1

)−1

(21)

MLEcomp(Y) more closely resembles MLE(Y) than MLEind(Y) if block sizes are
heterogeneous. In case of homogenous block size, MLEcomp(Y) equals MLEind(Y).

3Alternatively, the precision of the maximum independence likelihood estimator can be quantified
by referring to the Godambe information instead of the Fisher information (Varin et al. 2011).
This practice is theoretically more convincing than referring to an empirically derived correction
factor. However, it can lead to estimates of precision that exceed the precision of the maximum
likelihood estimator, which does not correspond to the maximal efficiency of the maximum
likelihood estimator.
4This procedure mimics the approach of Chandler and Bate (2007) but the proposed calibration
factor is not based on the Godambe information but on the observed relation between the curvature
of the independence likelihood and the covariance of maximum independence likelihood estimator.
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Fig. 1 Declared (red) and actual (green) efficiency of the forced-choice method with false local
independence assumption in comparison to binary dichotomous Likert ratings. In the left panel,
the ordinate (y-axis) refers to the Fisher information. In the right panel the Fisher information is
divided by the Fisher information of the benchmark (dichotomous Likert ratings)

Efficiency5 If local independence is assumed, then the amount of information
corresponds to the number of binary comparisons implied by the observed ranking,
i.e., n(n − 1)/2 (Brown and Maydeu-Olivares 2011, cf. the red line in Fig. 1) which
would imply that the forced-choice approach leads to efficiency gains if n > 3 and
efficiency losses if n = 2. The proposed calibration factor of the independence
likelihood dramatically reduces the expected efficiency of the forced-choice method
for greater blocks (cf. the green line in Fig. 1). Nevertheless, the efficiency can still
be expected to be a strictly monotonically increasing function of block size that
reaches the efficiency of binary Likert ratings if blocks constitute of five items, but
efficiency gains never reach 50% even if block size approaches infinity.

4.2 Bayesian Estimation

Genuine Likelihood Let f (θ) and f (θ| Y) be the prior and posterior density
function of the latent trait θ, respectively, then the maximum a posterior estimator
of θ is defined as:

MAP (Y) = argmaxθf (θ|Y) = argmaxθ f (θ)L (θ; Y)

5The analyses in this paragraph refer to ceteris paribus conditions, i.e., they focus on the effect of
block size and disregard the moderating effect of the item parameters.
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= argmaxθ

(
loge (f (θ)) +

K∑
b=1

� (θ; yb)

)
(22)

whereby the precision might be quantified by the posterior covariance of θ given Y
that asymptotically equals the inverse of the negative Hessian matrix at MAP(Y):

cov (θ|Y) 

(

− ∂2

∂θ
f (MAP (Y) |Y)

)−1

(23)

If �(θ; yb) is determined by the methods of Genz (2004) or Miwa et al. (2003) as
outlined in the explanation of Eq. (11), it is straightforward to determine MAP(Y)

and
(
− ∂2

∂θ
f (MAP (Y) |Y)

)−1
by standard numerical optimization methods.

Independence Likelihood Neglecting local dependencies as suggested by Brown
and Maydeu-Olivares (2011, 2013, 2018) leads to

MAP ind (Y) = argmaxθ

(
f (θ)

K∏
b=1

Lind (θ; yb)

)

= argmaxθ

(
loge (f (θ)) +

K∑
b=1

�ind (θ; yb)

)
(24)

However, in contrast to maximum likelihood estimation (with respect to the
independence likelihood), the falsely precise inference due to the misspecification
of the likelihood affects not only the estimated precision but also the value (i.e., the
point estimate) of the above-mentioned Bayesian trait estimator, as to much weight
is given to the (independence) likelihood in relation to the prior distribution (cf.
Pauli et al. 2011).

Composite Likelihood This problem might be amended by referring to the
composite likelihood that results from the calibration of the independence likelihood
of the respective blocks:

MAP comp (Y) = argmaxθ

(
f (θ) ·Lcomp (θ; yb)

)

= argmaxθ

(
loge (f (θ)) + 3

K∑
b=1

�ind (θ; yb)

nb + 1

)
(25)

Unlike the respective maximum likelihood estimators, MAPcomp(Y) does not equal
MAPind(Y) even if block size is homogenous (unless n = 2). However, simulations
show that MAPcomp(Y) ≈ MAP(Y) ff MAPind(Y) and the precision of MAPcomp(Y)
can be quantified by:
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(
− ∂2

∂θ
f
(
MAP comp (Y) |Y))−1

≈
(

− ∂2

∂θ
f (MAP (Y) |Y)

)−1


 cov (θ|Y)

(26)

which asymptotically equals the posterior variance of the latent trait.

4.3 Weighted Likelihood Estimation

Genuine Likelihood Maximum Likelihood estimators are often biased. Warm
(1989) introduced a strategy to prevent this bias by weighting the likelihood func-
tion. Wang (2015) showed how this approach can be applied to multidimensional
IRT models and outlined that it is equivalent to Bayesian modal estimation with
Jeffrey’s prior for the multivariate 2-pl model. Strictly speaking, this finding cannot
be applied for normal-ogive Thurstonian IRT models of forced-choice data as they
do not belong to the exponential family (Firth 1993). Nevertheless, due to the
similarity between logistic and normal ogive models, Bayesian modal estimation
of the latent trait with Jeffrey’s prior might result in an estimator with negligible
bias in this setting, too:

WLE (Y):= argmaxθ

(
L (θ; Y)

√|E (I (θ; Y))|
)

= argmaxθ

⎛
⎝ log

(∣∣∣∑K
b=1 E (I (θ; yb))

∣∣∣
)

2
+ � (θ; yb)

⎞
⎠ (27)

Composite Likelihood However, the computational burden of WLE(Y) is exten-
sive and often prohibitive in practice, in particular for simulation studies. Capitaliz-
ing on the fact that the curvature of the composite likelihood closely resembles the
genuine likelihood enables the following weighted maximum composite likelihood
estimator of the latent trait which is computationally by far less demanding:

WLEcomp (Y):=argmaxθ

⎛
⎝Lcomp (θ; Y)

√∣∣∣∣−E

(
∂2

∂θ
log

(Lcomp (θ; Y)
))∣∣∣∣

⎞
⎠

= argmaxθ

⎛
⎝3·

K∑
b=1

�ind (θ; yb)

nb + 1
+

log
∣∣∣∑K

b=1E
(
− ∂2

∂θ
3·�ind(θ;yb)

nb+1

)∣∣∣
2

⎞
⎠

(28)
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The negative inverse of the Hessian matrix of the weighted composite likelihood at
its maximum is a good candidate for quantifying the precision of WLEcomp(Y).

5 Summary and Conclusions

The present paper introduces person parameter estimates for Thurstonian IRT
models for forced-choice ranking data that rely on the genuine likelihood, whereby
local dependencies of binary comparisons within blocks are adequately considered.
Moreover, a theoretical foundation for the practice of neglecting local dependencies
for person parameter estimation was offered by referring to composite likelihood
methods. This approach explains the good parameter recovery as well as the
problems with quantifying the precision of the estimates when local dependencies
are ignored. Within the composite likelihood approach, robust estimates of precision
are usually derived by referring to the Godambe information (instead of the Fisher
information). However, this practice often leads to estimates of precision that
exceed the estimated precision of the maximum likelihood estimator which can be
attributed to the relative inefficiency of precision estimates based on the Godambe
information (Kauermann and Carroll 2001). Due to these reasons, the calibration
of the likelihood by the empirically derived correction factor seems to be superior
to the adjustments suggested by Chandler and Bate (2007), unless the number of
blocks is large.

In case of Bayesian estimation, the falsely precise inference due to referring to
the independence likelihood is not limited to precision estimates but affects the trait
estimates, too. As too much weight is given to the data in relation to the prior,
the respective estimates are shifted towards the maximum likelihood estimator.
Referring to the calibrated composite likelihood yields Bayesian trait estimates that
closely resemble Bayesian estimates derived by means of the genuine likelihood.
Nevertheless, in real-live applications, estimation should generally be based on the
genuine likelihood, unless the need of computational resources poses a formidable
obstacle, e.g., weighted likelihood estimation or extensive simulation studies.
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An Extended Item Response Tree Model
for Wording Effects in Mixed-Format
Scales

Yi-Jhen Wu and Kuan-Yu Jin

Abstract Likert scales are frequently used in social science research to measure an
individual’s attitude, opinion, or perception. Recently, item response tree (IRTree)
models have been proposed to analyze Likert-scale data because they could provide
insights into an individual’s response process. A Likert-scale survey is often mixed
with positively worded and negatively worded items, which might induce wording
effects. Therefore, it is of interest to investigate how wording effects function in an
IRTree model. In this study, we propose a new model—the bi-factor IRTree (BF-
IRTree) model, in which combines an IRTree model and a bi-factor model in an
IRT framework—to identify how wording effects influence response processes for
negatively worded items. Twelve items of an extroversion construct from the Big
Five personality inventory were used for demonstration. Results showed that the
wording effects were varied on these negatively worded items.

Keywords Item response theory · IRTree · Multi-process · Wording effects ·
Bi-factor

1 Introduction

A multi-process item response theory tree (IRTree) provides insights into an individ-
ual’s responding processes, thereby separating and quantifying response processes
under an IRT framework (Böckenholt 2012, 2017; De Boeck and Partchev 2012;
Thissen-Roe and Thissen 2013). Recently, IRTree models have drawn researchers’
attention to investigate response styles (Khorramdel et al. 2019; Zettler et al. 2015).
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However, little is known about how response processes function for negatively
worded (NW) items relative to positively worded (PW) items. Given that NW items
are frequently designed in a survey to reduce response bias, it is worth investigating
what the extent of wording effects of NW items is relative to PW items in each
response process in the IRTree framework. Therefore, in the current study, we
propose a general model in which a bi-factor model is integrated into the IRTree
approach, to investigate an underlying mechanism of NW items in each response
process using empirical data.

1.1 IRTree

IRTree models have recently been drawing a lot of attention from IRT researchers.
The reason of why IRTree models become gradually popular is that it combines
IRT and cognitive psychology theories to explain the underlying response processes
under a tree-like structure (Böckenholt 2012). Such a tree-like structure is helpful for
researchers to investigate potential sequential processes behind observed responses.
Currently, there are different structures of IRTree models. However, given that
response processes are rather complex and could be influenced by other factors,
there is no clear agreement about response processes in IRTree models. In this study,
we adopted a three-step IRTree model from Böckenholt (2017) to demonstrate how
wording effects influence each process in a five-point Likert scale. Furthermore, in
order to be consistent with our empirical data, the three-step IRTree model seemed to
be appropriate. As illustrated in Fig. 1, three response processes may exist, namely
indifference (i.e., Process I), direction (i.e., Process II), and the intensity of attitude
(i.e., Process III). Each branch is attached to two probabilities to lead to another
process or to stop at the current process. In Process I, if individuals do not have
clear attitudes or refuse to indicate their attitudes, they will endorse the midpoint
category (i.e., 2) with probability PI; otherwise, they will move to Process II with
probability 1 – PI. In Process II, individuals need to decide if they agree with an item
(i.e., agreement categories, 3 or 4) with probability PII or if they disagree with an
item (i.e., disagreement categories, 0 or 1) with probability 1 – PII. After Process II,
individuals move to Process III. In Process III, individuals decide whether they will
endorse the extreme category (0 or 4) with probability PIII or the moderate category
(1 or 3) with probability 1 – PIII. The three response processes are assumed to be
locally independent.

An original response can be decomposed into three sets of binary pseudo items
(BPI) (Böckenholt 2012, 2017), and each BPI can be modeled by an IRT model:

log

(
P d

ij

1 − P d
ij

)
= αd

j θd
i − δd

j , (1)
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Fig. 1 The three-step IRTree
model for an item with a
five-point Likert scale (scored
from 0 to 4)

Table 1 Pseudo-items of the five-point response scale in the IRTree model

Original BPI coding
response I II III Probability

0 0 0 1 1

1+exp
(
αI

j θ I
i −δI

j

) × 1

1+exp
(
αII

j θ II
i −δII

j

) × exp
(
αIII

i θ III
i −δIII

j

)

1+exp
(
αIII

j θ III
i −δIII

j

)

1 0 0 0 1

1+exp
(
αI

j θ I
i −δI

j

) × 1

1+exp
(
αII

j θ II
i −δII

j

) × 1

1+exp
(
αIII

j θ III
i −δIII

j

)

2 1 – –
exp

(
αI

j θ I
i −δI

j

)

1+exp
(
αI

j θ I
i −δI

j

)

3 0 1 0 1

1+exp
(
αI

j θ I
i −δI

j

) × exp
(
αII

j θ II
i −δII

j

)

1+exp
(
αII

j θ II
i −δII

j

) × 1

1+exp
(
αIII

j θ III
i −δIII

j

)

4 0 1 1 1

1+exp
(
αI

j θ I
i −δI

j

) × exp
(
αII

j θ II
i −δII

j

)

1+exp
(
αII

j θ II
i −δII

j

) × exp
(
αIII

j θ III
i −δIII

j

)

1+exp
(
αIII

j θ III
i −δIII

j

)

where d (= I, II, or III) denotes the response process; αI
j , αII

j , and αIII
j are the

slope parameters of item j; θ I
i , θ II

i , and θ III
i are the tendencies of indifference (i.e.,

Process I), direction (i.e., Process II), and intensity (i.e., Process III) for person i,
respectively; δI

j , δII
j , and δIII

j are the location parameters of item j. Table 1 shows
the BPI coding and the response probability for each category in the IRTree model.
Note these three latent traits measures in distinct processes could be correlated with
each other.
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1.2 Wording Effects

Surveys are frequently designed with positively worded (PW) and negatively
worded (NW) items, because NW items might reduce response bias in cross-culture
research (Baumgartner and Steenkamp 2001; Wong et al. 2003). When PW and
NW items are designed in a survey, they generally intend to measure the same latent
construct. As a result, when individuals tend to agree with PW items, they would
disagree with NW items.

However, previous studies have shown that individuals exhibit different response
behavior between PW and NW items (Riley-Tillman et al. 2009; Weems et al. 2003).
For example, an individual has higher accuracy to measure their behavior in PW
items compared with NW items (Riley-Tillman et al. 2009), or an individual is
likely to endorse higher scores on PW items than NW items (Weems et al. 2003).
Moreover, it has been shown that a cognitive process for an individual is longer for
NW items than PW items (Clark 1976), because individuals need to convert negative
wording to positive wording before endorsing a response. Altogether, it seems that
individuals might have difficulty understanding NW items to judge their attitudes
(Swain et al. 2008). Consequently, NW items might induce an unexpected effect to
lead to an inaccurate judgment and a longer cognitive process.

Moreover, the issues of psychometric features of NW have been addressed
(Baumgartner and Steenkamp 2001; Wong et al. 2003). First, NW items can reduce
reliability and validity (Roszkowski and Soven 2010). Second, NW items may
produce an additional trait that researchers do not intend to measure. In order to
take into account an additional trait derived from NW items, a bi-factor model has
been commonly applied for PW and NW items (Lindwall et al. 2012). In the bi-
factor model, a general factor is for all items, and two additional factors are for
PW items and NW items, respectively. Consequently, under the bi-factor model,
there are three factors. However, Wang et al. (2015) argued that an interpretation
of a general factor is problematic, because a general factor could not provide a
clear definition of a latent trait that researchers intend to measure. Especially, when
all items are PW items, an additional factor for capturing wording effects would
not exist. Consequently, it is hard to interpret the meaning of a general factor.
Thus, Wang et al. (2015) proposed another bi-factor model in the IRT framework
(BF-IRT), in which an additional factor describing the wording effects of NW
items relative to PW items was included. Therefore, this approach can provide a
logical explanation of the second factor and match an original concept of survey
development.

In the BF-IRT model, two latent variables are included: the intended-to-be-
measured latent factor θ and the wording effect γ , where θ is measured by PW
and NW items and γ is measured by NW items. This model keeps not only one
intended-measured latent factor in a test development, but also captures a wording
effect for NW items. The BF-IRT model is expressed as:
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log

[
Pijk

Pij(k−1)

]
= αj θi + βjγi − δjk, (2)

where Pijk and Pij(k – 1) are the probabilities of receiving scores k and scores k – 1
on item j for person i; θ i and γ i are independent variables referring to the targeted
latent trait and the nuisance factor on particular items for the person i; αj and β j

are the slope parameters of item j on the two latent variables. Note that researchers
could either treat PW or NW items as a reference, depending on the purpose of
the test development. Given that the number of PW items is usually more than the
number of NW items in practice, PW items were considered as a reference in this
study. Thus, β j was fixed at zero for all PW items. When θ and γ are constrained
to follow a standard normal distribution, all α-parameters of PW items and α- and
β-parameters of NW items can be freely estimated. NW items with a larger ratio of
β j/αj index represent a large wording effect relative to PW items. As a result, this
indicates that NW items do not exhibit similar features as PW items, even though
the responses are reversely rescored.

1.3 Bi-factor IRTree

Given the advantages of the BF-IRT model, we attempted to integrate the BF-
IRT model into the IRTree model to understand how wording effects influence
underlying response processes. The bi-factor IRTree (abbreviated as BF-IRTree)
model is expressed as:

log

(
P d

ij

1 − P d
ij

)
= αd

j θd
i + βd

j γd
i − δd

j , (3)

The notations in Eq. 3 are similar to those defined for Eq. 2 above. Table 2 shows
the response probability of each category for NW items in the BF-IRTree model.
Moreover, the three targeted latent traits (i.e., θ ) are intercorrelated, but they are
independent of a wording effect (i.e., γ ) in each process, respectively. These three
nuisance factors (γ I, γ II, and γ III) are independent of each other. Borrowing the
concept of wording effects from the BF-IRT model (Wang et al. 2015), the ratio
of βd

j /αd
j indicates the extent of wording effects for NW items in each response

process.
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Table 2 Pseudo-items of the five-point response scale in the BF-IRTree model

Response Probability

0 1

1+exp
(
αI

j θI
i+βI

j γI
j −δI

j

) × 1

1+exp
(
αII

j θ II
i +βII

j γ II
j −δII

j

) × exp
(
αIII

j θ III
i +βIII

j γ III
j −δIII

j

)

1+exp
(
αIII

j θ III
i +βIII

j γ III
j −δIII

j

)

1 1

1+exp
(
αI

j θ I
i +βI

j γ I
j −δI

j

) × 1

1+exp
(
αII

j θ II
i +βII

j γ II
j −δII

j

) × 1

1+exp
(
αIII

j θ III
i +βIII

j γ III
j −δIII

j

)

2
exp

(
αI

j θ I
i +βI

j γ I
j −δI

j

)

1+exp
(
αI

i θ
I
i +βI

j γ I
j −δI

j

)

3 1

1+exp
(
αI

j θ I
i +βI

j γ I
j −δI

j

) × exp
(
αII

j θ II
i +βII

j γ II
j −δII

j

)

1+exp
(
αII

j θ II
i +βII

j γ II
j −δII

j

) × 1

1+exp
(
αIII

j θ III
i +βIII

j γ III
j −δIII

j

)

4 1

1+exp
(
αI

j θ I
i +βI

j γ I
j −δI

j

) × exp
(
αII

j θ II
i +βII

j γ II
j −δII

j

)

1+exp
(
αII

j θ II
i +βII

j γ II
j −δII

j

) × exp
(
αIII

j θ III
i +βIII

j γ III
j −δIII

j

)

1+exp
(
αIII

j θ III
i +βIII

j γ III
j −δIII

j

)

2 An Empirical Study

2.1 Method

We used empirical data to explore wording effects on NW items in the BF-
IRTree model. We used the construct of extroversion from the Big Five personality
inventory, including six PW items and six NW items from the English pilot
study of non-cognitive skills of the Programme for the International Assessment
of Adult Competencies (PIAAC; OECD 2018). The total sample size was 1442.
The 12 items were scored from 0 (strongly disagree) to 4 (strongly agree). Based
on Baumgartner, Weijters, and Pieters’ classifications (2018), the six NW items
belonged to the design of polar opposite items that phrases items with an opposite
meaning as the intended-measured construct (i.e., extroversion). The NW items
were reversely scored; therefore, higher scores meant relatively extroverted. The
freeware WinBUGS (Lunn et al. 2000) was used to fit the IRTree and the BF-
IRTree to the extroversion data in this study. For model comparison, the deviance
information criterion (DIC; Spiegelhalter et al. 2002) and the correlations of
residuals between pairs of items were used. The model with a lower DIC and
approximately uncorrelated residuals was preferred.

2.2 Results

The DICs for the IRTree and the BF-IRTree models were 42,374 and 41,212,
respectively, which suggested that the BF-IRTree model yielded a better model fit.
Furthermore, the correlations of residuals in the BF-IRTree model were generally
smaller than those in the IRTree (Fig. 2). Altogether, we concluded that the BF-
IRTree model fits the data better than the IRTree model.

In the BF-IRTree, the estimated correlation between θ I and θ II was −0.36
(SE = 0.04), meaning that extroverts are less likely to endorse the middle response.
The estimated correlation between θ I and θ III was −0.54 (SE = 0.03), suggesting
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Fig. 3 Wording effects of the six NW items

that individuals who endorse the middle response were less likely to endorse
extreme responses. The estimated correlation between θ II and θ III was −0.02
(SE = 0.03), indicating that the tendency to use extreme responses is independent
of extroversion. Figure 3 shows the wording effects of the six NW items. It
demonstrated that items 8 (“Tends to be quiet”) and 10 (“Is sometimes shy,
introverted”) had the largest wording effects compared with other NW items. These
results suggested that the two items should not be considered to have similar features
as PW items after reversing scores.
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3 Discussion

In this study, we developed the BF-IRTree model to understand how wording effects
occur in underlying response processes. In the analysis of the PIAAC data, the BF-
IRTree model yielded a better fit than the standard IRTree model, suggesting that
it is necessary to consider the wording effects in the IRTree model when a survey
has PW and NW items. We found that items 8 and 10 had pronounced wording
effects in the three processes. This might be because people did not consider that the
characteristics of item 8 and item 10 could directly correspond to the counterpart of
extroversion. Thus, the findings suggest that the features of NW items might display
different wording effects in each response process under the IRTree framework.

This study is not free of limitations. First, we only applied five-point Likert scales
to demonstrate the performance of the BF-IRTree model. However, the BF-IRTree
model is not limited to five-point Likert scales and the three-step IRTree model.
In order for the BF-IRTree model to be applied in any condition, future studies
should consider an even number of categories to obtain a better understanding of the
wording effects in the BF-IRTree model. Furthermore, given that there are different
types of IRTree models in the literature (Jeon and De Boeck 2016; Thissen-Roe
and Thissen 2013), future studies should combine the BF-IRT approach with other
types of IRTree models. Second, modeling item responses and response time jointly
has become popular in recent years (Glas and van der Linden 2010; Molenaar et al.
2015). For example, it might be interesting to include response time as a predictor
into the BF-IRTree model to investigate whether respondents spend more time
endorsing an option, especially for NW items. Moreover, researchers could take the
features of NW items into account to explain wording effects and examine whether
there is an interaction between the features of NW items and response time.
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The Four-Parameter Normal Ogive
Model with Response Times

Yang Du and Justin L. Kern

Abstract In recent years, interest in the four-parameter logistic (4PL) model
(Barton and Lord, ETS Res Rep Ser 198(1):i-8, 1981), and its normal ogive
equivalent, has been renewed (Culpepper, Psychometrika, 81(4):1142–1163, 2016;
Feuerstahler and Waller (Multivar Behav Res 49(3):285–285, 2014)). The defining
feature of this model is the inclusion of an upper asymptote parameter, in addition to
those included in the more common three-parameter logistic (3PL) model. The use
of the slipping parameter has come into contact with many assessment applications,
such as high-stakes testing (Loken and Rulison, Br J Math Stat Psychol 63(3):509–
525, 2010), low-stakes testing (Culpepper, Psychometrika, 81(4):1142–1163, 2016),
and measuring psychopathology (Waller and Reise, Measuring psychopathology
with nonstandard item response theory models: Fitting the four-parameter model
to the Minnesota Multiphasic Personality Inventory, 2010). Yet as mentioned in
Culpepper (Psychometrika, 81(4):1142–1163, 2016), the recovery of the slipping
parameter also requires larger sample sizes and longer iterations for the sampling
algorithm to converge. Response time (RT), which has already been widely utilized
to study student behaviors, such as rapid-guessing, was included in our model to
help recover the slipping parameter and the overall measurement accuracy. Based
on the hierarchical framework of response and RT (van der Linden, Psychometrika
72(3):287–308, 2007), we extended the four-parameter normal ogive model by
incorporating RT into the model formulation. A Gibbs sampling approach to
estimation was developed and investigated.
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1 Introduction

Since Barton and Lord (1981) first investigated the possible upper asymptote for
the three-parameter logistic model (3PL), there has been considerable growth in the
studies of the four-parameter logistic model (4PL; see Eq. 1) and its normal ogive
equivalent (4PNO) (Culpepper 2016; Loken and Rulison 2010; Rulison and Loken
2009; Liao et al. 2012).

P(Yij = 1|θi, aj , bj , cj , dj ) = cj + dj − cj

1 + exp
[ − 1.7aj (θi − bj )

] (1)

As opposed to the 3PL model, the 4PL and 4PNO models posit the existence of
an upper asymptote, dj (0 ≤ dj < 1), to the item response function addressing
possible slipping behavior by examinees. Accordingly, the probability of answering
an item correctly may never reach one.

While the 4PNO model has been widely applied to cognitive and non-cognitive
tests (Loken and Rulison 2010; Culpepper 2016; Waller and Reise 2010), its
application should be carefully handled given the relatively poor recovery of the
slipping parameters (Culpepper 2016). However, with the aid of computerized test
delivery software, apart from responses, response time (RT) data have also been
taken into account to improve measurement accuracy and to resolve traditional
psychometric problems, such as item selection as well as aberrant student behavior
detection (Fan et al. 2012; Du et al. 2019; Choe et al. 2018; Wang and Xu 2015; van
der Linden et al. 2007). In a similar vein, we hypothesize that RT may also contain
useful information about person slipping behavior. For instance, if a student spent
much less RT than their expected RT on an item, they may get a wrong response (i.e.,
slipped) on that item. In this study, hence, we investigate whether we can improve
the parameter recovery of the four-parameter model by adding response time to the
model. We propose both an extension of the hierarchical framework of response and
RT (van der Linden 2007) using the 4PNO model and a Gibbs sampler for the model
estimation.

The rest of this manuscript is organized as follows: we first briefly present
the literature review of 4PNO and RT. Next, our model and the full conditional
distributions for our posterior are provided. Then, a simulation study is done
to investigate estimation accuracy. Finally, we will end our manuscript with the
simulation results and conclusions.

2 Literature Review

With the recently renewed interest in the four-parameter models, studies have
successfully applied the model to high-stakes tests (Loken and Rulison 2010),
low-stakes tests (Culpepper 2016), and psychopathology measurement (Waller and
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Reise 2010). Moreover, multiple studies have used the 4PL to address the slipping
behavior in early stages of computerized adaptive tests (Liao et al. 2012; Rulison
and Loken 2009).

Building upon the estimation techniques developed for the logistic and normal
ogive models (Albert 1992; Béguin and Glas 2001; Patz and Junker 1999a,b),
estimation methods for the four-parameter model include Metropolis-Hastings
(MH) algorithms (Loken and Rulison 2010), Gibbs sampling (Culpepper 2016),
and marginal maximum likelihood (MML) (Feuerstahler and Waller 2014). While
the MH and MML methods entail tuning the proposal distribution or incorporating
informative priors to satisfy the model identification condition, respectively, the
Gibbs sampler is often more efficient. However, according to Culpepper (2016),
the Gibbs sampler also requires more iterations for the model to converge and larger
sample size to accurately recover all parameters.

Among all the existing RT models, the lognormal model proposed by van
der Linden (2006) has become popular due to its feasibility and simplicity. The
hierarchical framework proposed by van der Linden (2007) further provided plug-
and-play framework to jointly model response and RT. For instance, based on this
framework, Wang et al. (2013) proposed a semiparametric model that incorporated
3PL with the Cox PH model (Cox 1972) to model response and RT. To date,
however, there is no investigation of the viability of 4PNO in the hierarchical model
for responses and response times.

3 Model Specification

Relying on van der Linden’s (2007) hierarchical framework, our model formulation
is presented in Fig. 1, where the 4PNO model maps out the probability of responses
(i.e., Yij ), while the lognormal RT model captures the probability of RT (i.e., Tij ).

Fig. 1 Hierarchical framework of response and response time
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Specifically, the 4PNO (Barton and Lord 1981) is given as

P(Yij = 1|ηij , γj , ζj ) = γj + (1 − ζj − γj )Φ(ηij ) (2)

where ηij = aj θi − bj ; Φ(·) is the cumulative standard normal distribution and aj ,
bj , γj , and 1 − ζj denote the j th item’s discrimination, threshold, lower asymptote,
and upper asymptote, respectively. Additionally, this probability is only valid when
0 ≤ γj < 1, 0 ≤ ζj < 1, and 0 ≤ γj + ζj < 1. The RT model (van der Linden
2006) is given by Eq. 3,

f (Tij ≤ tij |αj , βj , τi) = αj√
2π

exp − 1

2

(
αj

[
tij − (βj − τi)

])2

(3)

where αj and βj denote the j th item’s time discrimination and time intensity
parameters, respectively, and τi is the latent speed parameter for the ith person.

4 Posterior Distribution

To approximate the posterior distribution of the current model, we introduced
two augmented variables, Z and W , denoting the augmented continuous and
dichotomous variables, respectively. W arises because of categorizing continuous
Z. This is shown as follows:

p(Z, W, θ , ξ ,γ , ζ , τ ,ψ |Y, T) ∝
p(Y|W, γ , ζ )p(Z, W|θ , ξ)p(T|ψ, τ )p(γ , ζ )p(θ , τ )p(ψ, ξ).

(4)
Here, ξ = (a, b) denotes the discrimination and threshold parameters, and
ψ = (α,β) denotes the time discrimination and time intensity parameters. The
likelihoods in the model are

p(Y|W, γ , ζ ) =
I∏

i=1

J∏
j=1

[
(1 − ζj )

Wij γ
1−Wij

j

]Yij
[
(1 − γj )

1−Wij ζ
Wij

j

]1−Yij

(5)

p(Z, W|θ , ξ) =
I∏

i=1

J∏
j=1

{
φ(Zij ; ηij , 1)

× [
I (Zij ≤ 0)I (Wij = 0) + I (Zij > 0)I (Wij = 1)

]}

(6)
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p(T|ψ, τ ) =
I∏

i=1

J∏
j=1

φ

(
log tij ;βj − τi,

1

α2
j

)
(7)

where φ denotes the normal density. In terms of the priors, due to the constraints that
0 ≤ γj < 1, 0 ≤ ζj < 1, and 0 ≤ γj +ζj < 1, the guessing and slipping parameters
are naturally dependent, and thus we chose a joint beta distribution as their prior
(shown in Eq. 8), corresponding to p(γ , ζ ) in Eq. 4. For the prior distributions
of person parameters and the other four item parameters, we chose bivariate and
multivariate normal distributions, respectively. Their means, covariances, and the
corresponding hyperpriors are specified in Eqs. 9 and 10, corresponding to p(θ , τ )

and p(ψ, ξ) in Eq. 4, respectively.

(γj , ζj ) ∝ γ
aγ −1
j (1 − γj )

bγ −1ζ
aζ −1
j (1 − ζj )

bζ −1 (8)

Σp ∼ Inv−Wishart (Σ−1
p0

, vp0) ,μp|Σp ∼ MV N(μp0
,Σp/κp0) (9)

ΣI ∼ Inv−Wishart (Σ−1
I0

, vI0), μI |ΣI ∼ MV N(μI0
,ΣI /κI0) (10)

With these in place, the full posterior distribution of our model can be approx-
imated. The full conditional distributions used in the proposed Gibbs sampler are
presented in the Appendix.

5 Simulation Design and Model Evaluation

To evaluate our model, we generated 5000 students and 20 items from multivariate
normal distribution whose means and covariances are shown below. Additionally,
aj and αj are constrained to be positive, and γ and ζ are sampled from beta
distributions with means of 0.2 = 2/(2 + 8). The simulation was replicated 20
times.

μp =
[

0.0
0.0

]
,Σp =

[
1.0 0.3
0.3 1.0

]
(11)

μI =

⎡
⎢⎢⎣

1.0
0.0
1.0
0.0

⎤
⎥⎥⎦ ,ΣI =

⎡
⎢⎢⎣

1.00 0.03 −0.04 −0.11
0.03 1.00 0.23 0.30

−0.04 0.23 1.00 0.18
−0.11 0.30 0.18 1.00

⎤
⎥⎥⎦ (12)

γ ∼ Beta(2, 8), ζ |γ ∼ Beta(2, 8) (13)
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In order to evaluate model convergence, we ran a total of five chains with varying
initial values, each of which included 100,000 iterations.

Uninformative priors were used in the simulation. ΣI = I4, Σp = I2, μI =
(1, 0, 1, 0)T , μp = (0, 0)T , where I4 and I2 are four- and two-dimensional identity
matrices. Uniform priors were used for the lower and upper asymptote parameters.
In terms of the hyperprior parameters, νp0 = 2, κp0 = 1, νI0 = 4, and κI0 = 1. In
sampling the time discrimination parameters, α, the proposal distribution variance
was set to be 0.001 to achieve a proper acceptance rate, and the Gibbs-within-Gibbs
iteration for sampling γ, ζ was set to be 10.

To evaluate both models, we adopted three sets of criteria. First, for model
convergence criterion, a value of R̂ (Gelman and Rubin 1992; Brooks and Gelman
1998; Gelman et al. 2013) less than 1.1 was adopted. Second, the overall model fit
was evaluated via posterior predictive p values (ppp) (Sinharay et al. 2006), shown
in (Eq. 14), where the discrepancy statistic is given by Eq. 15.

P(D(yrep, θ) ≥ D(y, θ)|y) =
∫

D(yrep,θ)≥D(y,θ)|y)

p(yrep|θ)p(θ |y) dyrep dθ (14)

D(y, θ) = odds ratio(OR) = n11n00

n10n01
(15)

Lastly, the parameter estimation accuracy was evaluated by bias, root mean
square error (RMSE), posterior standard deviation (SD), and the correlations
between true parameters and their posterior means.

6 Results

In the simulation, the 4PNO with RT model successfully converged after 50,000
iterations. All analyses were thus based on the remaining 50,000 iterations. Next,
we evaluated the overall model fit of our model, and only 3.7% of the ppp values
are extreme, suggesting appropriate model fit.

Finally, we examined the overall parameter estimation of the 4PNO with RT
model in the simulation, and the results are shown in Table 1. Note that in this table,
the results are averaged across all replications.

Based on the bias and RMSE, it seems that except for the item discrimination
parameters, most of the parameters were recovered well with bias and RMSE close
to zero.

However, if we take a close look at the correlations between the true parameters
and their posterior means, the surprisingly low correlations of the guessing and slip-
ping parameters (γ, ζ ) caught our attention. In other words, given that the guessing
and slipping parameters are bounded between 0 and 1, the magnitude of their values
could be small, and their bias and RMSE may not yield as much information as the
other criterion, such as the correlation between population parameters and posterior
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Table 1 Overall model
parameters estimation
accuracy

Parameters Bias RMSE SD Correlation

θ 0.01 0.50 0.49 0.87

τ 0.00 0.19 0.13 0.99

a 0.22 0.41 0.38 0.82

b −0.03 0.20 0.22 0.95

γ 0.03 0.07 0.05 0.54

ζ 0.06 0.08 0.06 0.45

α 0.00 0.02 0.02 1.00

β 0.00 0.01 0.02 1.00

means. To examine the parameter recovery more specifically, we summarized the
population values, bias, RMSE, and standard deviations of all the item parameters
in Table 2. We also plotted the true parameters against their posterior means, shown
in Fig. 2.

From Table 2 and Fig. 2, item threshold, time discrimination, and time intensity
parameters are recovered well, most of which fall onto the identity line. Consistent
with what we mentioned earlier, item discrimination parameters were not recovered
well, particularly those less discriminating items. It is manifest that RMSE and
bias are higher if the magnitude of item discrimination parameters are less than
1. This can also be seen from Fig. 2. Those lower discriminating parameters were
overestimated in our model. Such result was not found in Culpepper (2016) since
the item discrimination parameters in his simulation studies are mostly greater than
1 (in his simulations, a ∼ N(2, 0.5)). While this result is partially in line with what
Culpepper (2016) claimed that harder items (i.e., larger value of b/a) may lead to
less accurate estimates of ζ , it’s also thought-provoking to see that incorporating
slipping parameters would potentially make items more discriminating. One reason
could be that the result of overestimating the slipping parameters lowers the upper
asymptote, thus making fewer students’ probability to answer the item correctly
reach one and consequently items become more discriminating.

Similar overestimation issues are present in guessing and slipping parameters
whose true values of guessing and slipping parameters are smaller than 0.25. Such
overestimation might be caused by the uniform prior we set and smaller sample size.
As pointed out in Culpepper (2016), sample sizes of at least 2500 and 10,000 are
needed for educational items and psychopathology items, respectively, to accurately
recover all parameters. When the sample size is small and item difficulty parameters
are extremely high or low, few students will have both latent binary variables and
actual responses (W and Y ) equal to one or zero. In other words, due to the limited
valid responses from our data, the posteriors of guessing and slipping parameters
will be greatly dominated by the priors. Given the uniform prior we have, for those
items whose difficulty parameters are extremely high or low, they will always be
overestimated. By increasing the sample sizes, we could potentially increase the
number of extremely high or low ability students.
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Fig. 2 Item parameters estimation accuracy

To answer our research question that whether including RT could help with
item parameter recovery, we compared the item parameter recovery of both 4PNO
with and without RT models. The results are shown in Table 3. The item response
parameter estimates yielded by both models were very similar. Simply based on
the limited simulation conditions in our study, it seems that including RT in the
hierarchical framework does not help with item parameter recovery in 4PNO.
However, this by no means suggests that RT cannot aid in item parameter recovery
at all. Additionally, as the guessing and slipping parameters in our model were not
captured in the item parameter covariance structure in the second level, the uniform
prior would still play a role when the data do not provide sufficient information.
Nevertheless, as an important source of collateral information, RT may help boost
the parameter estimate accuracy if they are incorporated in the response accuracy
model part. Furthermore, future studies may investigate on utilizing RT to directly
model the guessing and slipping parameters in the item response model. Lastly, a
broader investigation with a wider array of item parameters may further elucidate
the nature of the current estimation approach.
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Table 3 Item parameter recovery comparison

Model
Bias RMSE SD

a b γ ζ a b γ ζ a b γ ζ

4PNO with RT 0.22 −0.03 0.03 0.06 0.41 0.20 0.07 0.08 0.38 0.22 0.05 0.06

4PNO 0.10 −0.06 0.01 0.06 0.10 0.06 0.01 0.06 0.35 0.21 0.06 0.06

7 Conclusions

Based on recent developments of the 4PNO (Culpepper 2016) and the hierarchical
framework of response and response time (van der Linden 2007), our 4PNO with
RT model showed appropriate model fit to our simulated data. The successful
convergence of our 4PNO with RT model verifies that the 4PNO model can be
incorporated to the hierarchical framework. But based on the limited simulation
conditions, our study also suggests that RT included in this hierarchical framework
does not assist in recovering the guessing and slipping parameters. Consistent with
Culpepper (2016), large sample sizes are still needed in order to accurately recover
the guessing and slipping parameters. Future studies may investigate the possibility
of including RT in the item response model or employing RT to directly model
guessing and slipping parameters in more simulation conditions.

Appendix: Gibbs Sampler

– Step 1: sample Wij

Wij |Yij , θi, ηij , γj , ζj ∼
⎧⎨
⎩

Bernoulli
(

ζj Φ(ηij )

1−γj −(1−γj −ζj )Φ(ηij )

)
, Yij = 0

Bernoulli
(

(1−ζj )Φ(ηij )

γj +(1−ζj −γj )Φ(ηij )

)
, Yij = 1

– Step 2: sample Zij

Zij |ηij , θi,Wij ∼
{

N(ηij , 1)I (Zij ≤ 0), Wij = 0

N(ηij , 1)I (Zij > 0), Wij = 1

– Step 3: sample θi

θi |z, τ, ξ, μp,Σp ∼ N

⎛
⎜⎝

σ−2
θ |τi

μθ |τi
+∑J

j=1 aj (zij+bj )

σ−2
θ |τi

+∑J
j=1 a2

j

,

⎛
⎝σ−2

θ |τi
+

J∑
j=1

a2
j

⎞
⎠

−1
⎞
⎟⎠
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where

μθ |τi
= μθ + σθτ

σ 2
τ

(τi − μτ ) , σ 2
θ |τj

= σ 2
θ − σ 2

θτ

σ 2
τ

– Step 4: sample ξj = (aj , bj )

ξj = (aj , bj )|Zj, θ, α, β,μI ,ΣI

∼ N

⎛
⎝μa,b|α,βΣ−1

a,b|α,β + X′zj

Σ−1
a,b|αj ,βj

+ X′X
,
(
Σ−1

a,b|αj ,βj
+ X′X

)−1

⎞
⎠

where X = [
θ −1

]
, μa,b|α,β and Σa,b|α,β follow directly from μI ,ΣI

– Step 5: sample γj , ζj , based on the Gibbs within Gibbs in Culpepper (2016),

fζ |γ = fγ ζ

fγ

= fζ

Fζ(1−γ )

I (0 ≤ ζ ≤ 1 − γ )

– Step 6: sample τi

τi |z, θ,ψ,μp,Σp ∼ N

⎛
⎜⎝

σ−2
τ |θi

μτ |θi
+∑J

j=1 α2
j (βj−tij )

σ−2
τ |θi

+∑J
j=1 α2

j

,

⎛
⎝σ−2

τ |θi
+

J∑
j=1

α2
j

⎞
⎠

−1
⎞
⎟⎠

– Step 7: sample βj

βj |ti, τ, a, b, α,μI ,ΣI ∼ N

(σ−2
β|aj ,bj ,αj

μβ|aj ,bj ,αj
+ α2

j

∑I
i=1(tij + τi)

σ−2
β|aj ,bj ,αj

+ Iα2
j

,

(
σ−2

β|aj ,bj ,αj
+ Iα2

j

)−1
)

– Step 8: sample αj by Metropolis-Hastings algorithm, the acceptance probabil-
ity is

min

(
1,

f (α∗
j t |tij , τi , βj )g(αj (t−1)]|α∗

j t )

f (α∗
j (t−1)|tij , τi , βj )g(α∗

j t]|αj(t−1))

)
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– Step 9: sample hyperprior μp,Σp

Σp|δ ∼ Inverse − Wishart(Σ−1
p∗ , vp∗), μp|Σp, δ ∼ N2(μp∗,Σp/κp∗)

Σp∗=ΣP0+Sδ+ IκP0

I+κP0

(δ̄−μP0
)(δ̄−μP0

)′, vP∗=vP0+I, κP∗=κP0 + I

μP∗ = κP0

κP0 + I
μP0

+ I

κP0 + I
δ̄, Sδ =

I∑
i=1

(δ − δ̄)(δ − δ̄)′

– Step 10: sample hyperprior μI ,ΣI

ΣI |ν ∼ Inverse − Wishart(Σ−1
I∗ , vI∗), μI |ΣI , ν ∼ N4(μI∗,ΣI /κI∗)

ΣJ∗ = ΣI0 + Sν + JκI0

J + κI0

(ν̄ − μI0
)(ν̄ − μI0

)′

vP∗ = vI0 + J, κI∗ = κI0 + J

μI∗ = κI0

κI0 + J
μI0

+ J

κI0 + J
ν̄, Sν =

J∑
j=1

(ν − ν̄)(ν − ν̄)′
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A Bayesian Graphical and Probabilistic
Proposal for Bias Analysis

Claudia Ovalle and Danilo Alvares

Abstract One of the main concerns in educational policies is to analyze whether a
national test is fair for all students, especially for the economically and socially
disadvantaged groups. In the current literature, there are some methodological
proposals that analyze this problem through comparative approaches of performance
by groups. However, these methodologies do not provide an intuitive graphical and
probabilistic interpretation, which would be useful to aid the educational decision-
making process. Therefore, the objective of this work is to bridge these gaps
through a methodological proposal based on the one-, two-, and three-parameter
logistic models, where we evaluate the performance of each group using the
difficulty parameter estimated from a Bayesian perspective. The difference between
parameters of each group and their respective 95 credible interval are displayed in
graphical form. In addition, we also calculate the mean of the posterior probability
of all the differences of each parameter for the groups compared. This probabilistic
measurement provides a more accurate perception of intergroup performance by
analyzing all items together. Our methodology is illustrated with the Chilean
University Selection Test (PSU) data of 2018, where the analyzed groups are
students from (regular) high schools versus technical high schools. A sensitivity
analysis between the two logistic models is presented. All analyzes were performed
using the R language with the JAGS program.
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1 Introduction

In the field of education, it is necessary to measure and evaluate the learning of
students. However, being able to obtain items that allow measuring different pop-
ulation groups is hindered by the potential bias and by aspects such as differences
in the parameters of difficulty, pseudo-chance, and discrimination that may favor a
majority group compared to a minority. In this sense, it is necessary to explore the
performance of the test items with high-stake consequences for students. One way of
doing this is the measurement and graphic representation of the difference between
groups of the parameters of difficulty, guessing, and discrimination proposed in the
Item Response Theory or IRT. In this theory, student’s ability is a latent trait, and
the characteristics of the items can be measured and represented graphically (e.g.,
by means of the item information curve). The present proposal is novel since it is not
limited to an interpretation based on the 3PL model, but it incorporates measures of
sensitivity integrating the interpretation of the parameters in the 1PL-G, 1PL, 2PL,
and 3PL models, which are calculated with a Bayesian approach in the language
R with the JAGS program. Likewise, it proposes a new graphic representation that
incorporates the difference in the parameters between the groups, to facilitate the
detection of biases in the test in a visual way. This graphic representation allows the
researcher to observe the same parameter for several items, which is not possible
whenever information curves are drawn for each item. The graphic representation
provides a more informative analysis of the performance between the groups since
all the items are analyzed together and not separately as it is done with the item
information curve.

2 IRT Models for Parameter Estimation

The use of the guessing parameter is due to Birnbaum (1968) and corresponds to the
asymptote with a value greater than 0 in information curves. The guessing parameter
represents the probability of response of an individual with a very low ability. On the
other hand, the difficulty refers to the probability that a student responds correctly to
a given item with a certain level of ability (San Martín and De Boeck 2015). Finally,
discrimination refers to the ability of the item to differentiate which students know
the content as opposed to those who do not (Tuerlinckx and De Boeck 2005). This
parameter is represented by the slope of the information curve of the item. There are
different models to determine the parameters of the items. The first is the logistic
model of a parameter with guessing(1PL-G) which is a case of the 3PL model in
which the discrimination parameters are set at 1 (San Martín et al. 2006). The second
is the Rasch model (Rasch 1960) that focuses on the difficulty parameter. The third is
the 2PL model, in which discrimination and difficulty parameters are included. The
fourth is the 3-PLG Model (difficulty, discrimination, and guessing) of Birnbaum
(1968). All models are presented in Table 1.
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Table 1 IRT models

Model G(θi, ωi) Item parameter Parameter space

1 PL F(θi ,−βi) ωj = βj (θ1i , ω1j ) ∈ RiXRj

2 PL F(αiθi ,−βi) ωj = αj , βj (θ1i , ω1j ) ∈ RiXRjXRj

1PL-G F(γi + (1 − γi)F (αi,−βj ) ωj = βj , γj (θ1:i , ω1j ) ∈ RiXRjX(0, 1)j

3 PL F(γi + (1 − γi)F (αiθi ,−βj ) ωj = αi, βj , γj (θ1i , ω1:j ) ∈ RiXRjXRjX(0, 1)j

1PL-G models, in which the discrimination parameter is constant and it is
equivalent to 1, are widely used in the literature (Fariña, Gonzales, San Martín 2019;
San Martín et al. 2013). The 1PL-G is also preferred since issues are raised when
interpreting the parameters in the 3PL model (Maris and Bechger 2009) and the
convenience of using binary models (two parameters) under different specifications
has been reported (San Martin 2016). In the present study, we opted for the difficulty
parameter, since the main objective is to compare two groups (focal and reference
groups) so that we can find the differences in the items that affect the minority
group (technical high school students vs. the academic track students). For this we
focus on the 1Pl, 1PL-G, 2PL, and 3PL models. From these four models, a proposal
was developed to establish a selection criteria for the items that must integrate a
standardized test applicable to different groups of students based on the differences
between groups in the difficulty parameter. Specifically, this was done to compare
students of the technical high school vs. students of the academic track and thus to
reduce the bias in favor of one or the other group. This research provides a novel
approach to item bias by means of a graphical representation of the difference in the
difficulty parameter.

3 Item Bias

Bias or differential item functioning (DIF) arises when the probability of a correct
response between people with the same value of the latent trait (ability) differs
between groups, for example, whenever the difficulty of an item depends on the
membership to a subgroup based on race, ethnicity, or gender (Berger and Tutz
2016). The present study is focused on uniform bias, that is, when individuals
from different subgroups with the same skill level have different probabilities of
solving an item and these differences do not depend on their ability. Zwick (2012)
reviews the criteria for the detection of biased items and identifies the flagging rules
used by ETS (Educational Testing Service). The author concludes that rule “C” is
insufficient to establish critical bias of the items even when the samples are large.
The rule indicates that an item that has bias must have a χ2 Mantel-Haenszel Delta,
MH D statistic, with an absolute value greater than 1.5 and it must be significant
at the 5 percent level. A similar rule indicates that the critical value of the MH
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Delta is 1,645 or 95th percentile. If the classification of the ETS bias is used with
the MH Delta statistic, which focuses on the difficulty parameter, then an item of
category “A” or without bias has a nonsignificant delta value of 1. A category “B”
item has a delta between 1 and 1.5 and is significant, and one of category “C”
has a delta of at least 1.5 and is significant too. In terms of the parameters of the
items, a MH Delta of 1.0 is equivalent to

[−2.35 ∗ β2
]

and therefore indicates the
cutoff point for an item to have type B or type C bias in terms of the difficulty
parameter. The present proposal is based on a Bayesian approach, and it is centered
on the values of the difference of the difficulty parameter for different groups. For
example, we compared the difficulty parameter between groups of technical students
versus academic track students who took a standardized test. While the no-Bayesian
approach seeks to find the values of the (estimated) parameters that maximize the
probability of the data that has been observed, the Bayesian approach used in the
present study makes use of the prior distributions of the parameters of interest, and
the inferences are based on samples of the posterior distributions, which can be
used to summarize all the information about the parameters of interest (Gonzalez
2010a,b, p. 2). That is, the probability distribution of the parameter of interest is
used.

4 Method

Since the purpose of the present study is to analyze if a standardized test is fair
for all students, in particular for those who come from a vocational/technical high
school using the measurement of the parameters in the selected IRT models (1PL,
1PL-G, 2PL, 3PL), we will proceed to use a graphical Bayesian interpretation
of the differences in the parameters in the tests of mathematics from a national
standardized test (80 items from the PSU). The question that guides the present
study is: “Does a differential functioning or DIF persists in the items (in the
mathematics subtest) that is not due to the ability of students (latent trait) but
can be conditional to aspects such as the type of curriculum (academic versus
technical/vocational)?”.

4.1 Descriptive Analysis

In the present proposal, the DIF analysis will be developed with the χ2Mantel-
Haenszel. This is a descriptive analysis that will be developed with the DIFAS
software for dichotomous items.
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4.2 Bias Analysis Comparing Difficulty Parameter with 1PL,
1PL-G, 2PL, and 3PL Models

The following models were used:

One parameter logistic (1PL) model

P(Yij = 1) =
exp

{
θi − β∗

j

}

1 + exp
{
θi − β∗

j

}

One parameter logistic with guessing (1PL-G) model

P(Yij = 1) = γj + (1 − γj )
exp

{
θi − β∗

j

}

1 + exp
{
θi − β∗

j

}

Two parameter logistic (2PL) model

P(Yij = 1) =
exp

{
αj (θi − β∗

j )
}

1 + exp
{
αj (θi − β∗

j )
}

Three parameter logistic (3PL) model

P(Yij = 1) = γj + (1 − γj )
exp

{
αj (θi − β∗

j )
}

1 + exp
{
αj (θi − βj∗)

}

All models predict the probability of correct response Yij = 1. The parameter
β∗

ij = βj + gi�j represents the difficulty βj and an interaction term βj∗ which
represents the negative or positive increment of the difficulty parameter for the TP
(vocational/technical) group compared to the SH (academic) group of students.

The Bayesian approach was used to calculate the item parameters in all IRT
models. In the estimation, the following priors were used: The guessing parameter γi

was represented as a beta distribution (0.5, 0.5), discrimination αi was represented
as a uniform distribution (0,100), and difficulty βi was represented as a normal
distribution (0,100). The person latent ability θi was a parameter estimated in all
models, and it is distributed as normal(0, σ 2

gi
),where σ 2

gi
is the standard deviation of

the ability parameter for each of the groups gi of vocational or academic students.
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4.3 Graphical Representation

For each parameter, calculated by means of the IRT models (1PL-G, 1PL 2PL,
3PL), a graphical representation was done. The horizontal axis represents all of
the test items, and the vertical axis represents the difference in the value of the
difficulty parameter for each one of these items. This representation helps to
establish if the difference affects the minority group (vocational/technical students)
in comparison to a majority group (academic students). The difference between
groups in the difficulty parameter is represented for each item by a point in the
graph. The graphical representation includes the credibility intervals that indicate
the probability that the difference between groups in the parameter (conditional on
the data) is greater or less than zero.

4.4 Data

In the year 2017, for the university admission of the year 2018, approximately
295.531 students registered for the PSU standardized test, and 262.139 (89%) took
the subtests of language and mathematics (DEMRE, 2017). Among these students,
almost 90.000 belonged to the technical/vocational track.

4.5 Sample

We sampled 136.918 students from the academic track and 56.798 students from
the technical/vocational track.

5 Results

5.1 Descriptive Statistics

The analysis was done separately for the four equivalent forms of the test of the
mathematics PSU test (each form with 80 items, which can be combined and
repeated in different ways). With the estimations of DIF, it was established which
items have potential bias. In order to detect DIF, the χ2 MH (chi square of Mantel-
Haenszel (MH)) was calculated. We used the R language to establish the model
parameters, and we used the software DIFAS 5.0 for the χ2MH analysis. In order
to establish if an item has DIF, two criteria were used: χ2 MH has to be significant
and the CDR (combined decision rule) should be true. The last rule implies that MH
LOR – log odds ratio – is equivalent to a value ranging between 2.0 -2.0 (indicating
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that the item has DIF) and LOR Z (negative values indicating DIF is in favor of the
minority group and positive values favoring the majority group).

5.2 Graphical Representation

The first graphic representation obtained with the 1PL-G model is presented in
Fig. 1. The horizontal axis corresponds to the PSU test items (n = 180 items),
while the vertical axis corresponds to the difference between groups (technical vs.
academic track) for the value of the difficulty parameter.

The vertical axis value is the difference between the medians of the posterior
distributions obtained with multiple samples. These samples were obtained using
a Bayesian approximation for the calculation of the difficulty parameter. The
difference between groups in the difficulty parameter has a range between 3 and
−3 (on the vertical axis).

In this sense, the differences that approach 0 indicate that the item is appropriate
and it is not presenting an important difference between the two groups of students
(technical vs. academic). On the contrary, those items in which the differences
between groups are closer to 3 or closer to -3 are the items which are “problematic”
since they do not measure the groups in the same way. The items in the upper band
(above 0.5) indicate that the difficulty is greater for the technical student group
compared to the academic group. According to the representation, the vast majority
of the items in the different areas are over 0.5 and should be reconsidered before
including them in the PSU test.

The graphical Bayesian representations of the difference between groups in the
difficulty parameters based on the 1PL-G, 1Pl, 2PL, and 3 PL models are displayed
in Figs. 1, 2, 3, and 4. In summary, the representations show that bias, defined
as a probability of a difference between the groups above 0, is present in a large
percentage of the items:

P(βTP − βSH > 0 | data) : 97%(1PL) 100%(1PL − G) 89%(2PL) 93%(3PL)

6 Conclusion

A visual representation of item parameter differences can help determine item bias,
and it can help in decision-making regarding item selection to benefit minority
groups. In the present study, the differences in the difficulty parameter between
academic vs. technical track students were represented (Figs. 1, 2, 3, and 4).
Although ETS (Educational Testing Service) flagging rules may underestimate item
bias affecting minorities, our Bayesian visual representation determined a more
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Fig. 1 Difference (TP-SH) between difficulty parameters. 1PL model
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Fig. 2 Difference (TP-SH) between difficulty parameters. 1PL-G model

precise approach: it showed bias in 97% of items according to the 1PL and 1PL-
G models, 89% in the 2PL model, and 93% in the 3PL model. When we used
the ETS flagging rules, they showed that all items had a type “A” or minimal
bias (Table 2), underestimating the differences between student groups. Also, our
visual Bayesian analysis is more effective to establish bias against minorities
(such as vocational/technical students) compared to traditional measures such as
χ2 Mantel-Haenszel.
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Fig. 3 Difference (TP-SH) between difficulty parameters. 2PL model
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Fig. 4 Difference (TP-SH) between difficulty parameters. 3PL model

In the present study, the Mantel-Haenszel statistic detected item bias between 28%
and 45% in each of the test forms (see Table 2) missing the large bias found in
the present study. Also, the Bayesian analysis permitted the calculation of posterior
distributions of the difficulty parameter making bias analysis more accurate. Finally,
the difficulty parameter is suitable to compare groups in a bias analysis.

Acknowledgments This study was funded by project Conicyt PIA CIE 160007.



78 C. Ovalle and D. Alvares

Table 2 MH statistic for all forms of the PSU test (2018)

Form Items MH LORZ majority MH LORZ minority CDR ETS

111 80 19(23,7%) 21(26,2%) 36(45%) A

112 80 14(17,5%) 13(16,2%) 23(28,7%) A

113 80 17(21,2%) 18(22,5%) 33(41,2%) A

114 80 12(15%) 12(15%) 27(33,7%) A
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Comparing Hyperprior Distributions to
Estimate Variance Components for
Interrater Reliability Coefficients

Debby ten Hove, Terrence D. Jorgensen, and L. Andries van der Ark

Abstract Interrater reliability (IRR) is often estimated by intraclass correlation
coefficients (ICCs). Using Markov chain Monte Carlo (MCMC) estimation of
Bayesian hierarchical models to estimate ICCs has several benefits over traditional
approaches such as analysis of variance or maximum likelihood estimation. How-
ever, estimation of ICCs with small sample sizes and variance parameters close to
zero, which are typical conditions in studies for which the IRR should be estimated,
remains problematic in this MCMC approach. The estimation of the variance
components that are used to estimate ICCs can heavily depend on the hyperprior
distributions specified for these random-effect parameters. In this study, we explore
the effect of a uniform and half-t hyperprior distribution on bias, coverage, and
efficiency of the random-effect parameters and ICCs. The results indicated that a
half-t distribution outperforms a uniform distribution but that slightly increasing
the number of raters in a study is more influential than the choice of hyperprior
distributions. We discuss implications and directions for future research.

Keywords Bayesian hierarchical modeling · Hyperprior distributions · Interrater
reliability · Intraclass correlation coefficients · Markov chain Monte Carlo
estimation · Random effects · Variance components

1 Introduction

In an ongoing research project (Ten Hove, Jorgensen, & Ten Hove et al. 2018;
Ten Hove et al. 2019), we propose to estimate interrater reliability (IRR) with
different types of intraclass correlation coefficients (ICCs) using Markov chain
Monte Carlo (MCMC) estimation of Bayesian hierarchical models. MCMC esti-
mation has several benefits over more traditional approaches, such as analysis
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of variance (ANOVA) or maximum likelihood estimation (MLE). For example,
MCMC estimation can easily accommodate missing at random data, which is a
pitfall of ANOVA (Brennan 2001); for small sample sizes and parameters close to
a boundary, it typically outperforms MLE (Gelman et al. 2013); and it provides
Bayesian credible intervals, which quantify the uncertainty of the estimated ICCs
(Hoekstra et al. 2014), whereas for both ANOVA and MLE, estimating confidence
intervals is troublesome (Brennan 2001). However, we found that when using
MCMC some ICCs were severely underestimated and inefficient when the number
of raters was small or one of the variance components involved in the ICCs was
close to zero. As a solution to these estimation difficulties, we proposed a planned
missing data design, in which a subset of randomly drawn raters was assigned to
each subject. This improved the estimation of ICCs using MCMC vastly, but some
ICCs were still biased and inefficient due to biased and inefficiently estimated rater
variances (Ten Hove et al. 2019).

The estimation difficulties in conditions with few raters and low variability
are consistent with several studies on the performance of MCMC estimation for
hierarchical models (Gelman and Hill 2006; McNeish and Stapleton 2016; Polson
and Scott 2012; Smid et al. 2019). In the MCMC approach to estimating the
ICCs, priors should be specified for the distribution of random effects. Because
the variance of these random effects is itself estimated, a prior distribution should
be specified for that parameter, called a hyperprior distribution (Gelman et al.
2013, p. 107–108). The performance (e.g., bias and efficiency) of the parameter
estimates depends on the specification of these hyperpriors (Gelman and Hill
2006; Gelman et al. 2013; McNeish and Stapleton 2016; Polson and Scott 2012;
Smid et al. 2019). The specification of hyperpriors thus provides an opportunity
to improve the performance of parameter estimates of random effects. In our
current research project, we followed Gelman’s (2006, p. 527) advice to start with
weakly informative uniform prior distributions on the random effects SDs. Several
researchers (including Gelman himself) debated the use of these hyperpriors when
the data provide little information about clusters (here raters) because uniform
distributions may put too much probability mass on unreasonably high values.
Various alternatives to these uniform hyperprior distributions were proposed and
tested (Gelman 2006; McNeish and Stapleton 2016; Polson and Scott 2012;
Spiegelhalter et al. 2004; Van Erp et al. 2019).

This study informs researchers which hyperprior distributions should be used
to estimate ICCs. We investigated the effect of different hyperprior distributions
on the bias, coverage rates, and efficiency of random-effect parameters and ICCs.
The remainder of this paper is structured as follows. First, we briefly discuss the
definition of IRR in terms of ICCs and their MCMC estimation. Second, we provide
a short overview of (properties of) hyperprior distributions for random effects.
Third, we present the results of a simulation study that tested the performance
of the random-effect parameters and ICCs using different hyperprior distributions.
We focus on conditions with very few raters, to draw attention to difficulties in
estimating IRR in conditions that are typical for observational studies. Finally, based
on the simulation results, we discuss implications for applied research and directions
for future methodological research.
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2 Interrater Reliability

2.1 Definition

Bartko (1966), Shrout and Fleiss (1979), and McGraw and Wong (1996) defined
IRR in terms of ICCs. They identified raters and subjects as the main sources
of variance in a rating process and decomposed each observation into the main
and interaction effects of these raters and subjects. Let Ysr be the score of
subject s as rated by rater r on attribute Y . Ysr is then decomposed into a grand
mean (μ), a subject effect (μs), a rater effect (μr ), an interaction effect, and
random measurement error. In practice, the subject × rater interaction and random
measurement error cannot be disentangled, so let μsr denote a combination of both
these elements. The decomposition of Ysr equals

Ysr = μ + μs + μr + μsr . (1)

If the raters are nested within subjects (i.e., a unique set of raters is used to rate each
subject’s attribute), μr and μsr cannot be disentangled. For simplicity, we ignore this
situation in this paper. Each of the effects in Eq. 1 are assumed to be uncorrelated
(Brennan 2001). The variance of Y can therefore be decomposed into the orthogonal
variance components of each of these effects, resulting in

σ 2
Y = σ 2

s + σ 2
r + σ 2

sr . (2)

If it is assumed that raters and subjects are randomly drawn from a larger population
of raters and subjects, respectively, the variances in Eq. 2 are modeled as random-
effect variances components.

The variances components in Eq. 2 are used for several definitions of IRR.
Each of these definitions is an ICC and defines IRR as the degree to which the
ordering (consistency: C) or absolute standing (agreement: A) of subjects is similar
across raters. In other words, the IRR is the degree to which subject effects can
be generalized over raters. Assume we have k raters rating each subject. The most
elaborated ICC (agreement based on the average rating of k raters) is defined as

ICC(A, k) = σ 2
s

σ 2
s + σ 2

r +σ 2
sr

k

. (3)

Other definitions of IRR are obtained by removing terms from Eq. 3, as is displayed
in Table 1. For more information about these ICCs and the underlying variance
decomposition, we refer to Bartko (1966), McGraw and Wong (1996), and Shrout
and Fleiss (1979).
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Table 1 Cross classification of ICCs in terms of type (agreement and consistency) and number
of raters (single rater, k > 1 raters)

Agreement Consistency

Single rater ICC(A, 1) = σ 2
s

σ 2
s +σ 2

r +σ 2
sr

ICC(C, 1) = σ 2
s

σ 2
s +σ 2

sr

Average of k raters ICC(A, k) = σ 2
s

σ 2
s +(σ 2

r +σ 2
sr )/k

ICC(C, k) = σ 2
s

σ 2
s +σ 2

sr /k

2.2 MCMC Estimation

The ICCs from Table 1 can be estimated using MCMC estimation of a Bayesian
hierarchical model. Let θ denote a model’s vector of parameters, and Y denote the
data. In the MCMC approach, the posterior distribution of the model parameters
given the data, P(θ|Y ), is estimated as proportional to the product of the prior
probability distribution of the parameters, P(θ), and the likelihood of the data
conditional on the parameters, P(Y |θ), that is, P(θ|Y ) ∝ P(θ)P (Y |θ) (Gelman
et al. 2013, p. 6–7).

The MCMC approach thus requires the specification of a prior probability
distribution for each parameter. Because MCMC treats each of the random effects
in Eq. 1 as parameters to estimate, their variance components in Eq. 2 are so-called
hyperparameters (i.e., they are parameters that describe the distribution of other
parameters). These hyperparameters require their own prior distribution (named
hyperprior distribution), which we discuss in more detail in the following section.
Depending on the software, the hyperparameters can be estimated in terms of
either random-effect SDs (which should be squared to obtain the random-effect
variances for the ICCs) or random-effect variances. For simplicity, we ignore the
terms hyperparameters and variance components in the remainder of this paper and
consistently use random-effect variances to refer to σ 2

s , σ 2
r , and σ 2

sr or random-effect
SDs to refer to the square roots of these random-effect variances.

MCMC estimation repeatedly samples from the posterior distributions, resulting
in an empirical posterior distribution for each (hyper)parameter. When deriving
ICCs, the posterior distributions of the random-effect variances are combined,
yielding an empirical posterior distribution for each of the ICCs. From these
empirical posterior distributions, Bayesian credible intervals (BCIs) can be derived
that quantify the uncertainty about the random-effect variances and the ICCs that
are calculated from these random-effect variances, for example, using percentiles as
limits or kernel density estimators to obtain highest posterior density (HPD) limits.

The main difficulty in estimating the ICCs from Table 1 is rooted in the esti-
mation of the random-rater effect variance, σ 2

r (Ten Hove, Jorgensen, & Ten Hove
et al. 2018; Ten Hove et al. 2019). Observational studies often involve few raters,
and, when these raters have been trained well, they vary little in the average ratings
that they provide. The data thus provide little information about, σ 2

r . As a result,
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its posterior is overwhelmingly influenced by the specified hyperprior distribution.
This typically results in an over- and inefficiently estimated random-effect variance.
Estimation difficulties of σ 2

r due to influential hyperprior distributions can, in turn,
result in under- and inefficiently estimated ICCs.

3 Hyperprior Distributions

The choice among hyperprior distributions for random-effect variances is frequently
discussed (see e.g., Gelman 2006; Gelman et al. 2013; Smid et al. 2019; Van Erp
et al. 2019). Prior and hyperprior distributions can be classified into informative or
uninformative distributions, proper or improper distributions, and default, thought-
ful or data-dependent distributions. For more information on these classifications,
we refer to Gelman (2006), Gelman et al. (2013, chapter 2), and Smid et al. (2019).

When raters are skilled and the subjects can be scored objectively, it is reasonable
to assume that raters differ little in their average ratings. We therefore believe that
the hyperprior distribution for σ 2

r should be weakly informative and put a relatively
large weight on small values compared to large values. The other random-effect
variances, σ 2

s and σ 2
sr , are typically obtained from larger sample sizes (i.e., N

(subjects) for σ 2
s and N (subjects) × k (raters) for σ 2

sr ). The data thus provide
more information about these random-effect variances, making their hyperprior
distributions less influential on the posterior compared to the hyperprior distribution
of σ 2

r . Because σ 2
s and σ 2

sr are expected to be larger than σ 2
r , their hyperprior

distributions should allow for large values.
Given these considerations, we prefer weakly informative, thoughtful hyperprior

distributions. Moreover, we prefer hyperprior distributions that yield proper poste-
rior distributions. We take these criteria into account while discussing three popular
hyperprior distributions for variance parameters: a uniform distribution (Gelman
2006; McNeish and Stapleton 2016), the inverse-gamma distribution (Spiegelhalter
et al. 2004), and the half-t or half-Cauchy distributions (Gelman 2006; McNeish
and Stapleton 2016; Polson and Scott 2012).

3.1 Uniform Distribution

The uniform distribution is a popular hyperprior distribution with two parameters:
a lower bound and an upper bound. This distribution implies a researcher’s believe
that all values within a specified range are equally likely. For random-effect SDs, the
uniform hyperprior distribution can be specified as weakly informative by using the
range

[
0, maxY −minY

2

]
(i.e., the smallest and largest possible SD), where maxY and

minY are the maximum and minimum value of Y , respectively. If maxY and minY

are estimated from the data, the uniform distribution is data dependent; if maxY

and minY are specified as the theoretically maximum and minimum values of Y ,
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respectively (e.g., using the minimum and maximum possible scores, such as anchor
points on a Likert scale), the uniform distribution is data independent. In practice,
it is unlikely to find a random-effect SD near the upper bound of

[
maxY −minY

2

]
.

Such a large upper bound is unintentionally influential on the posterior when the
data contain too little information about a parameter. Examples of little information
include small sample sizes but also when the random-effect variance is nearly zero.
However, it may be difficult to defend the choice of a hard upper bound of the
uniform posterior distribution that is smaller than the maximum possible SD. A
uniform hyperprior distribution performs best when it is specified for random-effect
SDs (e.g., σr ), rather than for random-effect variances (e.g., σ 2

r ). To yield proper
posteriors, a hyperprior distribution requires at least three clusters for random-effect
SDs, or at least four clusters for random-effect variances (Gelman 2006).

3.2 Inverse-Gamma Distribution

The inverse-gamma distribution is another popular hyperprior distribution for
random-effect variances, which is defined on a positive scale and has two param-
eters: a shape and scale parameter. This distribution is very sensitive to its specified
shape and scale parameters when the estimated σ 2 is small, and its specification
is therefore too influential for typical IRR studies in which σ 2

r is expected to be
low (Gelman et al. 2013, p. 315–316). Moreover, the inverse-gamma hyperprior
distribution yields improper posteriors when the shape and scale parameters are
specified as very uninformative (Gelman 2006). Therefore, although it is a com-
monly applied prior in many other settings (and potentially required as a conjugate
prior for Gibbs sampling), we consider the inverse-gamma hyperprior inappropriate
for our purpose.

3.3 Half-t or Half-Cauchy Distribution

The half-t and half-Cauchy hyperprior distributions were also proposed as hyper-
prior distributions for random-effect variances and are defined on a positive scale
(Gelman 2019; Polson and Scott 2012). The half-t distribution has three parameters:
a shape, location, and scale parameter. The half-Cauchy distribution is equivalent to
a half-t distribution for df = 1 and thus only has a location and scale parameter.
The half-Cauchy distribution has more kurtosis than t distributions having df > 1,
allowing the greatest probability density for extreme values while still placing most
probability density near the center of the distribution. If a wide range of possible
values is specified for the random-effect variances, these distributions are specified
as data independent and weakly informative. Especially for σ 2

r , we expect values
near zero, so a half-t distribution with higher df = 4 is slightly more informative
and is recommended for variance parameters that are expected to have values near
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the lower bound of zero (Gelman 2019). This may, however, be less beneficial for
the other random-effect variances in Eq. 2.

4 Simulation Study

4.1 Methods

4.1.1 Data Generation

We generated data from Eq. 1 using the parameters in Eq. 2. We fixed μ to 0 and
drew N = 30 values of μs from N(0, σ 2

sr = 1
2 ), k values of μr from N(0, σ 2

r ), and
30 × k values from from N(0, σ 2

sr = 1
2 ), and used Eq. 1 to obtain scores Ysr . The

choice to keep N , σ 2
s , and σ 2

sr constant were arbitrary but believed to be realistic for
observational studies with a small number of subjects.

4.1.2 Independent Variables

We varied the number of raters, the variance in the random-rater effects, the
hyperprior distributions of the random-effect SDs, the type of estimator, and the
type of BCI. The number of raters (k) had three levels: k = 2, 3, and 5. We
selected k = 2 because two is the minimum number of raters required to estimate
the IRR. And k = 2 is often used in the applied literature to estimate IRR. We also
specifically incorporated this low number to draw attention to estimation difficulties.
We selected k = 3 because a sample size of at least three is required to yield proper
posteriors for uniform distributions. We used k = 5 to see how the results of
different priors differed for slightly higher sample sizes.

The random-rater effect variance (σ 2
r ) had two levels: σ 2

r = .01 and σ 2
r = .04.

Random-effect variances extremely close to the lower bound of zero are typically
poorly estimated but are less influential in the ICCs. Therefore, we used a value
extremely close to zero and a slightly higher value to test whether increasing σ 2

r

improved the estimations. The population ICCs of ICC(A, 1) and ICC(A, k) ranged
from 0.48 to 0.83. ICC(C, 1) and ICC(C, k) do not include σ 2

r (Table 1) and are thus
identical across the levels of σ 2

r . Therefore, we further ignored the ICC(C, 1) and
ICC(C, k) in this study and focused on the estimation ICC(A, 1) and ICC(A, k).

The hyperprior distributions had three levels: uniform, half-t , and mixed. We
specified each of these hyperprior distributions for the random-effect SDs (i.e.,
σs , σsr , and σr ) rather than the random-effect variances. In the uniform condition,
we specified uniform hyperprior distributions over the range

[
0, maxY −minY

2

]
for

all random-effect SDs, with maxY and minY being estimated from the data. A
specified upper bound should not be data dependent, but we could not specify
a reasonable data-independent upper bound because our simulated data have no
natural boundaries such as Likert scales do. Nonetheless, this data-dependent upper
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bound will probably behave comparable to natural upper bounds for the random-
effect SDs, because the specified range still places too much probability mass on
unreasonably high values compared to the expected lower values. In the half-t
conditions, we specified a half-t(4,0,1) hyperprior distributions for all random-effect
SDs. In the mixed conditions, we used a uniform hyperprior distribution for σs and
σsr and a half-t hyperprior distribution for σr . We refer to Sect. 3 for the justification
of these choices.

We obtained point estimates of σr and the ICCs using two approaches: posterior
means (i.e., expected a posterior; EAPs) and posterior modes (i.e., maximum a
posteriori; MAPs). Small sample sizes, such as the small number of raters, can
result in skewed posterior distributions, especially for random-effect parameters
near the lower bound of zero. Modal estimates resemble their MLE counterparts
and are, especially for skewed distributions, preferred over the mean and median as
a measure of central tendency (Gelman 2006).

We obtained 95% BCIs using two approaches: Using 2.5% and 97.5% percentiles
as limits, and using the highest posterior density intervals (HPDIs). Percentiles are
readily provided by most MCMC software but are only appropriate for symmetric
unimodal distributions. HPDIs can be obtained from the empirical posterior distribu-
tion using kernel densities and accommodate skewness in the posterior distributions.
When the posterior is bimodal or non-symmetrical, these approaches may thus yield
very different results (for a brief discussion, see Gelman et al. 2013, p. 33).

The simulation design was fully crossed, resulting in 3 (k) × 2 (σ 2
r ) × 3 (hyper-

prior) = 18 between-replications conditions, for each of which we simulated 1000
replications. Within each of the 18 between-replication conditions, we investigated
bias for the two types of point estimate (EAPs and MAPs) and coverage rates for
the two types of interval estimate (percentiles and HPDI).

4.1.3 Parameter Estimation

We used MCMC estimation of Bayesian hierarchical models and specified the
hyperpriors of the random-effect SDs as discussed in the previous paragraph. We
used three independent chains of 1000 iterations. The first 500 iterations per chain
served as burn-in iterations, and the last 500 iterations of each chain were saved
in the posterior. This resulted in a posterior of 1500 iterations to estimate each
parameter. We checked convergence using the potential scale reduction factor, R̂,
and the effective sample size, Neff, of each parameter (Gelman 2006). If any of
the R̂ < 1.10, we doubled the number of burn-in iterations. This was repeated
until the model converged, or did not converge after the limit of 10,000 burn-in
iterations was reached, in which case the replication was discarded. Thereafter, we
checked whether each parameter’s Neff exceeded 100. If a parameter or ICC showed
an effective sample size that was too low, we increased the number of post burn-in
iterations based on the lowest Neff with a factor of 120/min(Neff).
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4.1.4 Software

We used the R software environment (R Core Team 2019) for data generation and
analyses, and the Stan software (Stan Development Team 2017) with the R package
rstan (Stan Development Team 2018) to estimate the Bayesian hierarchical
models and the ICCs. We obtained the MAP estimates using the modeest package
(Poncet 2019) and 95% HPDIs using the HDInterval package (Meredith and
Kruschke 2018). Our software code is available on the Open Science Framework
(OSF): https://osf.io/shkqm/

4.1.5 Dependent Variables

We evaluated the quality of the estimated ICCs and the random-rater effect SD, σr ,1

using four criteria: convergence, relative bias, 95% BCI coverage rates, and relative
efficiency. We calculated the percentage of converged solutions per condition, which
was preferably 100%. Let θ̄ denote the average EAP or MAP estimate of σr or
the derived ICC across replications in a condition, and let θ denote the population
parameter in that condition. We computed relative bias as θ̄−θ

θ
, and we used relative

bias > .05 as indicating minor bias and > .10 as indicating substantial bias. We
tested the 95% BCI coverage rates of both percentiles and HPDIs, using a coverage
rate < 90% and > 97% as a rule of thumb for defining the width of BCIs as, too
narrow or wide BCIs, respectively. We calculated relative efficiency as the ratio of
the average posterior SD of σr and the ICCs, relative to the SD of their posterior
means.2 A ratio of 1 indicates accurate estimates of variability. We used relative
efficiency < .90 or > 1.10 as indicating minor under- or overestimation of the
posterior SDs and relative efficiency < .80 or > 1.20 as indicating substantial under-
or overestimation of the posterior SDs.

4.2 Results

We provide a summary of the simulation results and diverted the complete results
to the authors’ OSF account. The results for the conditions with mixed hyper-
prior distributions and the conditions with half-t hyperprior distributions for each
random-effect SD were very similar. Therefore, we do not discuss the results

1We focused on σr instead of σ 2
r because our Stan program estimated random-effect SDs, from

which we derived the random-effect variances.
2We want to emphasize the difference between random-effect SDs, which quantify the variability
of the random effects, and the posterior SDs, which quantify the uncertainty about the estimated
parameters (the random-effect SDs and the ICCs).

https://osf.io/shkqm/
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of conditions with mixed hyperprior distributions. Similarly, the results for the
estimated ICC(A,k) resembled the results for ICC(A,1), so we only present the
results for the ICC(A,1).

4.2.1 Convergence

All replications in all conditions converged to a solution. The following results are
therefore based on 18 × 1000 = 18,000 replications.

4.2.2 Relative Bias

Figures 1 and 2 show the relative bias of the estimated σr and ICC(A,1) across
conditions. Both σr and ICC(A,1) showed less bias in conditions with a half-t
hyperprior distribution than in those with a uniform hyperprior distribution. EAPs
severely overestimated σr , whereas the MAP was an unbiased estimator of this
parameter in all conditions with k > 2. The MAP and EAP estimates of ICC(A,1)
were comparable. Neither σr or ICC(A,1) resulted in unbiased estimates in any
condition with k = 2. MAPs of both σr and ICC(A,1) were unbiased in all
conditions with k = 5.

Fig. 1 Relative bias of σr under different conditions. White areas, large bias (>10%); light-gray
areas, substantial bias (5–10%); dark-gray areas, minor bias (< 5%)
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Fig. 2 Relative bias of ICC(A,1) under different conditions. White areas, large bias (>10%); light-
gray areas, substantial bias (5–10%); dark-gray areas, minor bias (< 5%)

Fig. 3 95% BCI coverage rates of σr under different conditions. White areas, substantially too
narrow (< 90%) or too wide BCIs (> 97%); light-gray areas, slightly too narrow (90 ≤ 95%) or
too wide BCIs (95 > 97%)

4.2.3 95% BCI Coverage

Figures 3 and 4 show the 95% BCI coverage rates of σr and ICC(A,1), respectively,
across conditions. HPDIs were too wide for σr but yielded nominal coverage rates
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Fig. 4 95% BCI coverage rates of ICC(A,1) under different conditions. White areas, substantially
too narrow (< 90%) or too wide BCIs (> 97%); light-gray areas, slightly too narrow (90 ≤ 95%)
or too wide BCIs (95 > 97%)

for the ICC(A,1) for more than two raters. Percentiles yielded nominal coverage
rates for σr and for the ICC(A,1) but only for k > 2.

4.2.4 Relative Efficiency

Figure 5 shows the relative efficiency of the estimated σr and ICC(A,1) across
conditions. Both hyperprior distributions yielded posterior SDs of both σr and
ICC(A,1) that were considerably larger than the actual sampling variability of these
estimates. The overestimation of posterior SDs decreased when k increased but
remained severe even in conditions with k = 5. Overestimation of the posterior
SDs was more severe for σr than for ICC(A,1) and comparable for both hyperprior
distributions.

5 Discussion

The results of this study indicate that half-t hyperprior distributions have a slight
advantage over uniform hyperprior distributions for estimating IRR with ICCs.
The best performing condition combined MAP point estimates, percentiles based
BCIs, half-t hyperprior distributions, and k > 2 raters. For k = 2, ICCs
were underestimated and inefficient. This bias and inefficiency decreased as k
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Fig. 5 Relative Efficiency of σr and ICC(A,1) under different conditions. White areas: highly
inefficient (>20%); Light-gray areas: substantial inefficient (10–20%); Dark-gray areas: slightly
inefficient (< 10%)

increased. For k > 2 (the conditions with unbiased estimates), the combination
of a half-t hyperprior distribution with percentile BCIs yielded nominal coverage
rates. Overall, the number of raters used to estimate IRR had a larger effect on the
performance of the MCMC estimates than the choice of hyperprior distributions.

The results of this study are in line with earlier research indicating that random-
effect variances cannot be properly estimated when the number of clusters (here
raters) is as small as two (Gelman 2006). This should discourage researchers from
estimating the IRR with ICCs when data are collected from as few as two raters,
a situation that we observed frequently in the applied literature. Using k > 2
raters in an observational study may sound like a high burden for researchers.
Fortunately, estimation of the IRR in conditions with scarce resources could already
be improved by randomly sampling a subset of raters for each subject from a larger
rater pool (Ten Hove et al. 2019). This would result in a larger rater-sample size,
with missing at random data. This resembles an often seen practice (Viswesvaran
et al. 2005), which diminishes the burden per rater and allows to keep the total
number of observations at the same level as a fully crossed design in which each of
two raters rates each subject. It would be interesting to test the combination of the
half-t hyperprior distribution with such a planned missing data design in a future
study.

Our simulation study was not comprehensive concerning the number of con-
ditions. The performance of the ICCs in our simulation study may thus, for
example, depend the population values of the other random-effect variances in the
ICCs. Our statements about obtaining (in)appropriate estimates for these ICCs can
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therefore not readily be generalized to conditions with differing variability in each
of the involved effects. However, the results on σr itself are promising, because
its estimation seems to improve when the variability in the rater effects increases
only slightly (at least for k > 2). With increasing magnitude, the rater variance
had a larger effect on the ICCs, and arguably, the quality of its estimates has a
larger influence on the quality of the ICC estimates. Presumably, the ICCs will thus
be estimated more accurately and efficiently when the variability in rater effects
increases.

In conclusion, we advise researchers to use an half-t hyperprior distribution for
the random-rater effect SD, MAP point estimates, percentiles based BCIs, and, most
importantly, at least three raters to estimate the IRR using an MCMC approach.
However, we want to highlight Gelman’s (2006) advice that every noninformative
or weakly informative (hyper)prior distribution is inherently provisional, implying
that researchers should always inspect whether their posterior forms a proper
distribution. He argued that, if an approach yields improper posteriors, there is more
prior information available that needs to be incorporated in the estimation procedure.
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A Hierarchical Joint Model for Bounded
Response Time and Response Accuracy

Sandra Flores, Jorge Luis Bazán, and Heleno Bolfarine

Abstract Response time (RT) models traditionally consider positive continuous
distributions, for instance, the lognormal, gamma, exponential, and Weibull distri-
butions, with support < 0,∞ >. However, usually in Assessment, the time that an
examinee takes to complete a test is limited and not infinite as the previous models
assume. By considering this fact, the purpose of this article is to model RT following
a bounded distribution and then in combination with response accuracy to obtain a
joint model. Specifically, the use of the simplex distribution is proposed to model RT
adopting the Bayesian inference. Performance of the proposed model is evaluated in
a simulation study and the PISA 2015 computer-based reading data is used to apply
the model.

Keywords Bounded distribution · Hierarchical model · Limited variable ·
Response time

1 Introduction

Currently, with the use of personal computers (PCs) in Assessment as, for example,
using PCs by the Programme for International Student Assessment (PISA), the time
that an individual spends in resolving an item becomes easily available. Several
proposals of models are using those Response Times (RTs) as additional information
estimating the ability of examinees. For instance, see van der Linden (2007), Fox
et al. (2007), Klein Entink (2009), Im (2015), and Zhan et al. (2018).
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Studies of RT to investigate mental activity were developed in literature since
a long time; they were associated with the study of the speed to answer a Test.
A review of those studies is presented in the work of Schnipke and Scrams, see
Schnipke and Scrams (2002). At the beginning, based in the number of correct
responses in a Test, it was thought that RTs and accuracy measured the same
construct, but further investigations did not support this statement. From this
definition and also from the increasing availability of RTs data, several models for
speed were suggested in literatures which use RT models for the items of a Test.

A classification for this time models, suggested by Fox et al. (2007), is given
in three ways: the first one models RT in the IRT context, the second one models
RT separately, and the third one models RT and response accuracy in a hierarchical
way, with a trade-off relation between speed (measurement of response time) and
accuracy (measurement of correct response). The last one permits to empirically
understand the relation between speed and accuracy.

Because of the lower bound at zero, a classical distribution assumed for RT
is the lognormal distribution. Several works, for instance, Schnipke and Scrams
(1999), show the best performance of this selection. However, in a more realistically
thinking, time is not infinite. It has an upper bound, since the Test has a time set to
complete all responses. This work investigates the use of a limited distribution to
model the proportion of time spent in an item. Specifically, the simplex distribution
(Barndorff-Nielsen and Jorgensen 1991; Jorgensen 1997) is considered in order to
model RTs. After that, an evaluation of the performance of this model is presented.

Additionally, the model of proportion of time previously suggested in the
hierarchical framework proposed by van der Linden (2007) is applied. That proposal
suggests modeling responses (as accuracy) and RTs (as speed) in a jointly way.
Accuracy model is named in this work as IRT part and speed model as RT part.
The two constructs (speed and accuracy) are specified in two levels: the first one,
for individual level, implements the trade-off relation between accuracy and speed,
and the second one is at a population level, it means for the complete group of
examinees.

The remainder of this paper is organized as follows: Sect. 2 defines the simplex
distribution that will be used to model RTs; in Sect. 3 the model for limited
or bounded response time is presented, which is used in an hierarchical model
in Sect. 4. Bayesian estimation of the proposal is studied in Sect. 5. Simulation
studies comparing the performance of the suggested model are shown in Sect. 6, an
application of the model is presented in Sect. 7, and final comments are discussed in
Sect. 8.

2 The Simplex Distribution

Simplex distribution was introduced by Barndorff-Nielsen and Jorgensen (1991)
and Jorgensen (1997) being part of a general family named as dispersion models.
The univariate simplex distribution S(μ, σ 2), with parameters μ ∈ (0, 1) as a
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position parameter and σ 2 > 0 as a dispersion parameter, is given by the following
probability density function:

p(x|μ, σ 2) = 1√
2πσ 2{x(1 − x)}3

exp{− (x − μ)2

2σ 2x(1 − x)μ2(1 − μ)2 } (1)

where mean and variance are given by the following expressions:

E(X|μ, σ 2) = μ

V ar(X|μ, σ 2) = μ(1 − μ) − 1√
2σ 2

exp{ 1

σ 2μ2(1 − μ)2 }Γ {1

2
,

1

2σ 2μ2(1 − μ)2 }

with Γ (a, b) = ∫ ∞
b

ta−1e−t dt being the incomplete gamma function.
Some shapes of simplex density are depicted in Fig. 1. It is possible to see how

simplex distribution handle different forms of the density. The simplex distribution
is more flexible than other distributions, for example, it handles bimodality when
σ 2 increases Quintero (2017). Note, expectation value is the mean parameter μ

and variance depends jointly on mean and dispersion parameters (μ, σ ). This
distribution was used as a generalized linear model in Song and Tan (2000), and
an R package for simplex regression analysis was developed by Zhang et al. (2016).

3 The Bounded Response time (BRT) Model

The present section suggests a model to analyse RT as a bounded variable. An
examinee, being evaluated to determine his or her ability, typically takes a test with
a fixed period of time. Then, he or she can distribute this fixed time in all items
according to his or her ability and to strategies applied during this fixed period of
time. For this reason, a model for limited response time is proposed.

Considering a RT data set for I examinees in J items, each RT is the realization
of a random variable Tij , where i denotes an examinee and j an item. Defining dj

as the greater time that some examinee spends in an item j and cj as the smaller
time, it is possible to identify the proportion of time (PT), Zij , that an examinee i

spends in item j as follows:

Zij = Tij − cj

dj − cj

Thus, Zij is in < 0, 1 > interval and could be modeled with the simplex
distribution having parameters defined as follows:

zij |τi, βj , αj ∼ S(μij , 1/α2
j ) (2)
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Fig. 1 Simplex density functions for different values of μ and σ

g(μij ) = βj − τi

where S(., .) denotes the simplex distribution as defined in Eq. (1); note that α =
1/σ gives a precision parameter interpretation. βj ∈ R is the position parameter
for item j , τi ∈ R is the position parameter for examinee i, and αj > 0 is the
precision parameter and could be interpreted in a similar way as the discrimination
power for the item j . Link function g is defined as the logit function, meaning
g(x) = log( x

1−x
). Simplex distribution preserves and models the asymmetric

behavior of RTs.
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4 Hierarchical Joint Model for Bounded Response Time
and Response Accuracy (HBRT)

This section suggests a model for speed, which has bounded time and accuracy. This
proposal follows the work of van der Linden, see van der Linden (2007). For that
purpose, consider a data set which contains response accuracy, yij ∈ {0, 1}, and
proportion of response time, zij ∈< 0, 1 >, from an examinee i and an item j ,
which is jointly modeled in two levels as follows:

In the first level, speed and accuracy are modeled using two distributions.
Response accuracy, correct and incorrect responses for the items, is modeled using
the two-parameter IRT probit model. In other words,

yij | θi, aj , bj ∼ Bernoulli(pij ) (3)

pij = p(Yij = yij | θi, aj , bj ) = Φ(aj (θi − bj ))
yij (1 − Φ(aj (θi − bj )))

1−yij

where variable Yij follows a Bernoulli probability function with probability of
correct response p(Yij = 1 | θi, aj , bj ) = Φ(aj (θi − bj )). The ability parameter
for examinee i is given by θi ∈ R. aj > 0 and bj ∈ R denote parameters for item j

which are discrimination and difficulty, respectively.
On the other hand, proportion of RT, zij , is modeled according to proposal given

in Eq. (2), where the probability density function of variable Z is given as follows:

p(zij |τi, αj , βj)= αj√
2π{zij (1 − zij )}3

exp{−
α2

j (zij− 1
1+e

−(βj −τi )
)2

2zij (1−zij )(
1

1+e
−(βj −τi )

)2( 1
1+e

βj −τi
)2

}

(4)

with τi ∈ R being the speed parameter of the examinee i and item parameters, as
described in Sect. 3, αj > 0 and βj ∈ R are discrimination and time intensity,
respectively.

As a second level, assuming conditional independence, for each examinee and
item responses, considering ability and speed parameters ξi = (θi, τi), the joint
distribution takes the form:

p(y, z|ξ , ν) =
I∏

i=1

J∏
j=1

p(yij |θi, aj , bj )p(zij |τi, αj , βj ) (5)

where p(yij | .) and p(zij | .) are defined as in Eqs. 3 and 4, respectively.
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5 Bayesian Estimation

In order to estimate the proposed joint model under a Bayesian approach, likelihood
is specified, then the priors for the parameters in the model and finally the posterior
distribution is obtained. Likelihood function is given by the following equation:

L(ξ , ν|y, z) =
I∏

i=1

J∏
j=1

p(yij |θi, aj , bj )p(zij |τi, αj , βj )p(ξi |μξ ,Σξ )p(νj |μν,Σν)

(6)

where ξ = (ξ1, . . . , ξI ) represents the vector of abilities and speed parameters for
each one of the examinees and ν = (ν1, . . . , νJ ) is the vector of item parameters,
νj = (aj , bj , αj , βj ).

Assuming that p(ξi |μξ ,Σξ ) follows a bivariate normal prior distribution, two
marginal normal distributions are defined as p(θi |μθ, σ

2
θ ) and p(τi |μτ , σ

2c
τ ), where

μτ = ρθτ θi and ρθτ provides the relation between θ and τ , also σ 2
τ = σ 2c

τ + ρ2
θτ

(Fox et al. 2007). Additionally, it is assumed that vj follows a multivariate normal
distribution of dimension 4, with density function given by

p(νj |μν,Σν) = |Σ−1
ν |1/2

(2π)5/2 exp

{
−1

2
(νj − μν)

T Σ−1
ν (νj − μν)

}

which has a mean vector μν = (μa, μb, μθ , μτ ) and a covariance matrix

Σν =

⎡
⎢⎢⎢⎣

σ 2
a σab σaα σaβ

σba σ 2
b σbα σbβ

σαa σαb σ 2
α σαβ

σβa σβb σβα σ 2
β

⎤
⎥⎥⎥⎦ .

In order to identify the most suitable joint model structure, following van der
Linden (2006, 2007), the mean of speed is fixed as μτ = 0, the mean of accuracy
as μθ = 0, and the variance of accuracy as σ 2

θ = 1. Considering that responses give
the estimation of item parameters, no constraint is defined for item parameters.

This section adopts the Bayesian approach to estimate the parameters of the
model previously proposed. In this approach the conclusion about a parameter is
given in terms of probabilities which are conditional regarding the observed values
(Gelman et al. 1995). Models for responses and response times usually adopt the
Bayesian approach, as for example, van der Linden (2007); Klein Entink (2009); Im
(2015); Zhan et al. (2018).

Since the distribution of the parameter depends on hyper-parameters, the follow-
ing prior distributions are defined in order to complete the model:

ρθτ ∼ N (0, σ 2
ρ ) (7)

σ 2
τ ∼ Inverse − Gamma(v1, v2) (8)
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Σν ∼ Inverse − Whishart(Σ−1
ν0 , vν0) (9)

μν |Σν ∼ MVN(μν0,Σν) (10)

σ 2
ρ , v1, v2 take 0.1 value, giving little information for the model. Σν0 is an identity

matrix, vν0 = 4 and μν0 = (0, 0, 0, 0) (van der Linden 2007).
The posterior distribution of the parameters is given by the following equation:

p(ξ , ν, σ 2
τ , ρθτ ,μν,Σν |y, z) ∝ p(y, z|ξ , ν)p(ξ , ν)p(σ 2

τ )p(ρθτ )p(μν |Σν)p(Σν)

(11)
The implementation of the proposed model uses R2WinBUGS R package. This

package runs under WinBUGS software, which is an interactive Windows version
of the BUGS program for Bayesian analysis of complex statistical models using
Markov Chain Monte Carlo (MCMC) techniques (Lunn et al. 2000). The code for
the model is released in the appendix.

6 Simulation Studies

A simulation study comparing the performance of the suggested model for the pro-
portion of RTs using the simplex distribution comparing the estimation parameters
for the lognormal model is developed in this section. A second study for evaluating
parameter recovery in the hierarchical limited response time model is also presented
in this section.

6.1 Bounded Response Time (BRT) Model Regarding
the Classical Lognormal Model

The first study has the purpose of knowing the performance of the simplex model
in recovering parameters and comparing this with the lognormal model. In order to
compare application data parameters, where response times are defined as values
inside the interval (0, 1), 50 replicated data sets from the simplex model were
generated. Each one contains 30 items and 1000 examinees with fixed values for
α and β. Those fixed values are similar with results of the application data using
limited response times. τ values were drawn from a normal distribution with zero
mean and standard deviation of 0.5. The replicated data sets were fitted with the
simplex model.

In the case of lognormal model, 50 replicated data sets were generated. Values
for α′ and β ′ were fixed as similar values from results of the application data using
response times in minutes. τ ′ values were drawn from a normal distribution with
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Table 1 Mean of percentage of times where CI contains the parameter (PCI) in the simplex RT
model and the lognormal RT model

model Simplex Lognormal

Parameter precision α̂ position β̂ precision α̂′ position β̂ ′

PCI 0.951 0.975 0.945 0.999

Time 41 min 7 min

zero mean and standard deviation of 0.5. Each one of the replicated data sets was
fitted with the lognormal model.

As the responses in both models have different scales, the percentage of times in
which the Credible Interval (CI) of the estimated parameters contain the population
parameter, were calculated for each model. Table 1 shows the mean of these
percentages and also the mean time for fitting each model is presented. The posterior
mean of position parameter β and of precision parameter α for each replica are
shown, for the simplex model, in Fig. 2. In the case of the lognormal model, as
parameters analogous to the ones of simplex model are shown in Fig. 3.

The simplex model has a good performance, suggesting the use of it as an
alternative model for RTs.

6.2 Parameter Recovery in the Hierarchical Joint Model for
Bounded Response Time and Response Accuracy

In order to know characteristics regarding parameter recovery of the Hierarchical
joint model, 25 replicated data sets from this model were generated and fitted with
it. Population values from item parameters ν = (log(a), b, log(α),β) were drawn
from a multivariate normal distribution with vector of means given by

μν = (−0.599,−0.616,−2.826,−2.060)

and covariance matrix Σν ; those values are fixed, saving comparisons with applica-
tion data.

Σν =

⎡
⎢⎢⎣

0.15 0 0 0
0 0.5 −0.2 0.2
0 −0.2 0.5 0
0 0.2 0 0.3

⎤
⎥⎥⎦
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Fig. 2 Boxplots of the posterior mean of item estimates in the simplex RT model

In the case of parameters of examinees ξ = (θ , τ ), they were drawn from a
bivariate normal distribution with vector zero mean and covariance matrix of Σξ

Σξ =
[

1 0.05
0.05 0.15

]

giving ρθτ = 0.05 and σ 2
τ = 0.15.
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Fig. 3 Boxplots of the posterior mean of item estimates in the lognormal RT model

Results from this study arrive to the following posterior mean estimates: ˆρθτ =
0.05017, σ̂ 2

τ = 0.1919. Regarding item parameters, Table 2 summarizes the root-
mean-square error (RMSE) and the mean average error (MAE) for the posterior
mean of item estimates.
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Table 2 RMSE and MAE in
parameter recovery for the
HBRT model

Parameter RMSE MAE

IRT part a 0.1999 0.1983

b 0.4612 0.4605

RT part α 0.0009 0.0007

β 0.0267 0.022

7 Application

In this section the model suggested in the previous section is applied using the
PISA 2015 computer-based data for 28 reading items. Those items belong to the
R1 and R3 clusters in bookid 37; see OECD (2017) page 38. Completed responses
for clusters R1 and R3 were selected to avoid missing data. Each cluster has been
designed to complete in 30 min, and after two clusters, a break is given for the
students. Thus, in theory, the total time spent in the two clusters should not be more
than an hour. Some cases which are higher than 70 min were considered as problems
in the application and dropped from the analysis. A total of 4960 RTs and responses
for 28 items from 53 countries or economies were used to apply the model.

The proportion of RT for an examinee i in the item j , zij , was calculated using
the transformation suggested in Sect. 3, that is, zij = tij

dj
, where dj is the greater time

that an examinee spends in the item j . One valuable feature of this transformation
is that it preserves the asymmetric behavior of the time, as is possible to see in
the Fig. 4.

Three items, out of the 28, had partial credit. A transformation as correct and
incorrect responses was used for those items, making partial credit an incorrect
response.

The HBRT model proposed in Sect. 4 was fitted to this data following the esti-
mation method described in Sect. 5. For this application, the implementation used
16,000 iterations; 4,000 iterations were as burning, and to avoid autocorrelation,
a thin of four was selected. The posterior average of different item parameters
regarding the IRT and RT parts of the model depicted in the Fig. 5, suggests
interpretation of items’ characteristics and can be used in posterior analysis.
Descriptive analysis of posterior distributions of personal parameters θi and τi is
not showed here.

8 Final Comments

In this work, the simplex distribution is used to model the proportion of response
time as one alternative formulation to traditional RT models which assume that the
time to answer a test is unlimited and then a lognormal distribution is used. This
model’s handling bounded RT performs satisfactorily. In addition, a hierarchical
bounded response time (HBRT) model was also formulated. HBRT model uses RTs
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Fig. 5 (a) IRT item parameters and (b) Bounded RT item parameters for each one of the 28
selected Reading items from PISA 2015

and responses jointly, and a relation for the two constructs (accuracy and bounded
speed) is also modeled.

Simulation studies suggest good performance of the HBRT model as an alterna-
tive hierarchical model proposed by van der Linden (2007). Also, the application
developed shows several possibilities for the model proposed to Assessment. Future
works could be developed using asymmetric distributions for accuracy and speed.

Appendix

This appendix has the BUGS code for the HBRT model. Since the list of dis-
tributions available in WinBUGS does not contain the simplex distribution, the
“zero poisson” method was implemented in order to simulate from the simplex
distribution as suggested in the WinBUGS manual (Spiegelhalter et al. 2003).

# Hierarchical joint simplex for bounded response
time and responses (HBRT) model
{

for (j in 1:J){
psi[j,1:4] ~ dmnorm(mu_i[],Omega_i[,])
a[j] <- exp(psi[j,1])
phi[j]<-exp(psi[j,3])

alpha[j]<-sqrt(phi[j])
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}

for (i in 1:I){
theta[i] ~ dnorm(0,1)

cm[i]<-rho*theta[i]
tau[i] ~ dnorm(cm[i],ctau)

for (j in 1:J){
u[i,j] ~ dbern(p[i,j])
m[i,j] <-a[j]*(theta[i]-psi[j,2])
p[i,j] <- phi(m[i,j])

zeros[i,j]<-0
zeros[i,j]~dpois(lik[i,j])
lik[i,j]<- log(1000*3.141593)-.5*log(phi[j])+1.5*log

(z[i,j]*(1-z[i,j]))+0.5*phi[j]*dev[i,j]
dev[i,j]<-pow((z[i,j]-mu[i,j]),2)/((z[i,j]*

(1-z[i,j]))*
pow((mu[i,j]*(1-mu[i,j])),2))

logit(mu[i,j])<-psi[j,4]-tau[i]
}

}

ctau ~ dgamma(0.1,0.1)
rho ~ dnorm(0,0.1)

mu_i[1:4] ~ dmnorm(mm[],Omega_m[,])
Omega_i[1:4,1:4] ~ dwish(Ri[,],4)
Sigma_i[1:4,1:4] <- inverse(Omega_i[,])
Omega_m[1:4,1:4] ~ dwish(Ri[,],4)

}
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Selecting a Presmoothing Model
in Kernel Equating

Gabriel Wallin and Marie Wiberg

Abstract In the kernel method of test score equating, the first step of the procedure
is to presmooth the score distributions. The most common way of doing so is by
fitting a log-linear model to the observed-score distributions. In this way, irregu-
larities in the score distributions are smoothed, yielding a more stable estimated
equating transformation. Within the kernel equating framework, an alternative way
of presmoothing by using item response theory models has recently been suggested.
There are furthermore several model selection criteria available for both of these
classes of models. Here the model selection criteria are studied for both log-linear
and item response theory models. Specifically, the likelihood ratio, AIC, and BIC
measures are compared using real admissions data. Results show that the different
model selection criteria result in equated scores that have real impact differences.

Keywords Model selection · Log-linear models · Item response theory

1 Introduction

Test score equating is a family of statistical models and methods that are used
to make test scores comparable among different test versions. Post equating, the
scores on these different test versions may be used interchangeably (González
and Wiberg 2017). In test score equating in general and in the kernel equating
(KE) framework (von Davier et al. 2004) in particular, a first step is typically to
presmooth the score distributions with a statistical model to reduce irregularities
before the score distributions are equated. The underlying assumption is thus that the
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population score distributions are smooth. Log-linear models are the most common
way to presmooth test score distributions and have been shown to have positive
effects on equating accuracy (Hanson 1991; Livingston 1993; Moses and Holland
2007; Moses and Liu 2011). Other statistical models which have been used for
presmoothing in equating include the beta-4 model (Kim et al. 2005), the cubic B-
spline, direct presmoothing (Cui and Kolen 2009), and item response theory (IRT)
models (Andersson and Wiberg 2017). To choose a suitable model, different model
selection criteria can be used; see Moses and Holland (2010a) for an evaluation
for log-linear models. Further, Moses and Holland (2010b) studied the effects of
the model selection criteria on traditional equipercentile equating which uses linear
interpolation instead of kernel functions to create (piecewise) continuous functions.

The overall aim of this study is to examine the effect of model selection criteria
for log-linear and IRT models in the presmoothing step within the KE framework
and examine the model sensitivity in the equated scores. We will examine this
effect using a real college admissions test for the non-equivalent groups with anchor
test (NEAT) design. Specifically, we will study three of the most commonly used
model selection criteria, namely, the likelihood-ratio chi-square statistic, the Akaike
information criterion (AIC, Akaike 1981), and the Bayesian information criterion
(BIC, Schwarz 1978). The study is limited to log-linear modeling and IRT modeling
as these are currently implemented in the KE framework. This study is different
from previous studies (e.g. Moses and Holland 2010a, b), as no previous study exist
which evaluates model selection strategies for log-linear models and IRT models
within the KE framework.

The rest of the paper is structured as follows. First an introduction to test score
equating is given, followed by a brief description of KE. Next, brief presentations
of log-linear and IRT presmoothing are given followed by an empirical study and
its results. The paper ends with a discussion with some concluding remarks and
practical recommendations.

2 Test Score Equating

Let the test scores on test forms X and Y be denoted by X and Y, respectively.
Assume that X and Y are random variables from the populations P and Q. In the
NEAT design, we assume that the test takers belong to different population, i.e.,
P �= Q, and that we have access to a number of common anchor items, which can
be used to compare the difficulty level of the test forms and the ability of the test
takers. Let T be the target population of the equating. We can then define the test
score distribution of X and Y as FX(x) = Pr (X ≤ x| T) and GY (y) = Pr (Y ≤ y| T).
To find an equivalent test score y on test form Y for a test score x on test form X we
assume that X and Y are continuous, so that we can use the equipercentile equating
transformation

y = ϕY (x) = G−1
Y (FX(x)) . (1)
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2.1 Kernel Equating

KE is an observed-score equating framework which comprises five steps: (i)
presmoothing the observed-score distributions, (ii) calculating the score probabil-
ities, (iii) continuing the empirical score distributions, and (iv) equating and (v)
computing of accuracy measures. Denote the unknown score probabilities in the
target population T by rj = Pr (X = xj| T), j ∈ [1, J], and sk = Pr (Y = yk| T),
k ∈ [1, K]. The estimated score probabilities r̂ = (

r̂1, . . . , r̂j
)t and ŝ = (

ŝ1, . . . , ŝK
)t

are obtained from the fitted values of the presmoothing model, via a design
function that is determined by the data collection design. Let �(·) be the standard
normal distribution function and denote the bandwidth by hX , which determines the

smoothness of the function. Further, let μ̂X = ∑
j xj r̂j and âX =

√
σ̂ 2

X/
(
σ̂ 2

X + hX

)
,

where σ̂ 2
X = ∑

j

(
xj − μ̂X

)2
r̂j . Then, the estimated continuized score distribution

of X can be approximated by

F̂hX
(x) =

J∑
j=1

(
x − âXxj − (

1 − âX

)
μ̂X

hXâX

)
.

The continuous score distribution ĜhY
for the Y scores can be obtained similarly.

For the rest of the paper, only operations connected to the X scores are shown as it
is similarly for the Y scores. The continuous distributions are placed into Eq. 1 to
obtain the equating transformation

ϕ̂Y (x) = Ĝ−1
hY

(
F̂hX

(x)
)

= G−1
hY

(
FhX

(
x; r̂

) ; ŝ
)
.

In the last step, different accuracy measures are examined – especially the
standard error of equating (SEE; von Davier et al. 2004) defined as

SEEY (x) =
√

Var
(
ϕ̂Y (x)

)
.

3 Presmoothing Options

3.1 Log-Linear Models

Log-linear models have been used extensively to estimate the rj:s and sk:s. Let nj

and mk denote the number of test takers scoring X = xj and Y = yk, respectively,
with

∑
jnj = N and

∑
kmk = M. Denote the probability vectors for n1, . . . , nJ and

m1, . . . , mK with p and q, respectively. Assume that n = (n1, . . . , nJ)t ∼ Multi-
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nomial(N, p) and m = (m1, . . . , mJ)t ∼ Multinomial(M, q) and that n and m are
independent. The log-likelihood function for the X scores can then be defined as

lr =
J∑

j=1

nj log
(
rj
)
.

To estimate the score probabilities, we can use the log-linear model

log
(
rj
) = β0 +

I∑
i=1

βix
i
j +

H∑
h=1

βa,ba
h
k +

D∑
d=1

H∑
h=1

βa,ba
h
k βxa,dex

d
j ae

k, (2)

where β0 is a normalizing constant, β i is a parameter to be estimated, and xj : s
and ak : s are functions of the test scores and anchor scores, respectively. When
the parameters of the log-linear model are estimated with maximum likelihood, the
moments of the estimated distributions match those of the empirical distributions
(Moses and Holland 2010a, b). This means that for the log-linear model in Eq. 2, I
and H numbers of moments in the marginal distributions of X and A, respectively,
are preserved, and D and E set the number of cross-moments in the joint distribution
of X and A that are preserved. In practice, a Poisson regression model is typically
used as the frequencies conditional on the sum of the frequencies follow a Poisson
distribution.

3.2 Item Response Theory Models

IRT models can be used in the presmoothing step as an alternative to log-linear mod-
els, as score probabilities can be obtained by using the Lord and Wingersky (1984)
algorithm. Denote test takers’ latent ability parameter θ ∈ {−∞, ∞}, and denote the
probability of a randomly chosen test taker answering item lX ∈ {1, . . . , kX} from
test form X with Pxlx

and likewise PYlY
for item lY ∈ {1, . . . , kY} from test form Y.

If the three-parameter logistic (3PL) model is used, the probability of a randomly
chosen test taker answering item lX correctly is defined as

PXlX
= clX + 1 − clX

1 + exp
(−alX

(
θ − blX

)) ,

where alX ∈ [0, ∞} is the discrimination of item lx, blX ∈ {−∞,∞} is the difficulty
of item lX , and clX ∈ [0, 1] is the lower asymptote (guessing) parameter. If clX = 0,
we instead have the two-parameter logistic (2PL) model, and if, additionally, alX =
1, we have the one-parameter logistic (1PL) model. In the empirical study of Sect.
5, the 1-PL, 2-PL, and 3-PL models are the candidate models considered for kernel
equating using IRT.
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4 Presmoothing Model Selection Criteria

For both classes of models, we will use the likelihood ratio test, the AIC, and
BIC measure as model criteria when we choose the presmoothing model. This
is due to the widespread use of each of these measures throughout statistics and
psychometrics.

The likelihood-ratio chi-square statistic is asymptotically chi-square distributed
and is defined as

W 2 = 2
∑
j

nj log

(
nj

Nrj

)
,

the AIC is defined as

W 2 + 2 (I + 1) ,

and the BIC is defined as

W 2 + [
1 + log N

]
(I + 1) .

It should be noted that the likelihood-ratio chi-square evaluates fit using signifi-
cance testing. The procedure for model selection can thus be performed by selecting
the simplest model with a nonsignificant chi-square statistic. The AIC and BIC
measures on the other hand belong to the class of parsimonious model selection
criteria. The general idea for these types of measures is to balance the fit of the
model with the parameterization used to achieve that fit.

5 Empirical Study

In this section, the sensitivity of the equated values to changes of the presmoothing
model is investigated using admission data from the Swedish Scholastic Aptitude
Test (SweSAT). SweSAT is a paper and pencil test used in the application process to
higher education in Sweden. Test results are valid for 5 years, and there is no upper
limit on how many times one is allowed to take the test. It is always the best, valid
result that is used when a test taker applies to a university program. SweSAT consists
of two parts, and here a sample of the quantitative part of the spring administration
of 2015 will be examined. Previous studies have shown that test groups of the
SweSAT typically are non-equivalent (Lyrén and Hambleton 2011), meaning that
the NEAT design is more appropriate than, for example, the equivalent group design.
We will used the NEAT design with chained equating, meaning that the test forms
are equated in a link, from the old test form via the anchor test to the new test form.
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5.1 Evaluation Measure and Study Design

Within statistics and psychometrics research, it is a standard practice to evaluate an
estimator by calculating its bias and mean squared error under a controlled setting
such as a simulation study. This would require the possibility to define the true
parameter value. For equating studies however, this is complex. This is partly due
to the difficulty of generating simulated data that does not favor any particular
method. Instead, equating-specific measures and summary indices have normally
been employed. One example of the former is the difference that matters (DTM),
defined as the difference between scale scores and equated scores that are larger than
half a score unit (Dorans and Feigenbaum 1994), and an example of the latter is the
discrepancy between the equating estimator and a reference equating transformation
(e.g., Han et al. 1997). Recently, Wiberg and González (2016) proposed traditional
statistical evaluation measures for the equating transformation such as bias, standard
error, and mean squared error. This has partially inspired the method of evaluation
in this study.

We follow the approach of Lord (1977) and Leôncio and Wiberg (2018) by
splitting the X test form into two matrices of equal size. The original data contained
80 items and 40 anchor items given to 2826 test takers. After the split, we had
two forms containing 80 items and 40 anchor items each, administered to 1413 test
takers. One of the matrices will be treated as test form X, and the other matrix
will be treated as test form Y. By doing so, the two test forms are equal, and so it
follows that ϕ(x) = x. We will thus be able to calculate the error of the equating
transformation, which we define as

e(x) = ϕ̂(x) − ϕ(x). (3)

The term e(x) will reflect the error of each method, but not sampling variability
since it is calculated using only one sample. This is the reason why we avoid calling
e(x) “bias.” Furthermore, the DTM and SEE will be presented.

5.2 Model Selection

For all models, a forward stepwise selection procedure was utilized for each model
selection criterion. The three different criteria thus could select three potentially
different parameterizations for each class of models and a total of 2 × 3 = 6 different
presmoothing models. The three IRT models (1PL, 2PL, and 3PL) and the log-linear
models were chosen from the selection criteria and can be seen in Table 1. The
selected models were then plugged into the first step of the KE framework, yielding
six different KE estimators.
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5.3 Results

In Table 1, the selected models are presented for both model classes and for each
model selection criterion. Only the highest power moment is presented, so, for
example, X6 means that the first six moments are included, and X2 : A2 means
that X : A, X2 : A, X : A2, X2 : A2 are included. It is apparent that the AIC and
likelihood-ratio chi-square criteria selected the same presmoothing model for both
the log-linear and IRT models. These two cases will thus result in the same KE
estimator. Table 1 also shows that the BIC criterion selected a more parsimonious
model for both the log-linear and IRT model compared to the AIC and Likelihood-
ratio chi-square criterion.

In Fig. 1, the error, as defined in Eq. 3, is plotted for each KE estimator. As
the AIC and likelihood-ratio chi-square criteria selected the same presmoothing
model for both the log-linear and the IRT model, they are represented by the same
respective lines. What is noteworthy is that the two classes of models follow each
other closely in terms of equated scores; the models are homogeneous within its
presmoothing model class and heterogeneous between classes. It is also apparent
that the KE estimators using IRT presmoothing models exhibit a much smaller error,
especially in the low and high end of the score scale.

In Fig. 2, the SEE for each KE estimator is displayed. As for the error, the
KE estimators based on log-linear models yield very similar results. The IRT KE
estimators are not equally similar, and the IRT KE estimator using the BIC criterion
shows the by far lowest SEE among the whole score scale.

Figure 3 shows the difference, in equated scores, between the KE estimator using
a log-linear model selected by the AIC/likelihood-ratio chi-square criterion and
every other KE estimator. The solid black lines represent the DTM. The differences,
with exception of the KE estimator using a log-linear model selected by the BIC

Table 1 Log-linear and IRT
model selected by each
respective criterion

Model AIC BIC χ2

Log-linear X6, A4, X2 : A2 X6, A4, X : A X6, A4, X2 : A2

IRT 3PL 2PL 3PL

Fig. 1 The error of each
respective KE estimator
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Fig. 2 The SEE of each
respective KE estimator

Fig. 3 The difference in
equated scores between the
KE estimator using the AIC
(and likelihood-ratio
chi-square) model selection
criterion and each other KE
estimator

criterion, exceed the DTM bounds for large parts of the score scale, meaning that
the different KE estimators result in practically significant differences for the test
takers.

6 Conclusions

This study has evaluated different model selection criteria for log-linear and
IRT models for the presmoothing of test score distributions with the purpose of
equating test forms. The comparison between the criteria was made under the
KE framework and using real admission data. This study was motivated by the
fact that it is important to compare several equatings to see how sensitive the
equated scores are. The results showed that depending on the model selection
criteria (likelihood ratio/AIC/BIC) and depending on the presmoothing model (log-
linear/IRT), the resulting equated scores can differ to a degree where it will have
real life implications for the test takers. The Empirical study suggests that when
IRT is used in the presmoothing step, the BIC measure is preferred as it produces
the lowest error. If log-linear models instead are used to presmooth the score
distributions, there is practically no difference between the BIC measure and the
AIC/likelihood ratio measures in terms of equated scores. These conclusions should
however be taken with a large portion of caution as they are only based on an
empirical study. This study thus motivates why future research should conduct a
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rigorous simulation study where model selection criteria is further investigated. In
such a study, it would be possible to get further insight on when each criterion
works best, by, e.g., varying test length, sample size, and data collection design. The
last point should also be mentioned as a limitation of this study, as only the NEAT
design has been considered. As previous studies have only focused on the estimation
score distributions, or on traditional equipercentile equating, future research should
investigate these issues for the KE framework, considering more data collection
designs and test scenarios.
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Practical Implementation of Test
Equating Using R

Marie Wiberg and Jorge González

Abstract Test equating methods are widely used in order to make comparable
different test forms administered at different occasions to different test takers.
Although software for test equating is currently available, in this paper we focus
the attention on four different R packages which can facilitate test equating for
researchers and test developers. This paper list the different R packages which are
available at the moment. Examples are provided for the equate, equateIRT,
kequate, and the SNSequate packages. Additional features of these packages
are discussed as well.

Keywords R packages for test equating · Equate · EquateIRT · Kequate ·
SNSequate

Test equating is a statistical process used to transform scores on two test forms so
that they are placed on a common scale and are thus comparable (González and
Wiberg 2017). Let x and y be the quantiles in the cumulative distribution functions
(CDF) FX and FY of test scores X and Y , respectively. Then an equivalent score y

on test Y for a score x on test X can be obtained using the so-called equipercentile
transformation ϕ (Braun and Holland 1982) which is defined as

y = ϕ(x) = F−1
Y (FX(x)). (1)

Note, linear versions of the equipercentile transformation (1) can also be used for
equating. In test equating, different data collection designs are used to obtain test
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score data. The data collection designs depend on how and to whom the test forms
are distributed. To be able to make score scales comparable, one needs some kind
of common or equivalent information such as common or equivalent test takers,
common items, or common background information about the test takers. Data
collection designs described in the literature include the single group (SG) design,
counterbalanced (CB) design, equivalent groups (EG) design, nonequivalent groups
with anchor test (NEAT) design, and the nonequivalent groups with covariates
(NEC) design. Independent of the design selected for the administration of the tests,
the observed data can be accommodated in a matrix in which each row contains
the response pattern of each test taker. Scores can then be obtained either as an
estimation of a person parameter by fitting an item response theory (IRT) model or
as observed scores, most often, sum scores, from the data matrix.

Test equating methods can be categorized in several ways. In this paper we make
the distinction between four groups: (i) IRT equating methods (Lord 1980), which
are based on IRT models; (ii) traditional equating methods (Kolen and Brennan
2014) which include linear and equipercentile equating; (iii) kernel equating (KE)
methods (von Davier et al. 2004), which use a five-step approach in which kernels
are used for the continuous approximations of the score CDFs in (1); and (iv) IRT
KE methods, which are a combination of both (i) and (iii). Within the first group,
IRT true-score equating (IRTTSE) and IRT observed-score equating (IRTOSE)
(Lord 1980; Lord and Wingersky 1984) have been two widely used methods for
test equating. Both are based on conditional distributions of tests scores given the
ability (González et al. 2016). While in the former the equating transformation is
based on the mean of the conditional score distributions (the true score), the latter
is based on the marginal score distributions and uses the IRT model to define the
conditional score probabilities involved in the computation of ϕ. In addition, IRT
equating requires IRT parameter linking (von Davier and von Davier 2011) as a
necessary preliminary step to correct for differences on the scales of the parameters.

The equating methods categorized in these four groups are currently imple-
mented in several R packages, and we will summarize their features here and give a
couple of short examples.

1 Equating Test Scores with R

Table 1 shows a list of several packages which are available to perform test
equating using R, including irtoys (Partchev 2014), lordif (Choi et al.
2011), sirt (Robitzsch 2016), plink (Weeks 2010), equateIRT (Battauz
2015), equateMultiple (Battauz 2017), equate (Albano 2016), kequate
(Andersson et al. 2013), and SNSequate (González 2014). We will shortly
review the most commonly used packages: equate, equateIRT, kequate and
SNSequate. We will also give example codes by using data files described in
González and Wiberg (2017). More specifically, we will use data from a college
admissions test given twice a year. The admissions test is composed of a verbal
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Table 1 Equating methods implemented in different R packages

IRT equating Traditional equating KE IRT KE

R package True-score
Observed
-score

parameter
linking Equipercentile linear

irtoys �
lordif �
sirt �
plink � � �
equateIRT � � �
equateMultiple � � �
equate � �
kequate � �
SNSequate � � � � � �

and a quantitative section, each containing 80 multiple-choice binary scored items.
The sections are equated separately. For the EG design, we will use 2 samples of
10,000 test takers who took 2 different administrations of the quantitative section,
and they are stored in the ADM1 and ADM2 data sets. For the NEAT design, we will
use 2 samples of 2,000 test takers who took 2 different administrations of the verbal
section of the admissions test and whose results are stored in the ADMneatX and
ADMneatY data sets which additionally contains information for a 40-item verbal
anchor test. The data can be obtained from the following website http://www.mat.
uc.cl/~jorge.gonzalez/EquatingRbook.

1.1 Traditional Methods

Traditional methods utilize two types of equating transformations: equipercentile
and linear equating, where mean equating is a particular case of linear equat-
ing. Under the NEAT design, different methods have been developed includ-
ing Tucker, Levine observed-score, Levine true-score, Braun-Holland, Nominal
weights, Chained equating, Frequency estimation, etc. (Kolen and Brennan 2014).
Most of the traditional equating methods are included in the package equate
(Albano 2016).

To perform traditional equating methods in R, the following code can be used for
loading the data, creating score vectors (quant.x, quant.y) and creating score
frequency distributions using the function freqtab(). Then, we can perform
mean, linear, and equipercentile equating using the equate() function:

> load(url("http://www.mat.uc.cl/~jorge.gonzalez/
+ EquatingRbook/ADM1.Rda"))
> load(url("http://www.mat.uc.cl/~jorge.gonzalez/
+ EquatingRbook/ADM2.Rda"))

http://www.mat.uc.cl/~jorge.gonzalez/EquatingRbook
http://www.mat.uc.cl/~jorge.gonzalez/EquatingRbook
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> quant.x <- apply(ADM2[,1:80],1,sum)
> quant.y <- apply(ADM1[,1:80],1,sum)
> library(equate)
> egADM.x<-freqtab(quant.x,0:80)
> egADM.y<-freqtab(quant.y,0:80)
> eq.mean <- equate(egADM.x, egADM.y, type = "mean")
> eq.linear <- equate(egADM.x, egADM.y,
+ type = "linear")
> eq.equipercent <- equate(egADM.x, egADM.y,
+ type = "equipercentile")
> eq.equipercent

The output for the equipercentile equating is as follows:

Equipercentile Equating: egADM.x to egADM.y

Design: equivalent groups

Smoothing Method: none

Summary Statistics:
mean sd skew kurt min max n

x 38.32 12.72 0.34 2.47 10 77.00 10000
y 36.70 12.25 0.57 2.82 7 79.00 10000
yx 36.70 12.25 0.57 2.82 8 78.75 10000

The output states that we have performed equating under the EG design, and
it shows summary statistics for the observed scores in tests X and Y (first and
second row) and also for the equated scores (third row). The actual equated values
are stored in the equating object eq.equipercent and can be obtained typing
eq.equipercent$concordance. The equate package can handle the SG,
NEAT, and EG designs. Other features in this package include nominal weighting,
log-linear presmoothing, and bootstrap standard errors.

1.2 IRT Equating Methods

IRT parameter linking must be conducted when equating is performed under the
NEAT design or when different scaling conventions for ability are used under other
designs. IRT parameter linking is implemented in the packages equateIRT and
SNSequate through the functions direct() and irt.link(), respectively.
If sum scores rather than IRT scores are to be reported, then they can be equated
using either IRT true-score or IRT observed-score equating (Lord 1980). These
methods are implemented through the functions irt.eq() and score() in the
SNSequate and equateIRT packages, respectively.
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The following code is used for loading the data, fits a three parameter logistic
model (3PL) to both X and Y test score data using the tpm() function from the
ltm package (Rizopoulos 2006), and extracts the item parameter estimates from
both runs:

> load(url("http://www.mat.uc.cl/~jorge.gonzalez/
+ EquatingRbook/ADMneatX.Rda"))
> load(url("http://www.mat.uc.cl/~jorge.gonzalez/
+ EquatingRbook/ADMneatY.Rda"))

> library(ltm)
> mod3pl.x<-tpm(ADMneatX)
> mod3pl.y<-tpm(ADMneatY)

> a.x<-coef(mod3pl.x)[,3]
> b.x<-coef(mod3pl.x)[,2]
> c.x<-coef(mod3pl.x)[,1]

> a.y<-coef(mod3pl.y)[,3]
> b.y<-coef(mod3pl.y)[,2]
> c.y<-coef(mod3pl.y)[,1]

> param_x <- list(a=a.x,b=b.x,c=c.x)
> param_y <- list(a=a.y,b=b.y,c=c.y)
> parm = as.data.frame(cbind(a.y,b.y,c.y,
+ a.x,b.x,c.x))

1.2.1 IRT Parameter Linking

The following code can be used to perform IRT parameter linking using
SNSequate:

> library(SNSequate)
> comitems = 1:40
> irt.link(parm, comitems, model = "3PL",
+ icc = "logistic", D = 1.7)

Call:
irt.link.default(parm = parm, common = comitems,

model = "3PL",
icc = "logistic", D = 1.7)



126 M. Wiberg and J. González

IRT parameter-linking constants:

A B
Mean-Mean 0.8960919 0.093921946
Mean-Sigma 0.8722422 0.111956630
Haebara 0.9022729 0.050350133
Stocking-Lord 0.9644684 0.002433244

The irt.link() function receives as inputs a list containing the item parame-
ter estimates, a vector indicating which are the common items, the IRT model from
which the item parameters were obtained, and the value of the scaling constant D.
It returns the equating coefficients A and B calculated using four IRT parameter-
linking methods: mean-mean, mean-sigma, Haebara, and Stocking-Lord methods.
The first two methods are based on means and standard deviations of the parameter
estimates for the common items, and the last two are based on the item characteristic
curves defined by the IRT model used. For details about the different linking
methods, refer, for example, to Sect. 6.2 in Kolen and Brennan (2014).

IRT parameter linking can be performed in equateIRT using the mean-mean
method by writing the following code:

> library(equateIRT)
> est3pl.x <- import.ltm(mod3pl.x,display=FALSE)
> est3pl.y <- import.ltm(mod3pl.y,display=FALSE)

> dimnames(est3pl.x$coef)[[1]][1:40]<-paste
+ ("it",1:40,sep="")
> dimnames(est3pl.y$coef)[[1]][1:40]<-paste
+ ("it",1:40,sep="")

> p12 <- modIRT(coef=list(est3pl.x$coef,
+ est3pl.y$coef), var=list(est3pl.x$var,est3pl.y$var),
+ ltparam=TRUE, display=FALSE)

> p12mm <- direc(mods=p12,which=c(1,2),
+ method="mean-mean",D=1.7)
> summary(p12mm)

Link: T1.T1
Method: mean-mean
Equating coefficients:
Estimate StdErr

A 0.896092 0.037336
B 0.093922 0.095740
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The output shows that the mean-mean method was used, and it gives the estimates
and standard errors of the equating constants. Other options for the method
argument are mean-gmean, mean-sigma, Haebara, and Stocking-Lord.

1.2.2 IRT True-Score and Observed-Score Equating

To perform IRT equating in SNSequate, we can use the following code, where the
first two lines are used to perform IRT true-score equating and the second two lines
are used to perform IRT observed-score equating:

> res.3pl.tse<-irt.eq(120, param_x, param_y,
+ method="TS",method_link="mean/mean", common=1:40)

> res.3pl.ose<-irt.eq(120, param_x, param_y,
+ method="OS",method_link="mean/mean", common=1:40)

> outirt.3pl <- cbind(
+ Theta=res.3pl.tse$theta_equivalent, Scale=0:120,
+ IRTTSE=res.3pl.tse$tau_y, IRTOSE=res.3pl.ose$e_Y_x)

> outirt.3pl[26:28,]
Theta Scale IRTTSE IRTOSE

[1,] -1.895891 25 27.13547 27.64139
[2,] -1.655602 26 28.57855 28.74090
[3,] -1.469780 27 29.90523 29.84072

We summarize the output for both methods in the object outirt.3pl and show
the results only for the three score values 25, 26, and 27. The first column of the
output, labeled Theta, shows the value of the ability for a given score on the
scale (column Scale), together with the IRT true-score (column IRTTSE) and
IRT observed-score (column IRTOSE) equated values.

To perform IRT true-score and IRT observed-score equating in equateIRT, we
can use the following code which gives the subsequent outputs:

> score(p12mm, method = "TSE",se=FALSE,scores = 25:27)
theta T2 T1.as.T2

1 -3.636381 25 23.94389
2 -3.211220 26 24.66996
3 -2.882307 27 25.42281

> score(p12mm, method = "OSE",se=FALSE,scores = 25:27)
T2 T1.as.T2

26 25 22.99109
27 26 23.91655
28 27 24.84573
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In the first output, the column labeled theta displays the value of the ability for
a given score on the scale for scores 25 to 27 (column T2) and the corresponding
equated values using IRTTSE (column T1.as.T2). Similarly, the second output
shows the equated values using the IRTOSE (column T1.as.T2) for the scores 25
to 27 (column T2).

1.3 Kernel Equating Methods

KE has traditionally been presented as a method comprising the following five
steps: (i) presmooth the score distributions, (ii) estimate the score probabilities,
(iii) continuize the discrete score distributions, (iv) perform the actual equating,
and (v) evaluate the equating transformation. KE can be performed using either
the package kequate (Andersson et al. 2013) or SNSequate (González 2014).
Although there is some overlap between these packages, they also contain some
unique features such as the choice of the kernel for continuization, the method to
select the bandwidth parameters, and the choice of the presmoothing model.

1.3.1 Kernel Equating with Kequate

To perform KE with kequate, after loading the data, the function kefreq()
is used to obtain score frequency distributions. Under the NEAT design, two
samples of test takers from two different populations, denoted here as P and Q, are
administered test forms X and Y, respectively, and, additionally, a set of common
items in form A is administered to both samples. Thus, we first find the sum scores
from test forms X and Y and store them in the objects verb.x and verb.y,
respectively. The sum scores from the common item anchor test A are stored in
the object verb.xa for those test takers that were administered test form X and in
verb.ya for those taking test form Y. The following code can be used for loading
the data, constructing sum score vectors, and sorting the data:

> library(kequate)
> verb.xa <- apply(ADMneatX[,1:40],1,sum)
> verb.x <- apply(ADMneatX[,41:120],1,sum)
> verb.ya <- apply(ADMneatX[,1:40],1,sum)
> verb.y <- apply(ADMneatY[,41:120],1,sum)
> neatk.x <- kefreq(verb.x, 0:80, verb.xa, 0:40)
> neatk.y <- kefreq(verb.y, 0:80, verb.ya, 0:40)

The regular glm() function in R can be used to presmooth the score data by
fitting appropriate log-linear models. For example, assume that we fit log-linear
models to the test scores X and A as follows:
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il xi

j a
l
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where pjl = Pr(X = xj , A = al). The same or a similar model can be fitted
for the Y scores. Once we have models for X and Y , equating can be performed.
For the NEAT design, we can choose to either use chained equating, in which
case the equating is performed from test form X to the anchor test A and then to
the test form Y, or we can perform a poststratification equating, in which case we
assume a target population T , where T = wP + (1 − w)Q and 0 � w � 1 is
a weight. We can perform poststratification equating (neatPSEadm) or chained
equating (neatCEadm) by simply writing one line of code. The following code
can be used for fitting two log-linear models for test scores from test forms
X and Y, respectively, and perform poststratification and chained KE in R with
kequate:

> NEATvX <- glm(frequency~I(X)+I(X^2)+I(A)+I(X):I(A),
+ family = "poisson", data = neatk.x, x = TRUE)
> NEATvY <- glm(frequency~I(X)+I(X^2)+I(A)+I(X):I(A),
+ family = "poisson", data = neatk.y, x = TRUE)
> neatPSEadm <- kequate("NEAT_PSE",0:80,0:80,NEATvX,
+ NEATvY)
> neatCEadm <- kequate("NEAT_CE",0:80,0:80,0:40,
+ NEATvX, NEATvY)

Using the summary() function on the chained KE object neatCEadm in the last
line of the code, we get the following output when excluding equated scores for test
scores 2–78:

Design: NEAT CE equipercentile

Kernel: gaussian

Sample Sizes:
Test X: 2000
Test Y: 2000

Score Ranges:
Test X:

Min = 0 Max = 80
Test Y:

Min = 0 Max = 80
Test A:

Min = 0 Max = 40
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Bandwidths Used:
hxP hyQ haP haQ hxPlin

1 0.7076599 0.6901055 0.4791841 0.4791372 12896.49
hyQlin haPlin haQlin

13333.52 12374.88 1 12403.57

Equating Function and Standard Errors:
Score eqYx SEEYx

1 0 -0.07056532 0.1470844
2 1 0.86454785 0.2657626
-
80 79 79.53264834 0.1893297
81 80 80.29402720 0.1126502

Comparing the Moments:
PREAx PREYa

1 0.0024998851 0.07006644
2 0.0054265212 -0.12833451
3 0.0009268535 -0.37683680
4 0.0136679929 -0.75152590
5 0.0410000237 -1.32311537
6 0.0823055646 -2.14353840
7 0.1373475690 -3.25047851
8 0.2060684759 -4.66835536
9 0.2884883735 -6.40798466
10 0.3846608957 -8.46680452

The output shows that the default Gaussian kernel was used and both test forms
had 2,000 test takers. Also the score ranges and the used bandwidths are provided.
Finally the equated scores and the standard error of equating (SEE) are given for
each score followed by the percent relative error (PRE) of the first ten moments.

The kequate package can handle all the commonly used equating designs;
SG, CB, EG, NEAT, and in addition the NEC design as described in Wiberg and
Bränberg (2015) and Wallin and Wiberg (2019). As the kequate package reads
in log-linear models using glm objects, one can build a model as complicated as
one prefers. Besides the default penalty method, one can select other methods to
choose the bandwidth parameters such as cross-validation (CV) (Wallin et al. 2018)
and double-smoothing (DS) (Häggström and Wiberg 2014). Also different kernels
can be used besides the default Gaussian kernel (e.g., uniform and logistic).
Get commands can be applied to the equating objects to obtain commonly used
evaluation measures such as PRE (getPre()), SEE (getSee()), equated values
(getEq()), comparison of SEE (genSeed()), etc. Another interesting feature is
the possibility of, instead of using log-linear models in the presmoothing step, using
IRT models to conduct IRT KE as described in Andersson and Wiberg (2017).
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1.3.2 Kernel Equating with SNSequate

Different functions are available to carry out the five steps in the KE method includ-
ing loglin.smooth() (presmoothing), bandwidth() (bandwidth selection),
ker.eq() (KE), PREp() (assessment through the percent relative error), and
SEED() (SEE and SEE differences) functions. The following code is used for
running KE under the EG design when a polynomial log-linear model of degree
2 for the score variables X and Y is used for presmoothing (degree = c(2,
2)), when the bandwidth parameters are automatically calculated using the penalty
method (hx = NULL, hy = NULL), and when the Gaussian kernel is used for
continuization of the CDFs (kert = "gauss"):

> ker.ADM<-ker.eq(scores = cbind(egADM.x,egADM.y),
+ kert = "gauss", hx = NULL, hy = NULL,
+ degree = c(2, 2), design = "EG")

The output shows summary statistics for the observed scores, the estimated
bandwidth parameters, and the equated scores together with the SEE in both
directions (i.e., X to Y in eqYx and SEEYx; and Y to X in eqXy and SEEXy):

> summary(ker.ADM)

Call:
ker.eq.default(scores = cbind(egADM.x, egADM.y),

kert = "gauss",
hx = NULL, hy = NULL, degree = c(2, 2),
design = "EG")

Summary statistics
X Y

Total 10000.0000 10000.0000
Mean 38.3189 36.7006
SD 12.7181 12.2498
Skewness 0.3393 0.5680
Kurtosis 2.4713 2.8189

Bandwidth parameters used
hx hy

1 0.700719 0.7012886

Kernel type used
[1] "Gaussian"
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Equated values and SEE under the EG design
Score eqYx eqXy SEEYx SEEXy
1 0 -0.05213171 0.05424558 0.06203064 0.06693562
2 1 0.89803256 1.10823013 0.11182611 0.12493300
3 2 1.84024486 2.16927630 0.16200559 0.17938774
......................................................
33 32 30.61294861 33.44205773 0.18591825 0.18884808
34 33 31.57480377 34.48168516 0.18285541 0.18627619
35 34 32.53670047 35.52128440 0.18025731 0.18426909
......................................................
78 77 74.91704424 78.55757083 0.31354605 0.17526158
79 78 76.21407883 79.21108155 0.28279095 0.13123453
80 79 77.66694896 79.82457171 0.22696717 0.09066394

Other supported options for the argument kert are "gauss," "logis,"
"uniform," "epan", and "adap" for the gaussian, logistic, uniform,
Epanechnikov, and adaptive kernels, respectively. The equating designs
implemented in SNSequate are the EG, SG, CB, and NEAT designs.

2 Discussion

In this paper we have listed current R packages to perform traditional equating,
KE, IRT, and KE IRT methods. Short illustrations were given for the EG and
NEAT designs when using the packages equate, kequate, equateIRT, and
SNSequate. More extensive examples covering all equating methods and explor-
ing more features of these packages are shown in González and Wiberg (2017).

In the future we believe that test equating will continue to play a crucial role
in standardized achievement tests. There will be several challenges, especially
if machine learning and artificial intelligence are being implemented as part of
admission processes. This will require the development of new methods to ascertain
that selected candidates’ knowledge can be compared to each other in a valid and
reliable way. This means that it will be essential to create new packages or extend the
current ones to include equating methods that account for these new technologies.
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the response variable is observed only in selected individuals. In this paper we
propose to evaluate the predictive capacity of selection tests through marginal effects
under a partial identification approach. Identification bounds are defined for the
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1 Introduction

A test is used to learn about a behavior of interest. The relationship between test
scores and any variable external to the test may be used to predict some (future)
behavior of the individuals tested (Lord 1980) in the sense that we are interested
in the conditional distribution of those external variables given test scores. In this
paper, we focus our attention on tests that are used in a selection process, specifically
on admission to the higher education. The purpose of the test is to select the “best
applicants” in some specific sense which is typically operationalized through a
cutoff score. It is supposed that the cutoff is defined in such a way that higher scores
on the test would translate in better performance at higher education.

In this context, it is necessary to assess and measure the quality of the selection,
which leads to analyze the validity and reliability of the admission test. Regarding
the validity, it is defined as the degree to which evidence and theory support the
interpretations of test scores for proposed uses of tests (American Educational
Research Association, American Psychological Association, National Council on
Measurement in Education, and Joint Committee on Standards for Educational and
Psychological Testing (American Educational Research Association, American Psy-
chological Association, National Council on Measurement in Education, and Joint
Committee on Standards for Educational and Psychological Testing (U.S) 2014). In
particular, the predictive validity of a test is defined as the evidence based on rela-
tions to other variables: in an admission test, these variables are supposed to be cho-
sen according to the selection purposes of a higher educational system. Following
this definition, the analysis of the relationship between test scores and any external
variable to the test provide an important source of predictive validity evidence.

To assess the predictive validity of a selection test is a challenge because the
outcome measured at higher education is observed only in the selected group,
whereas the scores of the selection test are observed for the whole population of
applicants. This problem is accordingly called selection problem and arises when the
sampling process does not fully reveal the behavior of the outcome on the support
of the predictors (Manski 1993).

Statistical procedures used for the evaluation of the predictive validity include
regression models with truncated distributions (Nawata 1994; Heckman 1976,
1979; Marchenko and Genton 2012) and corrected Pearson correlation coefficient
(Thorndike 1949; Pearson 1903; Mendoza and Mumford 1987; Lawley 1943;
Guilliksen 1950). In the context of admission university selection tests, a common
practice to evaluate the predictive validity of the selection tests is to measure the
correlation between the obtained scores and the cumulative grade point average
(GPA) at the first year of the students in the university.

Although those procedures constitute solutions to the problem of learning
about the predictive validity, it is explicitly assumed a prior knowledge for the
performance of the whole population,1 that is, it is assumed that the conditional

1The term whole population refers to the population that is integrated by two subpopulations: the
population where the outcome is observed and the one where the outcome is not observed (from
here on the observed group and the non-observed group, respectively).
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distribution of the outcome given the scores is known up to some parameters.
However, we argue that this assumption is not pertinent because the consequence
of the partial observability is that the conditional distribution of the outcome given
the scores is not identified and therefore assuming any structure for the non-
observed group could not be assessed empirically (Manski 1993). For this reason,
this approach does not solve satisfactory the problem of predictive validity. In the
educational measurement literature, the predictive validity is typically analyzed
through the marginal effect (for instance, see Leong 2007; Goldhaber et al. 2017;
Geiser and Studley 2002), that is, the derivative of the conditional expectation of
the outcome given scores, with respect to the scores. However, as the conditional
expectation is not identified, the marginal effect is not identified either.

In this paper we propose a methodological approach that allows to learn about
the predictive validity of selection tests through the marginal effects, under partial
observability of the outcome. We use a partial identification approach in order to
define a region that characterizes the set of all admissible values for the marginal
effects. This region is delimited by identification bounds. This approach works if
explicit assumptions on the unobservable distributions are made, the idea being
that such assumptions be weaker than the standard ones abovementioned (Manski
2013). We propose to find identification bounds by assuming that the selection test
is such that higher scores would translate to higher values of the outcome, i.e., it is
considered that there is a positive relationship between test scores and the outcome.
This assumption reflects an optimistic viewpoint on the selection test, and the idea is
to get conclusions to be compared with other perspectives. Identification bounds are
rigorously operationalized through the monotonicity of the conditional expectation
of the outcome given the test score.

The paper is organized as follows. The general framework of the partial
identification approach is introduced in Sect. 2. In Sect. 2.1 the partial identification
framework of the conditional expectation is formalized. Identification bounds for
marginal effects are formally described in Sect. 2.2. In Sect. 2.3 the identification
bounds for the marginal effects in the selection problem context are formally
characterized. In Sect. 3, the performance of the proposed methodology is illustrated
on a real data set from the selection test used in the university admission Chilean
system. Conclusions and further work are discussed in Sect. 4.

2 Partial Identification Framework

2.1 Partial Identification of the Conditional Expectation

Let Y denote the outcome variable, X a test score, and Z a binary random variable
with Z = 1 if the outcome is observed and Z = 0 otherwise. Consequently, each
member of the population is characterized by a triple (Y, Z,X). In this paper the
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attention is focused on the conditional expectation of the outcome Y given a test
score X. By the law of total probability, it follows that

E(Y |X) = E(Y |X,Z = 1)P(Z = 1|X) + E(Y |X,Z = 0)P(Z = 0|X) . (1)

In (1), E(Y |X,Z = 1), P(Z = 1|X), and P(Z = 0|X) are identified by the
data generating process. However, E(Y |X,Z = 0) is not identified. Consequently
E(Y |X) is not identified either.

One solution for this problem is to assume weak ignorability, namely, Y ⊥ Z|X,2

which implies that E(Y |X) = E(Y |X,Z = 1). The assumption of weak ignorability
allows making inferences on E(Y |X) ignoring the non-observed values of Y , which
can lead to underestimation of the predictive capacity of the selection test (Manzi
et al. 2008).

Assuming that Y ∈ [y0, y1] where y0 and y1 are the minimum and the maximum
possible GPA, respectively, it follows that y0 ≤ E(Y |X,Z = 0) ≤ y1. By applying
this inequality to equation (1), we have

E(Y |X,Z = 1)P(Z = 1|X)+y0P(Z = 0|X) ≤ E(Y |X)

≤ E(Y |X,Z = 1)P(Z = 1|X) + y1P(Z = 0|X).

The lower bound of the conditional expectation is interpreted as the value E(Y |X)

takes if, in the non-observed group, Y is always equal to y0 (i.e., if all students
obtained the worst GPA). Regarding the upper bound, it is interpreted as the value
E(Y |X) takes if, in the non-observed group, Y is always equal to y1 (i.e., if all
students obtained the best GPA) (Manski 1989).

2.2 Partial Identification of the Marginal Effects

As it is well-known, the marginal effect is defined as

M.E(X) = dE(Y |X)

dX
.

Figure 1 shows how variations in X reflect in variations on E(Y |X). These
variations are quantified by the change of E(Y |X) with respect to changes in X,
defined by M.E(X). The blue dashed lines represent the marginal effect evaluated
at the point X = x. From equation (1) it follows that

2In words, Y ⊥ Z|X indicates that Y is conditionally orthogonal to Z (see Florens and Mouchart
1982).
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E
(Y

|X
)

X

E(Y|X)

Marginal effect

Fig. 1 The regression function and the marginal effect

M.E(X) =
(
P(Z = 0|X)M.EX

Z=0 + P(Z = 1|X)M.EX
Z=1

)

+
(

[E(Y |X,Z = 0) − E(Y |X,Z = 1)]
dP(Z = 0|X)

dX

)
, (2)

where M.EX
Z=z is the marginal effect of X over the group Z = z, with z ∈ {0, 1}.

As it was mentioned in Sect. 1, the conditional expectation is not identified in
the context of the selection problem. Consequently, the marginal effect will not be
identified either. In fact, in equation (2) both E(Y |X,Z = 0) and M.EX

Z=0 are not
identified by the sampling process.

In order to find the identification bounds for the marginal effects, suppose that
D0x ≤ M.EX=x

Z=0 ≤ D1x , where M.EX=x
Z=z is the marginal effect of X over the group

Z = z evaluated at X = x. Thus, we assume that the marginal effect for the non-
selected population exist, which means that if this population had been selected,
the score of the selection test would have predicted the outcome with an associated
marginal effect. This marginal effect is subject to uncertainty, as reflected by the
bounds, which depends on specific values of X.

Considering the above assumption and that y0 ≤ E(Y |X,Z = 0) ≤ y1, M.E(X)

evaluated at X = x, denoted by M.EX=x , is bounded as follows

D0xP(Z = 0|X = x)+P(Z = 1|X = x)M.EX=x
Z=1 +

[y0 − E(Y |X = x,Z = 1)]
dP(Z = 0|X)

dX

∣∣∣∣
X=x

≤ M.EX=x ≤

D1xP(Z = 0|X = x)+P(Z = 1|X = x)M.EX=x
Z=1 +

[y1 − E(Y |X = x,Z = 1)]
dP(Z = 0|X)

dX

∣∣∣∣
X=x

Note that an assumption on E(Y |X,Z = 0) does not by itself restrict the marginal
effect, but an assumption on both E(Y |X,Z = 0) and the marginal effect for the
non-observed group does (Manski 1989).
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2.3 Identification Bounds for Marginal Effects

According to Manski (2003, 2007, 2005), researchers sometimes take credible
information about properties of the outcome. For example, there might be reasons
to believe that the outcome increase/decrease monotonically when the predictor
increase/decrease. Thus, in a University Admission System it can be assumed that,
from an optimistic viewpoint, a higher score in the selection test implies a higher
GPA at the first year of the university. What can be concluded for the marginal effect
under this optimistic assumption? The partial identification analysis aims to answer
this question.

Selection tests are used to select the best applicants such that higher scores,
X, would imply higher values of the outcome, Y . This fact allows to think that
the conditional expectation of Y given X is a non-decreasing function of X and,
consequently, the marginal effect will be greater or equal than zero, i.e., M.E(X) ≥
0. In order to find an explicit expression for D0x , note that equation (2) is the sum
of two terms, namely

a = P(Z = 0|X)M.EX
Z=0 + P(Z = 1|X)M.EX

Z=1, and

b = [E(Y |X,Z = 0) − E(Y |X,Z = 1)]
dP(Z = 0|X)

dX
.

In terms of a and b the marginal effect will be positive if a ≥ −b. This fact
implies that

M.EX
Z=0 ≥ −P(Z=1|X)

P(Z=0|X)
M.EX

Z=1−
[E(Y |X,Z=0)−E(Y |X,Z=1)]

P(Z=0|X)

dP(Z=0|X)

dX
.

(3)

It can be proved that (see Appendix A.1) an explicit expression for D0x is
given by

D0x= max
x∈X

{
2E(Y |X=x,Z=1)−y0−y1

2P(Z = 0|X = x)

dP(Z = 0|X)

dX

∣∣∣∣
X=x

−P(Z = 1|X = x)

P(Z = 0|X = x)
M.EX=x

Z=1

}
.

For D1x , suppose that the predictability of X over Y in the observed group is
at least equal to the one in the non-observed group. This assumption is realistic
because one objective of selection tests is to choose those applicants that would
obtain a better outcome than those who were not selected. In terms of marginal
effects, this assumption translates to M.EX

Z=1 ≥ M.EX
Z=0 which implies that D1x =

max
x∈X

{
M.EX=x

Z=1

}
.
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3 Illustration

The evolution of the university admission system in Chile includes the baccalaure-
ate test, administrated during 1931 and 1966, and the Prueba de Aptitud Académica
(PAA, for their initials in Spanish), administered during the period 1967–2002.
These tests were criticized, among other reasons, because of their low predictive
capacity (Grassau 1956; DEMRE 2016; Donoso 1998). Since 2003 the selection
process is partially based3 on scores from the Prueba de Selección Universitaria
(PSU, for their initials in Spanish). The PSU is elaborated based on the secondary
school curriculum and includes two mandatory tests (Mathematics and Language
and Communication) and two elective tests (Sciences and History, Geography and
Social Sciences). According to Donoso (1998), one of the reasons for the evolution
of the Chilean university admission system is the necessity to increase predictive
capacity of the selection tests.

To illustrate the partial identification approach proposed in this paper, we analyze
the predictive validity of the mandatory PSU tests over the GPA of students in the
first year in a Chilean university. It is important to highlight that the analysis is
based on the top one university,4 so that the assumption that the performance of
non-enrolled students will be at most equal to that of enrolled students is tenable.

3.1 Estimation of the Identification Bounds

Let Y denote the GPA and X the score in the selection factor of interest. The
conditional expectation E(Y |X,Z = 1) was estimated by an adaptive local linear
regression model using a symmetric Kernel as implemented in the loess.as
function from the fANCOVA R-package (Wang 2010). The probability of being
observed was modeled assuming that P(Z = 1|X) = Φ(αX), where Φ(ν) is the
standard normal cumulative probability distribution evaluated at ν. We considered
the standardized values for both X and Y . This means that, by taking into account
that in Chile a score of 1 is the minimum GPA that could be obtained, and a
score of 7 the maximum one, we evaluated our method using y0 = 1−GPA

sd(GPA)
and

y1 = 7−GPA
sd(GPA)

, where GPA is the mean of the observed GPA (5.042) and sd(GPA)

is its standard deviation (0.568).

3Additional to these tests, there are other selection factors that are considered in the selection
process, namely, Ranking and High school grade point average (NEM).
4According to the Quacquarelli Symonds University Rankings 2019.
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3.2 Results

Figure 2 shows the identification bounds of the marginal effect for both the
Mathematics test and the Language and Communication test. Our method is
compared with the marginal effect of the multiple linear regression model, the
traditional procedure that have been used in Chile in order to evaluate the predictive
capacity of the selection factors. For this model, the marginal effect of X is given
by its regression coefficient.

For the Mathematics test, it can be seen that the marginal effects are not
necessarily a constant function of the test score. In this case, a higher score
produces a higher marginal effect. In other words, a good performance in the
Mathematics test stands for a better performance in the GPA. Note that these
types of conclusions cannot be obtained using the traditional procedure. Regarding
the marginal effects for the Language and Communication test, contrary to what
was seen for the Mathematics test, the identification bounds are nearly a constant
function of the test score. This means that a good performance in the Language and
Communication test does not stand for a better performance in the GPA at the first
year.

As it was mentioned before, the identification bounds were computed under an
optimistic scenario of the selection process. In this context, when using the tradi-
tional procedure as implemented in Chile, the marginal effect of the Mathematics
test is more optimistic than the optimism manifested by the bounds (see left panel
in Fig. 2). In contrast, with the traditional procedure, the marginal effect of the
Language and Communication test is less optimistic than the optimism manifested
by the bounds (see right panel in Fig. 2).
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4 Conclusions and Discussion

We have presented a method that allows to learn about the predictive validity of
selection tests through the marginal effect under partial observability.

Our partial identification-type solution characterizes the set of all admissible
values of the marginal effect. i.e., if the proposed model for the evaluation of the
predictive capacity captures the information “the performance of the non-observed
group is at most equal to the performance of the observed group,” then the marginal
effect of X must lie between the identification bounds.

Although other approaches have been proposed to tackle the selection problem
by assuming that the regression line does not change between the observed group
and the non-observed group, our proposal has the advantage of not assuming any
(parametric) structure for the non-observed group, as we only use properties of the
selection tests. More specifically, we used monotonicity assumptions in order to
find the set of all the possible values of the marginal effect by considering that
the selection process is correct. However, this scenario make sense only when
information about the top one university is available and if it is assumed that
the conditional expectation on the observed group is written only in terms of X.
Extending the approach for the scenario where information of more universities is
available is a topic for future research. Also extending the model by considering
that the conditional expectation depends on more than one covariate is planned for
future work.

Acknowledgments Eduardo Alarcón-Bustamante was funded by CONICYT Doctorado Nacional
grant 2018-21181007. Ernesto San Martín was partially funded by the FONDECYT grant
1181261.

A Proofs

A.1 Explicit Expression for D0x

In equation (3) E(Y |X,Z = 0) is not identified by the sampling process, but it is
assumed that y0 ≤ E(Y |X,Z = 0) ≤ y1. Then, restrictions for D0x are given by

M.EX=x
Z=0 ≥ [E(Y |X = x,Z = 1) − y0]

P(Z = 0|X = x)

dP(Z = 0|X)

dX

∣∣∣∣
X=x

− P(Z = 1|X = x)

P(Z = 0|X = x)
M.EX=x

Z=1

M.EX=x
Z=0 ≥ [E(Y |X = x,Z = 1) − y1]

P(Z = 0|X = x)

dP(Z = 0|X)

dX

∣∣∣∣
X=x

− P(Z = 1|X = x)

P(Z = 0|X = x)
M.EX=x

Z=1
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By combining these expressions it is obtained that

2 · M.EX=x
Z=0 ≥ [E(Y |X = x,Z = 1)−y0]

P(Z = 0|X = x)

dP(Z = 0|X)

dX

∣∣∣∣
X=x

−P(Z = 1|X = x)

P(Z = 0|X = x)
M.EX=x

Z=1

+ [E(Y |X = x,Z = 1)−y1]

P(Z = 0|X = x)

dP(Z = 0|X)

dX

∣∣∣∣
X=x

−P(Z = 1|X = x)

P(Z = 0|X = x)
M.EX=x

Z=1

this implies that,

M.EX=x
Z=0 ≥ 2E(Y |X=x,Z=1)−y0−y1

2P(Z=0|X = x)

dP(Z=0|X)

dX

∣∣∣∣
X=x

− P(Z=1|X=x)

P(Z = 0|X = x)
M.EX=x

Z=1

M.EX=x
Z=0 ≥ max

x∈X

{
2E(Y |X=x,Z=1)−y0−y1

2P(Z=0|X=x)

dP(Z=0|X)

dX

∣∣∣∣
X=x

− P(Z=1|X=x)

P(Z = 0|X = x)
M.EX=x

Z=0

}
.

And therefore,

D0x = max
x∈X

{
2E(Y |X = x,Z = 1) − y0 − y1

2P(Z = 0|X = x)

dP(Z = 0|X)

dX

∣∣∣∣
X=x

−P(Z = 1|X = x)

P(Z = 0|X = x)
M.EX=x

Z=1

}
.
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Multiple-Group Propensity Score Inverse
Weight Trimming and Its Impact
on Covariate Balance and Bias
in Treatment Effect Estimation

Diego Luna-Bazaldua and Laura O’Dwyer

Abstract Propensity scores have become a key technique to analyze causal
effects of interventions in observational research. Contemporary developments in
propensity score methods facilitate the estimation of treatment effects when more
than two intervention groups are compared. Former research has documented the
benefits and weaknesses of trimming inverse weights of propensity scores in the
context of one treatment and one comparison group, but no research to date has
explored the implications of trimming inverse weights in the context of multiple-
group propensity scores. The present study adds to the current research on this topic
by analyzing the impact of trimming multiple-group inverse weights on covariate
balance and treatment effect estimation. Results from the simulation study showed
that trimming inverse weights increased covariate bias and did not have a substantial
impact on parameter recovery statistics of the treatment effect; moreover, data
mining methods produced less extreme inverse weights compared to multinomial
logistic regression models.

Keywords Propensity scores · Multiple-group treatments · Multinomial logistic
regression · Generalized boosted models · Neural networks

1 Introduction

The use of propensity scores (PS) in observational research to estimate the causal
effects of interventions or treatments on outcomes has been increasing over the last
years in social and health sciences (Thoemmes and Kim 2011). Techniques based on
PS allow to reduce the bias of observed baseline covariates between intervention and
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comparison groups in order to improve the estimation of the effect of interventions
on outcomes. The original framework on PS developed by Rosenbaum and Rubin
(1983) considered instances with only one treatment and one comparison group, but
more recent developments now allow for the estimation multiple-group (MG) PS in
the context of multiple treatments or interventions (McCaffrey et al. 2013).

PS are defined as a participant’s conditional probability of exposure to a treat-
ment versus a comparison group given baseline covariates (Austin and Stuart 2015).
Within the causal inference framework (Morgan and Winship 2007; Murnane and
Willett 2010), PS were originally introduced as an approach to reduce the effect of
sources of potential bias in the estimation of causal effects on an outcome variable in
observational and quasi-experimental designs (Ronsebaum and Rubin 1983, 1984,
Rubin 1997). Compared to other statistical adjustment techniques aimed to reduce
bias in the estimation of treatment effects (e.g., analysis of covariance (ANCOVA)),
PS have the advantage of minimizing baseline covariate differences between groups
(West et al. 2000); in addition, conditional on the PS, baseline covariates are
independent of the group assignment (Austin and Stuart 2015; Rosenbaum and
Rubin 1983, 1984).

PS can be used in four different methods to reduce bias from baseline covariates
on the treatment effect estimation: matching of cases between groups, stratification
or subclassification of cases, PS included as covariate in ANCOVA models, and
inverse probability weighting (Austin 2011; Thoemmes and Kim 2011). Former
research has found that matching and inverse weighting methods decrease more bias
on the baseline covariates between groups when compared to stratification methods
(Austin 2011; Austin et al. 2007; Lunceford and Davidian 2004). In addition,
approaches that simultaneously include the baseline covariates in addition to PS
adjustments have shown to be doubly robust in the estimation of treatment effects
(Hall et al. 2015).

Similar to the other three PS methods, inverse weights of propensity scores
(IWPS) can be defined to estimate either the average treatment effects (ATE) on
the outcome or the average treatment effect for the treated (ATT) on the outcome
(Austin and Stuart 2015; Hirano et al. 2003). The ATE estimates the average
treatment effect of every unit in the population that had been exposed to the
treatment, whereas the ATT estimates the average treatment effect only for those
units that were in the treatment group (Austin 2011; Morgan and Winship 2007).
Given that PS close to the boundaries of zero or one produce extreme inverse
weights, a drawback of using IWPS methods is that the treatment effect estimates
tend to be influenced by those cases whose PS are close to values of zero or one
(Austin and Stuart 2015; Thoemmes and Kim 2011). In those instances, former
research done by Lee et al. (2011) has shown that trimming extreme IWPS improves
balance in the baseline covariates and treatment effect estimates.

The original PS estimation approach proposed by Ronsebaum and Rubin (Rosen-
baum and Rubin 1983, 1984) was focused on the estimation of PS in designs with
only one treatment and one comparison group. However, recent extensions of the
causal inference framework have developed methods for the estimation of multiple-
group (MG) propensity scores. Specifically, McCaffrey et al. (2013) introduced an
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MG PS framework to estimate treatment effects when the interest is focused on one
specific treatment relative to three or more conditions. The MG PS approach uses
inverse weights to balance the covariates among groups and improve the estimation
of either the ATE or ATT treatment effect for the condition of interest.

Stuart et al. (2014) showed applications of the MG IWPS for the estimation of
treatment effects in the context of difference-in-differences designs. In empirical
research, MG IWPS have been employed in observational studies comparing the
impact of three different surgery types for breast cancer on mortality rates in
observational studies (Kurian et al. 2014). Similarly, this multigroup technique has
been used to compare the effect of three different hospital-based care interventions
on outcomes such as rehospitalization and death in a sample of cognitively impaired
older adults (Naylor et al. 2014).

As mentioned before, prior research on IWPS for two groups has documented the
benefits and limitations of IWPS trimming using different PS estimation techniques
(Lee et al. 2011). However, no research to date has explored the implications of MG
IWPS trimming on covariate balance improvement and treatment effect estimation.
Thus, it is critical to analyze this topic to understand the role of trimming inverse
weights on the estimation of treatment effects in the context of designs with more
than two groups. This research focuses on the role of MG IWPS trimming under
several simulated propensity score and treatment effect conditions.

Given the lack of previous research on truncating very large MG IWPS, the
objective of this study was to analyze the impact of MG IWPS trimming on two key
criteria in quasi-experimental and observational research: decrease of improvement
in the mean maximum absolute (MMA) covariate balance between groups and
decrease of bias in treatment effect estimation. To reach this objective, the current
research reports the methodology, results, and discussion from a simulation study
and a study with empirical data.

2 Methods

2.1 Simulation Study

The simulation study began with the random generation of four independent
continuous covariates (X1, . . . ,X4) and two dichotomous covariates (X5 and X6) for
i = 1, . . . , 2000 individual cases. The continuous covariates were generated from
independent standard normal distributions, while the dichotomous covariates from a
binomial distribution X5 ~ Bin(N = 2000, p = 0.3) and X6 ~ Bin(N = 2000, p = 0.7).
Treated as baseline covariates, these six variables had an impact on the formation of
four treatment groups Ti = t{1, . . . ,4} and, subsequently, on a continuous outcome
Yi.

Two factors, each with two levels, were considered in this simulation study. The
first factor was determined by the multinomial logistic regression model used for
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Table 1 Simulation conditions

Condition Model for PS Model for outcome

1 Main effects MLR Main effects LR
2 MLR with interactions and squared terms Main effects LR
3 Main effects MLR LR with interactions and squared terms
4 MLR with interactions and squared terms LR with interactions and squared terms

Note: MLR refers to multinomial logistic regression model and LR to linear regression model

the generation of the PS (i.e., a main effects model or a polynomial model with
interactions among the covariates), and the second factor by the linear regression
model used to generate the outcome (i.e., a main effects model or a polynomial
model with interactions among the covariates). The combination of these factors
resulted in four different conditions described in Table 1, with 250 replications of
the experiment conducted in each condition.

For groups t1 to t3, the multinomial logistic regression model with only main
effects for the MG PS generation was defined as:

P (Ti = t) = expβtX
/

1 + ∑t=3
t=1expβtX

and group t4

P (Ti = 4) = 1
/

1 + ∑t=3
t=1expβtX

where P(Ti) is the probability of being assigned to treatment t. The matrix of values
for the covariate coefficients β was:

β1X1 β2X2 β3X3 β4X4 β5X5 β6X6

T = t1 0.3 0.2 0 0 0.5 −1.0
T = t2 0 0 0.5 0.5 0 −1.0
T = t3 0.5 0 0 0.5 0 −1.0

The values for β were chosen to have a slightly lower proportion of units i in the
treatment of interest (i.e., t = 1) compared to the other three groups. A second
multinomial logistic regression model for the MG PS included the main effects
above and additional squared terms and interactions among covariates.

β7X
2
1 β8X

2
2 β9X

2
3 β10X

2
4 β11X

2
5 β12X

2
6

T = t1 0.1 0.1 0 0 0.1 −0.1
T = t2 0 0 0.1 0.1 −0.1 −0.1
T = t3 0.1 0 0 0.1 0 −0.1
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β13X1X2 β14X1X3 β15X1X4 β16X1X5 β17X1X6 β18X2X3 β19X2X4 β20X2X5
T = t1 0.1 0.1 0 −0.1 −0.1 0.1 0 0
T = t2 0 0 0.1 0 −0.1 0.1 0.1 0
T = t3 0.1 0.1 0.1 −0.1 −0.1 0 0 −0.1

β21X2X6 β22X3X4 β23X3X5 β24X3X6 β25X4X5 β26X4X6 β27X5X6

T = t1 −0.1 0 0 −0.1 0 −0.1 −0.1
T = t2 −0.1 0.1 0 −0.1 0.1 −0.1 −0.1
T = t3 −0.1 0 −0.1 −0.1 −0.1 −0.1 −0.1

The main effects linear regression model to estimate the treatment effect was:

Yi = β0 + β1Ti[1] + β2Ti[2] + β3Ti[3] + β4Ti[4] + βCovs + Ei

where the vector of β coefficients corresponds to the intercept, treatment effects for
the four observed conditions Ti[t], and covariate effects on the outcome. The error
term, Ei, is normally distributed with parameters N(0, 2). The parameter values for
the coefficients in this model are β ∈{β0=0, β1=1, β2=−.5, β3=0, β4=−1}, and
βcovs ∈{β5=.4, β6=.2, β7=−.6, β8=−.3, β9=−.4, β10=−.3}.

Finally, the linear regression model with polynomials and interactions includes
additional coefficients for the two-way interactions among covariates and squared
covariate effects on the outcome:

Yi=β0+β1Ti[1]+β2Ti[2]+β3Ti[3]+β4Ti[4]+β5X1+β6X2+β7X3+β8X4+β9X5+β10X6

+β11X1X2+β12X1X3+β13X1X4+β14X1X5+β15X2X3+β16X3X4+β17X4X6+
β18X3X5+β19X5X6+β20X2

1+β21X2
2+β22X2

3+β23X2
4+β24X2

5+β25X2
6+Ei

with parameter values for the additional coefficients being βpoly ∈{β11=.3,
β12=−.2, β13=.1, β14=–.3, β15=.1, β16=.1, β17=−.2, β18=.3, β19=−.3,
β20=–.2, β21=.1, β22=.2, β23= −.1, β24=.1, β25=−.2}.

In this study, the treatment effect of interest is T[1]. Thus, the PS estimation,
MMA covariate balance improvement, and weighted treatment effect estimation
were done taking t = 1 as the group of interest (McCaffrey et al. 2013).

2.2 PS and Treatment Effect Estimation

Three different models were used to estimate the MG PS: a main effects multinomial
logistic regression (MLR) model, a generalized boosted model (GBM), and a neural
networks (NN) model (Keller et al. 2015; McCaffrey et al. 2013; Stuart et al. 2014).
The treatment effect was estimated using both unweighted and ATE weighted main
effects linear regression models leaving out the dichotomous indicator for treatment
4 T[4] to prevent multicollinearity. Data generation and statistical analyses were
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conducted in R (R Core Team 2016), using the “twang” (Ridgeway et al. 2017) and
“nnet” (Venables and Ripley 2002) packages. The appendix A includes R code to
estimate these three models.

To analyze the role of inverse weight trimming, the three estimated MG IWPS
were trimmed based on their percentiles from the 99th to the 50th percentile value,
which is the value range explored in prior research on IWPS trimming (Lee et al.
2011). Each one of these trimmed IWPS was used to calculate MMA covariate
balance and treatment effect estimates within each replication. The criterion used to
determine covariate balance improvement was the MMA covariate bias (McCaffrey
et al. 2013). Absolute bias and mean squared error (MSE) were used as criteria for
the treatment effect parameter recovery (Rizzo 2008).

3 Results

Table 2 shows that the GBM MG IWPS percentile distribution is consistent across
conditions and it does not produce extreme propensity score weights. However, the
MLR and NN approaches estimated some extreme propensity scores in conditions
2 and 4.

The effects of MG IWPS trimming are summarized in Tables 3, 4 and 5.
Prior to trimming, GBM IWPS consistently produced the lowest MMA covariate
bias across conditions (see Table 3). Conversely, MG IWPS estimated from MLR
models yielded the highest MMA covariate bias in the four conditions explored.
Furthermore, trimming those extreme MLR inverse weights down to the 99th

Table 2 Average IWPS
percentiles by condition and
PS estimation method

1st quartile Median 3rd quartile Max

Condition 1
MLR 1.000 1.000 1.000 1.388
GBM 1.028 1.130 1.427 17.776
NN 1.022 1.091 1.343 13.128
Condition 2
MLR 1.000 1.000 1.021 4.64 × 1020

GBM 1.051 1.195 1.548 17.833
NN 1.030 1.124 1.443 143.827
Condition 3
MLR 1.000 1.000 1.000 1.362
GBM 1.029 1.132 1.429 16.758
NN 1.021 1.089 1.341 14.206
Condition 4
MLR 1.000 1.000 1.022 8.33 × 1019

GBM 1.050 1.191 1.542 17.984
NN 1.030 1.125 1.445 180.740

Note: MLR refers to multinomial logistic regression, GBM to
generalized boosted models, and NN to neural networks
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Table 3 Average absolute maximum covariate balance by inverse weight trimming percentile and
PS estimation method

Trim percentile Model Condition 1 Condition 2 Condition 3 Condition 4

MLR 1.1952 2.32 e17 1.1957 12,417,219
100 GBM 1.0408 1.4703 1.0401 1.011

NN 1.1264 1.4893 1.1249 1.0372
MLR 1.1954 1.0535 1.1959 1.0523

99 GBM 1.0576 1.018 1.0561 1.0198
NN 1.1271 1.0523 1.1266 1.05
MLR 1.1956 1.0771 1.1961 1.0768

98 GBM 1.0672 1.023 1.0663 1.0252
NN 1.1292 1.0575 1.1289 1.056
MLR 1.1957 1.0876 1.1961 1.0877

97 GBM 1.0748 1.0276 1.0742 1.0297
NN 1.1313 1.0613 1.1311 1.0602
MLR 1.1957 1.0945 1.1962 1.0946

96 GBM 1.0814 1.0317 1.0809 1.0336
NN 1.1333 1.0646 1.1333 1.0637
MLR 1.1957 1.0995 1.1962 1.0998

95 GBM 1.087 1.0354 1.0868 1.0372
NN 1.1353 1.0672 1.1353 1.0666
MLR 1.1957 1.1151 1.1962 1.1156

90 GBM 1.109 1.0506 1.109 1.0524
NN 1.1445 1.0778 1.1449 1.0778
MLR 1.1957 1.128 1.1962 1.1286

80 GBM 1.1373 1.0729 1.1377 1.0744
NN 1.16 1.093 1.1606 1.0934
MLR 1.1957 1.1315 1.1962 1.1322

70 GBM 1.1571 1.0897 1.1574 1.091
NN 1.1725 1.1053 1.1731 1.106
MLR 1.1957 1.1324 1.1962 1.1331

60 GBM 1.1715 1.1031 1.1719 1.1043
NN 1.1822 1.1155 1.1828 1.1163
MLR 1.1957 1.1325 1.1962 1.1332

50 GBM 1.182 1.1137 1.1823 1.1149
NN 1.1889 1.123 1.1894 1.1239

Note: MLR refers to multinomial logistic regression, GBM to generalized boosted models, and NN
to neural networks

percentile improved covariate balance. However, trimming MG IWPS below the
98th percentile tended to increase covariate bias across conditions.

Table 4 presents the average parameter recovery statistics for the treatment
effect parameter (i.e., β1 = 1) for unweighted and MG IWPS weighted regres-
sion models in the four conditions. The unweighted results reported in Table 4
correspond to regression models that included only the treatment dummy indicators
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Table 4 Average parameter recovery statistics of the treatment effect in the four conditions

β1 Abs. bias MSE β1 Abs. bias MSE

Condition 1 Condition 2
Unweighted 1.405 0.406 0.193 1.610 0.610 0.387
Unweightedw/ covariates 1.492 0.492 0.279 1.505 0.505 0.288
MLR 1.494 0.501 0.291 1.795 1.048 2.084
GBM 1.503 0.504 0.305 1.496 0.497 0.281
NN 1.542 0.543 0.344 1.517 0.537 0.380

Condition 3 Condition 4
Unweighted 1.674 0.674 0.490 2.097 1.097 1.222
Unweightedw/ covariates 1.299 0.317 0.135 1.464 0.465 0.360
MLR 1.293 0.305 0.127 1.800 1.271 2.875
GBM 1.334 0.354 0.172 1.408 0.411 0.207
NN 1.324 0.338 0.158 1.520 0.545 0.441

Note: MSE refers to the mean squared error of the estimator, and Abs. bias to absolute bias

as independent variables and models that also included the six additional covariates;
the weighted results in Table 4 correspond to regression coefficients estimated
with unrestricted (i.e., not trimmed) MG IWPS. The unweighted model without
covariates produced the lowest absolute bias and MSE compared to the weighted
estimators only in condition 1, but the unweighted models tended to produce a
larger average bias and MSE in conditions 2 and 4. More research is needed to
explain why the unweighted model with covariates produced a larger average bias
than the equivalent model without covariates in condition 1. The weighted estimator
using GBM inverse weights produced the lowest bias and MSE in conditions 2
and 4, whereas the weighted estimator using MLR inverse weights presented the
lowest bias and MSE in condition 3. Since condition 4 is the closest to a real-
life scenario with multiple interacting covariates implicated in the determination
of groups and treatment effects, a practical implication of the results in Table 4 is
that data mining models, in particular generalized boosted models, may be preferred
over other approaches when comparing effects in observational studies.

Results for the average parameter recovery statistics of weighted models using
trimmed inverse weights are reported in Table 5. Overall, the results in Table 5 show
that parameter recovery of the treatment effect does not change in most conditions
as the MG IWPS are trimmed down to the 50th percentile; only in condition 4 there
is a consistent but minor improvement in the estimation of the parameter β1 when
the largest inverse weights are truncated to the 98th percentile. However, trimming
the inverse weights do not produce a significant change in parameter recovery in the
case of the MG IWPS estimated using MLR models.



Table 5 Average parameter recovery statistics of the treatment effect using trimmed inverse
weights in the four conditions

MLR GBM NN
Percentile β1 Abs. bias MSE β1 Abs. bias MSE β1 Abs. bias MSE

Condition 1
99 1.492 0.502 0.292 1.492 0.492 0.283 1.532 0.543 0.326
98 1.492 0.503 0.295 1.490 0.490 0.280 1.528 0.543 0.320
97 1.492 0.503 0.295 1.490 0.490 0.279 1.526 0.542 0.317
96 1.492 0.503 0.295 1.490 0.490 0.278 1.523 0.542 0.313
95 1.492 0.503 0.296 1.490 0.490 0.278 1.521 0.542 0.310
90 1.492 0.502 0.295 1.490 0.490 0.277 1.512 0.543 0.300
80 1.492 0.502 0.295 1.490 0.490 0.277 1.501 0.543 0.289
70 1.492 0.502 0.295 1.490 0.491 0.277 1.497 0.543 0.284
60 1.492 0.501 0.294 1.491 0.491 0.278 1.494 0.544 0.281
50 1.492 0.500 0.293 1.491 0.491 0.278 1.493 0.544 0.280
Condition 2
99 1.493 0.493 0.279 1.504 0.504 0.279 1.513 0.529 0.293
98 1.497 0.497 0.274 1.505 0.505 0.280 1.513 0.532 0.291
97 1.499 0.499 0.274 1.506 0.506 0.281 1.514 0.532 0.291
96 1.500 0.500 0.274 1.507 0.507 0.281 1.514 0.532 0.291
95 1.501 0.501 0.275 1.507 0.507 0.281 1.514 0.532 0.290
90 1.503 0.503 0.276 1.508 0.508 0.282 1.514 0.532 0.289
80 1.505 0.505 0.278 1.509 0.509 0.282 1.511 0.531 0.285
70 1.505 0.505 0.278 1.508 0.508 0.281 1.509 0.530 0.283
60 1.505 0.505 0.278 1.507 0.507 0.281 1.508 0.529 0.281
50 1.505 0.505 0.278 1.507 0.507 0.280 1.506 0.529 0.280
Condition 3
99 1.293 0.305 0.127 1.344 0.356 0.169 1.336 0.340 0.159
98 1.293 0.305 0.126 1.340 0.352 0.163 1.335 0.339 0.157
97 1.293 0.305 0.126 1.337 0.348 0.159 1.333 0.338 0.155
96 1.293 0.305 0.126 1.334 0.345 0.156 1.331 0.338 0.154
95 1.293 0.305 0.126 1.332 0.343 0.154 1.330 0.337 0.152
90 1.293 0.304 0.127 1.324 0.335 0.147 1.322 0.335 0.146
80 1.293 0.304 0.126 1.314 0.325 0.140 1.310 0.334 0.138
70 1.293 0.304 0.126 1.307 0.319 0.136 1.304 0.334 0.134
60 1.293 0.304 0.126 1.302 0.314 0.132 1.299 0.333 0.131
50 1.293 0.304 0.126 1.298 0.310 0.130 1.296 0.333 0.129
Condition 4
99 1.395 0.406 0.202 1.403 0.405 0.192 1.387 0.327 0.184
98 1.383 0.386 0.178 1.401 0.403 0.190 1.385 0.325 0.180
97 1.379 0.381 0.173 1.401 0.402 0.189 1.385 0.325 0.179
96 1.377 0.379 0.171 1.400 0.401 0.188 1.385 0.325 0.178
95 1.376 0.377 0.169 1.399 0.400 0.187 1.385 0.324 0.178
90 1.371 0.372 0.165 1.396 0.397 0.184 1.384 0.324 0.176
80 1.366 0.367 0.161 1.388 0.389 0.178 1.380 0.323 0.172
70 1.364 0.366 0.160 1.382 0.383 0.173 1.376 0.322 0.169
60 1.364 0.365 0.160 1.376 0.378 0.169 1.372 0.321 0.166
50 1.364 0.365 0.160 1.372 0.373 0.165 1.369 0.321 0.163

Note: MSE refers to the mean squared error of the estimator, and Abs. bias to absolute bias
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4 Discussion

This study adds to the current research on the use of MG IWPS estimation and
trimming for estimating causal effects in non-randomized designs. In summary,
results from the simulation study showed that trimming inverse weights had a
detrimental effect by increasing covariate bias and by not having a substantial
impact on parameter recovery statistics of the treatment effect.

The results from the simulation study are similar to those found by Lee et al.
(2011), who also reported that trimming tended to increase covariate bias in their
simulation studies. These authors noted that trimming had a positive impact on
reducing covariate bias and treatment effect bias for extreme weights produced
by logistic regression models, which is parallel to our results for inverse weights
produced by MLR models.

In addition, inverse weights from the machine learning models here analyzed –
GBM and NN – did not yield extreme weights and tended to reduce covariate bias
contrasted to MLR models. These results are consistent with the former research that
has pointed out the advantages of machine learning models with respect to logistic
and multinomial regression models in the estimation of propensity scores (Keller et
al. 2015; Lee et al. 2011; McCaffrey et al. 2013). Results of the simulation study
also showed that MG PS estimated from an MLR model produced larger inverse
weights and higher covariate bias compared to machine learning models.

In empirical research dealing with the comparison of two or more treatment
groups, researchers may have limited information about the baseline covariates
related to specific treatments and to the outcome. Thus, based on the results from
this study, here are some suggestions for the use of MG IWPS and trimming in
empirical research:

First, use more than one method to estimate the MG IWPS; this includes MLR
models with only main effects and models with interactions and polynomials
(Keller et al. 2015; McCaffrey et al. 2013).

Second, compare the distribution of the unrestricted MG IWPS; if a PS estimation
method yields considerable larger inverse weights compared to others, there
could be some misspecification in that model (Lee et al. 2011).

Third, contrast the unrestricted MG IWPS with respect to baseline covariate balance
criteria; models that reduce the most covariate bias tend to be preferred for further
analyses of the treatment effect (McCaffrey et al. 2013).

Fourth, when trimming is considered necessary due to the presence of extreme
weights, then compare the impact of trimming on covariate balance and on the
standard errors of the treatment effect estimate with respect to results using
unrestricted inverse weights. If the trimmed inverse weights yield more biased
results, the researcher should be cautious about this approach.

Finally, more research must be done, particularly regarding omitted baseline
covariates impacting the MG PS and treatment effect; prior research on this topic has
found that omitted confounders may bias the estimated PS and treatment effects, but
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a small amount of research has addressed this issue in the context of MG PS (Austin
2011; Weitzen et al. 2005).
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Appendix A – Code to Estimate Multiple-Group Propensity
Scores

The code in R presented here exemplifies the estimation of multiple-group propen-
sity scores on a categorical variable that identifies more than two groups (“Group”
variable in the data set). Propensity scores are estimated using six covariates
identified as X1, . . . , X6. Code for data generation can be requested to the authors.

# Call libraries that will be needed for this exercise.
library(twang) # For generalized boosted regression
library(nnet) # For NN Estimation

### 1. After calling the data to R, models are estimated.

# Multinomial Regression model.
MR <- multinom(as.factor(Data$Group) ~ X1 + X2 + X3 + X4 +

X5 + X6, data = Data)

# Generalized Boosting model.
GBM4 <- mnps(Group ~ X1 + X2 + X3 + X4 + X5 + X6, data = Data,

n.trees = 3000, interaction.depth = 2,
shrinkage = 0.01, distribution = “multinomial”,

stop.method = “es.mean”)

# Neural Network model. Using 4 group membership.
NN4 <- nnet(as.factor(Data$Group) ~ X1 + X2 + X3 + X4 +

X5 + X6 , data = Data, size = 3, decay = 0.09)

### 2. Multiple-group propensity scores are extracted from
# the output of each function. Inverse weights can be generated
# by calculation ratios of PSs with respect to the group
# of interest.

# Multinomial Regression MG PS.
MR_PS <- MR$fitted.values

# Generalized Boosting MG PS.
GBM4_PS <- cbind(GBM4$psList[[1]]$ps[,1],BM4$psList[[2]]$ps[,1],

GBM4$psList[[3]]$ps[,1], GBM4$psList[[4]]$ps[,1])

# Neural Network MG PS.
NN4_PS <- NN4$fitted.values
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Procrustes Penalty Function for
Matching Matrices to Targets with
Its Applications

Naoto Yamashita

Abstract Penalized estimation is widely used for obtaining sparse solutions, which
facilitates easier interpretation compared with ordinal estimation procedures. In this
research, as a generalized form of penalized estimation, a new penalty function is
proposed. The proposed function shrinks solutions to a prespecified target matrix
which possesses a certain simple structure. The resulting solution is therefore
simple and easy to interpret, and its simplicity is controlled by some tuning
parameters. Two applications of the proposed method are presented: sparse principal
component analysis and three-way component analysis. The applications show that
the proposed method surely produces sparse and interpretable solutions.

Keywords Penalized estimation · Regularization · Regression · Principal
component analysis · PARAFAC

1 Introduction

Interpretability of solutions is one of the most important issues in modern multivari-
ate analysis. Specifically, a growing interest in machine learning technology makes
the issue more important, in that it often involves less interpretable and black box
models (Rudin 2019). Penalized estimation (Hastie et al. 2015) is widely used for
obtaining sparse and interpretable solutions in various procedures of multivariate
analysis, which uses penalized functions in order to shrink some elements toward
zero. For example, sparse principal component analysis (SPCA) (Jolliffe et al. 2003;
Zou et al. 2006) with an L1 penalty aims to minimize

||Z − FA′||2 + λ||A||1 (1)
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over an n (objects) ×r (components) score matrix F and a p (variables) ×r loading
matrix A given an n×p data matrix Z, where ||A||1 = ∑ |ajk|(j = 1, · · · , p; k =
1, · · · , r) and λ denote the L1 norm of A and a tuning parameter, respectively. The
second term in (1) is called as a penalty function and serves to shrink the elements
in A toward zero, and therefore the estimated A is of reduced cardinality.

The paper proposes a new penalty function which includes various penalty
functions. The function is called as a Procrustes penalty function, which is formally
expressed as

PPro(A|�, T) = ||(A − T)�||1 (2)

where � denotes the diagonal matrix of tuning parameters λ1, · · · , λr(> 0). λs

controls the penalty strength on the sth column of A. T denotes a prespecified
target matrix with the same dimension as A. Here, consider to set T as a matrix
with a certain simple structure. The elements in A shrink toward simple T so as
to approximate its structure, and the resulting A is considered to be simple and
easy to interpret. The novel point of the proposed method is that a solution matrix
directly approximates a simple structure, while the existing one shrinks all elements
toward zeros without considering whether the resulting A has a simple structure
or not. Procrustes penalty function therefore expected to yield a more simple and
interpretable solution matrix compared with the existing methods. It should be noted
that the article only considers the case with L1 norm penalty, since the main goal of
the research is to obtain sparse and interpretable solution matrices.

The remaining parts of the article are organized as follows. In the next section, an
optimization algorithm for the proposed methods is presented, where a general case
of regression model with Procrustes penalty is considered. There, a theorem of the
minimizer for the regression problem is also presented. Further, the proposed pro-
cedure is applied to some machine learning problems, followed by their examples
in Sect. 3. The final section is devoted to conclusions and future remarks.

2 Proposed Method

2.1 General Case: Multivariate Regression

Here, we consider a multiple regression problem with a Procrustes penalty function
as a general case. It is formally expressed as the minimization of

f (W) = ||Y − XW||2 + PPro(W|�, T) (3)

where Y = [
y1, · · · , yq

]
denotes the n×q matrix of the dependent variables and it is

regressed on the p independent variables in an n×p data matrix X = [
x1, · · · , xp

]
.

W is an unknown p × q matrix of regression coefficients. Above, the Procrustes
penalty function applied to the coefficient matrix W serves to obtain an interpretable
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estimate of the parameter matrix W. Here, as PPro(W|�, T), the L1 norm is
considered, PPro(W|�, T) = ||�(A − T)||1, because it is able to produce a W
including some exact zero elements.

For the minimization of equation (3) over W, we have the following theorem.
Note that the theorem is valid only in the case with L1 norm penalty.

Theorem 1 The minimizer of the penalized loss function f1(W) = ||Y − XW||2 +
||(W − T)�||1 is given by

wjl =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ŵj l − λj

2||xj ||2
(
ŵj l > tjl + λj

2||xj ||2
)

ŵj l + λj

2||xj ||2
(
ŵj l < tjl − λj

2||xj ||2
)

tj l

(
|wjl | ≤ tj l + λj

2||xj ||2
)

(4)

using Ŵ = {ŵkl} = (X′X)−1X′Y, where tj l is the (j, l)th element of T
corresponding to wjl , the (j, l)th element of W.

Proof. f1(W) can be rewritten as

f1(W) =
q∑

l=1

p∑
j=1

(
||yl − wjlxj ||2 + λk|wjl − tj l |

)
. (5)

For minimizing it, consider the following three cases: [1]wjl > tjl , [2]wjl < tjl ,
and [3]otherwise. In case [1], f1(W) is reduced to

f1(W) =
q∑

l=1

p∑
j=1

(
||yl − wjlxj ||2 + λj (wjl − tj l)

)
(6)

and therefore its minimizer in the case is obtained as follows:

∂f1(W)

∂wjl

= −2y′
lxk + 2wjl ||xj ||2 + λk = 0 ⇔ wjl = ŵj l − λj

2||xj ||2 . (7)

Further, the condition can be rewritten as

ŵj l − λj

2||xj ||2 > tjl ⇔ ŵj l > tjl + λj

2||xj ||2 , (8)

which leads the first case of equation (4). In the similar manner, the minimizer in
case [2] can be given by wjl = ŵj l − λj

2||xj ||2 , and the condition indicates that ŵj l <

tjl − λj

2||xj ||2 . Case [3] indicates wjl = tkl , and its condition is |wjl | ≤ tj l + λj

2||xj ||2 ,

which is not covered by the first and second conditions. These results immediately
lead to equation (4). ��
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Equation (4) can be simply expressed as below, with (x)+ being x if x ≥ 0 and −x

otherwise:

wjl = sign(ŵj l − tj l)

(
|ŵj l − tj l | − λj

2||xj ||2
)

+
+ tj l (9)

It should be noted that equation (4) is a generalization of LASSO solution in that
both are equivalent when T = Op×q , where Op×q denotes the p × q matrix filled
with 0s. This implies that a LASSO penalty function is aimed to shrink a solution
matrix toward the zero matrix with the same dimension.

2.2 Applications in Machine Learning Problems

The above minimization procedure can be applied to SPCA, in which a component
loading matrix A is sparsely estimated. It is formulated as the minimization of

fSPCA(F, A) = ||Z − FA′||2 + ||(A − T)�||1 (10)

subject to n−1F′F = Ir . Note that it is equivalent to SCoTLASS (Jolliffe et al.
2003) if we set T = O. The minimization of fSPCA(F, A) is attained by repeating
the following two steps until the decrement of the function value converges, starting
from suitable initial values for F, A:

1. Update F by F = n1/2Kr where Kr (n × r) denotes the matrix of r right
eigenvectors corresponding the r-largest eigenvalues of X.

2. Update A by equation (9) with setting W → A′, X → F, and Y → Z.

The example of the SPCA procedure is shown in the next section.
Also, the proposed procedure is applicable for three-mode component analysis

(Kroonenberg 2008). Tucker3 (Tucker 1966; Kroonenberg and De Leeuw 1980)
and CANDECOMP/PARAFAC (Carroll and Chang 1970) models are common
choices for the problem. It is known that the former is less restrictive but difficult
to interpret its result, while the latter is easier to interpret but too restrictive. It is
formally expressed as follows. Let X̄ be an n × p × k data array. Tucker3 and
PARAFAC models either compress the first, second, and third modes into s, t , and u

components, respectively, and an s×t×u array C̄ termed as a core array is obtained.
Note that s = t = u in PARAFAC model. In PARAFAC, the core array is restricted
to be super-diagonal array and easier to be interpreted in that it contains several zero
elements; the number of linkages between the components is limited. On the other
hand, no constraint is imposed on the array in Tucker3 and thus often difficult to
interpret (Frølich et al. 2018). In terms of fitness to the data array, Tucker3 is better
because it has more unknown parameters than the other.

Here, Procrustes penalty function is used to an intermediate solution between
two models in order to balance interpretability and fitness to the data array. It is
accomplished by minimizing
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fT P (G, C, H, E) = ||Z − GC(H ⊗ E)′||2 + ||(C − T)�||1 (11)

where the former is Tucker3’s loss function. Above, G(n×s), H(p×t), and E(k×u)

are unknown component loading matrices of the first, second, third mode of X̄,
respectively. Z = {X1, · · · , Xk} is the n × pk matrix of the horizontal slices of X̄.
Also, C = {C1, · · · , Ck} is the s × tu matrix composed of the horizontal slices
of C̄, and it is matched to T having a suitable dimension. Here, consider to set T
as the matrix of horizontal slices of the core array estimated by PARAFAC. The
estimated core array by minimizing equation (11) therefore shrinks toward the one
by PARAFAC, and thus the array is considered to be in the middle of PARAFAC and
Tucker3. The relative strength of Procrustes penalty to the Tucker3’s loss function
is controlled by �; � having high values for its diagonal elements leads to a more
PARAFAC-like core array and vice versa.

The minimization of equation (11) is accomplished as follows. Nelder-Mead’s
numerical optimization is used for minimizing fT P (G, C, H, E) over G, H, and E.
The core array minimizing the loss function is obtained by extending Theorem 1 to
Penrose regression in which

fPen(W) = ||Y − X1WX2||2 + ||�(W − T)||2 (12)

is minimized over W.

Corollary 1 The minimizer of the loss function in Equation (12) over W is given
by

wjk = sign(w̃ik − tjk)

(
|w̃jk − tjk| − λj

2||x(1)
j ||2||x(2)

k ||2

)

+
+ tjk (13)

where x(1)
j and x(2)

k denote the j th and kth columns of X1 and X2, respectively.

Proof. It can be easily verified in the same way as Theorem 1. ��

Using the corollary, the optimal C is obtained by setting X1 → G and X2 → H⊗E.
The solution for the minimization of equation (11) is obtained by repeating the
following steps, updating C by (13), and updating the other parameter matrices by
numerical optimization of the loss function.

3 Illustrations

The proposed procedures are illustrated in order to show how well they work in
dealing with real datasets.
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3.1 SPCA to Wine Data

The SPCA procedure combined with a Procrustes penalty function is to be
demonstrated. The dataset used here is wine data (Dua and Karra Taniskidou 2017)
that consists of 178 samples (wines) and 13 variables (chemical ingredients), and it
is available at UCI Machine Learning Repository.

First, the target matrix T was specified by the following manner. An original
principal component analysis with three components was applied to the dataset, and
the score and loading matrices were obtained denoted as F̃ and Ã, respectively. Let
Ã� = {ã�

jk} be a varimax-rotated Ã, and T was set by

tjk =
{

sign(a
�
jk) (|ã�

jk| > τ)

0 (otherwise)
(14)

where τ is a suitable threshold. The value of τ was set at 0.4 in this example.
T is considered as a possible simple structure because it is based on varimax-
rotated loading matrix and its simplicity was further emphasized by substituting
all elements with ±1 or zeros.

We restricted λk = λ for k = 1, · · · , r for the simplicity of the example and
estimated As for λs within the range of λ ∈ [20, 250]. Figure 1 shows solution
paths of A where each of the estimated elements of A is plotted against λs. It can be
seen that some of the elements shrink toward zero as λ increases, while the others
shrinks toward 1 or −1. The figure indicates that most of the elements in A take
0, 1, or −1 when λ is large, and therefore λ controls the resulting simplicity of the
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Fig. 1 Solution paths for three components; names of the 13 variables are shortened. The y-axes
stand for the value of elements. The legend is common for all the plots
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solution. To illustrate this, we picked up some λs within the range of λs and showed
the estimated As with the target matrix T as Table 1. The correspondences between
the variables and the components are clearly captured, because the estimated loading
matrix contains many exact zero elements when λ is sufficiently large and also has
simple structure as well as T. For example, referring A with λ = 50, the second
component is characterized by alcohol (Alc) and color intensity (Col) and proline
(Pro), but it is not clearly captured in the one with λ = 20.

3.1.1 Three-Mode Component Analysis to Multiple Personality Data

The proposed method is also used for estimating an intermediate core array between
Tucker3 (unconstrained) and PARAFAC (constrained to be super-diagonal). The
three-mode component analysis with Procrustes penalty function was applied to
multiple personality data (Kroonenberg 2008) in which 15 concepts were evaluated
by 10 scales by 6 personalities. The data array X̄ thus has a dimension of 13×10×6,
and see Osgood and Luria (1954) for details of the data. To set a target matrix T,
PARAFAC with s = t = u = 2 was firstly applied to X̄, and the resulting 2 × 2 × 2
core array C̄ is transformed into 2×4 a target matrix T. For simplicity, the isotropic
penalty parameters were used: � = λI2. With the target, the proposed method was
applied to the data, using the penalty parameters λ = 1, 10, and 100.

Table 2 shows frontal slices of the estimated core arrays together with Tucker3
(λ = 0) and PARAFAC (λ = ∞) solutions. There are two extreme cases, Tucker3
and PARAFAC, and components are fully connected in the former solution, while
they are sparsely connected in the latter. The proposed method allows to obtain
intermediate solutions between them. As λ gets increased, the solution gradually
approximates PARAFAC solution that is the most restrictive but interpretable core
array. Users freely choose appropriate value of λ, by checking resulting simplicity of
the core array. If one considers λ = 10 as appropriate, connections between several
components can be ignored, while all connections have to be interpreted in Tucker3.

4 Conclusions

The research proposes a new penalty function for penalized optimization in
multivariate analysis procedures. It is termed as Procrustes penalty function, and it
shrinks a solution matrix to a prespecified target matrix. The target matrix possesses
a certain desired structure which the resulting solution should possess, such as
a simple structure. If a target with a simple structure is employed, the resulting
solution matrix is thus simple and interpreted, while the existing penalty functions
hardly consider the matrix-wise simplicity of a solution matrix. The proposed
method is applicable to various multivariate analysis procedures, in order to obtain
an interpretable solution matrix or other purposes. We used the Procrustes penalty in
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Table 2 Estimated core arrays by Tucker3, PARAFAC, and the proposed method with three λs.
Blanc cells stand for exact zero elements

Mode3 personalities

Comp.1 Comp.2

Mode2 scales Comp.1 Comp.2 Comp.1 Comp.2

Tucker3 Mode1 concepts

Comp.1 −15.803 −5.723 3.437 −3.363

Comp.2 4.423 −12.243 −1.229 −2.460

λ = 1 Comp.1 −5.185 −0.189 −2.404

Comp.2 1.295 −0.934 −3.008

λ = 10 Comp.1 −0.277 0.088 0.075

Comp.2 0.022 −0.305 0.266

λ = 100 Comp.1 0.582

Comp.2 0.493

PARAFAC Comp.1 0.582

Comp.2 0.493

SPCA and three-mode component analysis, aiming to simplify the loading matrix in
the former and to obtain an intermediate solution between Tucker3 and PARAFAC.

So far, the author treated the target matrix T as a prespecified matrix need to
be fixed. T is, however, possible to be estimated jointly as well as other parameter
matrices. There exist some cases where it is difficult to specify T in advance, and
such extension of the proposed method serves to relax the hurdle for using the
Procrustes penalty function.
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Factor Score Estimation from the
Perspective of Item Response Theory

David Thissen and Anne Thissen-Roe

Abstract The factor scores of confirmatory factor analysis (CFA) models and
the latent variables of item response theory (IRT) models are similar statistical
entities, so one would expect that their estimation or characterization would follow
parallel tracks in CFA and IRT. However, historically they have not. Different
procedures have been used to derive factor score estimates and latent variable
estimates in IRT, and different computational procedures have been the result. In this
chapter we approach factor score estimation for some simple CFA models from the
perspective of IRT, with the kinds of graphics that are used to explain IRT estimates
of proficiency, and the computational procedures that are used in test theory.
We compare traditional “regression” and “Bartlett” factor score estimates with
alternative computational approaches to likelihood-based factor score estimates,
referring to the expected a posteriori and maximum likelihood estimates of IRT
latent variables to clarify relations among the scores. This provides insights into
the ways in which the data are combined into factor score estimates. The results
provide an alternative method to compute factor scores in some simple models in
the presence of observations that may be missing at random for some variables.

Keywords Factor scores · Item response theory

1 Introduction

It can be useful in explaining item response theory (IRT) to say that IRT scores are
the same as factor score estimates: point estimates summarizing the location of a
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likelihood or posterior for a latent variable. While this statement can be helpful if
the students of IRT already know something about factor analysis (or vice versa),
its usefulness is limited by the fact that neither the IRT nor the factor analysis
literature makes the analogy clear in any detail. Procedures to compute factor
score estimates originated with ideas based on regression (Thomson 1935, 1936,
1938; Thurstone 1935; Bartlett 1937), and the usual textbook presentation of factor
analysis uses those lines of argument. The literature on factor score estimates (that is
not preoccupied with factor score indeterminacy Grice 2001) is about the properties
of the estimates: whether they are conditionally unbiased, whether they have the
right variances and correlations with each other or other variables, etc.; for examples
see Skrondal and Laake (2001); Devlieger et al. (2015); or Hoshino and Bentler
(2013). This presentation is not about those topics, but rather “What if you want
factor scores estimates to use like test scores, assuming you know the structural
parameters from previous large scale calibration and you probably want to have a
method tolerant of observations missing at random?” Mardia et al. (1979), Hoshino
and Bentler (2013), Estabrook and Neale (2013), and Loncke et al. (2018) touch on
this topic, and Skrondal and Rabe-Hesketh (2004) have a chapter on it, but it has not
been salient in the literature on factor analysis.

Our intention is to provide an explanation that is useful for pedagogy, for both
IRT and factor analysis, and that supports the use of factor score estimates for the
usual purposes of test scores: reporting or subsequent analysis. There are contexts in
which a large number of (effectively) continuous variables (say, a few dozen) serve
as indicators for a smaller number (say, less than a dozen) latent variables or factors.
If it is desirable in such a context to report something like scores to the respondents,
or to have summaries for subsequent analyses, the use of factor score estimates by
direct analogy with IRT score computations presents itself.

In this chapter we trace the development of factor score estimates from the same
likelihood principles as are used for IRT scores, to make the direct analogy clear;
then we show which regression methods are the same as IRT scores. In the process,
we describe ways the factor score estimates can be computed with some of the
observations missing at random, again in parallel to standard IRT methods to score
around missing item responses. And we illustrate the computations with graphics
that are rarely used in the factor analytic literature.

2 Unidimensional Likelihood-Based Score Estimates

2.1 IRT Scoring

Thissen and Orlando (2001) and Thissen et al. (2001) summarize decades of work
that has culminated in contemporary IRT test scoring. A common (if misguided)
IRT convention is to refer to the latent variable measured by a test as θ (or θ if
multidimensional; we will discuss only unidimensional models in this section). The
basic element of the model is the item response function T (uij |θ), the line tracing
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the probability of categorical response u (that may be dichotomous or polytomous)
of person i to item j as a function of θ . In this section (only) we use the most
common IRT notation, even though the use of θ conflicts with its reuse in the factor
analytic context in subsequent sections; we assume the context will make meaning
clear to the reader.

Under IRT’s defining assumption of conditional or local independence, the
likelihood of the set of responses from person i is

L(ui |θ) =
∏
j

T (uij |θ). (1)

Historically the mode of equation 1, the maximum likelihood (ML) estimate, has
been used as an IRT test score, because it can be described as the most likely value
of θ given the response pattern u.

However, the ML estimate has disadvantages, chief among which is that it is not
finite for some response patterns for commonly used IRT models. Equation 1 is also
an incomplete representation of the model. There must also be some density φ(θ)

for the latent variable itself. Including that, a more complete likelihood is

Lp(θ |ui ) ∝
∏
j

T (uij |θ)φ(θ). (2)

Equation 2 is often referred to as the posterior density for θ because of the formal
analogy of the equation with likelihood-times-prior in Bayesian analysis. That
makes the population distribution for the latent variable, φ(θ), a prior distribution,
which it really is not. φ(θ) is part of the model for the categorical responses.
However, again for historical reasons, the nomenclature has become so solidified
that IRT estimates based on equation 2 are referred to as a posteriori so the
modal estimate is the maximum a posteriori (MAP) and the mean of equation 2
is the expected a posteriori (EAP) estimate. The EAP estimate has the advantage
of minimizing squared error, but can be challenging to compute for models with
higher-dimensional θ , for which the modal estimate remains valuable.

Unidimensional IRT score computation is illustrated on the left side of Fig. 1.
The mode of the blue likelihood in the lower panel is the ML estimate. The mode
of the magenta “posterior” is the MAP estimate, and the mean of that curve is the
EAP estimate. The two modal estimates are computed with an optimization method,
usually Newton-Raphson; the EAP is computed using numerical integration.

2.2 Unidimensional Factor Analysis

2.2.1 The One-Factor Model

To be parallel with unidimensional IRT, we begin with the one-factor model for
continuous response yij for person i and observed variable j ,
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Fig. 1 Left side: IRT scoring. Upper panel: The population distribution φ(θ), usually N(0, 1)

for IRT models. Center panel: Three trace lines T (u|θ), two for correct or positive responses to
dichotomous items and one incorrect or negative. Lower panel: The blue curve is the likelihood
L(ui |θ) from equation 1, the product of the three trace lines in the center panel; the magenta curve
is the posterior, Lp(θ |ui ) from equation 2, which is the blue likelihood times the red population
distribution in the upper panel. Right side: Factor scoring. Upper panel: The population
distribution φ(f ), often N(0, 1) for CFA models. Center panel: Three Gaussian likelihoods
L(yij |fi) for three values of “y = [0.0, 0.3, 0.7] and λ = [0.6, 0.7, 0.8]”. Lower panel: The blue
curve is the likelihood L(yi |f ) from equation 5, the product of the three likelihoods in the center
panel; the magenta curve is the posterior, Lp(f |yi ) from equation 6, which is the blue likelihood
times the red population distribution in the upper panel

yij = λjfi + εij , (3)

in which the observations yij and the factor scores fi are both assumed to be
standardized (hence the absence of an intercept in equation 3). λj is the regression
parameter (or factor loading) for yj on f (and also the correlation for standardized y

and f ), and εij is N(0, θj ) in which θj is the unique, or error, variance for observed
variable j . Note that with everything standardized, θj = 1−λ2

j . [Also note the reuse
of the notation θ here following widely conventional notation used with structural
equation modeling; the meaning differs from θ in IRT in the previous section.]

The context for computing factor score estimates is one in which the (usually
previously estimated) values of λj and θj are taken to be fixed and known, just as it
is for IRT scoring using item parameters from calibration.
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The (Gaussian) likelihood for response yij , analogous to the IRT trace line, is

L(yij |fi) = φ(yij |fi) = 1√
2πθj

e
−(yij −λj fi )

2

2θj . (4)

Assuming local independence, the (also Gaussian) likelihood of the vector of
responses yi for person i is

L(yi |fi) =
∏
j

L(yij |fi). (5)

Equation 5 is directly analogous to equation 1 from IRT. It ignores the population
distribution for simplicity. This is harmless; unlike in IRT, for all patterns of
observed responses, estimates can still be computed. However, factor analysis often
makes use of the assumption that the factor scores f are normally distributed. The
likelihood that includes the population distribution is

Lp(fi |yi ) ∝
∏
j

L(yij |fi)φ(f ), (6)

analogous to equation 2.
Because both likelihoods are Gaussian, the modes and means are the same,

and derivational and computational approaches to compute either provide the same
factor score estimates.

2.2.2 Modal (or Maximum Likelihood or ML, or MAP) Estimation

Mardia et al. (1979, p. 274) point out that likelihood-based factor score estimates
are the same as Bartlett’s and Thomson’s regression-based factor score estimates,
and Skrondal and Rabe-Hesketh (2004, p. 239) make the same observation about
Bartlett’s estimates. Hoshino and Bentler (2013, p. 47) observe about “(1) Bartlett’s
method and (2) the regression method. The former can be considered the ML
estimator of the factor score vector in the fixed effect factor analysis, while the
latter can be regarded as the Bayes posterior mean estimator.” Estabrook and Neale
(2013) discuss the performance of likelihood-based estimates of factor scores, as
compared with Bartlett’s method. None of those sources provide much detail about
their derivation or computation.

The maximum likelihood, or ML, factor score estimate can be computed
by locating the modal value of the likelihood L(yi |f ) in equation 5. Iterative
computation of the mode of a likelihood is usually done with a Newton-Raphson
algorithm applied to the log likelihood. In this case, the log likelihood is
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� = logL(yi |fi) =
∑
j

logL(yij |fi) ∝
∑
j

−(yij − λjfi)
2

2θj

; (7)

the maximum is the value of f where the first derivative of � equals zero:

∂�

∂f
=

∑
j

λj (yij − λjfi)

θj

= 0. (8)

The Newton-Raphson algorithm locates the maximum as the convergence of a
sequence of values defined by

fnext = fcurrent − ∂�

∂f

/
∂2�

∂f 2 , (9)

in which the second derivative is

∂2�

∂f 2 =
∑
j

−λ2
j

θj

. (10)

Because the likelihood is Gaussian, the log likelihood is quadratic, and Newton-
Raphson always converges in one step to the mode, which is also the mean.
Following standard likelihood theory, the error variance of the estimate is the
negative inverse of the second derivative (equation 10).

The log likelihood and its derivatives for Lp, including a normal population
distribution, add terms to equations 7, 8, and 10. Then procedures to compute
analogs to IRT’s MAP and EAP estimation can make use of either Newton-Raphson
iteration to the mode (which requires only one evaluation of the derivatives) or
numerical integration (which is more computationally intensive).

For the special case of a single observed variable, equation 8 can be solved by
visual inspection to yield the mean value of f for an item given the response, μf |yij

= yij /λj ; the associated variance comes from equation 10: σ 2
f |yij

= θj /λ
2
j . These

can be used to plot graphics for factor score estimation parallel to the left side of
Fig. 1, as shown on the right side.

2.2.3 Quick Closed Form Computation for Models in which Each
Variable Is Associated with Only One Factor

It is sometimes desirable to compute factor score estimates in the presence of
individual observed variables that may be missing at random. That can be done with
any of the procedures described in the preceding or subsequent sections. For the
IRT-like likelihood-based computations described in Sect. 2.2.2, one simply omits
the terms in the log likelihood and derivatives associated with the missing observa-
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tion(s). Regression-based solutions (to follow in Sect. 3.4) require recomputation of
the regression coefficients for the subset of variables observed for a given person.
There is a shortcut for some simple models: those in which each observed variable
is associated with only one factor. The simplest special case is the unidimensional
model.

The likelihood in equation 5 is a product of Gaussian likelihoods. The mean of
a product of Gaussian likelihoods is the average of the means of the component
normal distributions, each weighted by the inverse of the associated variance. We
determined at the end of the preceding section that the means and variances of the
likelihoods for each response are μf |yij

= yij /λj and σ 2
f |yij

= θj /λ
2
j .

Then a closed form computation of the ML estimate f̂i is

f̂i =
∑

j

μf |yij

σ 2
f |yij∑

j
1

σ 2
f |yij

=
∑

j

yij /λj

θj /λ2
j∑

j
1

θj /λ2
j

(11)

and the associated error variance is

σ 2
fi

= 1∑
j

1
σ 2

f |yij

= 1∑
j

1
θj /λ2

j

. (12)

The summations run over all non-missing responses.

3 Multidimensional Likelihood-Based and Regression-Based
Score Estimates

3.1 The Multiple Factor Model

Express the multiple factor model for the vector of p observed responses yi for
person i as

yi = Λf i + εi , (13)

in which the observations yi and the vector of k factor scores f i are standardized, Λ
is p × k matrix of regression coefficients (or factor loadings) for yi on f i , and ε is
multivariate N(0,Θ) in which Θ is the variance-covariance matrix of the residuals
(or errors or “unique factors”).1

1Often this would quickly be changed into a model for the covariance matrix among the
observations, Σ = ΛΦΛ′ + Θ , in which Φ is the covariance (here, correlation) matrix among
the factors, for estimation of the parameters in Λ an Θ by Wishart maximum likelihood. However,
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Then the likelihood for the data as a function of the factor scores (assuming Λ

and Θ are known) is

L(yi |f i ) = |Θ|− 1
2

(2π)
p
2

e− 1
2 (yi−Λf i )

′Θ−1(yi−Λf i ). (14)

The log likelihood is then proportional to

� = logL(yi |f i ) ∝ − 1
2 (yi − Λf i )

′Θ−1(yi − Λf i ). (15)

If a standard normal population distribution for f is included, with correlation
matrix Φ among the factors, the likelihood becomes

Lp(f i |yi ) ∝
⎡
⎣ |Θ|− 1

2

(2π)
p
2

e− 1
2 (yi−Λf i )

′Θ−1(yi−Λf i )

⎤
⎦
⎡
⎣ |Φ|− 1

2

(2π)
k
2

e− 1
2 f i

′Φf i

⎤
⎦ ; (16)

the log likelihood is then proportional to

�p = logLp(f i |yi ) ∝ − 1
2 (yi − Λf i )

′Θ−1(yi − Λf i ) − 1
2f i

′Φf i . (17)

3.2 On the Normal Likelihood of the Multiple Factor Model

An IRT-style graphical representation of the combination of the likelihoods for
individual variables that constitute the likelihood in equation 14 for a person’s vector
response is shown in Fig. 2. The illustration is for three hypothetical variables in a
two factor solution with loadings

Λ =
⎡
⎣

0.60 0.00
0.60 0.60
0.75 −0.50

⎤
⎦ . (18)

In the left panel of Fig. 2, color density represents the likelihood of responses y′
= [0.1 0.2 0.3] to these three items. The variables in the order of rows in equation 18
are shown as magenta, yellow, and cyan. Each colored band is a unidimensional
normal curve in cross section, with a ridge along a line that is the mean for one
factor conditional on the value of the other. The magenta ridge is vertical, because
the response to the first variable is related only to f1, not f2. The ridge for the

here we are concerned with the factor scores f , treating Λ, Φ, and Θ as fixed and known, so we
mention this only to clarify notation.
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Fig. 2 Left panel: Color density represents the likelihood of responses y′ = [0.1 0.2 0.3] to three
items with factor loadings in equation 18. The variables in the order of rows in equation 18 are
shown as magenta, yellow, and cyan. Right panel: Grayscale density indicates the joint likelihood
of the three responses plotted separately in the left panel; this is the bivariate normal likelihood of
equation 14

yellow band, representing variable 2, descends at a 45◦ angle because the two factor
loadings are equal, so for a given response the value of f2 must become equally
lower as the value of f1 increases. The third (cyan) band shows the likelihood for a
variable positively related to f1 and negatively related to f2.

As is the explicit case in IRT, the joint likelihood for the three responses is the
product of the separate likelihoods, but in writing the likelihood for the factor model
that product is buried in the multivariate normal density, equation 14. That product,
or multivariate normal, likelihood is shown with grayscale density in the right panel
of Fig. 2.

3.3 Modal Estimation

The matrix form of the log likelihood is equation 15; the vector derivative with
respect to f is

∂�

∂f
= Λ′Θ−1(yi − Λf̂ i ), (19)

and the second derivative is

∂2�

∂f
= −Λ′Θ−1Λ. (20)

So the multivariate Newton update to obtain the vector ML estimate f̂ i is
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f̂ i ,next = f̂ i ,current −
[
∂2�

∂f

]−1
∂�

∂f
. (21)

MAP estimates are obtained by adding the derivative components with respect
to f from the standard normal population distribution to equations 19 and 20, as
follows:

∂�p

∂f
= Λ′Θ−1(yi − Λf̂ i ) + Φ−1f̂ i , (22)

and the second derivative is

∂2�p

∂f
= −Λ′Θ−1Λ − Φ−1. (23)

3.4 The Regression Solutions Derived from the Likelihood

With the log-likelihood in equation 15, we can also find the maximum likelihood
estimates of f by locating the minimum of Q

Q = tr((yi − Λf i )
′Θ−1(yi − Λf i )) . (24)

Following the standard derivation of multivariate regression coefficients (see, e.g.,
Bock (1975, pp. 168–170)), inverting the roles of the explanatory variables and the
regression coefficients, because here we know the regression coefficients Λ and we
want to estimate the explanatory variables f , we expand equation 24 to become

Q = tr(yiΘ
−1yi − 2yiΘ

−1Λf i + f i
′Λ′Θ−1Λf i ). (25)

Using matrix derivatives, the partial of Q with respect to f is equal to zero at the
minimum of Q

∂Q

∂f
= −2Λ′Θ−1yi + 2Λ′Θ−1Λf i = 0, (26)

so

Λ′Θ−1Λf i = Λ′Θ−1yi , (27)

and

f̂ i = (Λ′Θ−1Λ)−1Λ′Θ−1yi , (28)
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in which (Λ′Θ−1Λ)−1ΛΘ−1 is the formula for the (Bartlett 1937) regression
solution. Standard regression results lead to the conclusion that the error covariance
matrix for f̂ i is

Σf i
= (Λ′Θ−1Λ)−1. (29)

If we repeat this exercise with the log-likelihood including the population
distribution in equation 17, we have

Qp = tr(yi − Λf i )
′Θ−1(yi − Λf i ) + tr(f i )

′Φ−1f i . (30)

Then the derivative of Qp with respect to f is equal to zero at the minimum of Q

∂Qp

∂f
= −2Λ′Θ−1yi + 2Λ′Θ−1Λf i + 2Φ−1f i = 0, (31)

so

Λ′Θ−1Λf i + Φ−1f i = Λ′Θ−1yi , (32)

and

f̂ i = (Λ′Θ−1Λ + Φ−1)−1Λ′Θ−1yi , (33)

in which (Λ′Θ−1Λ + Φ−1)−1ΛΘ−1 is the formula for the Thomson-Thurstone
regression solution (Thomson 1935, 1936; Thurstone 1935). Standard regression
results lead to the conclusion that the error covariance matrix for f̂ i is

Σf i
= (Λ′Θ−1Λ + Φ−1)−1. (34)

Mardia et al. (1979, p. 274) provide both the Barlett and Thomson-Thurstone
results from the log likelihood but without any intermediate steps. Estabrook and
Neale (2013, p. 3) also provide the Bartlett result as well as the version of the
Thomson-Thurstone coefficients with Φ=I for orthogonal factors; Bartholomew
et al. (2011, p. 48) also provide the latter, but without any reference to Thomson
or Thurstone.

Thomson (1938, p. 246) understood that his estimator included the population
distribution and Bartlett’s did not; he wrote, explaining the difference between his
estimates and Bartlett’s, “My formulae were arrived at by the ordinary regression
method. Bartlett’s estimates and the regression estimates attain different ends, and
it is agreed that each method is correct in the right place. The regression estimates
minimize the squares of the discrepancies between the estimates and the true values,
summed over the population of persons. Bartlett’s estimates minimize the squares
of a man’s specific factors, summed over tests.” That is to say, the Thomson-
Thurstone estimates are MAPs or EAPs, which we know minimize squared error
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across the population, while Bartlett’s estimates minimize the squared residuals
within a person. In that same note to Nature, Thomson (1938, p. 246) provided
the equations for the linear relationship between his estimates and Bartlett’s.

3.5 Observations Missing at Random

There are a number of ways to compute factor score estimates in the general
multiple-factor model with some observations potentially missing at random. One
method that corresponds with common practice in IRT is to compute the modal
estimates (either ML or MAP) of Sect. 3.3, omitting values corresponding to missing
data from the derivatives; general software for full information maximum likelihood
(FIML) estimation of factor models may be able to do this as a special case.
Another more computationally intensive method, inspired by EAP estimation in
IRT, would be to use numerical integration to compute the mean of the likelihoods
in equations 14 or 16, similarly omitting unobserved vector elements.

However, a method that is probably less computationally intensive than either
of the above strategies was mentioned by Loncke et al. (2018, p. 9): It is
reasonably easy to recompute either the Bartlett or Thomson-Thurstone regression
coefficients (in equation 28 or 33) for any observation with missing data, omitting
matrix elements corresponding to missing observations. With modern computa-
tional equipment and software, recomputing the regression coefficients even for
every observation is less computation than is routinely done for IRT scoring. And
it doesn’t have to be redone for each observation, only for those with missing data.
For larger numbers of factors or observed variables, it may be more efficient to solve
the equations in the form Af = b rather than collecting all terms on the right-hand
side; on modern computing systems, linear solvers scale better than inversion.

3.6 The Mean and Variance of the One-Factor Score for One
Variable, Redux

In Sect. 2.2.3, we discussed a one-factor model and showed that the means and
variances of the likelihoods for each response are μf |yij

= yij /λj and σ 2
f |yij

= θj /λ
2
j .

Using Bartlett’s regression to obtain the expected value and its variance, we arrive
at the same result. If there are only one observation y and one factor f , everything
in equation 28 is scalar. After cancellation we have μf |yij

= yij /λj ; σ 2
f |yij

= θj /λ
2
j

is the scalar form of equation 29.
The weighted-means method of Sect. 2.2.3 works for multiple factor models in

which each observed variable is related to only one factor (no cross loadings).
A generalization of the weighted means algorithm is possible for models with



Factor Score Estimation from the Perspective of Item Response Theory 183

cross loadings, modeled after the system described by Thissen et al. (2001) for
approximately combining IRT trace lines.

4 Conclusion

We have elaborated on the parallelism between the IRT-based test scoring and
the factor score estimates for linear-normal CFA models. Because “Bartlett’s” and
“regression” (Thomson-Thurstone) factor score estimates correspond exactly with
ML and MAP/EAP estimation in IRT, we have concentrated on those methods. This
omits consideration of alternative methods for factor score estimation like those
proposed by Skrondal and Laake (2001) and Hoshino and Bentler (2013), but some
of the reasoning described in this presentation can be applied to those as well.

Hopefully this integration of IRT and the factor analytic traditions serves to make
both easier to understand.
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On the Precision Matrix
in Semi-High-Dimensional Settings

Kentaro Hayashi, Ke-Hai Yuan, and Ge Jiang

Abstract Many aspects of multivariate analysis involve obtaining the precision
matrix, i.e., the inverse of the covariance matrix. When the dimension is larger
than the sample size, the sample covariance matrix is no longer positive definite,
and the inverse does not exist. Under the sparsity assumption on the elements of
the precision matrix, the problem can be solved by fitting a Gaussian graphical
model with lasso penalty. However, in high-dimensional settings in behavioral
sciences, the sparsity assumption does not necessarily hold. The dimensions are
often greater than the sample sizes, while they are likely to be comparable in
size. Under such circumstances, introducing some covariance structures might
solve the issue of estimating the precision matrix. Factor analysis is employed for
modeling the covariance structure and the Woodbury identity to find the precision
matrix. Different methods are compared such as unweighted least squares and factor
analysis with equal unique variances (i.e., the probabilistic principal component
analysis), as well as ridge factor analysis with small ridge parameters. Results
indicate that they all give relatively small mean squared errors even when the
dimensions are larger than the sample size.
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1 Introduction

In a variety of applications in multivariate analysis, the inverse of the covariance
matrix (i.e., the precision matrix) is required. The necessity of computing the inverse
of covariance matrix may be even stronger than that for the covariance matrix itself
(Pourahmadi 2013). For example, the precision matrix is involved in the quadratic
form of the log-likelihood function of the multivariate normal distribution. In the
classical multivariate analysis, we assume that the covariance matrix is positive
definite so that all the eigenvalues are positive. In such a case, the inverse always
exists.

However, under high-dimensional settings, the situations are different. It is well
known that when the number of variables exceeds the sample size, the sample
covariance matrix based on the observed data is singular (i.e., some eigenvalues
are zero), and the inverse of the covariance matrix no longer exists.

Under high dimensionality, a common approach is to assume sparsity in the
covariance matrix or the precision matrix (i.e., assuming that many off-diagonal
elements are either zero or near zero) and apply some regularized methods. Well-
known regularized methods for estimating the covariance and/or the precision
matrices include the thresholding (e.g., Bickel and Lavina 2008) and the graphical
lasso (Friedman et al. 2008). See, e.g., Pourahmadi (2013) and Engel et al.
(2017), for an overview of estimation of high-dimensional covariance and precision
matrices.

However, in most applications in the behavioral sciences, the covariance matrix
and the precision matrix are not necessarily sparse. Consequently, the assumption of
the sparse covariance matrix and/or the sparse precision matrix may not hold. Also,
in the behavioral sciences, even when the number of variables p is greater than the
sample size n, they are still comparable in sizes. We rarely encounter situations with
the dimension far exceeding the sample size (i.e., “p >> n”). We call such situations
(i.e., (i) the covariance matrix or the precision matrix is not sparse, and (ii) p and
n are comparable in size though p can be larger than n) “semi-high”-dimensional
settings to distinguish them from the high-dimensional settings encountered in, e.g.,
statistical learning, in recent years.

If we cannot assume sparsity of the covariance matrix or the precision matrix,
the most promising existing approach that can be used to find the precision matrix
under semi-high-dimensional settings seems to be the ridge-type estimation (e.g.,
Yuan and Chan 2008, 2016). Yuan and Chan (2008) employed a ridge maximum
likelihood (ML) approach to estimate the parameters of structural equation models
(SEM). SEM is a structured version of factor analysis (FA; see, e.g., Lawley
and Maxwell 1971) and is probably the most frequently used method to model
covariance structures in the behavioral sciences. Also employing the FA model,
Hayashi et al. (2019) showed that under high dimensions, the precision matrix can
be approximated by the inverse of the unique (i.e., error) variance matrix. Because
the ML and the generalized least squares (GLS) methods cannot be used without
regularization, Hayashi et al. (2019) suggested estimating the parameters of FA by
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the unweighted least squares (ULS) method or performing the FA with equal unique
variances (e.g., Hayashi and Bentler 2000), also called the probabilistic principal
component analysis (the probabilistic PCA; Tipping and Bishop 1999).

Thus, there exist different methods to construct the precision matrix when p > n
under semi-high-dimensional settings without assuming sparsity of the covariance
matrix. Then, a natural question arises as to which method would perform better
among the ULS, the FA with equal variances, and the ridge ML. The purpose of
this article is to address this question. Because answering this question seems to be
beyond the reach of mathematical analysis, we do so through a simulation study.

2 Factor Analysis and Its Estimation Methods

1. Factor analysis

In the FA model, the p-dimensional mean-centered vector of the observed
variables yi, i = 1, . . . , n, is linearly related to an m-dimensional vector of latent
factors fi via yi = �fi + εi, where � is a p x m matrix of factor loadings (with p >
m) and εi is a p-dimensional vector of errors. For the orthogonal factor model with
uncorrelated factors, the three assumptions are typically imposed: (i) fi ∼ Nm(0, Im);
(ii) εi ∼ Np(0, �), where � is a diagonal matrix with positive elements on the
diagonals; and (iii) Cov(fi, εi) = 0. In words, factors and errors are normally
distributed, errors corresponding to different observed variables are uncorrelated,
and there are no correlations between factors and errors. Under these assumptions,
the covariance matrix of yi is given by � = ��′ + �. If yi is standardized, � is a
correlation matrix.

2. Woodbury identity

Even if � is positive definite so that �−1 exists in the population, the inverse S−1

of the sample covariance matrix S does not exist when p > n. When S−1 does not
exist, we cannot estimate the unique variances � (neither the inverse �−1) under
the FA model using the generalized least squares (GLS) or the maximum likelihood
(ML) method, which minimizes the fit function FGLS(S, �) = tr{[(S − �)S−1]2}
and FML(S, �) = tr(�−1S) − log

∣∣ �−1S
∣∣ − p, respectively, without resorting to

certain regularization methods.
In this article, the key idea in computing the precision matrix when p > n is to

utilize the following Woodbury identify (see, e.g., Chapter 16 of Harville, 1997):

Σ−1 = Ψ −1 − Ψ −1Λ
(
Im + Λ′Ψ −1Λ

)−1
Λ′Ψ −1. (1)

The identity shows that if the covariance matrix � can be expressed as the
covariance structure of the FA model � = ��′ + �, then the precision matrix
can also be defined by the FA parameters. It implies that the estimated precision
matrix can be estimated as long as we can estimate the FA parameters. Once the
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estimated factor loadings Λ̂ and the estimated unique variances Ψ̂ are obtained, we
can compute the estimate of the right-hand side (RHS) of the Woodbury identity,
as long as all the elements of Ψ̂ are strictly positive. Λ̂ does not need to be of full
column rank to compute the RHS of (1). But the parameterization is not proper if it
is not of full rank, or a model with fewer factors is better.

Using the argument given by Bentler (1976), Hayashi et al. (2019) pointed
out that if the sum of the squared loadings on each factor goes to infinity as the
number of observed variables p increases (i.e., λk

′λk → ∞, k = 1, . . . , m, as
p → ∞, where λk is the k-th column of the factor loading matrix), the second
term in the RHS of the Woodbury identity vanishes. They proposed to approximate
the precision matrix �−1 by the first term in the RHS of the Woodbury identity,
that is, the inverse of unique variances �−1. When � has a compound symmetry
structure, the order of the second term in the RHS of the Woodbury identity is
O(−ρ(1 − ρ)−1{(1 − ρ) + ρ · p}−1) = O(1/p), where ρ (0 < ρ < 1) is the
common correlation in the population. More generally, the approximation depends
on the speed with which the smallest eigenvalue of �′�−1� goes to infinity (i.e.,
�−1 − �−1 → 0 as evm(�′�−1�) → ∞).

However, we should note that the Woodbury formula itself holds regardless
of the sizes of eigenvalues of �′�−1�. The quadratic form �′�−1� is at least
positive semi-definite, and Im + �′�−1� is positive definite. Thus, the inverse of
Im + �′�−1� always exists. Therefore, we do not actually have to resort to the
approximation to computing the inverse of �, and instead, we can use the entire
RHS of the Woodbury formula in constructing the precision matrix.

3. Unweighted least squares (ULS) and factor analysis with equal unique variances

When S−1 does not exist, we cannot estimate the unique variances � nor the
inverse �−1 under the FA model with either the GLS or the ML method. Thus,
Hayashi et al. (2019) suggested either employing the ULS method or performing
FA with equal unique variances, which do not require either S−1 nor the estimated

model-reproduced precision matrix Σ̂
−1

. The ULS method minimizes the fit
function FULS(S, �) = tr{(S − �)2} which does not involve either S−1 or (the
estimate of) �−1. Thus, estimation with ULS is simpler than that with the GLS
or the ML method. The FA model with equal unique variances (with standardized
variables) approximates the correlation matrix as:

Σ ≈ Λ∗Λ∗’ + kIp, (2)

with a positive constant k, whose ML estimate is given by the average of the p−m
smallest eigenvalues of S (i.e., k̂ = {1/ (p − m)}∑p

j=m+1evj (S), where evj(S) is
the j-th largest eigenvalue of S). Here, note that the eigenvectors of � − kIp are the
same as the eigenvectors of �, and the eigenvalues of � − kIp are simply those of
� minus k. Thus, the FA model with equal unique variances can be considered
as a variant of PCA. In fact, this model is also called the probabilistic PCA in
statistics (Tipping and Bishop 1999). Also, it has been known that as p increases
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(with m/p →∞), the loading matrices from the FA and the PCA have the same
limiting values, up to a rotational indeterminacy (see, e.g., Guttman 1956; Krijnen
2006; Schneeweiss 1997). Thus, the FA model with equal unique variances is a
viable approach to computing the precision matrix under the semi-high-dimensional
settings with a large p.

4. Ridge maximum likelihood method

Alternatively, of course, we can employ other estimation methods with a
regularization. For example, we can use either ridge GLS or the ridge ML (Yuan and
Chan 2008, 2016), neither of which require sparsity of the covariance or precision
matrix. In this article, we employ the ridge ML method for SEM proposed by Yuan
and Chan (2008). They added a ridge constant k > 0 to the diagonals of S and used
S + kIp in place of S in order to stably estimate the parameters in SEM, a structured
FA-type model. Note that now, S + kIp is positive definite and all the eigenvalues of
S + kIp are strictly positive, so that the inverse (S + kIp)−1 always exists. There is
no need for any modifications in applying ridge ML to estimate the FA parameters.
Furthermore, Yuan and Chan (2008) proved that adding a ridge term to the sample
covariance matrix does not change the ML estimates Λ̂ of factor loadings � and
only changes the ML estimates Ψ̂ of unique variances � by the ridge constant k.

Unfortunately, the performance of the ridge ML method may depend on the
choice of the ridge constant. In Yuan and Chan (2008), the ratio p/n was chosen
as the value of the ridge constant. However, in the scenario of p exceeding n, use
of p/n as the ridge constant may be too large, in view of the original purpose of the
ridge method which is to add a small constant to stabilize the solution in a regression
(as in β̂ = (

X′X + kI
)−1

X′y). Therefore, we choose some small values as ridge
constants. In this article, no efforts are made to optimize the value of a ridge constant
with, e.g., cross-validation, to simplify the process of our simulation.

3 Graphical Lasso

In the simulation study, we also include graphical lasso (Friedman et al. 2008;
see also Mazumder and Hastie 2012). Graphical lasso is a popular method used
to graphically represent the relations among observed variables, and it obtains a
precision matrix as a by-product. Besides sparsity of the precision matrix, it does
not result in a structured covariance matrix such as in the FA model. It is concerned
with minimizing a l1-regularized negative log-likelihood of the form

f (Θ) = − log {|Θ|} + tr (SΘ) + k‖Θ‖1, (3)

where � = �−1 is the precision matrix, ‖�‖1 is the sum of the absolute values of
�, and k is a tuning parameter, which leads to the estimating equation
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−Θ−1 + S + kΓ = 0, (4)

where the (j, k) element of � is γ jk = sign (θ jk) if θ jk �= 0; γ jk∈ [–1,1] if θ jk = 0.
Now, partition �, �−1, S, and � as

Σ=
(

Σ11 σ 12

σ 12
′ σ22

)
,Σ−1=Θ=

(
Θ11 θ12

θ12
′ θ22

)
,

S =
(

S11 s12

s12
′ s22

)
and Γ =

(
Γ 11 γ 12
γ 12

′ γ22

)
,

(5)

where the dimensions of �11, �11, S11, and �11 are (p−1) x (p−1); σ 12, θ12, s12,
and γ 12 are (p−1) x 1; and σ 22, θ22, s22, and γ 22 are scalars, respectively. Using
the relation �� = Ip for the partitioned matrices, the estimating equation leads to

Σ11β + s12 + kγ 12 = 0, (6)

where β = θ12/θ22. Because θ22 > 0, it is the stationarity equation for
minβ∈Rp−1

{
(1/2) β ′Σ11β + β ′s12 + k‖β‖1

}
, where �11 (> 0) is assumed to be

fixed. We can regard this as a lasso regression of the last variable on the rest,
replacing S11 by its current estimate for �11. Note that the algorithm also uses the
formula for the inverse of a partitioned matrix (see, e.g., Chapter 16 of Harville,
1997):

(
Σ11 σ 12

σ 12
′ σ22

)
=

((
Θ11 − θ12θ12

′/θ22
)−1 −Σ11θ12/θ22

− θ12
′Σ11/θ22 1/θ22 − θ12

′Σ11θ12/θ
2
22

)
. (7)

Thus, the algorithm of graphical lasso (Friedman et al. 2008, 2018) solves for
a row or column of the estimating equation at a time, holding the rest fixed.
Concretely, the algorithm is given as follows:

1. Initialize � = S + kIp as in the ridge ML method.
2. Cycle around the columns repeatedly, performing the following steps till conver-

gence:

(i) Rearrange the rows and columns such that the target is the p-th column.
(ii) Solve the l1-regularized quadratic problem: β̂ = arg minβ∈Rp−1{

(1/2) β ′Σ11β + β ′s12 + k‖β‖1
}
.

(iii) Update the row and column of the correlation matrix using σ 12 =
− �11θ12/θ22 = − �11β.

(iv) Save β̂ for this column in the matrix B.

3. Finally, for every row and column, compute the diagonal entries θ̂jj using θ̂−1
22 =

σ̂22 = −β̂
′
σ̂ 12, and convert the B matrix to �.
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4 Simulation

To empirically examine the performance of FA with equal unique variances, ULS,
ridge ML, and graphical lasso, we conducted a simulation study. We employed
three structures of loading matrices which were created by vertically concatenating
the loading structure with 12 observed variables (see Table 1). (For example, the
loading matrix for the condition p = 240 was obtained by vertically concatenating
the loading matrix with 12 variables 240/12 = 20 times.) (i) The first structure
is a simple structure with no cross loadings. Note that under the first structure,
population unique variances are all equal. Thus, it is expected to be an ideal
condition for the FA with equal unique variances. (ii) The second structure is with
cross loadings. Under the second loading structure, population unique variances are
no longer equal. (iii) The third structure is the same as the second one, except that
one loading in each loading structure with 12 variables is very high (0.95), which
leads to a small unique variance of 0.0475 in the population.

Throughout the simulation, the sample size was set equal to n = 200, which
we consider to be a sample size comparable to those chosen in research in the
behavioral sciences. The number of observed variables were chosen to be p = 240,
360, 480, and 600, all greater than the sample size of n = 200 but not far greater
than n, which are consistent with what we call the semi-high-dimensional settings.
Because of p > n, it is not possible to directly estimate the precision matrix from the
sample covariance (or correlation) matrix by inverting the latter. For each simulation
condition, we replicated 300 times.

For the estimation methods, we employed (i) the FA with equal unique variances,
(ii) ULS, and (iii) ridge ML, as well as (iv) graphical lasso as a reference. For the

Table 1 Three population unit structures of loading matrices

Equal unique variances Unequal unique variances Small unique variance
No cross loadings With cross loadings With cross loadings

0.8 0 0 0.8 0.2 0.1 0.8 0.2 0.1
0.8 0 0 0.8 0.2 0.1 0.8 0.2 0.1
0.8 0 0 0.7 0.1 0.2 0.7 0.1 0.2
0.8 0 0 0.7 0.1 0.2 0.7 0.1 0.2
0 0.8 0 0.2 0.8 0.1 0.2 0.8 0.1
0 0.8 0 0.2 0.8 0.1 0.2 0.8 0.1
0 0.8 0 0.1 0.7 0.2 0.1 0.7 0.2
0 0.8 0 0.1 0.7 0.2 0.1 0.7 0.2
0 0 0.8 0.2 0.1 0.8 0.2 0.1 0.8
0 0 0.8 0.2 0.1 0.8 0.2 0.1 0.8
0 0 0.8 0.1 0.2 0.7 0.1 0.2 0.7
0 0 0.8 0.1 0.2 0.7 0.1 0.2 0.95

Note: Each unit loading matrix was concatenated vertically 20, 30, 40, and 50 times for p = 240,
360, 480, and 600, respectively.
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ridge ML, two small ridge constants (0.05 and 0.10) and the ratio of p/n used in
Yuan and Chan (2008) were selected. Because the initial step in graphical lasso
is the same as ridge ML, the same tuning parameters of 0.05 and 0.10 (but not
p/n) were selected for graphical lasso. For the ULS, we assumed a convergence
when the maximum change in unique variances became less than 10-7 within 100
iterations. For ridge ML, the convergence was checked via the factanal.fit.mle
function inside the factanal package in R. The factanal.fit.mle function uses the
generic optim function for optimization, and it passes the convergence information
to the factanal.fit.mle function. Inside the optim function, the “L-BFGS-B” method
(a modified quasi-Newton method by Byrd et al. 1995) is used. The maximum
number of iterations is 100. The default convergence criteria for the optim function
were used, in which the algorithm stops if it is unable to reduce the estimates of
unique variances by a factor of 10-8. For the graphical lasso, the glasso package in
R (Friedman et al. 2018) was used for estimation. We set the convergence criteria
such that the average absolute parameter change becomes less than 10-7 times the
average of the absolute values of the off-diagonal elements of the sample correlation
matrix R within the maximum of 10,000 iterations. In all the cases, a convergence
was reached. For the FA with equal unique variances, because it does not require
numerical iterations, the issue of convergence was not a problem. The final estimates
of the unique variances for the FA with equal unique variances were computed as
� = diag (R − ��′) with � = ��1/2, where � is the diagonal matrix whose
diagonal elements are the first m largest eigenvalues of R − k̂Ip, � is the (p x m)
matrix whose columns are the corresponding standardized eigenvectors, and k̂ was
estimated as k̂ = {1/ (p − m)}∑p

j=m+1evj (R) .

It is known that minimizing the principal factor method gives the same solution
as the ULS method. So in the simulation, we used the following principal factor
method: we computed the FA loading matrix as � = ��1/2, where � is the diagonal
matrix whose diagonal elements are the first m largest eigenvalues of R − � and � is
the (p x m) matrix whose columns are the corresponding standardized eigenvectors.
(For the initial values for �, we used the eigenvalues and eigenvectors of R, not
R − �.) Then, for a given �, we updated � by � = diag (R − ��′).

Note that two common initial values for the j-th communality are 1 − 1/rjj and
1 − (2m/p)(1/rjj), where rjj is the j-th diagonal element of the inverse of the sample
correlation matrix but it cannot be used with our conditions because R−1 does not
exist. For the initial values for ridge ML, we chose 1 − (2m/p)

(
1/r̃jj

)
, where r̃ jj

is the j-th diagonal element of (R + kIp)−1 with ridge constant k.

5 Results

The differences between empirical and population values for the precision matrix
and also the unique variances are summarized in terms of the mean squared errors
(MSEs), which are shown in Table 2. Given p > n in our study, the empirical values
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are computed from the RHS of the Woodbury identity with the estimates of the FA
models in equation (1). We list our findings in the following:

1. MSEs for the precision matrix:

(i) Poor performance of graphical lasso: The most notable finding across
different estimation methods and across different loading structures is that
the magnitudes of MSEs for graphical lasso are substantially larger than
those for the other estimation methods. It means that graphical lasso with
the regularization parameters 0.05 and 0.10 performs the worst among the
methods that we examine: FA with equal unique variances, ULS, ridge ML,
and graphical lasso.

(ii) Poor performance of ridge ML with the ridge constant of p/n: Another
notable finding is that the MSEs for ridge ML when p/n are used for the
ridge constant are higher than ridge ML when small values (0.05 and 0.10)
are used for the ridge constant. It means that the small values of the ridge
constant work better than p/n.

(iii) Good performance of other estimation methods: MSEs are almost the same
among different estimation methods across FA with equal unique variances,
ULS, and ridge ML with small ridge constants (0.05 and 0.10), regardless of
different values of p.

(iv) Poor performance with small unique variances: For the third loading
structure in Table 1 with small unique variances with cross loadings, the
MSEs are substantially higher than those with the first two loading structures
across the different estimation methods. It means that the existence of small
unique variances, equivalently, the existence of large factor loadings, causes
trouble for all the estimation methods considered, even with graphical lasso
that does not estimate unique variances or factor loadings.

(v) Off-diagonals of precision matrix: MSEs for the off-diagonals of the Wood-
bury identity are much smaller than those for the diagonals. Also, as the
number of variables increases, the MSEs become smaller in the off-diagonals
of the precision matrix.

2. MSEs for unique variances:

Regardless of different loading structures, the values of MSEs for unique
variances are similar except for ridge ML with a ridge constant of p/n when p = 360
or larger. (Note that graphical lasso does not require estimation of FA parameters.)

3. Further examination of poor performance of graphical lasso:

To further examine why the performance of graphical lasso is poor, we compute
proportions (as percentages) of the off-diagonal elements of the 12 × 12 upper left
block of the precision matrix estimated as zero by graphical lasso for the case with
p = 240 (see Table 3). In general, a large proportion of the off-diagonal elements of
the precision matrix are estimated as zero when the corresponding elements of the
population precision matrix are small. Also, even when the population values are
not very small, some off-diagonal elements of the precision matrix are sometimes
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Table 2 Mean squared errors of diagonal, off-diagonal elements of Woodbury formula, and
unique variances

Loading Estimation MSE MSE off-

structure method N P diagonal diagonal MSE Psi

1 Equal Psi 200 240 0.102305 1.81E-05 0.001613
1 ULS 200 240 0.106878 1.88E-05 0.001677
1 Ridge (0.05) 200 240 0.105336 1.88E-05 0.001643
1 Ridge (0.1) 200 240 0.111321 1.92E-05 0.001717
1 Ridge (p/n) 200 240 0.123496 2.02E-05 0.001743
1 glasso (0.05) 200 240 0.174678 0.001206 NA
1 glasso (0.1) 200 240 0.743764 0.000604 NA
1 Equal Psi 200 360 0.106081 8.23E-06 0.001645
1 ULS 200 360 0.108061 8.43E-06 0.001674
1 Ridge (0.05) 200 360 0.108407 8.42E-06 0.001649
1 Ridge (0.1) 200 360 0.108304 8.40E-06 0.001692
1 Ridge (p/n) 200 360 0.134967 9.43E-06 0.001791
1 glasso (0.05) 200 360 0.157987 0.000861 NA
1 glasso (0.1) 200 360 0.730270 0.000403 NA
1 Equal Psi 200 480 0.106565 4.67E-06 0.001632
1 ULS 200 480 0.109422 4.77E-06 0.001697
1 Ridge (0.05) 200 480 0.106612 4.70E-06 0.001669
1 Ridge (0.1) 200 480 0.106484 4.71E-06 0.001647
1 Ridge (p/n) 200 480 0.146488 5.53E-06 0.001900
1 glasso (0.05) 200 480 0.134898 0.000685 NA
1 glasso (0.1) 200 480 0.702913 0.000302 NA
1 Equal Psi 200 600 0.107517 2.99E-06 0.001618
1 ULS 200 600 0.111272 3.06E-06 0.001712
1 Ridge (0.05) 200 600 0.111583 3.07E-06 0.001652
1 Ridge (0.1) 200 600 0.111945 3.07E-06 0.001684
1 Ridge (p/n) 200 600 0.150304 3.59E-06 0.001900
1 glasso (0.05) 200 600 0.120045 0.000578 NA
1 glasso (0.1) 200 600 0.685683 0.000241 NA
2 Equal Psi 200 240 0.100350 2.09E-05 0.001806
2 ULS 200 240 0.104407 2.18E-05 0.001841
2 Ridge (0.05) 200 240 0.105240 2.20E-05 0.001858
2 Ridge (0.1) 200 240 0.108618 2.23E-05 0.001889
2 Ridge (p/n) 200 240 0.115976 2.29E-05 0.001889
2 glasso (0.05) 200 240 0.196374 0.001228 NA
2 glasso (0.1) 200 240 0.793978 0.000597 NA
2 Equal Psi 200 48 0.105526 9.57E-06 0.001820
2 ULS 200 360 0.107620 9.86E-06 0.001827
2 Ridge (0.05) 200 360 0.105916 9.82E-06 0.001827
2 Ridge (0.1) 200 360 0.107118 9.83E-06 0.001826
2 Ridge (p/n) 200 360 0.134016 1.10E-05 0.001942
2 glasso (0.05) 200 360 0.179615 0.000892 NA

(continued)
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Table 2 (continued)

Loading Estimation MSE MSE off-

structure method N P diagonal diagonal MSE Psi

2 glasso (0.1) 200 360 0.783000 0.000396 NA
2 Equal Psi 200 480 0.102823 5.37E-06 0.001764
2 ULS 200 480 0.104555 5.47E-06 0.001800
2 Ridge (0.05) 200 480 0.112516 5.61E-06 0.001852
2 Ridge (0.1) 200 480 0.107614 5.54E-06 0.001793
2 Ridge (p/n) 200 480 0.142027 6.41E-06 0.001996
2 glasso (0.05) 200 480 0.155783 0.000722 NA
2 glasso (0.1) 200 480 0.758072 0.000297 NA
2 Equal Psi 200 600 0.103230 3.46E-06 0.001826
2 ULS 200 600 0.107532 3.56E-06 0.001800
2 Ridge (0.05) 200 600 0.111029 3.58E-06 0.001887
2 Ridge (0.1) 200 600 0.106591 3.53E-06 0.001823
2 Ridge (p/n) 200 600 0.153773 4.25E-06 0.002067
2 glasso (0.05) 200 600 0.140010 0.000619 NA
2 glasso (0.1) 200 600 0.740493 0.000237 NA
3 Equal Psi 200 240 1.143269 0.000250 0.001584
3 ULS 200 240 0.822066 0.000193 0.001646
3 Ridge (0.05) 200 240 0.832872 0.000189 0.001649
3 Ridge (0.1) 200 240 0.819792 0.000191 0.001634
3 Ridge (p/n) 200 240 0.910596 0.000205 0.001667
3 glasso (0.05) 200 240 15.51614 0.003567 NA
3 glasso (0.1) 200 240 22.85946 0.003870 NA
3 Equal Psi 200 360 0.861037 8.45E-05 0.001623
3 ULS 200 360 0.841318 8.59E-05 0.001604
3 Ridge (0.05) 200 360 0.854895 8.58E-05 0.001644
3 Ridge (0.1) 200 360 0.864639 8.60E-05 0.001664
3 Ridge (p/n) 200 360 3.466345 0.000317 0.001784
3 glasso (0.05) 200 360 15.94882 0.001954 NA
3 glasso (0.1) 200 360 23.49369 0.001853 NA
3 Equal Psi 200 480 0.797377 4.41E-05 0.001617
3 ULS 200 480 0.903535 5.06E-05 0.001667
3 Ridge (0.05) 200 480 0.885663 4.96E-05 0.001623
3 Ridge (0.1) 200 480 0.829790 4.74E-05 0.001654
3 Ridge (p/n) 200 480 6.303237 0.000324 0.001869
3 glasso (0.05) 200 480 16.05256 0.001324 NA
3 glasso (0.1) 200 480 23.75300 0.001114 NA
3 Equal Psi 200 600 0.767052 2.71E-05 0.001622
3 ULS 200 600 0.888375 3.18E-05 0.001646
3 Ridge (0.05) 200 600 0.914167 3.21E-05 0.001614
3 Ridge (0.1) 200 600 0.862146 3.08E-05 0.001620
3 Ridge (p/n) 200 600 9.301400 0.000305 0.001874
3 glasso (0.05) 200 600 16.16034 0.001007 NA
3 glasso (0.1) 200 600 23.92592 0.000760 NA
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estimated as zero by graphical lasso. Table 3 shows that the structure of the precision
matrix is most sparse under the first loading structure and least sparse under the third
loading structure. Accordingly, the performance of graphical lasso is the best under
the first loading structure and the worst under the third loading structure.

6 Discussion

In our simulation, graphical lasso did not perform well compared to other estimation
methods. Based on our further analysis, this seems to be due to the fact that the
population precision matrices employed in the simulation are still not yet sparse
enough. As we point out, Hayashi et al. (2019) showed that as the dimension
increases, the precision matrix converges to a diagonal matrix (i.e., to the inverse
of the unique variance matrix). This means that the off-diagonal elements of the
precision matrix approach zero as the dimension increases. So, as the dimension
increases, the precision matrix approaches a sparse matrix and the performance
of graphical lasso should become better. Also, another feature of our simulation
conditions is that the population correlation matrices all fit the FA models perfectly.
Graphical lasso is the only method that did not take advantage of the correlation
matrix having the FA models. Other methods are able to utilize the Woodbury
formula because the FA parameter estimates are available.

Through the simulation, we were able to show that even when the sample size
is smaller than the number of variables, the parameters of the FA model and the
corresponding precision matrix can still be estimated relatively accurately using
different methods such as the FA with equal unique variances, ULS, and ridge ML
with small ridge constants. On average, the performances of these methods were
nearly equal. The exceptions were when the ridge ML method was used with the
ridge constant being p/n, which implies that the values of p/n are probably too large
when p is greater than n. On the other hand, when the values of the ridge constants
were small, the ridge ML method worked fine, even though the selected values of
the ridge constant were not optimized.

The ridge method has been known to stabilize solutions by adding a small
constant. Yuan and Chan (2008) showed that adding the ridge constant does not
affect the values of factor loadings and only changes the values of unique variances
by the size of the ridge constant. Thus, the ridge ML method still guarantees the
consistency of the FA estimates if the ridge constant is subtracted from the estimates
of the unique variances at the end. Thus, we expected that the ridge ML method
would perform well, and it actually did, as long as small ridge constants were
chosen.

It is noteworthy that the FA with equal unique variances performed excellently,
even when the population unique variances were not equal, especially for our
condition of the third loading structure where the existence of small unique
variances made unique variances more unequal in the population. The results are
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likely due to the fact that the FA with equal unique variances is a variant of PCA,
also called the probabilistic PCA (Tipping and Bishop 1999). It is known that
the loading matrices from FA and PCA converge to the same limiting values (up
to rotational indeterminacy) as the number of variables increases (Guttman 1956;
Krijnen 2006; Schneeweiss 1997). Thus, it is not surprising that the FA with equal
variances performed very well in the simulation, where the number of variables were
large.

The performance of ULS in terms of MSEs was also excellent. This might be due
to the fact that without using a covariance matrix as a weight matrix, ULS is a simple
estimation method. Our experience indicates that simple estimation methods work
well for a large number of variables. Though the context is different, the results in
this article remind us of the strength of ULS in identifying small factors (MacCallum
et al. 2007). Also, another example of a “simple” method that works well for a large
number of variables is simple algorithms such as the coordinate descent (see, e.g.,
p. 118 of Hastie et al. 2015).

With the small unique variances in the third loading structure in Table 1, the
values of MSEs were much higher than those corresponding to the first two loading
structures. Related to this, we found that if the average diagonal element of the
Woodbury formula is large, the corresponding MSE was also large. For example,
the average values of the (12, 12) element of the Woodbury formula corresponding
to a small unique variance in the third loading structure are between 20.55 and 25.27,
as estimated by FA with equal unique variances, ULS, and ridge ML, whereas the
average values of the same element in the first and the second loading structures
are only between 2.18 and 2.95. The results indicate that small unique variances
create challenges for estimating the precision matrix, primarily because equation
(1) involves repeatedly inverting the unique variance matrix.

When the precision matrix was estimated by graphical lasso, the third loading
structure in Table 1 resulted in very large values of MSEs. This can also be explained
as follows: the small unique variances are the result of the existence of large factor
loadings, which create a correlation structure with higher off-diagonal elements.
It further results in larger off-diagonal elements of the precision matrix. Thus, the
precision matrix becomes less sparse and graphical lasso is not a good fit for such
conditions.

Note that MSEs for the off-diagonal elements of the Woodbury formula were
much smaller than those for the diagonal elements. This is due to the fact that the
diagonal elements of the Woodbury formula are much larger than the off-diagonal
elements. Also, it is expected that the MSEs for the off-diagonal elements of the
Woodbury formula became smaller as the number of variables gets larger. Again,
this is due to the fact that as the number of variables increases, the precision matrix
approaches a diagonal matrix. That is, the off-diagonal elements of the precision
matrix become smaller as the dimension increases.

Our simulation design is relatively simple and limited. For example, in all the
conditions, the FA model holds in the population. Also, the number of factors in the
population was known a priori. Consequently, caution is needed when generalizing
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the results to a broad scope, although all the studied methods possess certain robust
properties. Additional studies are needed that include more conditions.
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Performance of the Modified Continuous
a-Stratification Indices in Computerized
Adaptive Testing

Ya-Hui Su and Yan-Ling Lai

Abstract Computerized adaptive testing (CAT) has become increasingly popular
for many purposes, including educational assessment in schools, personnel recruit-
ment by institutions, and clinical diagnosis in hospitals. Practically, it is critical that
items are not overexposed because exposure can translate into sharing with other
examinees, which might threaten the validity of test scores. A popular method for
monitoring item exposure is a-stratification. When removing old items from an item
bank or adding new items to the item bank, the optimal strata for a-stratification
would need to be obtained by having additional simulation studies. It is undesirable
for practitioners in high-stakes testing when an item bank needs to be updated
frequently. The continuous a-stratification index (CAI) not only avoids partitioning
the item bank but also monitors item exposure; however, the CAI still yields a high
percentage of overexposed items. Therefore, this study proposed three modified
CAI methods for monitoring item exposure and compared their performance in item
selection with some CAT item exposure control methods.

Keywords a-stratification · Computerized adaptive testing · Item exposure ·
Item selection

1 Introduction

Since the 1990s, computerized adaptive testing (CAT) has become increasingly pop-
ular for educational assessments in schools, personnel recruitment by institutions,
and clinical diagnosis in hospitals. Because examinees are administered different
sets of items in CAT, CAT can obtain efficient and precise estimations; it can also
increase the security of testing materials. Additionally, CAT can provide cognitive
diagnostic information or additional instruction to teachers, parents, and students
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to improve students’ learning process. Therefore, CAT may greatly improve the
efficiency of assessments in many applications.

Several drawbacks have commonly been discussed regarding CAT. For example,
constraints on content and answer keys are difficult to manage; additionally, a
few aberrant responses at the early stage of testing might seriously affect the
final estimate; besides, only a small portion of the items from the item bank are
used during administration, which leads to a security risk. This is because the
maximum Fisher information criterion tends to select items with high discrimination
parameters in CAT, and these most-informative items may not be needed at the early
stage of testing, at which time the ability estimator is not a considerable certainty.
It is crucial, for practical reasons, to prevent items from being overexposed because
the exposed items might be shared with current and future examinees, which can
threaten the validity of test scores. Many item exposure control methods in relation
to CAT have been summarized by Georgiadou et al. (2007).

The method of a-stratification is popular for monitoring item exposure (Chang
and Ying 1999). Because the a-stratification method is easy to implement, it has
been extended to one- and two-dimensional CAT (Chang et al. 2001; Chang and
van der Linden 2003; Huebner et al. 2015; Lee et al. 2008; Leung et al. 2002).
The a-stratification method can reduce the number of items with high information
overexposure; however, measurement precision may be sacrificed to some degree,
which many practitioners likely regard as negligible in their testing situations. In
practice, when an item bank is constructed, each item is assigned to a stratum
according to its discrimination parameter. Then, additional simulation studies are
conducted to determine an appropriate stratum value with which to balance item
exposure control as well as measurement precision. When removing old items
from the item bank or adding new items to the item bank, the optimal strata
for a-stratification must be obtained through additional simulation studies. It is
undesirable for practitioners when an item bank needs to be updated frequently.
It is even more challenging for high-stakes testing because item usage is closely
monitored, in which overexposed items are frequently eliminated from the bank,
and new items are regularly added to the bank.

Huebner et al. (2018) proposed a continuous a-stratification index (CAI), which
incorporates item exposure control into the item selection process. In this situation,
the CAI method does not need to partition an item bank into fixed and discrete
strata. The researchers compared the CAI method with two existing a-stratification
methods (i.e., a-stratification with matching-b [SMB] and a-stratification with the
maximum Fisher information criterion [SMI]) through simulations under various
test length and examinee’s ability distribution conditions. It was found that the
SMB method obtained the best item exposure control with the consistently smallest
chi-square statistics, which was a measure of the evenness of item exposure rates;
however, the SMB method showed the worst ability estimator with the consistently
largest mean square error (MSE). It was also found that the CAI method performed
similarly or better than the SMI method in terms of bias and MSE and also obtained
smaller chi-square statistics. Huebner et al. (2018) recommended both the SMI and
CAI methods to practitioners who would like to have a precise ability estimator.
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In practice, the maximum item exposure rate is commonly set to 0.2. An item
is considered overexposed if its exposure rate is larger than 0.2. According to
Huebner et al. (2018), the percentage of overexposed items for the SMB, SMI, and
CAI methods was 3.8%, 8.6%, and 6.9% under 20-item conditions, respectively.
The percentage of overexposed items for the SMB, SMI, and CAI methods was
5.6%, 12.7%, and 12.3% under 30-item conditions, respectively. Based on the
preceding discussion, the percentage of overexposed items was not low enough to
be deemed negligible by many practitioners. These three a-stratification methods
had a high percentage of items overexposed to examinees, entailing a substantial
security risk because examinees might share testing information with current and
future examinees. Huebner et al. (2018) suggested that the CAI method should be
combined with item exposure control methods to limit item exposure. Thus, this
study aimed to modify the CAI method for monitoring item exposure in CAT.

1.1 Continuous a-Stratification Index

Huebner et al. (2018) proposed the CAI method, which integrates item exposure
control with the item selection index itself. Thus, the CAI method does not need to
partition the item bank into fixed and discrete strata. The CAI method represents
the similarity between the current testing stage and the percentile rank of the
discrimination parameter for item i. Denote I as the number of items in the item
bank, and l and L are the numbers of administered items and test length, respectively.
After l items have been administered, the (l+1)th item is selected by maximizing the
quantity:

CAIi × Infi , (1)

where the term Infi is the Fisher information criterion evaluated at the provisional
ability estimator of item i. The term CAIi for item i is defined as

CAIi = exp

[
−β

(
PR (ai)

l/L
− 1

)2
]

, (2)

where the term PR(ai) is the percentile rank of the discrimination parameter a for
item i in the item bank that ranges between 0 and 1. Theoretically, the term PR(ai)

l/L
−1

ranges between −1 and ∞. Because the nature of the CAI method is to find PR(ai)
as close as possible to l/L, the term PR(ai)

l/L
−1 should be as close as possible to 0. The

term β is a sensitivity parameter that determines the sensitivity of the discrepancy
between PR(ai) and l/L during item selection. The term β was constrained as greater
than 0. As Huebner et al. (2018) suggest, the sensitivity parameter β was set equal
to 2 based on preliminary simulations.
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As mentioned earlier, Huebner et al. (2018) compared three a-stratification
methods (the SMB, SMI, and CAI methods) in their study. The SMB, SMI, and
CAI methods were all found to identify a high percentage of overexposed items
in CAT. In practice, the maximum item exposure rate is commonly set to 0.2, and
an item is considered to be an overexposed item if its exposure rate is larger than
0.2. The CAI method was found to obtain 6.9% and 12.3% overexposed items for
20- and 30-item conditions, respectively. Such a high percentage of overexposed
items would result in a security risk because the overexposed items may be shared
with current and future examinees, which would hurt the validity of test scores. To
learn more about how the CAI behaves, a preliminary replication was conducted
here based on the study by Huebner et al. (2018). The CAI method has tended to
administer an item where its PR(ai) was close to l/L, which matched the expression
of the CAI method in Eq. (2). In addition to Eq. (2), the item selection process still
needed to take Eq. (1) into consideration as well.

2 Method

Three modified CAI methods were derived in this study. Simulations were con-
ducted to evaluate the performance of these modified CAI methods and three
a-stratification methods (i.e., the SMB, SMI, and CAI methods) in CAT. The data
generation, simulation design, and evaluation criteria were conducted under various
conditions.

2.1 Modified Continuous a-Stratification Indices

Huebner et al. (2018) suggested that the CAI method combined with item exposure
control methods would limit the maximum item exposure rate. To monitor item
exposure, three modified CAI methods were proposed in the present study: the
CAI + exposure, CAI + freeze, and CAI + SHOF methods.

One popular constraint-weighted item selection method is the maximum priority
index (Cheng and Chang 2009), which has been proposed for simultaneously and
efficiently monitoring many statistical and non-statistical constraints during item
selection in unidimensional and multidimensional CAT (Cheng and Chang 2009;
Cheng et al. 2009; Su 2015, 2016; Su and Huang 2015; Yao 2011, 2012, 2013). The
constraint for monitoring item exposure control can be implemented as follows:

Assume that constraint k requires the item exposure rates of all items to be
lower than or equal to a pre-specified maximum item exposure rate rmax. After S
examinees have taken the CAT, s examinees have seen item i. The term fk can be
defined as
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fk = 1

rmax

(
rmax − si

S

)
, (3)

where si
S

is the provisional exposure rate of item i. To monitor item exposure, the
CAI method can be integrated with the item exposure control in Eq. (3) as the
CAI+exposure method, which is defined as

CAIi × Infi ×
(
rmax − si

S

)

rmax
. (4)

When the selection method is the CAI+exposure method, item selection is per-
formed by maximizing the quantity in Eq. (4).

Revuelta and Ponsoda (1998) proposed the restrictive maximum information
method with freeze control to monitor item exposure. When the item exposure rate
of an item reaches rmax, the item is not included temporarily for item selection, a
process also known as freeze control. Otherwise, item selection is performed by
maximizing the quantity in Eq. (1). The CAI+freeze method should prevent items
from being overexposed.

The Sympson and Hetter online procedure with freeze (SHOF; Chen et al.
2008) was proposed for handling item selection in CAT, and it can sufficiently
prevent items from being overexposed well. In the present study, the CAI method is
integrated with the SHOF as the third modified CAI method (i.e., the CAI+SHOF)
to monitor item exposure. Let Si and Ai denote the event of selecting item i and
the event of administering item i, respectively. At the beginning of testing, all item
exposure parameters P(A| S) are set to 1. During an examinee’s testing stage, an item
with maximum item information is administered if a random number is less than
P(A| S); otherwise, the item is not administered, and the next item is selected. This
procedure is repeated until testing is completed. After each examinee completes the
administered items, the item exposure parameters must be adjusted accordingly:

If P(A) > rmax, then P (A|S) = 0.0 (i.e., freeze control) .

If P(A) ≤ rmax, and P (A|S) ≤ rmax, then P (A|S) = 1.0.

If P(A) ≤ rmax, and P (A|S) > rmax, then P (A|S) = rmax
P(S)

.

(5)

The CAI+SHOF method should prevent items from being overexposed.

2.2 Simulation Design

The three-parameter logistic regression model describes the relationship between
examinee and item parameters through mathematical models (Birnbaum 1968; Lord
1980; Wainer and Mislevy 2000). Conditional on the latent trait θn, the probability
of getting a correct response for person n on item i is defined as
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pni1 = ci + (1-ci)
exp [ai (θn − bi)]

1 + exp [ai (θn − bi)]
, (6)

where pni1 is the probability of getting a correct response, and ai, bi, and ci are
the discrimination, difficulty, and guessing parameters of item i, respectively. In
this study, item responses were generated according to the three-parameter logistic
regression model in Eq. (6).

Through simulations, the efficiency of the three modified CAI methods was
compared with that of the SMB, SMI, and CAI methods based on measurement
precision and item exposure control. Specially, two factors were considered in the
study: test length (2 levels; 20 and 30 items) and item selection methods (6 levels;
SMB, SMI, CAI, CAI+exposure, CAI+freeze, and CAI+SHOF). The fixed-length
stopping rule was used in this study. Following the design of Leung et al. (2002) and
Huebner et al. (2018), true examinee abilities (N = 5100) were generated from a
standard normal distribution. To compare the results with Huebner et al. (2018), the
strata M was set to 4 for the SMB and SMI methods, and the sensitivity parameter
β was set to 2 for the CAI and three modified CAI methods. For all conditions, 500
items were generated to form an item bank, for which the a, b, and c parameters
were drawn from the Uniform(0, 1.3), Uniform(−1.3, 1.3), and Uniform(0.2, 0.3)
distributions, respectively. The maximum likelihood estimator (MLE) was used to
find examinees’ ability to estimate.

2.3 Evaluation Criteria

The results of the simulation study were analyzed and discussed based on the
following two aspects: (a) exposure control and (b) measurement precision. The
measurement precision was evaluated by each latent ability recovery based on the
bias, root mean squared error (RMSE), correlation between the estimated and true
abilities (r

θ,θ̂
), and relative efficiency (RE). The formulas for bias, RMSE, r, and RE

are defined as follows:

bias = 1

N

N∑
n=1

(
θ̂n − θn

)
, (7)

RMSE =
√√√√ 1

N

N∑
n=1

(
θ̂n − θn

)2
, (8)

r
θ,θ̂

= COV
θ,θ̂

SθSθ̂

, and (9)
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RE = RMSESMI

RMSEothers
, (10)

where θ̂n and θn are the estimated and true abilities, respectively.
With respect to exposure control, the maximum item exposure rate, number

of overexposed items (i.e., items with exposure rates larger than rmax=0.2), and
number of unused items were reported. In addition, the χ2 statistic was used to
measure the skewness of item exposure rate distribution (Chang et al. 2001; Chang
and van der Linden 2003; Chang and Ying 1999; Leung et al. 2002), which is
defined as

χ2 = 1

L/I

I∑
i=1

(ri − L/I)2, (11)

where ri is the exposure rate of item i and L is the test length. For each item selection
method, qualifying the discrepancy between the observed and the expected item
exposure rates was a good index of the efficiency of item bank usage. The smaller
the χ2 statistic attained, the better the item exposure control was.

3 Results

To evaluate the efficiency of the six item selection methods, measurement precision
and exposure control under various conditions were reported. With respect to
measurement precision, the bias, RMSE, RE, and r

θ,θ̂
under various conditions are

summarized in Table 1. The CAI, CAI+freeze, and CAI+SHOF methods yielded
slightly larger RE than did the SMI method, meaning that the measurement precision

Table 1 Measurement precision of the six item selection methods under various conditions

Item length Item selection methods bias RMSE RE r
θ,θ̂

20 SMB 0.068 0.575 0.858 0.864
SMI 0.024 0.494 1.000 0.901
CAI 0.018 0.469 1.053 0.912
CAI + exposure 0.026 0.496 0.996 0.901
CAI + freeze 0.016 0.461 1.072 0.916
CAI + SHOF 0.020 0.469 1.054 0.912

30 SMB 0.018 0.397 0.923 0.934
SMI −0.001 0.366 1.000 0.944
CAI 0.007 0.363 1.009 0.943
CAI + exposure 0.016 0.402 0.911 0.933
CAI + freeze 0.012 0.361 1.013 0.944
CAI + SHOF 0.011 0.372 0.983 0.940
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was slightly better in the modified CAI methods than in the SMI method. The
correlation between the estimated and true abilities for these three methods reached
0.91. The CAI+exposure method yielded slightly smaller RE and correlation than
did the SMI method. Among the six methods, the SMB obtained the smallest RE
and correlation. However, all item selection methods performed slightly better when
the test length increased.

With respect to exposure control, the percentage of items under different item
exposure rate, the maximum item exposure rate, and the chi-square statistics under
various conditions are summarized in Table 2. The CAI+exposure, CAI+freeze,
and CAI+SHOF methods had no items overexposed, and the maximum item
exposure rates of these three methods were under 0.2, which means that the three
modified CAI methods performed well regarding item exposure. Among the six
modified CAI methods, the CAI+exposure method yielded the smallest chi-square
statistics, which means that the CAI+exposure method outperformed the other five
item selection methods. The SMB, SMI, and CAI methods obtained similar item
exposure patterns, which matched the findings of Huebner et al. (2018).

4 Discussion

To monitor item exposure, three modified CAI methods (i.e., the CAI+exposure,
CAI+freeze, and CAI+SHOF methods) were proposed in the present study.
Among these three methods, the CAI+exposure method showed great potential for
monitoring item exposure; however, it did not have the best measurement precision.
Nevertheless, in general, the CAI+exposure method is recommended.

Some future research lines are addressed as follows. First, in practice, many
statistical and non-statistical constraints are considered during test assembling.
It is important to apply a constraint-weighted item selection method (e.g., the
maximum priority index) to satisfy all the constraints simultaneously during item
selection. However, there is no constraint that monitors discrimination parameters
for the maximum priority index. Therefore, it would be worth integrating the four
CAI methods (i.e., CAI, CAI+exposure, CAI+freeze, and CAI+SHOF) described
herein with the maximum priority index for item selection in CAT when many
constraints are considered for item selection in CAT. Second, this study investigated
the three modified CAI methods under a unidimensional context. The idea of the
modified CAI methods can easily be extended to multidimensional contexts for
item selection. Third, only three item exposure components were integrated with
the CAI method in this study. If other item exposure control methods or test overlap
methods are considered, an investigation of the efficiency of item selection methods
with different item exposure methods or test overlap methods should be conducted.
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Constant CSEM Achieved Through Scale
Transformation and Adaptive Testing

Dongmei Li

Abstract Conditional standard error of measurement (CSEM) indicates the level
of measurement precision at a particular true score or ability level. Having a
constant CSEM across all scores not only simplifies score interpretation and score
reporting, but also contributes to the fairness of testing. This paper compares
two fundamentally different approaches to achieving constant CSEMs: CSEM
stabilizing scale transformations and computer adaptive tests (CATs) with fixed-
precision stopping rules. Through conceptual comparison and empirical illustration,
this study shows that the two approaches produce score scales that are nonlinearly
related to each other, and each achieving the goal of equalizing the CSEMs on its
own scale. Procedures for equalizing the CSEMs of a CAT that is not designed to
have fixed precision are provided, and implications for transitioning from linear tests
with equal CSEMs to CATs are also discussed.

Keywords Equal CSEM · Variance stabilizing transformation (GVS) ·
Fixed-precision CAT

1 Introduction

Under the framework of classical test theory (CTT), any observed test score is
composed of a true score and some measurement error. Whereas the standard error
of measurement (SEM), which is the standard deviation of measurement errors
across all examinees, is an indication of the average measurement error across
the entire score scale, the conditional standard error of measurement (CSEM)
is an indication of measurement error at each true score level. If CSEMs vary
across the score scale, knowing the CSEMs for specific true scores allows for
the construction of more accurate confidence intervals around observed scores,
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compared to using the overall SEM, and therefore enhances the interpretation of
scores. The Standards for Education and Psychological Testing (AERA, APA, &
NCME 2014) recommends that CSEMs be reported in addition to the overall SEM
when measurement errors vary substantially across the score scale.

Numerous methods have been proposed using CTT or item response theory
(IRT) to estimate the CSEMs of raw scores (Feldt 1984; Felt and Qualls 1996;
Lord 1955, 1957, 1980; Mollenkopf 1949) and reported scale scores (Brennan and
Lee 1999; Felt and Qualls 1998; Kolen et al. 1992, 1996; Lee et al. 1998, 2000).
In order to simplify score reporting and score interpretation while also increasing
fairness, some testing programs, including the two major college admission tests
in the United States—the ACT (ACT 2019) and the SAT (College Board 2017)—
develop their tests to have approximately equal CSEMs across their score scales.

There are at least two different approaches to achieving constant CSEMs in
operational testing programs. One is through CSEM stabilizing transformations
using methodologies described by Kolen (1988), Li et al. (2014), or Moses and
Kim (2017). The other is through computer adaptive tests (CATs) with fixed
precision stopping rules (Wainer 2000). There are numerous applications of each
approach in operational testing programs, but it seems that these two approaches
are so fundamentally different that they are seldom compared directly, though some
researchers briefly addressed the impact of both approaches (e.g., Yi et al. 2006).

The purposes of this study are to compare the two approaches, explore solutions
for equalizing CSEMs from other CAT designs, and draw implications for tran-
sitioning from linear tests with constant CSEMs to CATs. Specifically, the study
investigates the following research questions:

1. What are the differences and similarities for tests whose CSEM is made constant
through CSEM stabilizing scale transformations versus fixed-precision CATs?

2. Is there a way for CAT administrations to report scores with constant CSEM if
the CAT algorithm ends the test with rules other than fixed precision?

3. When transitioning from linear tests to CATs, if the linear test has been scaled
to have constant CSEM, is it possible for the CAT to produce interchangeable
scores with the linear forms and maintain the same constant CSEM property?

Investigations and findings for each research question are described below,
followed by conclusions and discussion.

2 Comparison of the Two Approaches

The two approaches are first compared conceptually following a description of each.
Then procedures and results from an empirical comparison based on simulated data
are described.
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2.1 Conceptual Comparison

CSEM stabilizing transformations apply non-linear transformations to the original
score scale to alter the CSEM at different points along the score scale (Brennan and
Lee 1999; Kolen et al. 1992; Lord 1980). To equalize the CSEMs, a transformation
can stretch the part of the scale where the CSEMs are lower (with a high-slope
transformation) and compress the part of the scale where the CSEMs are higher
(with a low-slope transformation). Different CSEM stabilizing approaches have
scale transformations based on different models and different methodologies, but
they all work in a similar manner by stretching or compressing different parts of the
score scale.

The most commonly used scale transformation for equalizing CSEMs is the
arcsine transformation (Freeman and Tukey 1950). It has been applied to equalize
the CSEM of scale scores of various testing programs (ACT 2019; Ban and Lee
2007; College Board 2017; Kolen 1988; Kolen et al. 1992). However, the arcsine
transformation is only appropriate when the conditional errors follow a binomial
distribution or at least when the shape of raw score CSEMs is similar to that of
binomially distributed errors. The generalized variance stabilizing (GVS) method
suggested by Li et al. (2014) is a more general method that can be used with
any test score type or with any error model as long as raw score CSEMs can be
obtained. Given the CSEMs of the raw scores, the CSEMs of any transformation of
the raw scores can be estimated using the delta method. The GVS method obtains
the transformation function through numerical integration by setting the CSEM
of transformed scores to be a constant. A third method uses cubic polynomial
transformations of raw scores with coefficients of the polynomial functions obtained
by minimizing the CSEM differences across the transformed scale scores (Moses
and Kim 2017). Results from these three approaches have been compared in both
multiple-choice tests (Moses and Kim 2017) and mixed-format test scaling (Wang
and Kolen 2016). As expected, these three approaches produce similar results when
the raw score errors follow a binomial distribution or approximately so, but the
GVS method and the cubic transformation method are more effective when error
distributions deviate more from binomial distributions.

In fixed-precision CAT administrations, items are selected based on estimated
student ability levels, and the test is stopped when a pre-specified measurement
precision—usually defined as the inverse of the square root of the test information
function—is achieved at estimated ability levels. Fixed-precision CAT can result in
equal CSEM for all examinees in ideal situations with a sufficiently large item pool
including items with a broad distribution of item difficulty. In practice, however,
fixed-precision CAT is often combined with a maximum test length or a maximum
test time, because the pre-specified precision may not be achieved for certain
examinees within a reasonable amount of time given limitations of the item pool.

Perhaps the most obvious difference between the two approaches is that one
changes the score scale and the other changes which test items are presented. CSEM
stabilizing transformations change the original score scales of a linear test with non-
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equal CSEMs to a score scale with equal CSEMs, and fixed-precision CAT changes
the type and the number of test items selected depending on the ability level (denoted
by θ ) of the examinees until a pre-specified level of measurement precision (i.e.,
a certain CSEM) is achieved. Suppose that the linear test (with unequal CSEMs)
before scale transformation and the fixed-precision CAT each comprises items
drawn from the same IRT-calibrated item pool, the linear test and the fixed-precision
CAT are on the same θ score scale. However, the linear test differs from the fixed-
precision CAT in that the CSEM of the linear test varies along the θ score scale,
but the CSEM of the fixed-precision CAT is stable along the θ score scale. After a
CSEM stabilizing transformation is applied to the linear test, however, scores from
the linear test and the fixed-precision CAT are no longer on the same score scale but
are nonlinearly related because a nonlinear transformation has been applied to the
θ score scale of the linear test. Since both linear and nonlinear transformations are
permissible under the assumptions that are often made when fitting item response
models, there are not any compelling psychometric reasons that one scale should
be preferred over another because of the essentially non-interval nature of score
scales in educational measurement (Feuerstahler 2019; Kolen and Brennan 2014;
Lord 1980). Therefore, score scales obtained from these two fundamentally different
approaches are equally defensible from a psychometric scaling perspective.

2.2 Empirical Comparison

To illustrate how these score scales are related and how they compare in terms of
reliability, CSEM, and score distributions, an empirical comparison was conducted
based on simulations. Provided below is a high-level description of the major steps
taken in the data simulation process.

1. Items for a 60-item linear test and those for a 600-item CAT pool were
generated using a 3-parameter logistic (3PL) IRT model, with the shapes of
the item parameter distributions informed by those from a large-scale testing
program: a ~ lognormal (0, 0.35), b ~ normal(0, 1), and c ~ beta(4.8, 20).

2. Based on the CSEMs of the θ scores calculated using the linear form item
parameters, a GVS transformation was applied to the θ scores so that the
transformed scale scores have an approximately equal CSEM of 2 along the
score scale.

3. In order to simplify future calculations of GVS transformed scores for any
θ scores, a 7th-degree polynomial function was fit to the θ -to-GVS score
transformations obtained in step 2.

4. Two samples of examinees were simulated: (1) 10,000 examinees from a
standard normal distribution; (2) 500 examinees at each θ score point within
the range of −4 to 4 at 0.2 intervals. The first sample was mainly used for the
comparison of score distributions, and the second sample was mainly used for
the calculation of CSEM and reliability.



Constant CSEM Achieved Through Scale Transformation and Adaptive Testing 217

5. Item responses for the two samples of examinees were generated for the linear
test, and θ scores for all these examinees were estimated based on the item
responses.

6. A fixed-precision CAT administration was simulated, and all examinee scores
were estimated based on their item responses generated from the CAT admin-
istration. The CAT was stopped when a precision of at least 0.3 was reached.
The R package catR (Magis and Barrada 2017; Magis et al. 2017) was used for
all the CAT simulations. No content balance or exposure control was used for
this illustration.

7. GVS transformed scale scores were calculated based on the estimated θ scores
on the linear test using the polynomial function obtained in step 3.

8. The scatter plots of true and estimated scores were produced for the linear test
on both the θ and the GVS transformed scales as well as for the fixed-precision
CAT scores on the θ scale.

9. Reliability of the scores analyzed in step 8 was calculated as the squared
correlation between true and estimated/observed scores.

10. CSEMs for the linear test GVS scores and those of the CAT θ scores were
calculated as the standard deviation of the 500 examinee scores at each θ score
(or at the corresponding GVS scale) score point.

11. To facilitate comparisons of score distributions between the linear test GVS
scale scores and the CAT θ scores, the θ scores from the CAT were linearly
transformed to scale scores so that the CAT scale scores would have the same
mean and standard deviation as the linear test GVS scale scores.

Figure 1 shows the CSEMs of the linear test on the θ score scale calculated as the
inverse of the square root of the test information function. As expected, the CSEM
is lower in the middle and higher at the ends of the θ scale. To achieve constant
CSEMs, a scale transformation is needed to stretch the middle and compress the
ends of the θ scale (i.e., the transformation function should have a higher slope in the
middle and lower slope at the ends). Figure 2 shows the raw-to-scale transformation
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obtained using the GVS method through a numerical integration. The red curve
represents the fitted 7th-degree polynomial function, which can be used to calculate
the GVS transformed score for any θ value.

There is no easy formula to calculate the CSEMs of CAT scores, so the CAT
CSEMs were obtained through simulations. As described in the steps above, the
CAT CSEMs were obtained by simulating 500 examinees at each θ score point from
−4 to 4 at intervals of 0.2 and calculated as the standard deviation of the estimated
θ scores at each true θ value. This approach was also used to calculate the linear test
CSEMs to be compared with that obtained from the test information function.

Figure 3 shows the CSEMs obtained through the simulation for the linear test and
the fixed-precision CAT. Note that the shape of the linear test CSEMs obtained in
this way is different from that obtained through the test information function (Fig.
1). Instead of continuously going higher toward the two ends of the θ scale, the
CSEM obtained empirically shows a decline of the CSEM toward the ends. This
was due to the fact that the IRT scale was truncated to a range of −4 to 4 for all the
simulations. The fixed-precision CAT is stable with the pre-specified threshold of a
CSEM of 0.3 within the range of −2 to 2 on the θ score scale, but CSEM values
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Fig. 4 CSEM of the GVS
transformed linear test
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were higher outside that range. The reason was that within the limit of the item pool,
the minimum CSEM that could be reached after exhausting all the items was greater
than 0.3. It is also worth noting that the linear test has a higher CSEM than the CAT
all along the score scale due to the specific precision level chosen for the CAT. A
higher value for the stopping rule (e.g., 0.32) should have produced a CAT with
more similar CSEMs to the linear test along parts of the scale, but a closer match of
the CSEMs for these two tests was not required for the purposes of this illustration.

Figure 4 shows the CSEMs of the GVS transformed scores from the linear test
based on the transformation function shown in Fig. 2. Though the GVS method
was based on the theoretical CSEMs of θ scores but evaluated using an empirical
approach that showed a different pattern at the two ends due to score truncation, the
CSEM of the GVS transformed scores is fairly consistent along the score scale.

With the nonlinear relationship between θ scores and GVS scale scores, the
shape of the distributions of examinee scores is slightly impacted. Figure 5 shows
the CAT linearly transformed scale scores and the linear test GVS scale scores of
the 10,000 examinees drawn from a standard normal distribution on the θ scale
(with the CAT scores rescaled to have the same mean and standard deviation as the
GVS scores). Whereas the CAT scale scores preserve the normality of the score
generating distribution, the GVS score scale slightly reduced the score frequency
in the middle and increased the score frequency at the ends. Yet, the GVS score
distribution does not look dramatically different from that of the CAT scores.

Figure 6 shows the scatter plots of estimated scores vs. true scores from the linear
test for both the GVS and the θ score scales, as compared with those of the θ scores
from the fixed-precision CAT. Figure 6 also shows estimated reliability indices of
the different test scores. These plots are based on the samples of 500 simulated
examinees at each θ score point. A comparison of Fig. 6b, c shows that θ scores
estimated from the fixed-precision CAT are more reliable with a more consistent
conditional variance along the θ score scale. These results are expected given what
is shown in Fig. 3. A comparison of Fig. 6a, b shows that the GVS transformation
not only stabilized the conditional variance given true scores but also increased the
reliability from 0.955 for the θ scores to 0.971 for the GVS scores.
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Fig. 6 Scatter plots of true and estimated scores and reliability (a) Linear scale score (b) Linear θ
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3 CSEM Stabilizing Transformation of CAT Scores

Even though all CAT administrations select test items according to examinees’
estimated ability level, not all CATs are designed to have fixed-precision stopping
rules. Even for a fixed-precision CAT, a maximum test length or a maximum test
time is often imposed to avoid very long testing times. When other stopping rules
are used, CAT administrations may end up with CSEMs that vary across the score
scale just like a linear test. The above section shows that scale transformation and
fixed-precision CAT can be used to achieve a constant CSEM, but the use of scale
transformation is not limited to linear tests. If desired, it can be used to equalize the
CSEMs of CAT scores, too.
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Fig. 7 CSEM of a
fixed-length CAT
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For example, Fig. 7 shows the CSEM of a 45-item fixed test length CAT using
the 600-item pool, with CSEMs calculated as the standard deviation of the CAT
scores of 500 examinees simulated at each θ value. Comparing Fig. 7 with Fig. 3
shows that, though the 45-item CAT test measures more precisely than the 60-item
linear test across all levels of the θ score scale, the CSEMs of the 45-item CAT vary
across the score scale in a manner similar to the 60-item linear test. If it is desirable
to have a score scale for the CAT with a constant CSEM, the GVS transformation
can be used to transform the θ scores. Provided below is a brief description of how
this can be done.

1. Obtain CAT CSEMs on the θ score scale, usually through simulations of a CAT
with a large number of examinees at each θ value within a range of θ values (e.g.,
−4 to 4) at small intervals (e.g., 0.1). Let f (θ ) represent the resulting CSEMs as
a function of ability.

2. Let g(θ ) be the function used to transform θ to obtain a constant CSEM (i.e., the
GVS transformation) and g′(θ ) be the derivative of the transformation function.

3. According to the delta method (Dorfman 1938; Ver Hoef 2012), the CSEM of
g(θ ) at a given θ value is approximately g′(θ ) times the CSEM of θ at that
θvalue. Therefore, if the CSEM of g(θ ) is set to be a constant c, g′(θ ) for each θ

approximately equals c divided by the CSEM of θ .
4. Determine the desired scale score CSEM magnitude c on the transformed score

scale (e.g., c = 2).
5. Calculate c/f (θ ) at each θ value, which approximates g′(θ ) at each θ value.
6. Derive the GVS transformed scores g(θ ) by integration or numerical integration.
7. Evaluate the CSEMs on the GVS transformed scores by transforming the CAT

estimated θ scores of the 500 examinees simulated at each θ score point using
g(θ ) and calculate the standard deviation of the GVS scores at each θ point.

Figure 8 presents the results after step 7, which shows that the GVS transforma-
tion effectively stabilized the CSEM and provided a score scale that can be used to
report the CAT scores with an approximately constant CSEM of 2 along the score
scale.
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4 Transitioning Linear Tests with Constant CSEM to CAT

When a testing program with linear tests with approximately equal CSEMs decides
to transition to CAT, one of the major issues to be considered is whether the
current score scale can be maintained. Certain features of the current scale can
be maintained by using the same θ -to-scale score conversion for the CAT θ score
estimates as the linear base form. However, whether the property of equal CSEM
can be maintained depends on the specific features of the CAT.

To illustrate the CSEM of the score scales for different CAT designs when using
the same GVS conversions as the linear test, CATs with different stopping rules were
simulated using the same 600-item pool for which the b parameters were generated
from a normal distribution (i.e., a peaked pool) and using another 600-item pool with
b parameters generated from a uniform distribution (i.e., a flat pool). The stopping
rules were: (1) fixed test length of 45 items (p_45), (2) fixed precision of 0.3 with
a maximum test length of 45 items (p_se_45), (3) fixed test length of 45 items with
maximum exposure rate of 0.2 (p_45_20), and (4) fixed test length of 45 items with
maximum exposure rate of 0.2 and some content balance control (p_45_20_cb).

Figure 9 presents the resulting CSEMs of these various CAT administrations on
the linear test score scale using the peaked pool (Fig. 9a) and the flat pool (Fig.
9b). Note that, in the legend of Fig. 9b, the letter “f ” is used instead of “p” to
represent the use of the flat pool. In only one condition—fixed test length with the
peaked pool (p_45 in Fig. 9a)—was the constant CSEM property maintained after
the CAT scores were converted to the linear test scale scores. These results suggest
that when transitioning from a linear test with a constant CSEM score scale to CAT,
the equal CSEM property needs to be re-evaluated even when the scores are made
comparable between the linear test and the CAT by using the same θ to scale score
conversions. It may be difficult to maintain the constant CSEM property depending
on the features of the item pool and the CAT design. A rescaling of the test may
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Fig. 9 CSEM of various CAT designs scaled to have comparable scores with an equal CSEM
linear test (a) peaked pool (b) flat pool

be needed in order to create a score scale with constant CSEMs for the CAT test.
Simulations like those done in this study can be used to inform decisions about
whether a rescaling is needed for the CAT test if a constant CSEM is one of the
primary requirements of the CAT score scale.

5 Conclusions and Discussion

This paper compared two different approaches to achieving constant CSEMs—
CSEM stabilizing scale transformations and fixed-precision CATs. Using simulated
data assuming a linear test and a CAT administration, the study demonstrated that
these two approaches yielded different score scales that were nonlinearly related, but
each possessing the equal CSEM property. Fixed-precision CAT achieved constant
CSEM on the θ score scale, and non-linear transformations of the θ score scale were
needed for the linear test to obtain constant CSEM. Other properties of the different
score scales were also compared, including score distributions and reliability, with
no strong evidence supporting the superiority of one approach over another, which
was expected given that nonlinear transformations are permissible for IRT scales
and that there are no compelling psychometric reasons to prefer one over another
(Kolen and Brennan 2014). It might be worth pointing out that the GVS scale
transformation used to stabilize the linear test CSEM in this study slightly increased
the test score reliability. Though not presented, the reliability estimates based on
the normally distributed 10,000 examinees showed a similar pattern of results.
However, it is not known how the change in reliability can be generalized to other
situations. Further studies are needed to investigate how equalizing CSEM through
scale transformation impacts reliability of the test scores.
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This study also demonstrated the feasibility of applying the GVS method to
equalize the CSEMs of CAT administrations when stopping rules other than fixed
precision are used. The GVS method was used because of its simplicity and
flexibility. Other methods such as the cubic spline method may be applied also,
though the arcsine transformation cannot be directly used because its application
is limited to number correct score scales. The demonstration estimated CSEMs for
CATs based on simulations. Further investigations can be done to evaluate the use of
different scale transformation methods and the use of different CSEM estimations
for the CAT θ scores.

This study also investigated potential outcomes when a linear test with constant
CSEM transitions to CAT with the goal of maintaining the comparability of scores.
Results indicated that unless the CAT administration has a CSEM function shaped
similarly to the linear test, the equal CSEM property of the score scale may be
compromised after transitioning to CAT, even when the CAT is designed to have a
fixed-precision stopping rule.

One factor not accounted for in this study was the impact of equating on the
CSEM stabilizing transformations applied to linear tests. Though a test can be scaled
to have equal CSEM for a base form at the time of scaling, subsequent equating of
new test forms may distort the CSEMs to various extents if the new forms are not
strictly parallel to the base form. Further research should be conducted to investigate
the impact of equating new test forms for linear tests and the impact of updating item
pools for CAT on the stability of CSEMs over time.
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Synergized Bootstrapping: The Whole is
Faster than the Sum of Its Parts

Tim Loossens, Stijn Verdonck, and Francis Tuerlinckx

Abstract Re-sampling methods are popular for assessing uncertainty, for testing
hypotheses, or for cross-validation because of their simplicity. They all rely on
a similar scheme: generating replicated datasets by sampling data points from an
original dataset, fitting a model or conducting a statistical test on each of these,
and aggregating the results. However, when fitting the model or conducting the
statistical test becomes time-consuming, re-sampling methods become impractical
because of the many replications. Many methods have been proposed to alleviate
the computational burden, but they generally do not incorporate two key features
of re-sampled datasets. One, re-sampled datasets all stem from the same origin and
therefore have similar characteristics. Two, there is a large class of cost functions
for which the cost of a parameter set given data can be computed by summing
its costs across the individual data points. As a consequence, once the costs of
the individual data points are known, the parameter set’s cost can be obtained for
any of the cost functions related to one of the replicated datasets. The synergized
bootstrap method put forward in this paper exploits these two features to accelerate
the optimization procedures for re-sampling methods. It is applied to the non-
parametric bootstrapping of the parameters of a univariate mixture model, of which
the min-log-likelihood function can be shown to have multiple local minima, using
the differential evolution heuristic as global optimizer. It is demonstrated that the
synergized method can lead to incredible accelerations (up to 100-500 times faster)
while being more accurate than the standard DE method.
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1 Introduction

Re-sampling methods can be used for a wide variety of statistical inference tasks
such as uncertainty assessment (e.g., estimating confidence intervals), hypothesis
testing (estimating tail-area probabilities), or cross-validation (estimating prediction
errors to perform model selection). These methods prove their usefulness even or
specifically in the absence of analytic results or when specific conditions of the
analytic method, such as normality, are unjustified (Adzhubei et al. 2010; Cox and
Mann 2008; Persson et al. 2013; Ramaswamy et al. 2003; Turnbaugh et al. 2009).
The flexibility of re-sampling methods has made them a popular tool. Most well-
known methods are the bootstrap (Efron and Tibshirani 1994), the permutation test
(Good 2000), and different kinds of cross-validation methods (Hastie et al. 2016).

Re-sampling methods typically follow the same scheme. First, multiple datasets
are generated by re-sampling from an original dataset. Then, a model is fitted to or
a statistical test is conducted on all the re-sampled datasets. Ultimately, the results
are combined and used, for instance, to assess the uncertainty of an estimator or to
assess the robustness of a statistical test.

Notwithstanding the present-day computing power, a main disadvantage of re-
sampling methods is still their computational burden (Mestdagh et al. 2015). This
burden is conspicuously present when iterative methods are required to maximize a
likelihood or minimize a cost function for every re-sampled dataset. Typical variance
and bias calculations require between 50 and 200 bootstrap replications. Confidence
limits are more costly; they may require between 1,000 and 2,000 replications
(Efron 1987). Optimizers, especially global optimizers, go through multiple cost
function evaluations during each iteration to update. Whenever the evaluation of the
cost function becomes too costly, re-sampling methods become impractical.

Continued effort has been invested in alleviating the computational burden of re-
sampling methods. The majority of these efforts focus on optimizing the process of
fitting the model. This is achieved by, for example, reducing the required number
of iterations for a single optimization (Andrews 1999; Bringmann et al. 2013;
Cawley and Talbot 2008; Crainiceanu and Ruppert 2004; Davidson and MacKinnon
1999; Efron 1990; Halekoh and Højsgaard 2014; Lippert et al. 2011; Maho et al.
2014; Samuh et al. 2012; Shaw et al. 2006; Zhou and Stephens 2012, 2014), or
splitting up the cost function into smaller, simpler parts (Hu and Kalbfleisch 2000).
Another approach that was proposed was aimed at improving the post-processing of
bootstrap estimates which in favorable situations allows a significant reduction of
the necessary number of bootstrap replications (Efron 1990). Other improvements
are custom-made for specific problems (Kleiner et al. 2011; Stamatakis et al. 2008;
Zeng and Lin 2008). In general, these methods are not generic.

A special feature of re-sampling methods that can be more universally exploited
is the large degree of overlap between re-sampled datasets. The re-sampled datasets
all stem from the same origin and therefore have more or less the same characteris-
tics. Therefore, when fitting the model to the re-sampled datasets, a similar task has



Synergized Bootstrapping: The Whole is Faster than the Sum of Its Parts 229

to be executed over and over again. The fingerprint re-sampling method (Mestdagh
et al. 2015) exploits this feature by learning the relation between data characteristics
and the corresponding model estimates. Once this relation has been established, it
can be used to suggest more appropriate starting points for the iterative estimation
process. After a few estimations, the fingerprint method can lead to a significant
acceleration of the estimation procedures for the remaining re-sampled datasets.
When the relation becomes sufficiently accurate, it may replace the estimation
processes altogether.

The fingerprint method uses limited information to establish the relation between
data characteristics and model parameters. Data characteristics are mapped to
the final result of an optimization procedure; any information regarding the cost
function obtained during the estimation is lost. This makes the fingerprint method
susceptible to local minima. If the mapping between the data space and the model
space is non-smooth or has discontinuities, the applicability of the fingerprint
method can be called into question. The method has in fact only been tested
for smooth, convex min-log-likelihood functions using local optimizers (Mestdagh
et al. 2015). For such min-log-likelihood functions, the estimates of the re-sampled
datasets typically lie closely together in the parameter space, and the relation
between data characteristics and estimates can nicely be established. Under these
conditions, the bootstrap distributions are unimodal. If a cost function has multiple
local minima, it is possible that two datasets with similar features (they lie close
together in the data space) map to very different parameter configurations (they
are far apart in the model space). This results in multimodalities in the bootstrap
distributions and can significantly obscure the relation between data characteristics
and model parameters. Local optimizers are not adequate for such problems, and the
way to build the relation between the data characteristics and the model estimates
becomes unclear.

The prepaid method (Mestdagh et al. 2018) is another recent method that has
been proposed for speeding up optimization procedures that also exploits the
similarity of fitting procedures, but in a much broader context. The key idea of the
prepaid method is that when the same model is used multiple times for different
datasets, similar computations are required to arrive at estimations. The prepaid
method capitalizes on this by creating a prepaid database in which, for a regular grid
across the parameter space, the model is extensively simulated. Once this database
has been constructed and stored, any estimation problem can be solved on the spot
using advanced interpolation techniques. The main advantage of the prepaid method
over the fingerprint re-sampling method is the humongous amount of available
information in the database to construct the relation between the data space and
the model space, making it less susceptible to local minima. Unfortunately, setting
up the prepaid grid is computationally too burdensome for a one-time re-sampling
task.
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In this paper, the key ideas of the fingerprint and prepaid method are exploited
for re-sampling methods in a slightly different fashion. For a large class of cost
functions, the cost of a specific set of model parameters can be computed for all cost
functions in the bootstrap without the need for extra computations (e.g., because
all cost functions consist of additive contributions of the same data points). By
evaluating the costs of the original data points, the cost of any re-sampled dataset
can be obtained. Hence, when a specific cost function in the bootstrap is being
optimized, we can keep track of the different locations in the parameter space that
have been visited and save those that are of interest for the optimization of the other
cost functions. In other words, we can construct prepaid databases on the fly which
will help us with the initialization of the other optimization problems. In addition,
when multiple cost functions in the bootstrap are being optimized at the same time,
all visited locations in the parameter space and their corresponding costs for each
of the functions can be made collectively available. As such, information can be
exchanged between the different optimization procedures. The main advantage of
this synergy is that due to the availability of collective information, the different
cost functions can be scanned more rapidly and less cost function evaluations are
required to reach the different global optima. Unlike the fingerprint method, the
proposed method uses the prepaid databases that are constructed on the fly and
that are optimized for each cost function independently. Hence, the method can be
applied to cost functions with multiple local minima. As an example, the synergized
bootstrap method described in this paper will be applied to the non-parametric
bootstrapping of the parameter estimates of finite mixture models. There is no closed
form expression for the optima of the min-log-likelihood function of a finite mixture
model, and the function can have multiple minima (see e.g., McLachlan and Peel
2000). Finite mixture models therefore provide an ideal test case for the method. The
differential evolution (DE) heuristic (Storn and Price 1997) will be used as global
optimizer to fit the mixture models.

2 Non-parametric Bootstrapping

When fitting a model to data, a non-parametric bootstrap can be used to evaluate
the uncertainty of the parameter estimates. The idea is to generate a number of new
datasets (replications) based on the original and fit the model to each of them. That
way, distributions of parameter estimates are obtained. These can then be used to
compute standard errors or confidence bounds.

2.1 Re-sampling: Generating New Datasets

For a non-parametric bootstrap, a replicated dataset is created by sampling data
points from the original dataset y = {yi}i=1,...,n with replacement until the sample
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size n is reached. Note that we will focus in this paper on i.i.d. data (i.e., yi ∼ F for
all i and all yis are independent from one another). The replicated datasets will be
denoted as yj , j = 1, . . . , B, where B refers to the number of replications.

The constituents of the replicated datasets are the same as those of the original
dataset, namely, the data points yi . The frequency of occurrence of the constituents,
however, differs across replicated datasets. A replicated dataset yj is fully defined in
terms of the original data points yi and the frequencies f

j
i with which they appear.

The notation f
j
i is used to refer to the frequency of occurrence of the data point yi

in the replicated dataset yj .

2.2 Optimization: Finding the Estimates

To find the parameter estimates of a model given data y, a cost function (like a least-
squares function or a min-log-likelihood function) F : θ �→ F (θ | y) has to be
optimized. A cost function F relates a cost F (θ | y) to every parameter set θ given
the data y. The parameter estimates θ̂ correspond to the parameter set θ for which
the cost is optimal. This set can be found at the global extremum of the cost function.
For least-squares and min-log-likelihood functions, this extremum corresponds to a
global minimum.

The functional form of the cost function depends on the particular model. In
this paper, we are primarily concerned with cost functions that have multiple local
extrema (minima or maxima, depending on the context). For such functions, local
optimization algorithms are inadequate and instead global optimization heuristics
are required.

We will rely on the differential evolution (DE) heuristic for global optimization
because it is a simple, reliable, and all-round optimizer (Storn and Price 1997)
that has got the required properties for the synergized method proposed in this
paper to work. Furthermore, it has been used for fitting finite mixture models
(Boonthiem et al. 2017; Kwedlo 2014). The ideas underlying the DE method are
nevertheless more broadly applicable to similar kinds of optimizers. Here, we briefly
explain the ideas behind DE. For a more elaborate description, see Storn and Price
(1997).

2.2.1 Differential Evolution

Differential evolution is a parallel, stochastic, direct search method for solving
continuous optimization problems (Storn and Price 1997). It relies on a population
P(g) of NP model parameter vectors or “agents” χa(g), a = 1, . . . , NP . These
agents are updated over generations g. The population size NP does not change
during the optimization.
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A DE optimization starts by sampling an initial population P(0) of NP agents
χa(0) from a prior distribution on the parameter space. This prior distribution should
cover the entire search space (the part of the parameter space that is of interest). The
cost F (χa | y) of each agent is also computed.

Subsequently, the populations are iteratively updated. Updating a population
happens in different stages. First, NP mutant vectors are constructed by adding
the weighted difference of two agents to a third. All of the triplets that constitute
a mutant are unique. In total, there are as many mutant vectors as there are agents
in the population. Second, a crossing-over between agents and mutant vectors takes
place. During this procedure, the parameters of an agent are intermixed with the
parameters of one of the mutant vectors. The resulting vectors make up the offspring
and will be referred to as children. Third, the cost of each child is compared to that
of the agent to which it is kin (the parent, i.e., the agent of which it inherited part
of its parameters). If the child’s cost is more optimal, it replaces its parent in the
population. Otherwise, the parent lives on.

The total cost of the population P(g) can only improve from one generation to
the next. Agents that are more optimal will attract other agents. In doing so, the
population increasingly focuses on regions in the parameter space that are more
interesting for finding a global optimum. The spread of the population naturally
shrinks across generations and so do the weighted differences between the agents.
As such, the optimization scheme naturally adapts from that of a global search into
that of a local search.

Algorithm 1: standard DE
input : data and cost function
output: estimates, cost

1 agents = random_initialization(NP);
2 agents_costs = cost_function(data, agents);
3 for g = 1 to n_iter do
4 children = mutate_and_crossover(agents);
5 children_costs = cost_function(data, children);
6 agents = compare_and_eliminate(agents, children, agents_costs, children_costs);
7 agents_costs = update_costs(agents_costs, children_costs);
8 end
9 best_agent_position = find_optimal(agents_costs);

10 estimates = get_agent(agents, best_agent_position);
11 cost = get_cost(costs, best_agent_position);

2.2.2 Multiple Cost Functions

In the context of non-parametric bootstrapping, there is a cost function F j : θ �→
F (θ | yj ) associated with every replicated dataset yj . These cost functions are
entirely independent from one another. To find the optimum of each function, B
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different optimization procedures have to be run – exactly as many optimizations as
there are replications.

Given an agent χ
j
a of the population Pj . In a traditional DE setup, the only

relevant cost to know is F (χ
j
a | yj ). When offspring is created, it is this cost that

is used during the selection stage of the updating step. The costs F (χ
j
a | yk) with

j �= k are never computed. Yet, such “external” costs can hold relevant information.
For one, if both the usual (internal) costs and the external costs are available to

all populations, the amount of information on the different cost functions increases
by a factor B. Instead of only NP function values (costs), B × NP function values
are known per cost function. This significantly augments the sheer search power,
making it easier to uncover the relevant regions for the different cost functions.

An additional benefit in the context of non-parametric bootstrapping is that the
cost functions all look alike. The functional form of the cost functions is the same
for all replicated datasets, since it is determined by the model. They only differ in the
dataset they are associated with; the function F j is associated with the replicated
dataset yj . Replicated datasets show a lot of overlap since they are all derived from
the same origin y, hence the similarity between cost functions.

As a consequence, the different populations will be attracted toward the same
regions in the parameter space, and agents from a specific population can therefore
learn a lot from external agents, especially during the global search stage of the
optimization. Only when the populations start homing in on their specific global
minimum will the gains that can be made by considering external agents reduce.

Yet, computing the agents’ costs is for many practical applications the most time-
consuming task during the optimization. It is therefore generally not a good strategy
to compute costs from obtained less promising external agents.

2.3 Collective Information

For a specific class of cost functions, however, external costs can be obtained for
free given that the re-sampled datasets are constructed from the same original data
points. There is a large class of cost functions with the property that the cost of
a parameter set θ for an entire dataset y is equal to the sum of the costs of the
individual data points that make up the dataset (here we rely on the i.i.d. assumption
made above):

F (θ | y) =
n∑

i=1

F (θ | yi).
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By extension, the cost F (θ | yj ) can straightforwardly be constructed from the costs
F (θ | yi) of the individual data points as well:

F (θ | yj ) =
n∑

i=1

f
j
i F (θ | yi).

The cost of the parameter set θ for a re-sampled dataset yj is simply a weighted sum
of the costs of the individual data points that make up the original dataset, where the
weights are determined by the frequency of occurrence of the data points.

In order to update all DE populations of an entire non-parametric bootstrap, n ×
B × NP individual costs have to be computed – n individual costs per agent. From
these, the costs F (χ

j
a | yj ) which are necessary for the selection procedure can be

constructed. The external costs F (χk
a | yj ) with j �= k can also be constructed from

these, without the need for extra computations. In a traditional DE optimization,
this external information is ignored, but in the next section we will show how this
information can be put to good use.

3 The Synergized Bootstrap

Instead of initializing a different population Pj for every cost function F j (as
would be the standard procedure for the traditional DE), only one population
P of NP agents is initialized. The costs of these agents are computed for all
the cost functions F j , resulting in B × NP costs. Note that only n × NP

computations are required for this (not n × B × NP , as for the traditional DE).
The agents of the population P serve as initial generation for each optimization:
∀ j ∈ {1, . . . , B} :Pj (0) = P .

The agents of one of the populations, say P1, start updating like they would
normally do. However, for each generation P1(g), the children υ1

a are evaluated in
all the cost functions (again, this does not require extra computations). If the cost
F (ν1

a | yj ) of the child ν1
a is better than the cost F (χ

j
a | yj ) of the current agent χ

j
a

in population Pj , the agent is replaced (the agent χ
j
a and the child ν1

a have the same
sub-index a – they have the same position within their own respective populations
– but they are not parent and child because they come from different populations).
So, although only NP agents are actively evolving, all agents of all populations
are being updated, and it is possible that some agents appear multiple times across
populations.

This initial updating scheme is sufficient for establishing the regions in the
parameter space that are of interest for the different cost functions. The populations
Pj only retain agents that optimize their current cost. The agents that are being
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retained can vary across populations, which still enables the populations to focus
on their particular problem. Essentially, a prepaid database is being constructed
for each cost function, each consisting of its own NP parameter sets and their
related costs. The initial global search of the DE optimizations, which is quasi-
random anyways, is shared across populations, and thus the computational cost of
this “burn-in” is significantly reduced.

At some point, there will be populations that no longer adopt children from the
population P1 because its agents are drifting away from their particular regions
of interest. Typically, the populations whose cost functions differ most from F 1

will diverge earlier. The first time a population, say P2, is unable to adopt children
for several generations in a row, its agents are also made to actively evolve. From
then onward, there are two DE populations independently breeding children. All
these children are still evaluated in all cost functions (because this does not require
any extra computations). The supply of children which the populations can adopt to
improve their prepaid database doubles. The idea is that populations corresponding
to cost functions that have more in common with F 2 might still be able to learn
from the agents of the population P2.

Once there is another population that can no longer learn from the two popula-
tions, its agents are also made to evolve. One after another, the populations start
their own individual evolution. The rate at which populations launch their own
evolutionary updating strongly depends on the similarity between cost functions.
In the worst case, agents cannot learn much from external information, and the
populations all start their own search almost immediately. In that case, B different
DE optimizations are being done. Hence, the computation time of the synergized
bootstrap is at worst equal to that of a traditional bootstrap where all B optimizations
are done independently.

It can happen that multiple populations fail to update for several generations in
a row. This implies that these populations require information that is different from
the information provided by the currently active populations. It is however possible
that several of these populations require similar information. Hence, it would suffice
to just activate a selection of them. The other populations that were not activated
can then learn from those that have been activated. As such, the rate at which the
computational burden increases can be limited.

Populations that have started evolving can also still adopt children from other
populations. This is an additional advantage over the traditional DE. Populations
that have converged to a local minimum can still be corrected through the adoption
of external children.
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Algorithm 2: synergized DE
input : data, bootstrap frequencies and cost function
output: estimates, cost

1 agents = random_initialization(NP);
2 agents = replicate_agents(B);
3 individual_costs = cost_function(data, agents);
4 agents_costs = weighted_sum(individual_costs, frequencies);
5 n_active_populations = 1;
6 for i = 1 to B do
7 failed_counter(i) = 0;
8 end
9 for g = 1 to n_iter do

10 for j = 1 to B do
11 updated(j ) = false;
12 end
13 temporary_agents = agents;
14 for j = 1 to n_active_populations do
15 active_agents = get_population(temporary_agents, j );
16 children = mutate_and_crossover(active_agents);
17 children_individual_costs = cost_function(data, children);
18 for k = 1 to B do
19 local_frequencies = get_frequencies(frequencies, k);
20 children_local_costs = weighted_sum(children_individual_costs,

local_frequencies);
21 local_agents2 = get_population(temporary_agents, k);
22 local_agents_costs = get_costs(agents_costs, k);
23 local_agents = compare_and_eliminate(local_agents2, children,

local_agents_costs, children_local_costs);
24 local_agents_costs = update_costs(local_agents_costs, children_local_costs);
25 if not equals(local_agents, local_agents2) then
26 updated(k) = true;
27 end
28 agents = insert_population(local_agents, agents, k);
29 agents_costs = insert_costs(local_agents_costs, agents_costs, k);
30 end
31 end
32 n_activated_populations = 0;
33 for j = n_active_populations + 1 to B do
34 if updated(j ) == false then
35 failed_counter(j ) = failed_counter(j ) + 1;
36 else
37 failed_counter(j ) = 0;
38 end
39 if failed_counter(j ) > max_fails and n_activated_populations < max_activations

then
40 n_active_populations = n_active_populations + 1;
41 agents = swap_populations(agents, n_active_populations, j );
42 agents_costs = swap_costs(agents_costs, n_active_populations, j );
43 n_activated_populations = n_activated_populations + 1;
44 end
45 end
46 end
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Algorithm 2: synergized DE (continued)

46 for i = 1 to B do
47 local_agents = get_population(agents, i);
48 local_agents_costs = get_costs(agents_costs, i);
49 best_agent_position = find_optimal(current_agents_costs);
50 local_best = get_agent(local_agents, best_agent_position);
51 estimates = concatenate(estimates, local_best);
52 cost(i) = get_cost(costs, best_agent_position);
53 end

4 Application: Finite Mixtures

The ideas described above were applied to the non-parametric bootstrapping of the
parameters of univariate finite mixture models. The probability density function
p(x) of a univariate finite mixture is defined as

p(x) =
N∑

m=1

ωm φm(x),

where φm(x) denote univariate normal density functions (the components),

φm(x) = 1√
2πσ 2

m

e
− (x−μm)2

2σ2
m ,

and ωm ≥ 0 denote weights which sum up to one. The min-log-likelihood function
of the mixture model is given by

L (μ, σ ,ω | y) = −
n∑

i=1

ln

( N∑
m=1

ωm√
2πσ 2

m

e
− (yi−μm)2

2σ2
m

)
. (1)

By minimizing this function, the parameter estimates of the finite mixture can be
found for a given dataset y = {yi}i=1,...,n.

The min-log-likelihood function (1) can have multiple local minima. In Fig. 1,
an example of such a local minimum is shown. In Panel (a), the two-component
mixture distribution p(x) is drawn from which 50 data points were simulated. A
histogram of the data points is shown in Panel (b). The distribution corresponding
to the global minimum is indicated as well. In Panel (c), the histogram is drawn
again, but this time in combination with a distribution corresponding to a local
minimum of the min-log-likelihood function. This distribution was obtained using
a local minimizer.
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Fig. 1 Example of a local minimum. Panel (a) depicts the probability density function p(x) of
the finite mixture model that was used to simulate data. Panel (b) depicts the histogram of the 50
simulated data points {yi}i=1,...,50. The probability density function corresponding to the global
optimum of the min-log-likelihood function is drawn as well. Panel (c) again depicts the histogram
of the 50 simulated data points. Here, the probability density function corresponding to a local
optimum of the min-log-likelihood function is shown

Because of the occurrence of local minima and the low computational cost for
optimization, the univariate finite mixture model provides a suitable application to
demonstrate the synergized bootstrap method.

4.1 Simulating Data

For our application, we simulated 100 different datasets yj (j = 1, . . . , 100) from
100 distinct two-component finite mixture distributions pj (x). Each of the datasets
consisted of nj = 50 data points.

4.1.1 Generating Model Parameters

The first component of each finite mixture distribution corresponded to the standard
normal distribution (μj

1 = 0, σ
j

1 = 1). The weights ω
j

1 were sampled from a
uniform distribution

ω
j

1 ∼ U(.25, .75).

The means μ
j

2 and the standard deviations σ
j

2 of the second components were also
sampled from uniform distributions:

μ
j

2 ∼ U(2, 4),

σ
j

2 ∼ U(.5, 1.5).
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To ensure that the functions pj (x) were proper probability density functions, the
weights ω

j

2 of the second components were constructed as follows:

ω
j

2 = 1 − ω
j

1 .

4.1.2 Generating Data

To generate 50 data points from the two-components finite mixture distribution
pj (x), first of all 50 numbers r

j
i (i = 1,. . . ,50) were randomly drawn from a uniform

distribution U(0, 1). For each of these r
j
i values, a normally distributed random

number y
j
i was sampled either from the first component of the finite mixture pj (x)

or from the second component. If r
j
i < ω

j

1 , then y
j
i was sampled from the first

component; otherwise it was sampled from the second component.
Doing this for all 100 sampled parameters led to 100 datasets yj of which the

data points y
j
i were appropriately distributed according to their corresponding two-

component finite mixture distribution pj (x).

Algorithm 3: generating data
input : number of required data points and model parameters (means, standard deviations,

weights)
output: data y distributed according to mixture distribution

1 for i = 1 to n_data_points do
2 r = uniform_random_number(0,1);
3 if r < weights(1) then
4 y(i) = mean(1) + standard_deviation(1) * normal_random_number();
5 else
6 y(i) = mean(2) + standard_deviation(2) * normal_random_number();
7 end
8 end

4.2 Simulation Study

4.2.1 Non-parametric Bootstrapping

For each of the 100 datasets yj , 1, 000 bootstrap replicates yjk (k = 1, . . . , 1000)
were created by drawing 50 data points (exactly as many as there are in the original
datasets) with replacement from the original datasets yj . In doing so, 100,000
datasets were constructed in total.
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Algorithm 4: non-parametric bootstrapping
input : data
output: re-sampled dataset y

1 for i = 1 to n_data_points do
2 r = uniform_random_integer(1,n_data_points);
3 y(i) = data(r);
4 end

4.2.2 Optimization

Associated with every replicated dataset yjk , there is a min-log-likelihood function
L (μ, σ ,ω | yjk). The parameter estimates that are obtained by minimizing the
1,000 min-log-likelihood functions L jk corresponding to a specific original dataset
yj can be used to construct bootstrap confidence intervals around the parameter
estimates (μ̂

j
, σ̂

j
, ω̂

j
) obtained by minimizing the min-log-likelihood function

L (μ, σ ,ω | yj ). For our simulation study, the 1,000 min-log-likelihood functions
L jk corresponding to a specific original dataset yj were minimized in parallel. In
what follows, an optimization (procedure) will refer to the minimization of the 1,000
min-log-likelihood functions corresponding to a single original dataset yj .

All optimizations were done using the standard DE optimizer as well as the
synergized DE method. For both, the crossover rate was set equal to .3. Moreover,
they were run using the traditional DE/rand/2/bin configuration (see Storn and
Price 1997). In other words, we opted for the random DE mutation strategy and
the binomial crossover scheme. The 2 refers to the number of agents that made
up the weighted differences of the mutants. The weighing factors of the weighted
differences for the mutations were randomly sampled from a uniform distribution
U(0, 2), as was done by Mohamed et al. (2012).

Every optimization procedure was done with NP = 100 agents per population
which is amply sufficient according to DE standards (see Storn and Price 1997). To
study the consequence of significantly reducing the population size, each simulation
procedure was also repeated with NP = 10 agents per population. Hence, in total
400 different optimization procedures were run, 4 for each original dataset yj .

The synergized DE required some additional specifications. Populations were
activated if they failed to update for three consecutive iterations. Furthermore, only
five populations could simultaneously be activated.

4.2.3 Accuracy and Benchmarks

There are 1,000 DE populations at play during a single optimization procedure. The
accuracy of a DE population is defined as the difference between its best agent’s
min-log-likelihood (the smallest value in the population) and the min-log-likelihood
of the global minimum of the function that is being minimized by the agents of
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this population. The bootstrap accuracy is the average of all 1,000 accuracies in
the optimization. Both the accuracy and the bootstrap accuracy are functions of
the number of DE iterations; they become smaller the more the populations evolve
toward their global minimum.

In order to be able to determine the accuracies, the global minima of the min-
log-likelihood functions have to be known prior to doing the optimizations. We
determined these by taking the best of three independent standard DE optimizations
for each of the 100,000 min-log-likelihood functions in the simulation study. The
setup of these DE optimizers was the same as described above. The number of
agents NP was chosen to be 100 and the maximum number of iterations was set
equal to 3,000.

4.2.4 Comparing Methods

Every optimization procedure was repeated four times: the standard DE algorithm
was run with NP = 100 and NP = 10 agents per population and so was the
synergized DE algorithm. For each of them, the bootstrap accuracy was tracked as a
function of the number of cost function evaluations that were required to attain this
specific accuracy. At every instance in the evolution, the accuracy of the different
procedures could be compared. In all cases, the optimizations ran until a satisfactory
accuracy was reached.

5 Results

The results of the simulation study are summarized in Fig. 2 which depicts
the bootstrap accuracies as a function of the number of executed cost function
evaluations. Red lines correspond to the optimizations with the standard DE method
and blue lines correspond to the optimizations with the synergized method. Lighter
and darker lines correspond to populations with NP = 100 and NP = 10 agents,
respectively. The standard DE bootstraps ran for 4,000 iterations; the synergized
bootstraps ran for 2,000 iterations.

Looking first at the red lines, we can see that reducing NP is not favorable for
the standard DE method for this particular problem. The cost of updating an entire
population is smaller for the darker lines, and initially the darker lines converge
faster, but they typically do not reach the same level of accuracy as the lighter lines.
It is known that smaller populations can evolve more rapidly, but for non-convex
cost functions with many local minima, this increases the risk of getting stuck in
local minima because the spread of the agents in the population shrinks too quickly.
In the remainder of this discussion, we will only compare to the standard DE with
NP = 100 (light red).
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Fig. 2 Comparison of the standard DE bootstrap and the synergized bootstrap. The bootstrap
accuracy is depicted in function of the number of cost function evaluations for the standard DE
method (red) and the synergized method (blue). The bootstrap accuracy refers to the average
difference between the min-log-likelihoods of the best agents of the populations and those of the
corresponding global minima. Lighter lines correspond to populations of NP = 100 agents and
darker lines to populations of NP = 10 agents

The synergized method converges a lot faster than the standard DE method,
regardless of the population size. The lines corresponding to synergized opti-
mizations start earlier, because less cost function evaluations are required for
initialization and also during the global search stage of the optimization process
(not yet all populations are actively evolving). For the red lines, B × NP = 105

evaluations are needed to initialize the optimization procedure, which determines
the starting points of the lines. Moreover, for the standard DE every update of a
generation requires 105 evaluations. The light blue lines (NP = 100) reach an
accuracy of about 10−1 approximately 100 times faster than the red lines. The dark
blue lines (NP = 10) reach this accuracy approximately 500 times faster.

Not only do the synergized bootstraps converge faster, they are more accurate
than the standard method. The bootstrap accuracy of the DE method only drops to
about 10−1 to 2 · 10−2, indicating that for each simulation several of the bootstrap
populations get stuck in local minima. For the synergized method, the accuracy
generally drops below 10−5. Reducing the number of agents per population does
not affect this accuracy for the synergized method (unlike for the standard DE). The
fact that populations that got stuck in local minima can still be corrected by others
seems to have an advantageous effect on the global performance of the optimizer.

In summary, the synergized method is both faster and more accurate than the
standard DE method. It also requires less agents per population to work, which
reduces the computation time even more.
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6 Discussion

In this paper, we introduced a new method for speeding up the optimization
procedures in the context of re-sampling methods, and we applied the method to
the non-parametric bootstrapping of the parameters of a univariate two-component
mixture model. Just like the fingerprint method (Mestdagh et al. 2015), the proposed
synergized bootstrap method exploits the fact that the characteristics of the re-
sampled datasets are very similar, and so are the related optimization problems.
Moreover, it relies on the fact that, for a large class of cost functions, the costs
of a parameter set for the different cost functions can be obtained at a very low
computing cost. This allows combining resources across the different optimiza-
tion procedures during run time without extra burden. By letting the different
optimization processes communicate with one another, the computation time can
significantly be reduced since the optimization problems are very similar.

For the application on the mixture models, the results indicated that the syner-
gized differential evolution (DE) can be approximately 100 to 500 times faster than
the standard DE. Furthermore, because the synergized DE can correct populations
that got stuck in local minima by relying on information from the other populations,
it can generally achieve a better accuracy.

The synergized bootstrap method is more widely applicable than the fingerprint
method because it is not limited to smooth, convex cost functions. A limitation
of the synergized method is, however, the need for cost functions of which the
costs of the different data points can be computed independently. This class of
functions is nonetheless very large, and these functions are frequently encoun-
tered in practical applications because independence of data points is a common
assumption. Although this requirement is sufficient for the procedure to work,
it is not strictly necessary. Another case where the synergized method could be
used is for optimization routines where there is separability of the initial model
calculations and the final comparison to data in the objective function. If, for
instance, the entire probability density function is calculated for an agent (e.g., as
a sufficiently fine discrete distribution) independent of the data, it can be recycled
for use with other (re-sampled) datasets (and hence for other cost functions) for
practically no extra cost – here the bottleneck is the preparatory calculation of the
probability density function, not its evaluation. Some examples of algorithms that
first calculate/simulate the entire probability density function and then in a second
separable step compare this with the data are D*M optimization for diffusion models
of choice response time (Verdonck and Tuerlinckx 2016) and simulated likelihood
approaches (Verdonck and Tuerlinckx 2014).
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Synchronized Time Profile Similarity in
Applications to Nearest Neighbor
Classification

Qimin Liu

Abstract One of the existing approaches to time series classification exploits
the time profiles using the original data with synchronization instead of model-
implied data. Synchronization aligns inter-individual data from different time
points to account for potential phase offsets and nonstationarity in the data. Such
synchronization has been applied in psychology: For example, coordinated motion
between two individuals exchanging information was used as a predictor and out-
come of psychological processes. Synchronization also affords better classification
outcomes, as discussed in the data mining community, through aligning the data
to reveal the maximally shared profile underlying two compared data sequences.
For inter-individual comparison of univariate time series data, existing similarity
indices include Euclidean distances and squared correlations. For synchronization,
we introduce dynamic time warping and window-crossed lagging. The current
study compares the Euclidean distance and the squared correlation before and
after synchronization using window-crossed lagging and dynamic time warping
in applications to one-nearest-neighbor classification tasks. Discussion, limitations,
and future directions are provided.

Keywords Classification · Time series · Dynamic time warping

1 Introduction

Advancement in and accessibility to technology have enabled psychologists to
harvest big data at greater complexity and larger scale. Intensive longitudinal data
are often the product of many repeated measurements through approaches such
as daily diary, experience sampling, and burst measurements. The pervasive use
of smartphones, fitness trackers, and the Internet of Things has made the use of
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intensive longitudinal data increasingly accessible. The latitude of information in
intensive longitudinal data can enable data-driven investigation of novel research
questions (Harlow and Oswald 2016). In this paper, we examine classification of
time-invariant membership based on individual trajectories across time.

More attention is due on the use of intensive longitudinal data from a big data
perspective. Intensive longitudinal data are no stranger to psychological researchers.
Daily diary data help developmental psychologists to explore the process of aging
(Birditt et al. 2005). Clinical psychologists utilize daily data of multiple individuals
to explore mental health problems (Laurenceau et al. 2005). Brain activity measures,
such as EEG and fMRI methods, that are frequently employed by cognitive neuro-
scientists, result in data that are collected at high frequency (Kounios and Beeman
2009). In addition, organizational and industrial psychologists make use of daily
diary data as well to study psychological issues at workplace (Conway and Briner
2002). As data of intense repeated measures have already shown great promise in
the field of psychology, application of classification and prediction methods may
afford researchers and practitioners additional viewpoints and practical utility.

One novel research problem that psychologists may be interested in is time series
classification, i.e., to assign time-invariant class membership to test individuals
given training time series data of multiple individuals with their respective time-
invariant class membership and the time series data of the test individual. For
example, cognitive neuroscientists attempted to use the brain activity data to predict
the success of word recall tasks (Ezzyat et al. 2017). In particular, Ezzyat and
colleagues used time series classification in hope of uncovering the mechanism
of episodic memory performance with respect to brain activities and also to
help decide whether intracranial brain stimulation should be induced to improve
memory performance. As shown in the example, the reason for psychologists to
explore the time series classification problem can be twofold. On the one hand,
classification, to some extent, extracts the signals behind the noise from the data
and thus can represent the useful information in the data. For example, consider
a potential personality theory where personality categorization is based upon time
profile. To validate such theory, time series classification can be applied where the
classification accuracy may serve to explore the utility and the practicality of such
theory. On the other hand, the classification problem can readily translate academic
research to real-world applications. For example, clinical psychologists may utilize
routine outcome data from behavioral care to aid in diagnosis or in decisions of
posttreatment care regime. While approaches for time series classification exist,
such as through autoregressive logistic or multinomial models, these conventional
methods have limitations.

One limitation in commonly used conventional modeling of intensive longitudi-
nal data, e.g., autoregressive moving average models (Box et al. 2008), lies in its
various assumptions. One such assumption is stationarity. Admittedly, stationarity
assumption is beneficial both in computation and interpretation: The collected times
series information is assumed to be representative of the entire behavior, and thus
relevant statistics can be meaningfully obtained. In other words, for each person, any
interval of time is assumed to be representative for the intraindividual changes. To
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this end, data preprocessing techniques (West and Hepworth 1991) exist in shaping
the data to better fit the stationarity assumption. However, such techniques may
mask the important substantive information that the nonstationarity in behavioral
time series data would convey. For example, nonstationarity can imply nonconstant
dynamics of within-person changes (Boker et al. 2016). Moreover, given the big
data nature in intensive longitudinal data, the enormous amount of measurement
occasions may render the stationarity assumption for the whole series unlikely.
Therefore, innovative methods that do not require such assumptions may glean the
information that conventional methods often omit due to their assumptions.

While the big data aspect of intensive longitudinal data may be new, psycholo-
gists have been interested in class membership in relevance to individual profiles
across time. Admittedly, meager efforts have been paid to developing methods
for time series classification particular to social and behavioral science: A brief
search in selected methodological journals for psychology – Structural Equa-
tion Modeling, Psychological Methods, Psychometrika, Multivariate Behavioral
Research, Behavioral Research Methods – with keyword “time series classification”
returned no exact match. However, quantitative psychologists have made relevant
discussions. For example, Gates et al. (2017) discussed community detection
within group iterative multiple model estimation for clustering time series data.
The goal was to simultaneously detect homogeneous subgroups and to classify
individuals to identified groups. This is often referred to as a clustering problem
that is “unsupervised” as it does not require a training data with assigned class
membership information (Gates et al. 2017). The focus of this paper, however, is
on classification problems that are supervised: The training data contain both time
series information and the time-invariant class membership labels; the goal is to
predict the membership for new or test data given time series information. In other
words, provided with time profile and their subgroup labels, we aim to “learn” the
difference between predefined subgroups and apply this to classify individuals into
predefined subgroups.

Interindividual differences in intraindividual time profiles are central to dis-
cerning between predefined classes. For classification algorithms to exploit the
interindividual differences of the training data and to discover the pattern to apply
to the test data, interindividual similarity measures of time series data can be highly
relevant. The intricacy in time series data asks methodological researchers not only
to consider simple similarity indices but also to take into account of the potential
nonsynchrony between time profiles. That is, two time profiles can look different
just because the processes are not in sync or the individuals in comparison are not
aligned at their respective phases. For example, in psychotherapy process research,
individuals may be studying different cognitive behavioral skills modules. The daily
diary data between individuals may show different patterns despite the fact that they
would be the same if the individuals were undergoing the same module.

The alignment and synchrony of time series data between individuals can convey
substantive meaning to psychologists. For example, interpersonal communication
can often come with certain levels of coordinated behaviors, such as nonverbal
synchrony. Nonverbal synchrony can be that where eye gaze or facial expressions
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are in sync between individuals. For example, lack of eye contact in communications
can be seen as lack of nonverbal synchrony and can be interpreted as insincere
(Ramseyer and Tschacher 2006). Nonverbal synchrony has been employed to inves-
tigate association between nonverbal behaviors and psychotherapeutic outcomes
(Ramseyer and Tschacher 2011). Although the idea of nonsynchrony seemed to
have only applied to study dyadic time series data, the idea should transcend into
studying the inter-individual similarity of time profiles in general. Furthermore,
it is worth noting that quantitative psychologists have proposed windowed cross-
correlation (WCC) to measure such nonsynchrony, which breaks the data into
segments of “window” and computes a correlation matrix across windows (Boker
et al. 2002). In fact, phase misalignment or nonsynchrony has also been entertained
in the machine learning community (Jeong et al. 2011).

Machine learning community has offered a great amount of discussion in time
series classification in general with over 100 methods before 2003 and even more
dedicated efforts in recent years (Bagnall et al. 2017). One benchmark method,
dynamic time warping (DTW) one nearest neighbor (1NN), pays special attention
to phase alignment before computing similarities between individuals (Sakoe and
Chiba 1978). In short, dynamic time warping involves maximally aligning the
two times series prior to comparison. Moreover, dynamic time warping, combined
with nearest neighbor classification, has shown success for real-world applications
such as in human physical activity detection (Sempena et al. 2011). However, the
performance of DTW 1NN in social and behavioral time series classification tasks,
to the author’s knowledge, has not been investigated.

The present paper aims to continue exploring the big data aspect of intensive
longitudinal data in social and behavioral sciences. In particular, we provide discus-
sions on supervised time series classification. Since the stationarity assumption may
not hold for intensive longitudinal data, we limit most of our discussions to methods
that do not assume stationarity. Moreover, given the potential substantive meaning
of phase nonsynchrony and misalignment in social and behavioral sciences, we
only discuss techniques that include such consideration. The rest of the paper
is organized as follows. First, we review two general inter-individual similarity
measures, Euclidian distance and squared correlation, as the former is used in DTW
and the latter in WCC. Then, we introduce two techniques for phase alignment,
DTW and windowed cross lagging (which is derived from WCC). After that,
we provide details on pairing phase alignment methods with similarity measures
in applications to 1NN for time series classification. Furthermore, we provide a
simulation study to show the potential of discussed methods. The paper aims to
motivate psychologists to consider time series classification problems. In addition,
since dynamic time warping has mostly been applied only to Euclidean distances
and windowed cross lagging only to correlations, the present paper also innovates by
disaggregating phase alignment methods to similarity indices and introduces some
example indices via mixing-and-matching existing techniques. Lastly, we hope to
promote the use of dynamic time warping to psychologists and windowed cross
lagging to the machine learning community.
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2 Methods

2.1 Similarity Measures

Euclidean distance, d, between two points xi and xj is defined as the length of the
shortest straight-line segment that connects the two points, d = |xi − xj |. The
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Here, i and j denote individuals i and j , T is the total time points, and t

represents specific time points. It is worth noting that, first, to calculate Euclidean
distance between two vectors, two vectors should share the same length; second,
the Euclidean distance of two vectors sums the distance between concurrent points
before the square root. Euclidean distance can be used to measure data points of
two individuals or data sequences of two individuals. The magnitude of Euclidean
distance is inversely related with the similarity between two individuals.
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The squared correlation of data sequences between individuals can represent the
similarity. Similar to Euclidean distance, the above formula requires two data
sequences to be of equal length. While Euclidean distance varies with the absolute
value of the data, squared correlation is invariant to linear transformation.

2.2 Phase Alignment: Dynamic Time Warping

The goal is to compare two time-dependent sequences Xi = (x
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of length Ti ∈ IN and Xj = (x
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j ) of length Tj ∈ IN. Graphically,

for two sequences to appear similar in shape and thus phase-aligned, each pair
of concurrent points should only show minimal differences in Euclidean distance,
which would in turn make two sequences “close” to each other visually. Euclidean
distance helps measure the visual proximity between two points because the
Euclidean distance is the shortest straight-line distance. Dynamic time warping first
originates from speech recognition literature (Sakoe and Chiba 1978). In speech
recognition, the speech data of the same words may appear different for different
utterance, for example, the pace of how one talks or the length of pause between
words. Thus, the speech data sequence of two individuals may appear out of phase
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due to the difference in pause, and the length of the phase for two individuals may
also differ owing to the difference in talking speed. Dynamic time warping attempts
to adjust for such phase misalignment by “stretching” or “shrinking” each phase so
that two data sequences are maximally in sync in a sense that two data sequences
would appear similar graphically.

Dynamic time warping thus attempts to align each point in one sequence to each
closest point in the other sequence under some constraints. Let d(m, n):= d(xm

i , xn
j )

denote the Euclidean distance between a pair of elements in Xi and Xj . A (Ti ,
Tj )-warping path between Xi and Xj , p = (p1, . . . , pL) where pl = (ml, nl) ∈
[1 :Ti]×

[
1 :Tj

]
for l ∈ [1, L]. That is, each element in the warping path, p, records

the pairing of an element in Xi to in Xj . The warping path satisfies the following
conditions:

1. Boundary condition: p1 = (1, 1) and pl = (Ti, Tj )

2. Monotonicity condition: n1 ≤ n2 ≤ · · · ≤ nL and m1 ≤ m2 ≤ · · · ≤ mL, i.e.,
nt ≤ nt ′ and mt ≤ mt ′ ∀t < t ′ where t, t ′ ∈ [1, L] ∩ IN

3. Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1, L − 1] ∩ IN

The first condition requires that the first and the last element in Xi and in Xj are
always respectively matched to each other so that all elements of two sequences
are aligned. The second condition helps the alignment proceed forward. The third
condition further specifies the alignment process and requires that no elements can
be omitted and that no path step can involve the same pair.

After alignment, Xi and Xj are augmented into X∗
i = (x1
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i ) and
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j ). The distance between X∗
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j can be defined as
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l=1 d(ml, nl). An optimal warping path is that which Δ(X∗
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at its minimum, that is, DT W(X∗
i , X

∗
j ) = ArgminΔ(X∗

i , X
∗
j ) given that p satisfies

the conditions of a warping path. Let Δ∗(m, n) denote the optimized DTW distance
between X∗

i and X∗
j up to point the mth and the nth element, respectively, and the

optimization can be realized in the following algorithm:

Result: p∗ = (p1, . . . , pL)

initialization: Δ∗(1, 1) = d(1, 1);
while L < Ti or L < Tj do

Δ∗(m, n) = min{Δ∗(m, n − 1) + d(m, n),Δ∗(m − 1, n − 1)

+d(m, n),Δ∗(m − 1, n) + d(m, n)};
end

The algorithm effectively yields the optimal path p∗ = (p1, . . . , pL) from the
reverse order of the indices starting with pL = (T1, T2). Let the previous step l be
known, pl = (ml, nl). Note that the optimal path is defined backward: The initial
step is pL, which is the alignment of last elements in both sequences. The optimal
next step l − 1 is pl−1 = Argmin{d(ml−1, nl−1), d(ml−1, nl), d(ml, nl−1)}. In the
case where ml = 1, pl−1 = (1, nl−1). Similarly, pl−1 = (ml−1, 1) if nl = 1. The
optimal path is defined when l reaches 1, that is, p1 = (1, 1). It is worth noting that
the minimum value may not be unique. That is, multiple optimal warping paths may
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exist. However, while the specific paths differ, the resulting distance DT W(X∗
i , X

∗
j )

would be the same for all optimal warping paths.
We illustrate the algorithm with a numerical example. Consider

X1 = (1, .77, .17,−.5,−.94,−.94,−.5, .17, .76, 1)

X2 = (.33, .68, 1.04, .96, .36,−.25,−.77,−.92,−.58, 0)

The raw sequences are plotted in Fig. 1. To find an optimal warping path p∗, we
start with pL = (10, 10) = d(10, 10) = 1. Thus, the next step is

pL−1 = Argmin{d(10, 9), d(9, 10), d(9, 9)}
= Argmin{|1 − (−.58)|, |.76 − 0|, |.76 − (−.58)|}
= Argmin{1.58, .76, 1.34}
= (9, 10).

A similar procedure can be repeated till the optimal warping path p∗ is fully defined.
One potential optimal path is p∗ = { (10,10), (10,9), (10,8), (9,7), (8,6), (8,5), (7,5),
(6,4), (5,3), (4,2), (3,1), (2,1), (1,1)}. The DTW aligned sequences are also plotted
in Fig. 1. As shown in Fig. 1, the DTW results in phase alignment that reveals
a maximally shared and synced graphical pattern. Subsequently, to compare two
sequences, the Euclidean distance, for example, can be calculated between DTW
aligned X∗

1 and X∗
2 given p∗. DTW can be readily implemented in R using the

package dtw (Giorgino 2009). Given sequences x and y, dtw(x,y) computes
Euclidean distance after dynamic time warping. To extract the distance, we can
use dtw(x,y)$normalizedDistance. Let align=dtw(x,y); we can use
cor(x[align$index1],y[align$index2])^2 to compute squared cor-
relation with dynamic time wapring alignment.

2.3 Phase Alignment: Windowed Cross Lagging

Windowed cross lagging (Boker et al. 2002) assumes stationarity in short dura-
tions of the time series. By breaking time-dependent data sequences into smaller
“windows,” stationarity assumption is more likely to be met than for the entire
sequence. Thus, this may prove particularly beneficial for intensive longitudinal
data. Given stationarity, any collection of measurement occasions within a window
is representative of the window. Moreover, all occasions of measurement within a
window share an underlying expected value that does not vary across occasions
within the window. As such, common statistics such as means and variances can
be meaningfully computed. In particular, a window, Wxi

, is defined as a sequential
measurements sampled from the time series Xi . For a data sequence of length T and
windows of size TW , we can identify T − TW + 1 windows.
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Fig. 1 Illustrative example of DTW. The left plot shows data sequences before alignment and the
right plot shows data sequences after alignment. The red line represents X1 and the black line
represents X2. The X-axis is the index of the number. Note that DTW “stretches” the sequence,
resulting in greater maximum index. The Y-axis represents the value of the datum

The window size can be theoretically determined. For example, a 13-week
window, the median mood cycle (Solomon et al. 2010), can be chosen so that
the windowing is informative given its substantive underpinning. This can be both
advantageous and disadvantageous: The theoretical basis can make the interpre-
tation of statistics from windowing more meaningful; however, the strength of
the theory may also relate to the quality of similarity metrics from windowing.
Windowing let researchers specify the length of the “phase” given theoretical
reasons. It is worth noting the specified “phases” are of the same length and at times
can be at odds with theoretical considerations.

After obtaining the windows from data sequences in comparison, instead of
one single comparison to be made in other regular comparison like in Euclidean
distance, a matrix of similarity metrics can be obtained through cross-comparison.
Given a desired lag range of size v, the ath window in the first sequence can be
compared to (a−v)th, (a−v+1)th,. . . (a+v)th window of the other sequence. Each
window can be compared to 2v + 1 windows in the other sequence. Specifically,
for example, a v = 1 cross-lagged comparison would be comprised of three
comparisons: the comparison between the ath window of the first sequence to the
a − 1th window of the second sequence, the comparison between the ath windows
of both sequences, and the comparison between the a − 1th window of the first
sequence and the ath window of the second sequence. The original paper used
correlation as the metric (Boker et al. 2002) where each element of the matrix is the
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Table 1 Left: example windowing with Tw = 8; right: WCC with v = 1 and Tw = 8

X1 X2

Window 1 1, .77, .17, −.5, −.94, −.94, −.5, .17 .33, .68, 1.04, .96, .36, −.25, −.77, −.92

Window 2 .77, .17, −.5, −.94, −.94, −.5, .17, .76 .68, 1.04, .96, .36, −.25, −.77, −.92, −.58

Window 3 .17, −.5, −.94, −.94, −.5, .17, .76, 1 1.04, .96, .36, −.25, −.77, −.92, −.58, 0

lag

−1 0 1

−.59 .00 .69

−.69 −.14 .59

correlation of respectively lagged windows. The correlation between two windows

can be expressed as r(Wxi
,Wxj

) = 1
Tw

∑TW

t=1

(W
(t)
xi

−W̄xi
)(W

(t)
xj

−W̄xj
)

sWxi
sWxj

We illustrate the windowed cross lagging procedure in terms of the windowed
cross correlation. Recall prior example of two data sequences X1 and X2. We
consider a lag range of size 1 and window size of 8 for the sake of convenience.
First, the windowing step resulted in three windows for both data sequences. The
specific windows are displayed in Table 1 (left). Then, the cross lagging procedure
resulted in a 3 × 2 matrix as shown in Table 1 (right).

Since windowed cross lagging results in a matrix of similarity metrics, summa-
rizing the matrix into a single index may be preferable especially in applications to
nearest neighbor classifier. A number of strategies can be considered. One strategy
is to compute the average of all matrix elements. Such averages can represent
the average similarity between two sequences across phase alignments. Another
is to pick meaningful elements from the matrix. For example, with WCC, one
may desire to choose the maximum squared correlation across all elements. The
maximum squared correlation may represent the “strongest signal” across lags and
between phases. Similarly, if Euclidean distance is coupled with windowed cross
lagging, then the minimum may be chosen as small Euclidean distance indicates
high similarity. The following R scripts implement aforementioned indices:

wcc<-function(x,y,win.size,lag.max){
temp=sapply(1:((length(x)-win.size+1)-lag.max), function(r) {

sapply(1:(lag.max*2+1),function(c) {
s1=sapply(1:(length(x)-win.size+1),
function(a){x[a:(a+win.size-1)]})
[,ifelse((r+c-1)<r+lag.max,r+c-1,lag.max+r)]
s2=sapply(1:(length(x)-win.size+1),
function(a){y[a:(a+win.size-1)]})
[,ifelse(c<lag.max+1,lag.max+r,lag.max+r-(c-lag.max-1))]
return(c(ifelse((sd(s1)==0|sd(s2)==0),0,cor(s1,s2)^2),
sum((s1-s2)^2)))

})
})
temp=matrix(as.numeric(temp),ncol=2,byrow=T)
return(c(max(temp[1,]), # maximum window-crossed correlation

min(temp[2,]), # minimum window-crossed distance
mean(temp[1,]), # average window-crossed correlation
mean(temp[2,]))) # average window-crossed distance

}
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2.4 Nearest Neighbor Classification

Given a similarity measure of two time-dependent sequences that handles phase
misalignment, nearest neighbor classification can be readily used. Consider a
training dataset of size n, S = {X1, X2, . . . , Xn} where any element in S is a time-
dependent sequence measured across T occasions, Xi = (x

(1)
i , x

(2)
i , . . . , x

(T )
i ).

Moreover, for each Xi , we are also given the class membership information Yi .
Now we wish to determine the class membership of a test data sequence Xj . The
logic behind nearest neighbor (NN) classification is that observations of the same
class ought to be similar to each other. In the context of time series classification,
we expect time-dependent sequences of the same class to show similar patterns
after adjusting for phase misalignment. The algorithm of NN classification can be
summarized as follows:

1. Compute the distance δ between Xj and each element in S, i.e., Xi for all is
in [1, n] ∩ IN. That is, we obtain Dj = {δ(Xj ,X1), δ(Xj ,X2), . . . δ(Xj ,Xn)}
where δ can be any distance measure such as Euclidean distance, squared
correlation, DTW distance, DTW-aligned squared correlation, mean WCC, or
mean windowed cross-lagged distance (WCD).

2. Rank the vector of distance, Dj , in order to identify the nearest neighbor(s).
Denote the ranked distance vector as D∗

j . Based on the choice of δ, the k

nearest neighbor(s) are those with k largest or smallest δ. We denote N as the
set of indices of these nearest neighbors. For example, because small Euclidean
distance indicates high similarity, the k nearest neighbor would be the k Xis with
smallest δ.

3. Assign the most frequently counted class membership among the identified
nearest neighbors as the predicted class membership for Xj . That is, let F denote
the frequencies for each class within {Yi} with i ∈ IN, Ŷj = argmaxF .

In the context of time series classification, 1NN is especially popular. 1NN is a
nearest neighbor classifier where only the single nearest neighbor is identified and
the class membership of the new observation is assigned as the class membership
of the single nearest neighbor. Such popularity is not unjustified. On the one
hand, the computation of the similarity index between time-dependent sequences
is costly. For example, the computational cost of DTW is O(T1T2) and of WCC
is O((2v + 1)(T − Tw + 1)). Using kNN with k from cross-validation would
further the computational cost and render the classification task resource-, time-,
and computation-consuming. On the other hand, it has been shown that cross-
validated kNN, at least with DTW and with Euclidean distances, did not show
significant improvement over 1NN (Bagnall and Lines 2014). Admittedly, it hasn’t
been tested if cross-validated kNN with windowed cross-lagged metrics would
perform significantly better than 1NN. For comparability, we only consider 1NN
in the present paper for all distance metrics.

To implement 1NN in R, let dist be a distance matrix where each column
represents a case from the training dataset and each row represents a case from
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the test dataset. Let y be the labels from the training dataset. dist[i,j] is the
distance between ith observation in the test dataset and j th observation in the
training dataset. To determine the label for the ith observation in the test dataset,
we use y[which.min(dist[i])] as the predicted label.

3 Simulation Design and Data Generation

Our first simulation study was designed to show the performance of 1NN with “mix-
and-match” similarity measures with and without phase alignment with AR-based
classes. In particular, we considered two similarity measures without phase align-
ment: squared correlation (sqrC) and Euclidean distance (EucD). We considered two
similarity measures with DTW: DTW distance (DTWd) where Euclidean distance
was calculated after DTW alignment and DTW squared correlation (DTWc). We
also considered four similarity measures with windowed cross lagging: the average
of all elements in the WCC matrix (WCCmean), the maximum of the WCC
matrix (WCCmax), the average of all elements in windowed cross-lagged Euclidean
distance matrix (WCDmean), and the minimum of the windowed cross-lagged
Euclidean distance matrix (WCDmin).

In addition, we included a simple method based on an autoregressive (AR)
model: We first fitted an AR(1) model to all Xi in the training dataset S and obtained
the AR coefficient ρis and then computed the empirical density function (edf) in
each class. After that, we applied the AR(1) coefficient ρj of the test case Xj to the
edfs for each class, obtained the probability of ρj being in the distribution of AR(1),
and subsequently assigned the class membership for Xj as from that where the
edf had the highest probability from fitting ρj . The AR-based method differs from
1NN with aforementioned similarity measures in that AR-based methods assume a
parametric form and stationarity for the whole time series.

In particular, three classes were present in our simulation study: (1) random noise
class, the time series data were simply random noises without any time-dependent
pattern; (2) AR(1) class, the times series data in this class were generated with
realistic model parameters from an AR(1) model (Wang et al. 2012); and (3) the
nonstationary class where the data still showed a time-dependent pattern but do
not meet the stationarity assumption. The data were generated using the model
x

(t+1)
i = x

(t)
i ρiYi + ε(t+1) where the AR coefficient ρi ∼ N(.2, .2) and the error

term ε(t+1) ∼ N(0, 1). Moreover, Yi ∈ 0, 1, 5, respectively, correspond to the
random noise, AR(1) process, and a nonstationary class.

One variable was manipulated: the balance between training samples per class.
For the balanced condition, training datasets with a sample size of 150 were
generated with each class of 50 observations. For the imbalanced condition, the
random noise, AR(1), and the nonstationary class, respectively, had 30, 80, and
40 observations. For both conditions, a test dataset of 30 observations with 10
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observations for each class was used to evaluate the performance of different
classification algorithms. Five hundred replications were conducted.

Performance was evaluated via the average overall accuracy and the average
accuracy per class, which is computed via the mean of percentages of the true
positives and the true negatives per class.

4 Results and Discussion

The results for the balanced condition and the imbalanced condition are summarized
respectively in Table 2. The balance of training samples per class had some effect on
the overall accuracy with the imbalanced condition having higher overall accuracy
in general. For example, the overall accuracy for all methods was above 70%
for the imbalanced condition, while only WCDmin exceeded 70% accuracy for
the balanced condition. This observation encourages future study to examine the
effect of balance in greater detail where different setup of imbalance should be
investigated.

For the balanced condition, WCDmin showed the highest overall performance
(76% accuracy), and DTWc performed the worst (54% accuracy). The result is
encouraging because WCD with 1NN seems to show promise above and beyond the
DTW-based measures such as DTWd, which is held as the state-of-the-art method in
the machine learning community. Admittedly, only one data-generative process was
examined in the simulation study. Nevertheless, the result from the simulation study
invites researchers to test the performance of similarity measures with windowed
cross lagging in broader contexts. With respect to particular classes, WCDmin and
WCDmean performed best in identifying the random noise class (67%), DTWd
for the AR(1) class (100%), and WCDmin for the nonstationary class. It appears
that DTWd performed worst for both the random noise class (45%) and for the
nonstationary class (1%). The performance of DTWd is surprising, and future
research should study the performance of DTW-based similarity measures specific
to nonstationary time profile patterns. Moreover, it is worth discussing that the AR-
based method showed only mediocre performance overall (65%) even with respect
to identifying the AR(1) class (81%).

For the imbalance condition, the AR-based method showed superior performance
(78%) overall and in identifying the AR(1) class (100%). The second best method
with regard to overall accuracy is DTWd (77%) owing to its good performance in
identifying the AR(1) class (98%). All other methods showed similar performance
both in overall accuracy (around 70%) and in accuracy per class. The results from
the imbalance class should be generalized with caution as only one imbalance
setup was considered and the setup may have shown favor toward the AR(1) class.
Because more training samples are allocated to the AR(1) class, methods that are
good at identifying AR(1) class can reach saturated performance. Similarly, with
fewer training samples in other classes, it is possible not enough training samples
exist to discriminate performance between methods.
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Topic Modeling of Constructed-Response
Answers on Social Study Assessments

Jiawei Xiong, Hye-Jeong Choi, Seohyun Kim, Minho Kwak,
and Allan S. Cohen

Abstract Topic models were used to detect the latent thematic structure of
examinees’ answers to constructed-response items. Results for two different topic
models, latent Dirichlet allocation (LDA) and supervised LDA, were compared for
their utility in detecting different latent thematic patterns in examinees’ responses
on US History and Economics tests. LDA and sLDA results suggested both a four-
topic model for the US History item and a three-topic model for the Economics
item. For the US History item, Topic 1 consisted of use of everyday language and
was negatively correlated with the rubric-based score. Topic 4, use of academic
language focusing on government and politics, was positively correlated with the
score. For the Economics test, Topic 3 consisted of use of technical vocabulary and
had a positive correlation with item score. Complete results are discussed in the
paper.

Keywords Topic models · LDA · sLDA · Constructed-response items

1 Introduction

Constructed-response (CR) answers are used on many educational tests as a means
of having examinees show their reasoning (Attali 2014). CR answers are typically
scored on one or more traits and the scores taken as measures of achievement in
the domain being tested. Once answers have been scored, however, little, if any,
attention is paid to the text in examinees’ answers. Recent qualitative evidence has
suggested there is useful information in the text of answers to CR items (Buxton
et al. 2014). A comparison of qualitative evidence with statistical evidence from

J. Xiong (�) · H.-J. Choi · M. Kwak · A. S. Cohen
University of Georgia, Athens, GA, USA
e-mail: jiawei.xiong@uga.edu; hjchoi1@uga.edu; minho.kwak25@uga.edu; acohen@uga.edu

S. Kim
University of Virginia, Charlottesville, VA, USA
e-mail: seohyun@uga.edu

© Springer Nature Switzerland AG 2020
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings in
Mathematics & Statistics 322, https://doi.org/10.1007/978-3-030-43469-4_20

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43469-4_20&domain=pdf
mailto:jiawei.xiong@uga.edu
mailto:hjchoi1@uga.edu
mailto:minho.kwak25@uga.edu
mailto:acohen@uga.edu
mailto:seohyun@uga.edu
https://doi.org/10.1007/978-3-030-43469-4_20


264 J. Xiong et al.

topic modeling suggests that there may be instructionally useful information in the
text not accounted for in the rubric-based scores (Kim et al. 2017).

Topic modeling consists of a family of statistical models initially developed for
indexing the text of large corpora of documents (Blei 2012). The topic models
provide a tool for mining of textual data in an effort to detect the latent semantic
structures in the textual data. Blei presents a brief summary of several more
commonly used topic models. In this study, we examined the use of two of these
models, latent Dirichlet allocation (LDA) and supervised LDA (sLDA), for use in
analyzing the text of CR answers to items on two social studies tests.

1.1 Latent Dirichlet Allocation and Supervised Latent Dirichlet
Allocation

1.1.1 Latent Dirichlet Allocation (LDA)

LDA (Blei et al. 2003) is one of the simplest topic models. LDA has been applied
to students’ written responses in educational assessments (Choi et al. 2017) and
detects latent topics in a corpus of text documents (Bolelli et al. 2009). LDA can
also be applied to detect latent topics in the text of students’ journal writings (Chen
et al. 2016) and to analyze middle grades students’ answers to CR items (Kim et al.
2017). LDA assumes a document is composed of a random mixture of topics, and a
topic is a random mixture of words.

A document is assumed to consist of a random mixture of K topics. Each
topic is a collection of V words, t = (w1, w2, · · · , wV )′, with the vector of
probabilities of βtopic−word = (βz,1, βz,2, · · · , βz,V )′. The generative model of
LDA describes θd , the vector of topic proportions in document d,θdocument−topic =
(θd,1, θd,2, · · · , θd,K)′. These proportions follow a Dirichlet distribution with
parameter α as θd ∼ Dirichlet(α), and then for each of the Nd words, it chooses a
topic zdn from Multinomial(θd). Then it chooses a word wdn from p(wdn|zdn, β).
For a collection D of M documents, given the parameters β and α, the probability
of the corpus can be written as (Blei et al. 2003):

p(D|α, β) =
M∏

d=1

∫
p(θd |α)

⎛
⎝

Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

⎞
⎠ dθd (1)

where M is the number of documents.

1.1.2 Supervised Latent Dirichlet Allocation (sLDA)

LDA is considered an unsupervised method as it only uses the text in a corpus of
documents to determine the latent topic structure. In the supervised LDA, external
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information is used to help guide the LDA. Supervised latent Dirichlet allocation
(sLDA; Mcauliffe and Blei 2008) is an extension of the LDA model that includes
additional information, referred to as labels. In the context of CR answers, the labels
are the rubric-based scores of examinees’ answers. Other kinds of covariates could
include political preferences, movie ratings, etc. As an example, sLDA has been
used to analyze textual data in an attribute selection task on adjective-noun phrases
(Hartung and Frank 2011).

Little research has yet been reported comparing results from LDA and sLDA
in the context of answers to CR items. In this paper, we use topic modeling to
analyze the text of examinees’ answers to CR items on two social studies tests: a
US History test and an Economics test. Topic models have been used in the past
in social science research. Grimmer (2010) used a topic model to detect the latent
structure in political rhetoric. Roberts et al. (2013) used a topic model to detect the
latent structure in open-ended responses to a social science survey. Topic modeling
also has been used to detect historical trends in newspapers (Yang et al. 2011).

In this study, we analyzed examinees’ responses to CR items on a high school
tests of Economics and US History. The purpose of this study was to compare results
obtained from LDA and from sLDA

2 Methods

2.1 Participants and Instruments

2.1.1 Participants

Two corpora were analyzed in this study: CR answers to standardized assessments,
a US History test and an Economics test. The US History test was administered to
722 examinees in Grade 9 to Grade 12. Economics test was administered to 663
examinees in Grade 9 to Grade 12.

2.1.2 Instruments

Both tests were developed to be aligned to the state standards in the respective
subjects for a large Southeastern state. There were 22 multiple-choice items, 2 short
answer CR items, and 1 extended CR on each test. The CR items were designed
to require extended reasoning and critical thinking. The two short answer CR items
were scored from 0 to 2 points, and the extended response item was scored from
0 to 4 points. Only the extended response items in each assessment were analyzed
for purposes of this study. For both tests, the extended response item consisted of a
question followed by two passages describing the context for the response.
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2.2 Data Cleaning

The process of data cleaning of a corpus is typically done in a topic model analysis
(Boyd-Graber, Mimno and Newman (2014)). Initial data cleaning included removal
of white spaces, changing numerical digits to text, changing uppercase letters to
lowercase, removal of punctuation characters, etc. Correcting typos or other types
of stemming was also done before the LDA analysis.

Stop words are words that tend to have high frequencies but low information.
These include words such as “the,” “a,” “of,” etc. The stop words for this study
are shown in Table 1. Stop words were not included in the analysis as they can
overwhelm the latent thematic structure, making interpretation difficult.

Documents with less than ten words after data cleaning were also excluded from
the analysis. Thus, the number of documents was reduced following data cleaning.
Descriptive statistics of the numbers of words and documents and average document
length are given in Table 2.

2.3 Model Selection

2.3.1 Deviance Information Criterion

Exploratory use of a topic model typically consists of estimating models with
different numbers of latent topics. The best fitting model of these candidate models

Table 1 Stop words for the US History test and the Economics test

US History item Economics item

Next Into Every Not Their This Next Not Their This Only One

Only One Much Can Yet For Much Can Yet For And Are

Could And Are That What Him That What Him With But Out

With But Out His Who From His Who From Will They Also

Will They Also Which Other You Which Other You Still Our All

Still Our All How Than Two How Than Two After Many Have

After Many Have Both There According Both There Just Now Every Into

Now Just Its When While Then About Yes

Table 2 Number of documents, number of words, and average document length

US History Economics

Before After Before After

Processing Processing Processing Processing

Number of documents 722 416 663 482

Number of unique words 583 296 332 145

Number of total words 22,203 9,726 19,526 9,143

Average length 53 23 40 19
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then needs to be determined. As topic models are not nested, selecting the best fitting
model typically is informed using one or more information criterion indices. When
the topic model is estimated using a Bayesian algorithm, the deviance information
criterion (DIC; Spiegelhalter et al. 2002) is usually used to inform model selection
as follows:

DIC = D(θ̄) + 2pD (2)

where D(θ̄) = −2 log p(y|θ)+2 log f (y) and pD = ¯D(θ)−D(θ̂). Here y denotes
the data, θ denotes the parameter, f (y) is some fully specified standardizing term
which is a function of the data alone, and D(θ) is the “Bayesian deviation”. The
DIC could be calculated through the MCMC algorithm and smaller value of DIC
indicates a better fitting model.

3 Results

3.1 Latent Dirichlet Allocation

In this study, DIC suggested a four-topic model for US History item (left) and a
three-topic model for Economics (right). The plots of DIC values for topic models
with two to ten latent topics are given in Fig. 1. The lowest DIC for each test is taken
as the suggested model.

3.1.1 US History Test Results

The correlation between the rubric-based score and the topics estimated in the four-
topic model is given in Table 3. The 15 highest probability words for each topic are
also given in Table 3. Inspection of these high probability words for each topic can

(a) (b)

Fig. 1 Plots of model selection by DIC form the LDA. (a) DIC values for US History item. (b)
DIC values for Economics item
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often help to interpret the latent theme captured by the topic. Table 3 lists the top
15 most probably words co-occurring for each of the four topics. Topic 3 contained
high-frequency words that could be characterized as use of everyday words in their
answers to the item. Topic 4 consisted of words about US presidents and civil
rights. Examinees who used these words followed directions in the prompt and
tried to integrate information in the passages for the item and to use this information
evidences to support their answer.

Correlations that are shown in Table 3 between the topic and the rubric-based
score are given in the heading for each topic. Topic 1 had a moderate negative
correlation (r = −0.361) with the rubric-based score, and Topic 4 had a moderate
positive correlation (r = 0.443) with the rubric-based score. It is also sometimes
useful to examine the answers by examinees who make the highest use of each topic.
For example, examinees who had the highest use of Topic 1 typically wrote answers
to the question that simply copied the information in the stem or passages. Topic 2
had some important words from the item, but examinees using this topic tended to
take sentences directly from the item question or passage without trying to integrate
them into an answer. Topic 3 consisted of an integrated structure of both everyday
words with language from the passages; however, the answer did not include a clear
argument. Examinees who made most use of Topic 4 typically used words from the
passages and integrated them to provide evidence for their conclusions.

Table 3 Fifteen highest probability words for the four-topic model for US History using LDA

Topic 1 Topic 2 Topic 3 Topic 4

r = −0.361a r = −0.162 r = −0.010 r = 0.443

Part 0.274 Randolph 0.040 Right 0.093 March 0.057

Know 0.049 Labor 0.025 Part 0.081 Martinluther
king

0.049

Help 0.036 Black 0.025 Civil 0.042 Randolph 0.048

Want 0.017 America 0.023 People 0.032 President
washington

0.040

Follow 0.010 African 0.020 Movement 0.024 America 0.039

Work 0.009 Racial 0.014 Protest 0.022 Leader 0.025

Learn 0.009 Social 0.013 Get 0.021 African 0.024

Non 0.008 First 0.011 Fight 0.019 Protest 0.021

Get 0.008 Civil 0.011 Want 0.017 Right 0.019

Like 0.008 World 0.010 Equal 0.012 Discrimination 0.018

People 0.008 Brotherhood 0.009 Make 0.011 Civil 0.016

African 0.007 War 0.009 Randolph 0.011 Industry 0.016

White 0.007 Movement 0.009 Because 0.010 Lead 0.016

President
washington

0.007 During 0.009 Impact 0.010 War 0.014

Could 0.006 Philip 0.009 Start 0.010 Federal 0.013
aCorrelation is between item score and logit of proportion of topic usage
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Table 4 Fifteen highest probability words for the three-topic model for the Economics test using
LDA

Topic 1 Topic 2 Topic 3

r = −0.403a r = 0.124 r = 0.272

Part 0.385 Interest 0.236 Interest 0.196

Money 0.047 Compound 0.055 Compound 0.079

Compound 0.034 Principal 0.053 Amount 0.068

Because 0.025 Simple 0.051 Pay 0.057

Dollar 0.022 Rate 0.038 Money 0.049

Interest 0.020 Loan 0.035 Simple 0.049

Rate 0.019 Time 0.026 Year 0.048

Know 0.019 Calculate 0.023 Because 0.036

Simple 0.019 Retire 0.016 Beneficial 0.022

Time 0.016 Deposit 0.012 Part 0.015

Take 0.013 Save 0.012 Rate 0.011

Make 0.012 Period 0.012 Add 0.011

Add 0.010 Addition 0.010 Save 0.010

Retire 0.009 Get 0.010 Investment 0.009

Good 0.009 Good 0.010 Time 0.009
aCorrelation is between item score and logit of proportion of topic usage

3.1.2 Economics Test Results

Table 4 presents results for the Economics test. Topic 1 had a moderate negative
correlation (r = −0.403) with the score, and Topic 3 had a positive correlation (r =
0.272) with the score. The correlation for Topic 2 (r = 0.124) is low albeit positive.
Topic 2 and Topic 3 can both be characterized as use of academic language related to
interest calculation. Examinees who use words mainly from Topic 2 were typically
repeating the definitions in the passages while calculating the simple interest posed
in the question. Examinees who use more words from Topic 3 provided answers that
included choices and computation of the principle. Their responses also provided a
convincing rationale. Topic 1 contains several simple words but did not provide
a clear answer to the question. Some of the words for Topic 1 were actually not
relevant for the answer to the item.

3.2 Supervised Latent Dirichlet Allocation Modeling

The supervised LDA model uses a linear regression model to predict an outcome
variable using the topic model proportions. In our case, the outcome variable is the
rubric-based score, and it is regressed on the topic proportions. The following is the
regression model for the sLDA:
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Fig. 2 Plots of model selection by DIC form the sLDA. (a) DIC values for US History item. (b)
DIC values for Economics item

Yi = βX (3)

where the observation Yi = [y1 y2 · · · yn]′, regression coefficients β =

[β1 · · · βn ]′, and the topic proportion matrix X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1k

x21 x22 · · · x2k

...
...

...
...

xn1 xn2 · · · xnk

⎤
⎥⎥⎥⎦, while

k is the number of the topics.
The plots of DIC are given in Fig. 2 for topic models with two to ten latent topics.

The DIC results are similar to the LDA results and suggested a similar four-topic
model for US History (left) and a three-topic model for Economics (right).

3.2.1 US History Test

There is no intercept β0 in the regression as the topic proportions sum to 1, i.e.,∑4
k=1 xnk = 1 here for the US History item. The topic structure from the sLDA is

given in Table 5 for a four-topic model, which shows a pattern of topic proportions
similar to those for the LDA model. Only the order of some words changed slightly.

Topic 1 has a coefficient of β = −0.159 which means examinees who mostly use
words from Topic 1 tend to have a low score. Similarly, Topic 2 has a coefficient of
β = −0.015, which also means examinees who use words mostly from Topic 2 also
have a low score. Topic 4 has a coefficient of β = 2.530, which means examinees
who made most use of this topic tended to have a score of 2.53 points.

Differences between the observed score and the predicted score from the sLDA
model are shown in the scatter plot in the left graph of Fig. 3. The mean for these
differences is given by μ = ∑n

i=1 | yi − ŷi | /n = 0.598, and the standard deviation
is 0.538, which indicated a relatively good fit to the data.
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Table 5 Fifteen highest probability words for the four-topic model for US History using sLDA

Topic 1 Topic 2 Topic 3 Topic 4

β = −0.159a β = −0.015 β = 1.169 β = 2.530

Part 0.533 Randolph 0.063 Right 0.153 March 0.098

Know 0.078 Labor 0.041 Civil 0.100 Randolph 0.082

Help 0.058 Black 0.039 Protest 0.065 America 0.079

Want 0.054 America 0.030 People 0.061 African 0.063

Get 0.048 Racial 0.022 Movement 0.060 Discrimination 0.035

Make 0.028 War 0.021 Because 0.034 Lead 0.033

Give 0.022 First 0.020 Fight 0.031 Work 0.033

Thing 0.014 African 0.020 Equal 0.029 President 0.031

Same 0.012 Union 0.019 Impact 0.028 Industry 0.027

Null 0.012 During 0.019 Influence 0.027 Leader 0.025

Everyone 0.012 Social 0.019 Direct 0.023 Federal 0.024

Stand 0.009 World 0.018 Leader 0.022 Order 0.019

Cause 0.008 Car 0.017 Like 0.020 Threat 0.019

Good 0.008 Philip 0.017 Follow 0.020 Equality 0.018

Man 0.008 Group 0.016 Peace 0.018 Government 0.018
aRegression coefficients for regression of observed score on topic proportions

Fig. 3 Plots of sLDA model prediction and score proportion in each topic for US History item

Observed scores of the 50 examinees who had the highest percentages of use of
words from each topic are plotted in the histogram in the right graph in Fig. 3. As
is evident from the regression coefficients in Table 5, examinees who used words
mainly from Topic 3 or Topic 4 had higher scores than examinees who used words
mainly from Topic 1 or Topic 2. A full credit score of 4 did not occur for examinees
who used words mostly from Topics 1 or 2. In addition, by comparing the quantity
of zero scores among all the topics, the number of examinees who use Topic 4 is the
lowest.
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Table 6 Fifteen highest
probability words for the
three-topic model for the
Economics test using sLDA

Topic 1 Topic 2 Topic 3

β = −0.281a β = 0.400 β = 3.671

Part 0.485 Interest 0.305 Interest 0.203

Simple 0.092 Pay 0.070 Compound 0.190

Because 0.076 Rate 0.068 Amount 0.092

Money 0.054 Principal 0.067 Year 0.068

Save 0.033 Simple 0.052 Money 0.060

Know 0.028 Loan 0.042 Time 0.056

Get 0.027 Retire 0.034 Add 0.030

Take 0.026 Calculate 0.029 Beneficial 0.029

Make 0.018 Good 0.020 Over 0.023

Bank 0.018 Charge 0.017 Principle 0.021

Back 0.015 Deposit 0.017 Account 0.017

Null 0.014 Period 0.016 Earn 0.017

Little 0.010 Investment 0.013 Build 0.014

Double 0.009 Long 0.011 Borrow 0.013

Help 0.009 Sum 0.011 End 0.013
aRegression coefficients for regression of observed score on
topic proportions

3.2.2 Economics Test Results

The topic structure of the Economics test in Table 6 response shows similar
characteristics with the results of LDA’s. Topic 1 has a coefficient of β = −0.281,
which indicates that the examinees who mostly used words from Topic 1 tended
to have a lower score. Topic 2 has a coefficient of β = 0.400, which indicates the
examinees who mostly use words from Topic 2 may get few points. Topic 3 has
a coefficient of β = 3.671, which means with examinees using more words from
Topic 3 tend to have higher scores.

Differences between the observed score and the predicted score from the sLDA
model are shown in the scatter plot in the left graph of Fig. 4. The mean for these
differences is given by μ = ∑n

i=1 | yi − ŷi | /n = 0.695, and the standard deviation
was 0.530. These suggest a comparatively good fit to the data.

Observed scores of the 50 examinees who had the highest percentages of use of
words from each of the three topics are plotted in the histogram in the right graph in
Fig. 4. Examinees who used words mainly from Topic 3 tended to have higher scores
than examinees who used words mainly from Topic 1 or Topic 2. Few examinees
who used more words from Topic 3 had zero scores. A score of 4 does not appear
for examinees who used words mostly from Topic 1.
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Fig. 4 Plots of sLDA model prediction and score proportion in each topic for Economics item

4 Discussion

Previous research has suggested that samples from a test of English and Language
Arts as small as 150 documents could be analyzed with LDA (Kim et al. 2017).
Sample sizes in this study were somewhat larger for each of the two tests.

The topic structures detected by LDA and sLDA differed for the US History
test and the Economics test, but the topic structures for a given test were similar.
Correlations for the US History test between the observed score and the topic
proportions from the LDA model indicated that use of Topic 4 was modestly related
to a higher score and use of Topics 1 or 2 was related to a lower score. The regression
coefficients from the sLDA suggested a similar outcome as use of words from Topic
4 was associated with a higher predicted score than use of words from Topics 1
or 2. For the Economics test, correlations between topic proportions from the LDA
and observed score suggested use of words from Topic 3 was moderately related to
higher scores, and use of Topic 1 was moderately related to lower scores. Similarly,
the use of words from Topic 3 was associated with a high predicted score, and use
of words from Topic 1 was associated with a low score of effectively zero.

What is clear from the topic modeling of the results from both tests is that infor-
mation about the latent thematic structure of the text of answers can extend what can
be learned from analysis of CR tests. The topic structure can provide information of
instructional effects. Previous research has suggested that instructional effects can
be observed in the use of each topic even though these same effects may not be
present in the scores (Kwak et al. 2017). Attali (2014) has suggested CR tests can
tell us about examinee reasoning. What may be evident from the topic model results
is that differences in examinee reasoning might be reflected in the words used to
construct answers. It would be useful to examine this conjecture in future research.
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Impact of Measurement Bias
on Screening Measures

Oscar Gonzalez , William E. Pelham III , and A. R. Georgeson

Abstract In psychology and medicine, diagnostic and screening measures are
often used to make decisions by comparing the observed score to a cut score. If
these measures contain items that exhibit measurement bias, then there might be
systematic inaccuracies of who gets “caught” by the selection process. Traditionally,
approaches that flag items for bias do not provide guidance about how measurement
bias affects the decisions from the overall measure. In previous work on the area
of selection, Millsap and Kwok developed a procedure that described the impact
of ignoring measurement bias as changes in test sensitivity and specificity across
groups. Recently, the Millsap and Kwok procedure has been extended to handle
discrete items and make less stringent distributional assumptions. In this chapter, we
discuss a version of the Millsap and Kwok procedure that accommodates discrete
items and illustrate the use of this approach to evaluate how measurement bias
affects the sensitivity and specificity of a measure comprised of binary items.

Keywords Differential item functioning · Measurement bias · Screening ·
Sensitivity · Specificity

1 Impact of Measurement Bias on Screening Measures

In psychology and medicine, diagnostic measures and screening procedures are
valuable tools used to obtain observed scores which can then supplement a
clinician’s diagnosis or identify respondents who may be at risk for a mental health
disorder. Examples include the Child Behavior Checklist (CBCL; Achenbach and
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Rescola 2001) to screen children for ADHD; the Child and Adolescent Symptom
Inventory – Revised (CASI-4R; Gadow and Sprafkin 2005) to screen children for
pediatric bipolar spectrum disorders (Ong et al. 2017); and the K6 scale (Kessler et
al. 2002) to screen for nonspecific psychological distress in the general population
(Kim et al. 2016). Diagnostic measures or screeners are commonly comprised of
binary items (i.e., a symptom is present or not) or polytomous items (i.e., Likert-
type categories), and an observed score is estimated by aggregating item responses
or counting symptoms. A researcher or an assessment specialist would then classify
a respondent by examining if the observed summed score is above or below a
predetermined cut score (Youngstrom 2013).

In practice, if the scores of respondents from multiple (g) groups are going to be
compared to the same cut score, then measurement invariance is assumed (Millsap
2011). Formally, measurement invariance can be expressed as,

P (X|θ) = P (X|θ, g) .

In other words, the probability of observing score X given the respondent’s standing
on the latent variable θ assessed by the items does not depend on the background
characteristic(s) that define group g (Millsap 2011). However, in some cases, a
certain respondent group (e.g., males) systematically rates itself higher or lower on
a subset of items than does a different respondent group (e.g., females), independent
of the θ being assessed. In this case, the subset of the items exhibits measurement
bias across groups, also referred to as differential item functioning (DIF; Millsap
2011), which violates the assumption of measurement invariance. Assuming that
two groups have the same distribution of θ , the presence of measurement bias can
lead to three different outcomes: (1) respondents from a certain group have a higher
likelihood of being caught (i.e., flagged, identified) by the screener, (2) respondents
from a certain group have a lower likelihood of being caught by the screener, or
(3) there are no systematic effects on the likelihood of being caught by the screener
across groups. The practical implications of the first two outcomes are of concern as
they could lead to incorrectly screening in persons who do not actually exceed the
cut score, resulting in lost time and resources for all parties involved, or incorrectly
screening out persons who actually exceed the cut score, resulting in a lack of proper
services for individuals in need. A case for the third outcome is that bias in one item
could lead to a higher item score, and bias in a different item could lead to a lower
item score, so bias could cancel out once items scores are aggregated. As such, it is
important that assessment specialists test for measurement bias before administering
measures to priority groups (i.e., groups defined by race, ethnicity, language of
origin, or gender) in order to prevent placing any group at a disadvantage. However,
work assessing the cultural equivalence of screening or diagnostic measures has
been sparse (Manly 2006; Teresi et al. 2006).

While significance testing procedures have traditionally been used to flag
items that might exhibit bias (Millsap 2011), the statistical significance obtained
in these procedures is often not a meaningful proxy for practical significance.
Moreover, there is also a lack of guidance about how the bias affects classification
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decisions. Previous research has investigated several approaches to study the effect
of measurement bias on the decisions made from the overall measure, such as
graphical approaches, differences between item parameters across groups, or effect
sizes that describe the change in expected observed summed score after accounting
for item bias (Kleinman and Teresi 2016; Meade 2010; Steinberg and Thissen 2006).
However, these approaches do not shed light on how measurement bias affects the
screening performance of the measure, making it difficult for a practitioner to decide
if the bias is tolerable in the context of selection. Millsap and Kwok (2004) proposed
an approach to evaluate if the presence of measurement bias materially changes the
sensitivity and specificity of the measure in each respondent group. This procedure
has the distinct advantage of communicating the effect of measurement bias in terms
familiar to assessment specialists (e.g., changes in sensitivity and specificity), which
empowers the specialists to decide how much bias they can tolerate. Below, we
describe the Millsap and Kwok (2004) procedure and its current extensions.

1.1 Millsap and Kwok (2004) Procedure

Suppose that the examined measure has a unidimensional linear factor structure.
Millsap and Kwok (2004) indicated that if the items are continuous and the relation
between the items and the factor is linear, then the relation between the observed
summed score on the whole measure X and the latent variable θ assessed by the
measure is a bivariate normal distribution. Suppose now that we have two groups
that have the same latent mean and variance. When measurement invariance holds,
there is one bivariate normal distribution for both groups. When only a subset of
the items are invariant across groups (i.e., partial invariance holds), the relation
between θ and X is a mixture of two bivariate normal distributions, defined by the
two group-specific bivariate normal distributions. Under partial invariance, θ scores
are on the same metric and can be directly compared, but X are not in the same
metric—any observed differences in X could either reflect true differences in θ or
measurement bias. Millsap and Kwok (2004) used the previous relations to study
the classification agreement between selecting individuals based on their estimated
θ score and selecting individuals based on their observed summed score, X. One
could determine an expected X from a model in which measurement bias in the
measure is accounted for (i.e., groups have group-specific item parameters) and an
expected X from a model in which measurement bias of the measure is ignored (i.e.,
groups have the same item parameters). To study the classification agreement, cut
scores are imposed on X and θ in order to define four quadrants of the bivariate
distribution of θ and X. Then, the cut scores can be used to define four different
types of cases: true positives (respondents who are above the cut score in both θ and
X), true negatives (respondents who are below the cut score of both θ and X), false
positives (respondents who are below the cut score of θ , but above the cut score of
X), and false negatives (respondents who are above the cut score of θ , but below the
cut score of X). The Millsap and Kwok (2004) procedure communicates the effect
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of measurement bias on screening performance by comparing how the functions of
the true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN) change when the expected X comes from a measure assumed to be invariant
and when the expected X comes from a measure that accounts for measurement bias.
Functions to automate the Millsap and Kwok (2004) procedure in the R statistical
software environment are provided by Lai et al. (2017).

A limitation of the Millsap and Kwok (2004) procedure is the assumption that
items from a measure are continuous. In fact, items in many screening measures are
discrete. Lai et al. (2019) extended the Millsap and Kwok procedure to binary items
using an analytical solution. However, the current implementation of the analytical
procedure by Lai et al. (2019) does not accommodate polytomous items, nor does
it have the potential to handle mixed item-types. Recently, Gonzalez and Pelham
(in press) outlined an approach inspired by Millsap (2013) that is analogous to the
Millsap and Kwok (2004) procedure to handle binary and polytomous items. Their
procedure accommodates discrete items by using item response models, such as
the two-parameter logistic (2PL) model or the graded response model (GRM), to
represent item responses (Thissen and Wainer 2001). Also, instead of analytically
deriving the relation between the X and θ , Gonzalez and Pelham approximated that
relation using Monte Carlo simulation. Gonzalez and Pelham (in press) focused
on illustrating how their simulation-based procedure can be used to examine how
measurement bias affects screening performance on measures with polytomous
items, but applications for measures with binary items have not been discussed.

1.2 Present Study

The goal of this chapter is to illustrate how the simulation-based procedure can be
used to evaluate the impact of measurement bias on screening performance of a
measure comprised of binary items. First, we introduce an empirical example in
which one suspects that there might be measurement bias due to biological sex in
the AQ-10, a brief measure used to screen for autism spectrum disorder (Murray et
al. 2019). Second, we illustrate the use of the simulation-based approach to evaluate
the impact of measurement bias on sensitivity and specificity of the AQ-10. Finally,
we discuss the results of the procedure and consider future directions.

2 Method

2.1 Empirical Example

The AQ-10 is a brief screening measure used to identify individuals with possible
autism spectrum disorder (ASD). The AQ-10 consists of ten items with four
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response options ranging from strongly disagree to strongly agree; for scoring, item
responses are dichotomized to agree and disagree. Previous research suggests that
the AQ-10 is unidimensional and that a cut score at or above 6 could adequately
screen participants with ASD and refer them a full diagnostic assessment (Murray
et al. 2019). For this illustration, we used similar AQ-10 item parameters to those
reported by Murray et al. (2019), but modified the item parameters of two items to fit
our illustration. In this case, we induced measurement bias in two item parameters
for females by making the a-parameters smaller (i.e., items were less representative
of the construct for females) and the b-parameters larger (i.e., it takes more of the
construct for females to endorse the item). Item parameters are presented in the top
part of Table 1.

Table 1 Item parameters and diagnostic classification statistics for the two illustrative examples

Item parameters
aM bM aF bF

Item 1 .041 .454 .041 .454
Item 2 .717 .038 .717 .038
Item 3 1.432 −.215 1.432 −.215
Item 4 1.037 −.012 1.037 −.012
Item 5 2.532 −.045 2.532 −.045
Item 6 2.147 −.264 1.203 −.100
Item 7 1.146 .210 1.146 .210
Item 8 1.031 −.357 1.031 −.357
Item 9 2.902 −.191 2.029 .567
Item 10 1.422 .034 1.422 .034

Classification accuracy
Ignoring DIF Accounting for DIF
Males Female Males Females

Sensitivity .84 .83 .88 .80
Specificity .87 .87 .84 .88
Classification rate .85 .85 .86 .84
True positive % .38 .38 .40 .36
True negative % .47 .47 .46 .48
False positive % .07 .07 .09 .06
False negative % .07 .08 .06 .09
Prop. selected .46 .46 .46 .43

Note: In bold are the item parameters modified (for illustration purposes) to induce some measurement
bias across males (M) and females (F), and in turn affect screening performance when measurement
bias is ignored
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2.2 General Procedure

To carry out the simulation-based procedure, users need three pieces of information:
the mean and standard deviation of the θ distribution for each group (assumed to be
normally distributed), group-specific item parameters that are in the same metric,
and the proportion of cases in each group. The simulation-based procedure assumes
that the measure is unidimensional and that a subset of the items have been correctly
flagged with DIF using any DIF procedure that yields item parameters, such as
the IRT-LR-DIF procedure or a Wald test. The simulation-based procedure can be
described in six steps:

1. Sample a large number of θ values from group-specific latent variable distri-
butions. The number of cases sampled is directly related to the stability of
the solution. Previous research suggests that the simulation-based procedure
yields stable estimates (i.e., classification accuracy estimates within 0.01 from
analytical estimates) with N = 25,000 (Gonzalez and Pelham, in press). Match
the number of cases sampled per group to the population proportions for each
group (e.g., males and females would be 50–50%). If population proportions
are not known, sample proportions would be the best estimate. For the AQ-10
example, the mean and variance of the latent variable that the AQ-10 measures
for males and females were not reported by Murray et al. (2019), so we assumed
that both groups had a standard normal θ distribution (mean = 0, variance = 1).

2. Use a 2PL model to generate item responses for person i in group g using the θ i,
and group-specific a- and b-parameters per item (from the top part of Table 1).

3. Sum the simulated item responses to estimate Xi when the item response model
accounts for measurement bias.

4. Plot the relation between θ and X, impose cut scores on θ and X, and estimate
the proportion of respondents in each of the quadrants defined by the cut scores
(see Fig. 1 for reference). For the AQ-10 example, the summed score cut score
is 6, so a θ cut score is selected to choose the same proportion of respondents
as a summed score at or above 6 in the mixed distribution of male and female
respondents (e.g., if a summed score of 6 selects 30% of respondents, pick a θ

that selects 30% of respondents).
5. Fit a 2PL model to the simulated item responses, assuming the item parameters

are invariant across group, and save the estimated item parameters.
6. Repeat steps 2, 3, and 4 using θ from step 1 and the item parameters from step 5.

The proportions of respondents per quadrant estimated in steps 4 and 6 can
be used to estimate classification accuracy. For example, sensitivity would be the
proportion of respondents above the θ cut score that are also above the X cut score
(i.e., TP/[TP + FN]). Similarly, specificity would be the proportion of respondents
below the θ cut score that are also below the X cut score (i.e., TN/[TN + FP]). The
false negative rate and the false positive rate are the complements of sensitivity and
specificity, respectively. Comparing the expected sensitivity and specificity of the
measure under a model that accounts for measurement bias (e.g., estimates from
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step 4) and the expected sensitivity and specificity of the measure that ignores
measurement bias (e.g., estimates from step 6) would provide an estimate of how
measurement bias affects screening performance. Functions to automate this process
in the R statistical software environment are presented in Gonzalez and Pelham (in
press). The contribution of this chapter is to illustrate how the simulation-based
procedure by Gonzalez and Pelham (in press) can be used to examine the effect of
measurement bias on classification accuracy of screeners comprised of binary items.

3 Results

The relationship between the simulated AQ-10 θ score and the estimated AQ-10
observed X summed score under the model that allows for measurement bias is
presented in Fig. 1. We selected cut scores to evaluate screening performance using
the recommended AQ-10 cut score at or above 6, which indicates possible ASD.
In the mixed distribution of males and female respondent, an observed X summed
score of 6 or higher selected the top 44.3% of respondents. In the mixed distribution
of male and female respondent, a θ cut score of 0.112 selected the same proportion
(44.3%) of respondents.

Based on the θ and X cut scores, we calculated assessment sensitivity, specificity,
and other classification statistics (see the bottom part of Table 1). We focus on inter-
preting sensitivity and specificity for this example. For sensitivity, if measurement
invariance were to hold (i.e., items had equal discrimination and location parameters
across groups), the expected sensitivity of the measure for males and females would
be approximately 0.84. However, given that measurement invariance did not hold
(i.e., some items exhibit DIF— the discrimination parameter, the location parameter,
or both parameters differed across groups), the expected sensitivity of the measure
was for 0.88 for males and 0.80 for females. Thus, when there is measurement
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Fig. 1 Relation between AQ10 summed score X and AQ10 θ score. Note: “ref” is for the male
reference group and “foc” is for the female focal group. For readability, the reference scores were
dodged +0.05 points along the x-axis and the focal scores were dodged −0.05 points along the
x-axis (rather than having the points overlap)
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bias, the measure is better at identifying male respondents with possible ASD than
female respondents with possible ASD. For specificity, if measurement invariance
were to hold, the expected specificity of the measure for males and females would be
0.87. Given that measurement variance did not hold, the expected specificity of the
measure was 0.84 for males and 0.89 for females. Thus, when there is measurement
bias (also referred to as DIF), the measure is better at ruling out possible ASD in
female respondents than in male respondents. Both results suggest that the presence
of two items with measurement bias in the AQ-10 affected screening performance.
Assessment specialists would have to decide if the differences across groups (e.g.,
0.08 difference in sensitivity and a 0.05 difference in specificity) are practically
important and/or acceptable in the specific screening application.

4 Discussion

The goal of this chapter was to describe how the simulation-based procedure
proposed by Gonzalez and Pelham (in press) can be used to examine how item
bias affects scale-level screening (or selection) decisions when the measure is
comprised of binary items. Broadly, the procedure uses Monte Carlo simulations
to determine the relation between the latent variable θ and the observed summed
score X derived under two conditions: (1) a model that accounts for measurement
bias in the items and (2) a model that ignores measurement bias. The classification
agreement between θ and X across the two scenarios quantifies how measurement
bias affects the sensitivity and specificity of the measure.

One limitation is that the procedure assumes that item parameters have been
accurately estimated and that the model fits the data well. If this is not the
case for a specific application, the procedure may not yield meaningful results.
Perhaps a Bayesian approach to the simulation-based procedure could be used to
accommodate the uncertainty in item parameter estimates. Another limitation is that
the simulation-based procedure assumes that the items with measurement bias have
been accurately identified and that the amount of bias is not substantively changing
the way that the respondents are interpreting what is being measured (Millsap &
Everson 1993).

Future directions include extending the simulation-based procedure to investigate
the likelihood for a person from a specific θ to be reclassified. Data could be
simulated per θ value, and a percentage of cases above and below the X cut score
could be estimated. Also, it would be interesting to investigate how many categories
are needed before discrete items could be treated as continuous (Rhemtulla et
al. 2012). At that point, researchers would not need to use the simulation-based
procedure and they could simply use the Millsap and Kwok (2004) procedure.
Lastly, it would be interesting to incorporate the analysis of mixed item-types
in the simulation-based procedure. The simulated respondents came from a 2PL
model, but the procedure could be extended so that item parameters could be
simulated from several models (e.g., some items coming from a 2PL model and
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others from a GRM). Overall, we believe that the simulation-based procedure
by Gonzalez and Pelham (in press) can be a useful complement to traditional
significance-testing procedures for conducting a DIF or measurement bias study,
and this chapter illustrates how to use the simulation-based procedure to examine the
effect of measurement bias on screeners comprised of binary items. We encourage
researchers to quantify the practical impact of measurement bias on screening
decisions made based on their measures.
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Reliability and Structure Validity
of a Teacher Pedagogical Competencies
Scale: A Case Study from Chile

Juan I. Venegas-Muggli

Abstract The following paper examines the reliability and structure validity of
a quantitative observational teacher pedagogical competencies scale implemented
at one of Chile’s largest higher education institutions. In a context in which new
students accessing post-secondary education are challenging traditional teaching
methods, the evaluation of this instrument is presented as a relevant case study
for those interested in promoting teachers’ pedagogical competencies. Reliability
analyses considered the KR-20 coefficient and corrected item-total correlations.
Structure validity was assessed through an exploratory factor analysis in which the
concept’s theoretical and latent structures were compared. The results suggest that
the scale has high levels of internal consistency. Additionally, although the scale’s
theoretical and latent structures do not match exactly, relevant common elements
are found. The considerations for applying these types of educational measurement
instruments are discussed.

Keywords Pedagogical Competencies · Reliability · Validity · Higher Education

1 Introduction

Teachers’ pedagogical competencies in the context of higher education have been
an issue of great interest during the last decades. As higher education systems grow
and become more diverse, there is increasing concern about the quality of teaching,
with it being stated that universities do not only require academically well-prepared
teachers and researchers but also pedagogically skilled educators (Apelgren and
Giertz 2010; OECD 2010). Furthermore, the fact that current students accessing
post-secondary education have been raised in a digital era has also heightened the
importance of teachers’ pedagogical competencies. These have become relevant to
develop innovative teaching practices that are capable of engaging this new and
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more challenging type of student (Demirbilek 2015; Johnson et al. 2016; O’Flaherty
and Phillips 2015).

Against this background, several methods to assess and promote post-secondary
teachers’ pedagogical competencies have been implemented worldwide. From
national policies in which quality assurance agencies support institutions in order
to enhance teaching quality to the implementation of schemes to promote good
teaching practices within universities, different types of initiatives have had the
shared goal of improving educators’ skills (Fry and Ketteridge 2008; OECD 2010).
Likewise, several institutions have developed a set of instruments to measure
teachers’ pedagogical competencies or teaching quality (see Apelgren and Olsson
2010; Berk 2005; Wingrove et al. 2017).

In this context, it is also observed that there are no clear guidelines for higher
education institutions on how to develop and evaluate more complex instruments
to assess teachers’ pedagogical abilities. In light of this, this paper presents a
reliability and structure validity analyses of an observational teacher pedagogical
competencies scale developed at INACAP, one of Chile’s largest higher education
institutions. In this respect, the psychometric evaluation is presented as a relevant
case study for those interested in applying these types of educational measurement
practices.

2 Teacher Pedagogical Competencies in Higher Education

2.1 Defining Pedagogical Competencies

When reviewing the literature, it is possible to observe that various terms have been
used to describe teachers’ skills, including effective teaching behavior, teaching
quality, teaching effectiveness, and pedagogical competencies (see Burnett and
Meacham 2002; Maulana et al. 2017; Opdenakker et al. 2012; van de Grift et
al. 2014). All these concepts make reference to how teachers apply their skills
to promote learning among their students as it is argued that teacher behavior is
effective when it has a significant influence on student outcomes such as academic
achievement and academic engagement (Maulana et al. 2017; van de Grift et al.
2014).

From the existing perspectives on this issue, one of the most complete ones
is the framework provided by Van de Grift, Maulana, and Helms-Lorenz. They
describe six domains of teaching behavior that promote effective teaching in the
context of primary and secondary education: safe and stimulating learning climate,
efficient classroom management, clarity of instruction, activating learning, adaptive
teaching, and teaching learning strategies (Maulana et al. 2017). Considering
these dimensions, they sustain that some specific teacher behaviors that positively
influence student outcomes are creating a relaxing learning atmosphere, ensuring
that lessons begins and ends on time, giving clear instructions, and promoting pupils
to learn actively (Maulana et al. 2017; van de Grift et al. 2014; van de Grift 2014).
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2.2 Higher Education and Pedagogical Competencies

Even though teaching quality has been principally studied in primary and secondary
education, it is also important to highlight its relevance for tertiary education.
As previously highlighted, the expansion and diversification of higher education
systems have promoted the necessity of universities of having pedagogically skilled
lecturers. This is highlighted, for example, by the 2010 OECD report on quality
teaching in higher education that sustains that higher education institutions should
implement evaluation mechanisms to identify and promote good teaching practices
in order to respond to increasing societal concerns about the quality of programs
offered to students. Likewise, several other reports have provided guidelines to
improve teaching practices in higher education (see Jenkins et al. 2003; Fry et al.
2008; Ryegård et al. 2010).

In terms of specific teaching practices to be promoted in higher education, an
important match is observed between these reports and previously described teach-
ing strategies for primary and secondary education. Perhaps the most distinctive
element of higher education is the comparatively higher importance of promoting
active learning strategies. This is the case as current tertiary students have been
raised in a digital era. This makes them to be more challenging students, which
requires teachers to develop more innovative practices in order to engage them
(Demirbilek 2015; Johnson et al. 2016; O’Flaherty and Phillips 2015).

2.3 Measuring Pedagogical Competencies

Several attempts at determining the extent to which educators are able to encourage
effective learning in students can be found. These have taken on a variety of different
forms, from self-reported surveys about teachers’ abilities to teaching portfolios and
more sophisticated quantitative observational methods (Apelgreen and Olsson 2010;
Berk 2005; Wingrove et al. 2017).

Within this background, the first discussion is whether pedagogical competencies
can be measured or not and which of its components can be measured. This
is a relevant debate as several authors have highlighted that most instruments
to measure effective learning present significant limitations. Tschannen-Moran
and Woolfolk (2001) argue that the study of teacher efficacy presents relevant
measurement problems. For example, in the case of those instruments that measure
this construct through teachers’ self-efficacy beliefs, they sustain that they present
social desirability bias. Likewise, Coe et al. (2014) sustain all teaching quality
measures provide at best poor approximations of how much students actually
learn. Among their main problems, they highlight two of them: having too specific
measures and defining indicators that are too general to be empirically testable.
Finally, Burnett and Meacham (2002) also reflect on the limitations associated with
the process of measuring teacher quality. They argue that one of the main problems
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is that over-simplistic approaches to assess teaching skills have led to a focus on
elements that may not be necessary for effective teaching. Equally, it is criticized
that instruments based on checking if teachers exhibit or not specific behaviors
identified by theorists might not be accurate, as they do not consider students’
perspectives concerning what it means to be a good teacher.

Within this discussion, this paper’s position is that, despite all limitations
associated with the process of measuring pedagogical competencies, it is worth
using these types of instruments as they deliver valuable information. In this same
line, it is considered that these measures have to be used carefully considering
mostly a formative perspective. As highlighted by Coe et al. (2014), only if teaching
effectiveness indicators have emphasis on feedback, support, and professional learn-
ing they may lead to improvements in student learning, although these indicators are
in some ways insufficient.

Based on the previously stated, it is also argued that in order to obtain more valu-
able information in this context of measurement difficulties, observational scales
are the most valid option. Van de Grift (2007) argues that although questionnaires
are cheaper and more efficient, they are problematic, as they require correcting for
socially desirable responses. Similarly, Garnett (1983) sustains that instruments that
do not consider behavioral descriptors provide only a general framework and lack
the structure required to guide instructional improvement.

Finally, in terms of these instruments’ psychometric properties, it is important
to highlight there is little evidence on how valid and reliable these teaching
quality measurements are in higher education. Even though some studies have
considered these subjects, most of them have only focused on teachers’ self-reported
instruments and/or students’ surveys (see Ramsden 1991; Spooren et al. 2007).
In addition, the evaluation of quantitative observational scales is more frequent in
primary and secondary teaching (Burnett and Meacham 2002; Brookhart and Durkin
2003; O’Leary 2015). Thus, the evaluation of these types of instruments in higher
educational contexts emerges as a relevant research field.

3 Method

3.1 Instrument

The instrument evaluated is part of INACAP’s Classroom Accompanying Program
for Teachers or Programa de Acompañamiento Docente en Aula (ADA), which
is aimed at assessing teachers’ pedagogical competencies. It was developed by
the intuition considering a quantitative observational form in which teachers are
evaluated according to 20 items using the following four-response category scale:
“Totally Agree” (4), “Agree” (3), “Disagree” (2), and “Totally Disagree” (1).

Each item describes a statement with a positive pedagogical attitude or behavior
(e.g., He/she generates conditions that favor student motivation and/or openness to
learn.). To this effect, based on the supporting material that describes what each
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response category means for each item, evaluators assign the teachers a value from
the four-response category scale for each of the 20 items, depending on how they
carry out their classes.

This instrument is based on INACAP’s AAVC Pedagogical Method (Aprendizaje
Activo, Vinculado y Colaborativo/Active, Engaged and Collaborative Learning)
(Mundo INACAP 2018). This method considers that learning processes in the
context of higher education adhere to three main principles. First, they have to
promote active learning strategies. This means engaging students through innovative
and meaningful actions in which they are encouraged to reflect on their own actions
autonomously and to avoid absorbing knowledge passively and with resignation
(Walder 2017). The second element is associated with encouraging students to
engage with their social environment. If students are to be successfully integrated
into the job market, they must connect with relevant stakeholders, such as productive
sector organizations or local community groups (Jongbloed et al. 2008; Vernon and
Ward 1999). Finally, the AVVC pedagogical method states that learning processes
also have to be based on collaboration among students. This involves promoting
cooperation between classmates and students from other study programs, since this
generates a more interdisciplinary perspective (Bruffee 1993; Boud et al. 2014).

Based on this method, the Classroom Accompanying Program for Teachers
developed a quantitative observational scale aimed at measuring the extent to which
teachers have the pedagogical competencies required. The scale is formed by the
following 5 dimensions:

• Structure of the Class: development of a class based on a defined structure whose
purpose is initially explained and which activates previously learned contents.

• Methodological Strategies: application of didactic strategies in a framework
in which the acquisition of knowledge is encouraged through participants
exchanging experiences.

• Pedagogical Resources: use of resources relevant to the class’s aim and linked to
the didactics of the specialty, based on different sources of information.

• Evaluative Process: development of evaluations using explicit mechanisms.
Feedback is given during the class and reflection among the students is encour-
aged.

• Generic Competencies: promotion of activities that strengthen the institution’s
hallmark competencies, integrating generic subject proficiencies into learning
activities.

Table 1 presents the pedagogical competencies scale’s theoretical structure:

3.2 Participants

This study considers information from 736 higher education teachers to whom this
observational scale was applied during the second semester of 2017. All participants
are teachers at INACAP, one of Chile’s largest higher education institutions, with
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Table 1 Theoretical structure of the pedagogical competencies scale

# Dimension Item

i_1 Structure of the
class

He/she explains the purpose of the class according to what students
expect to learn

i_2 He/she activates students’ previous learning
i_3 He/she generates conditions that favor student motivation and/or

openness to learn
i_4 He/she effectively uses the time available for the class
i_5 He/she implements learning activities relevant to the class’s purpose
i_6 He/she contextualizes the learning and/or the contents of the class

within the study program’s career field and/or graduate profile
i_7 He/she ends the class by highlighting the main ideas
i_8 He/she generates opportunities for student comments and/or

questions
i_9 He/she encourages students to carry out activities outside the

classroom according to what they expect to learn
i_10 Methodological

strategies
He/she promotes an environment conducive to learning and exchange
among students

i_11 He/she develops activities using the “learning by doing”
methodological approach in accordance with what students expect to
learn

i_12 He/she promotes student disposition and responsibility in the learning
process

i_13 Pedagogical
resources

He/she uses resources relevant to the class’s purpose

i_14 He/she effectively uses selected resources relevant to the class
structure

i_15 He/she encourages the use of different sources of information
promoted by INACAP

i_16 Evaluative
process

He/she explains how and in what way the expected learning is
evaluated

i_17 He/she delivers feedback during the class
i_18 He/she reinforces student reflection by incorporating mistakes as a

means of learning
i_19 Generic

competencies
He/she promotes activities that strengthen the development of
INACAP’s hallmark competencies

i_20 He/she integrates generic subject competencies into learning activities

approximately 120,000 students and 5000 teachers in 26 faculties throughout the
whole country.

This instrument is applied yearly to both new teachers and teachers who obtained
less than 75% in their teaching performance evaluation scores based on students’
opinions the previous year. Observed classes correspond to what INACAP defines as
Milestone Subjects. These subjects aim to integrate specialty, generic, and hallmark
competencies into the practical learning central to each study program. Accordingly,
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the number of each participant teacher’s classes observed is defined by the amount
of milestone subjects they teach each semester.

In the case of the semester considered for this study (the second semester of
2017), 1372 observation sessions were carried out. Other teachers from the same
institution who had received an outstanding performance evaluation were trained
to carry out the evaluations, each of which lasted 45 min, as per the length as an
academic class at the institution.

In terms of the institutional context of the place this study was carried out,
it is important to state that INACAP is a private, non-profit, integrated higher
education system made up of three different institutions: a University, a Tech-
nical Formation Center, and a Professional Institute. It offers two-year technical
degrees and bachelor’s degrees. It is also a non-selective institution with no entry
requirements apart from graduating from high school. This means the institution
receives an important number of underrepresented social groups, especially first-
generation students from low- and middle-income families. In this setting, teachers’
pedagogical competencies are relevant, since they are particularly important for
supporting the learning of socially underrepresented groups.

3.3 Data Analysis

In order to evaluate the reliability and structure validity of the described scale, differ-
ent statistical analyses were applied. First, descriptive analyses were considered in
order to examine response distributions for the scale’s items. A second stage applied
reliability indicators to the whole scale. Specifically, the Kuder-Richardson 20 (KR-
20) coefficient was applied (Streiner 2003). This assessment was considered since
preliminary analyses suggested that the items behave as binary variables, which led
to the recoding of the initial four categories into two.

Finally, an exploratory factor analysis (EFA) was conducted to examine the
instrument’s structure validity (Byrne 1990). EFA was used instead of a Confirma-
tory Factor Analysis (CFA) given the preliminary nature of these analyses, as this
scale has never been validated before. Following the advice of Bartholomew et al.
(2008), a principal component analysis (PCA) was initially conducted to define the
number of factors to be extracted. They recommend choosing the number of factors
by considering the proportion of the total variation explained by the components
(70–80%), the magnitude of eigenvalues (greater than 1), the form of the screen
plot, and whether the components have useful interpretations. Then, an EFA was
applied using the generalized least squares extraction method and by performing
an oblique rotation (Oblimin). This rotation method was selected since certain
dimensions of pedagogical abilities are hypothetically believed to be correlated. For
these analyses, two-category recoded items were considered. For this purpose, a
tetrachoric correlation matrix was initially estimated from the raw data set before
conducting PCA and EFA using this matrix. All analyses were conducted using the
software IBM SPSS Statistics 24.
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4 Results

4.1 Descriptive Analyses

The first type of data to be examined is descriptive analyses. Specifically, the
distribution of teachers’ scores for each item on the four-category response scale
is considered in order to explore both items’ discriminating capacity and the fitness
of the defined response scale.

Table 2 shows that, even though items allow for discrimination among evaluated
teachers, differences mainly apply in their scores for the two highest categories of
each item. For all items except item 15, the first two categories account for more
than 90% of teachers’ scores.

These results imply that the response scale did not work properly. Evaluators
hardly considered the categories “Disagree” and “Totally Disagree” when evaluating
teachers’ pedagogical competencies. Thus, it seems plausible that instead of scoring
the level of teachers’ pedagogical skills on a 1- to 4-point scale, evaluators used this
instrument as a dummy checklist.

Table 2 Distribution of scores of each item on the scale and reliability indicators

Item distribution Reliability indicators

Items
Totally
agree Agree Disagree

Totally
disagree

KR-20
without item

Item-rest
correlation

i_1 64.4% 27.6% 6.5% 1.5% 0.929 0.506
i_2 70.8% 24.3% 4.2% 0.8% 0.928 0.552
i_3 71.1% 25.4% 3.3% 0.2% 0.926 0.638
i_4 76.5% 20.2% 2.9% 0.4% 0.926 0.611
i_5 77.1% 18.4% 3.9% 0.6% 0.925 0.658
i_6 74.3% 18.8% 5.5% 1.4% 0.929 0.487
i_7 61.9% 28.1% 7.7% 2.3% 0.926 0.644
i_8 79.7% 17.5% 2.3% 0.5% 0.927 0.590
i_9 70.8% 24.6% 3.5% 1.1% 0.926 0.635
i_10 77.3% 19.8% 2.6% 0.3% 0.926 0.611
i_11 75.3% 19.4% 4.6% 0.7% 0.926 0.614
i_12 76.1% 20.7% 2.7% 0.5% 0.925 0.675
i_13 81.5% 16.5% 1.8% 0.2% 0.926 0.635
i_14 79.1% 18.3% 2.3% 0.4% 0.926 0.637
i_15 63.5% 25.3% 7.7% 3.6% 0.928 0.553
i_16 63.9% 27.0% 7.1% 2.0% 0.926 0.625
i_17 83.8% 14.1% 1.9% 0.2% 0.927 0.594
i_18 74.1% 21.9% 3.5% 0.6% 0.926 0.652
i_19 62.5% 30.0% 5.9% 1.6% 0.926 0.630
i_20 65.7% 27.1% 5.3% 1.9% 0.926 0.650
Total – – – – 0.927 0.610
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Based on these assumptions, it was decided that the original scale should be
recoded into a two-category response scale. Specifically, the categories “Agree”,
“Disagree”, and “Totally Disagree” were grouped into a new category. This meant
the items on the scale implemented in subsequent analyses were treated as binary
variables or checklist indicators. Those who scored four points are defined as
teachers who have the pedagogical competencies evaluated, while those who scored
three, two, or one point are understood as educators who do not have sufficient levels
of these.

4.2 Reliability Analyses

In Table 3, reliability indicators for each of the instrument’s sub-scales and for
the scale as a whole are shown. As previously explained, given the fact that the
original response scale was recoded into two-category items, reliability analyses
considered new binary indicators for the scale. In this respect, Table 3 shows the
KR-20 coefficient.

The results indicate that the instrument applied is highly reliable. When consid-
ering the scale as a whole, a KR-20 coefficient of 0.930 is obtained. Likewise, the
sub-scales coefficients are all over 0.7.

A second way in which reliability was examined was by estimating the KR-20
coefficient when individual items were removed from the scale. Table 2 presents
the KR-20 coefficient when removing each item from the scale. Given that this
coefficient was 0.930 when calculated for the whole 20-item scale, it can be seen that
no item’s removal improves the overall reliability of the pedagogical skills scale. In
other words, the internal consistency of the scale cannot be improved by removing
a single item, which shows that all the scale’s items contribute to a high level of
reliability.

Table 2 also shows each item’s correlation with the sum of all remaining
items—what is called corrected item-total correlation. The results show an average
item-total correlation of 0.61 (ranging from r = 0.487 to r = 0.675). According
to Clark and Watson (1995), this is an indication that the scale has good internal
consistency, since adequate values for this measurement of narrow constructs (such
as pedagogical abilities) should range between 0.4 and 0.5.

Table 3 KR-20 coefficient
by scale dimensions

Dimension N◦ of Items KR-20

Structure of the class 9 0.855
Methodological strategies 3 0.741
Pedagogical resources 3 0.747
Evaluative process 3 0.739
Generic competencies 2 0.897
Total 20 0.930
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4.3 Exploratory Factor Analyses

Having examined the scale’s reliability levels, subsequent analyses focus on
evaluating the pedagogical competencies scale’s structure validity. To be precise,
this section analyzes whether the scale’s previously described theoretical structure
(see Methods section) matches the latent structure of this construct as observed
when applying factorial analyses.

Structure validity was assessed by applying EFAs to the 20 items on the
pedagogical skills scale. A tetrachoric correlation matrix was initially estimated
from the raw data set of binary indicators to then estimate factorial analyses using
this matrix as the main input.

A PCA was carried out first to determine the number of factors to be extracted.
From the PCA of the 20 items, it was decided that four factors should be extracted as
the first four components of the PCA explained 77.8% of the variance. Additionally,
even though factors 3 and 4 presented eigenvalues lower than 1 (0.835 and 0.746),
this rule was relaxed according to Joliffe’s (1972) advice that retaining components
with eigenvalues higher than 0.7 is better than a cut-off point of 1. This was also
decided based on the degree of interpretability of the components extracted.

Next, an EFA was carried out, extracting four factors and using the generalized
least squares method and an oblique rotation (Oblimin). Concerning this solution, an
item-selection analysis was carried out first. Using a criterion that eliminates items
exhibiting low factor loadings (<0.4), it was suggested that five of the 20 indicators
should be removed as they did not accurately fit the scale structure. Therefore, a
new EFA was carried out without these items in order to obtain a cleaner and more
rigid structure.

Table 4 shows the rotated matrix of the new 15-item solution. This reveals a
much clearer structure which, when analyzed, does not suggest eliminating any
item. When examining this latent structure, it can be observed that, even though
it does not exactly match the defined theoretical structure, there are several relevant
common elements that indicate that the evaluated instrument is valid. First, factors
2 and 3 exactly match the “Generic Competencies” and “Pedagogical Resources”
theoretical dimensions. Likewise, all of the items in factor 4 belong to the “Class
Structure” dimension and they all refer to elements associated with how the
beginning of a class is structured.

Although factor 1 contains eight items from three different theoretical dimen-
sions (Class Structure, Methodological Strategies, and Evaluative Process), it
provides a useful interpretation that suggests the evaluated pedagogical skills scale
is a valid instrument. When going through these items, it can be seen that they
are all associated with promoting student engagement during classes, either by
encouraging direct participation or by delivering information aimed at increasing
the usefulness of the class for students.

In summary, when carrying out an EFA, it can be concluded that the concept
of pedagogical competencies is structured into four dimensions. The first and most
important dimension (as shown by the 64.4% of explained variance) is associated
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with how teachers encourage student engagement through both participation and by
delivering useful and relevant information, which can be called “Student Engage-
ment”. The second and third dimensions highly match to the previously defined
theoretical concepts of “Generic Competencies” and “Pedagogical Resources”.
Finally, a fourth dimension, understood as a sub-dimension of the subscale of
“Structure of the Class”, emerges. This is specifically associated with how the
beginning of a class is structured and can be called the “‘Class Introduction
Structure”.

5 Discussion

In this paper, the reliability and structure validity of a teacher pedagogical compe-
tencies scale was examined. This instrument emerges as a relevant way of measuring
pedagogical skills in a context in which new students accessing higher education
and raised in a digital era are challenging traditional teaching methods that do not
manage to engage them successfully (Demirbilek 2015; Johnson et al. 2016).

The results showed that the initially defined four-response category did not work
properly. Thus, an initial recommendation is for observational scales measuring
teachers’ skills to be based on checklist indicators. This has also been the most
common way these phenomena have been studied in elementary and secondary
teaching (see O’ Leary 2015), also justifying their replication in the higher education
context.

In relation to reliability analyses, the evaluated scale showed high levels of
internal consistency. Likewise, item-retest correlations were also high and it was
seen that getting rid of an item did not increase the scale’s internal consistency,
reinforcing the opinion that the scale developed is reliable.

Regarding the scale’s structure validity, the 20-item solution was not very clear,
because five items presented low factor loadings in each of the four factors. Thus, a
new model was fitted which only considered 15 items. Although this new solution
did not exactly match the scale’s theoretical structure, it matched some of its
most important elements. By suggesting certain considerations to guide how this
instrument is applied, such as using binary items and discarding items that do not
accurately fit the scale structure, it can be concluded that the evaluated scale is also
a valid measure of teachers’ pedagogical skills.

In summary, the examined evidence provides relevant information for those
interested in measuring pedagogical competencies in the context of higher educa-
tion. Despite the validity results showing some discrepancies between the scale’s
theoretical and latent structures, these analyses also deliver valuable information by
revealing the complexity of measuring pedagogical abilities. Accordingly, one of
the main contributions of this research is to encourage the development of more
complex instruments to measure teachers’ pedagogical skills in higher education
contexts where self-reported or student surveys have had a more predominant
role (Berk 2005). Similarly, this paper also presents evidence to justify the proper
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importance and viability of measuring teacher quality as it shown how the adequate
application of an observational scale can be a significant asset when supporting
teachers to improve their teaching abilities.
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Psychoperiscope
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Abstract Psychoperiscope is a coined nomenclature which integrates periscope
and psychometrics to mirror the mediating-moderating effect of cognitive coping
strategies in the relationship between illness and quality of life. Coping refers to
the effort toward mastering demands posed by harm, threat, or challenge being
appraised and/or perceived as taxing available resources. It could be in terms
of problem-focused versus emotion-focused as well as behavioral coping versus
cognitive coping dimensions. The mediating-moderating effect of cognitive coping
strategies, in the relationship between illness and quality of life, has not been clearly
understood due to lack of a construct-relevant assessment scale. Therefore, this
study developed a suitable scale using mixed methods embedded design. The mixed
methods embedded design was opted for due to its advantageous measurement
characteristics which would elucidate quality of life variance in relation to the
effects of cognitive coping strategies on the variance of illness. Based on the Gandi
Psychometric Model, the term psychoperiscope was coined as a new psychometric
nomenclature and adopted in this context as the scale name. Psychoperiscope
was pilot-tested on a sample of 30*3 (i.e., n = 30 × 3) participants, translated
as consisting of 30 patients alongside their respective 30 family members and
30 clinical practitioners selected by the multistage sampling method. The final
psychoperiscope, a 21-item (3-version) scale, proves significantly reliable for
research and also serves as a valid screening tool. Following the useful data it
elicited in this study, psychoperiscope would effectively generate more optimal and
robust data if complemented with an experimental case study.
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1 Introduction

1.1 Background to the Study

Cognitions help us in regulating our emotion or any feeling in order not to be
overwhelmed by the effects of negative or stressful life events. Since it seems
the regulatory effect of cognitions would moderate life events, the perspective
suggesting that cognitive processes can impact both illness and quality of life
in some way is appropriate (in the circumstances). Garnefski et al. (2002) opine
that “the regulation of emotions through cognitions is inextricably associated with
human life.” Such cognitions include both conscious and unconscious cognitive
processes. The unconscious cognitive processes, which include mental defence
mechanisms such as projection, denial, daydreaming, and rationalization have been
more significantly studied than the conscious ones which are popularly referred to
as cognitive coping strategies (Garnefski et al. 2002).

Psychoperiscope is a coined nomenclature which integrates the principles of
periscope and the ideals of psychometrics to more optimally define the mediating-
moderating effect of cognitive coping strategies in the relationship between illness
and quality of life. Coping, according to Monat and Lazarus (1991, p. 5), is
defined as “an individual’s efforts to master demands (i.e., conditions of harm,
threat, or challenge) that are appraised and/or perceived as exceeding or taxing
available resources.” Coping could be classified in terms of problem-focused versus
emotion-focused as well as behavioral coping (what you do) versus cognitive
coping (what you know) dimensions (Gandi and Wai 2010; Garnefski et al. 2002).
Considering that behavior includes actions, interactions, and reactions mostly
in response to goals, motivations, needs, and problems, a complex interplay of
psychological components has to form appropriate networks that determine and/or
shape it. According to Epskamp et al. (2017), there are three measures of the
network structure which include the strength, the closeness, and the between-ness
of the node. Just as Lauritzen (1996) showed in the Gausian graphical model, the
node represents observed variables while the edges represent partial correlation
coefficients between two variables after conditioning on all other variables in the
dataset.

The strength quantifies how well a node is indirectly connected to other nodes,
the closeness quantifies how well a node is directly connected to other nodes, and
the between-ness quantifies how important a node is in the average path between
two other nodes. These measures of the network structure (strength, closeness,
and between-ness) corroborate and/or represent Schwartz and Rapkin’s (2004)
three-stage quality of life (QOL) measurement model which include performance-
based, perception-based, and evaluation-based measurements. QOL measures are
either designed on assumptions that measurement scales are consistently used while
scores are directly comparable across people over time or even designed to account
for response shift phenomena. Schwartz and Rapkin (2004) insist on the inferred
evidential suggestion supporting response shift phenomena that the underlying
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processes of appraisal differ across people and over time. This can greatly affect
how most of the QOL scale items are responded to. It could also be inferred, from
the viewpoint of Schwartz and Rapkin (2004), that a more optimal assessment scale
will be best suited if the ideals of clinimetrics and psychometrics are taken into
consideration as an integrative whole.

Clinimetrics, which was conceptualized as the science of clinical measurement
(Fava et al. 2011), refers to the domain concerned with indexes and other expe-
riences that are used to describe or measure symptoms, physical signs, and any
distinctly clinical phenomena (Mayo 2015; Feinstein 1987). Clinmetrics aims to
develop seemingly heterogeneous measures with good face validity for clinical
common sense and, therefore, principally rely on the opinions of patients and clin-
icians (Feinstein 1987; Upton and Upton 2007). Psychometrics, which on the other
hand ensures quality and valued degree of homogeneity, rely more on statistical
techniques and generally aims to develop measures that are mathematically valid
and reliable (Upton and Upton 2007). Despite the obvious differences, there is
some overlap “ab initio” between the ideals of clinimetrics and the techniques of
psychometrics, which makes for easy complementary integration of their principles.
To effectively integrate the ideals/techniques of clinimetrics (the science of clinical
measurement) and psychometrics (the science of psychological measurement), an
appropriate choice of suitable and more optimal research design seems cogently
helpful.

De Vaus (2001) and Yin (2014) believe that any design that uses a more logical
and comprehensive approach to investigating the research problem ensures that
the evidence(s) obtained enables us to answer initial research questions as unam-
biguously as possible. Such designs would have to be adequately representative,
by integrating different techniques, to accommodate various peculiarities toward
attenuating/controlling extraneous (or confounding) variable effects. Combining
different techniques this way has been described in terms of multimethod and mixed
methods designs. A multimethod research involves combining multiple elements
of either qualitative techniques or quantitative techniques, while mixed methods
research involves combining the elements of both qualitative and quantitative
techniques in one study. The major specific designs of mixed methods research
include triangulation design, embedded design, explanatory design, and exploratory
design (Creswell and Plano Clark 2007).

Mixed methods triangulation design aims at obtaining different but contemporary
data on the same topic to best resolve the research problem (Morse 2003). It brings
together the differing strengths and nonoverlapping weaknesses of quantitative
methods (symbolized as QUAN: large sample size, trends, and generalization)
with those of qualitative methods (symbolized as QUAL: small N, details and in
depths). The small N (in this case) refers to one group or single-subject (single-case)
designs that are particularly based on qualitative approach. Hence, mixed methods
triangulation design is simply symbolized as QUAN + QUAL. It is used to directly
compare and contrast quantitative results with qualitative findings (Schoonenboom
and Johnson 2017).
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Another mixed methods design is the embedded design which includes one data
set that can provide a supportive secondary role in a study based primarily on the
other data type (Creswell 2003). This was corroborated by Schoonenboom and
Johnson (2017) who believe that it has been premised on three facts: that a single
data set is not sufficient, that different questions need to be answered, and that each
type of question requires different types of data. The need to include qualitative data
to answer a research question within a largely quantitative study and vice versa is a
cogent justification for using the mixed methods embedded design. Thus, it embeds
a qualitative (qual) component within a quantitative (QUAN) design (symbolized as
QUAN + qual), it compares quantitative (QUAN) and qualitative (QUAL) designs
(symbolized as QUAN + QUAL), and then embeds a quantitative (quan) component
within a qualitative (QUAL) design (symbolized as QUAL + quan). Therefore, the
mixed methods embedded design is generally symbolized as QUAL + quan, QUAN
+ QUAL, and QUAN + qual.

The next mixed methods design is referred to as mixed methods explanatory
design which is a two-phase design whose overall purpose is completely dependent
on the fact that qualitative (qual) data helps explain or build upon initial quantitative
(QUAN) results (Creswell 2003; Schoonenboom and Johnson 2017). It is most
suitable for any study that requires qualitative data to explain three findings: (a)
significant or nonsignificant results, (b) outlier results, and (c) surprising results
(Morse 2003). The mixed methods explanatory design is, therefore, symbolized as
QUAN + qual. The design (QUAN + qual) can be used to form groups based on
quantitative results and follow-up with the groups through subsequent qualitative
research or using quantitative participant characteristics to guide purposeful sam-
pling for a qualitative phase (Creswell 2003).

The last mixed methods design is exploratory design, a two-phase design, in
which results of the qualitative (QUAL) method can help develop or inform the
quantitative (quan) method (Greene et al. 1989). It has been premised on the fact
that an exploration is cogently needed for one of the several reasons which include
nonavailability of instruments, unknown variables, lack of a guiding framework, or
the need for appropriate theories. Because the mixed methods exploratory design
(symbolized as QUAL + quan) begins qualitatively, it is most suitable for exploring
a phenomenon. The design (QUAL + quan) is particularly useful in developing
and testing new instruments (Creswell 2014) and for identifying and quantitatively
studying important unknown variables. Mixed methods exploratory design is also
appropriate in case of the need to generalize results to different groups, to test
aspects of an emergent theory (or classification), or to explore a phenomenon in-
depth and measure its prevalence (Creswell 2014; Morgan 1998).

Whatsoever may be the case, designs must be construct-relevant in order to
help minimize or even avoid drawing incorrect causal inferences from data (De
Vaus 2001). The mixed methods designs (triangulation, embedded, explanatory, and
exploratory) have been found to appropriately approach investigating problem(s)
in various logical ways that mostly lead to correct causal inferences. The overall
goal of these designs has been to expand and strengthen a study’s conclusions
and make more empirical contributions to the published literature. This has been
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more significantly demonstrated by the way and manner any mixed methods design
answers research questions more effectively in empirical ways than the other
designs. Johnson and Christensen (2014) subscribe to this by corroborating that
the mixed methods approach heightens knowledge by providing sufficient quality
to achieve more legitimate multiple validities. Although exploratory design is said
to be particularly useful in developing and testing new instruments, the embedded
design is found to be more useful and optimally suitable in developing and
testing new instruments (especially 3-version scales) for complex or multifaceted
mixed methods assessments. According to Schoonenboom and Johnson, the mixed
methods embedded design has additional advantage of being implemented either
sequentially or concurrently as the case may be. It is, therefore, more optimally
suitable for empirical studies than other designs.

1.2 Statement of Problem and Purpose of the Study

It has been observed that “if the meaning of quality of life (QOL) rating depends
upon any underlying appraisal processes, the relationship between the observed
item and the underlying latent true score is far more complicated than assumed”
(Schwartz and Rapkin 2004). This, as Gandi and Wai (2010) inferred, has been
more obvious in some scale for assessing the impacts of cognitions in emotion
regulation to determine QOL. Hence invoking the principles of performance-based,
perception-based, and evaluation-based measurements is expected to lend credence
to and adequately ensure a construct-relevant scale. While the clarion call by Upton
and Upton (2007) to integrate clinimetric and psychometric strategies in developing
a multi-item health outcome measure is apt, its suitability needs to be tested by
integrating the principles of performance-based, perception-based, and evaluation-
based measurements as a model.

The purpose of the study was because the cogent need to assess the mediating-
moderating effects of cognitive coping strategies in the relationship between illness
and quality of life has been hampered by lack of a suitable construct-relevant scale
over the years. Therefore, the study was designed to develop and validate a suitable
scale for assessing the mediating-moderating effects of cognitive coping strategies
in the relationship between illness and perceived quality of life. Thus, the envisioned
scale was developed as a measurement tool that assesses the mediating-moderating
role(s) of cognitive coping strategies in the relationship between illness and quality
of life.

1.3 Conceptual Framework

The new scale was conceptualized by and premised on lucid integration of Gandi
Psychometric Model (2018) and Schwartz and Rapkin’s (2004) model (see Figs.
1 and 2). To clarify the complicated relationship between observed items and



304 J. C. Gandi

E
rro

r o
f 

M
ea

su
re

m
en

t 
R

es
po

ns
e 

B
ia

s
R

es
po

ns
e 

S
hi

ft

Measurement process is 
independent of judgment 

Measurement involves judgment, 
but raters expected to converge 

Measurement involves judgment 
using idiosyncratic criteria

Timed walk up 
flight of stairs

How often do you 
walk upstairs?

How difficult is it to walk 
up a flight of stairs? 

Fig. 1 Clarifying the discrepancy in performance-based, perception-based, and evaluation-based
methods. (Adopted with copyright permission from the authors Schwartz and Rapkin 2004)

S
C
A
L
E

V
A
L
I
D
A
T
I
O
N

Test 

Tryout

Item 

Analysis 

Test

Revision

Focus 
Group 

Discussion

Expert Reviews

Cognitive Testing 
Interviews

Item 
Generation

Item
Pretesting

Scaling 
Method

Literature
Search and 
Reviews

T
E
S
T

C
O
N
C
E
P
T
U
A
L
I
Z
A
T
I
O
N

Scoring
Model

Fig. 2 Scale Development Framework based on Gandi Psychometric Model. (Adopted from
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the underlying latent true score as the appraisal processes upon which the QOL
rating depends, Schwartz and Rapkin (2004) propounded a model which integrated
performance-based, perception-based, and evaluation-based measurement dimen-
sions as presented in Fig. 1.

The performance-based, which yields measures reflecting the quantity and
quality of effort, is independent of judgment and more susceptible to error of
measurement. Perception-based, which yields measures of individual judgment
concerning the occurrence of an observable phenomenon, involves judgment while
raters are expected to converge due to response bias. Evaluation-based, which
yields measures rating experience as positive or negative compared with an internal
standard, involves judgment using idiosyncratic criteria that enhances cogent merits
of response shift.
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A test development conceptual framework, based on the nine stages according
to Gandi Psychometric Model (2018), which facilitates answering the “how” and
“why” question(s), is presented in Fig. 2. These nine stages include test concep-
tualization, item generation, scaling methods, item pretesting, scoring models, test
tryout, item analysis, test revision, and scale validation and standardization. It sets
out clearly “how” the main stages through which the test development process
moves (i.e., from left to right) and also reflects the systematic sequence of the
process, i.e., from test conceptualization to scale validation (Fig. 2), including
“why” particular stage(s) or variable(s) precedes and/or succeeds the other (Gandi
2018, 2019).

The creative integration of Figs. 1 and 2 (Schwartz and Rapkin 2004; Gandi
2018) led to forming the coined term “psychoperiscope,” which is a combination of
psychometrics and periscope, deliberately conceptualized and adopted as the scale
name. While psychometrics refers to the science of psychological measurement,
periscope is an instrument that consists of a tube attached to a set of mirrors
or prisms by which an observer can see things that are otherwise out of sight
(Soanes and Stevenson 2007). Mental periscope refers to the ability of the intellect
to observe, understand, and initiate appropriate action(s) in which the self can re-
energize, examine, reflect, and refine, or just be completely still. When the intellect
uses its capacity as a periscope, it can find a balance between the inside and the
outside worlds.

This integrative conceptual framework forms the premise upon which the
envisioned psychoperiscope, a 3-version scale, aims to more effectively be mirroring
the mediating-moderating effects of cognitive coping strategies in the relationship
between illness and quality of life. More optimal designs such as mixed methods
embedded designs and a 3-step formula for sample size determination would
positively corroborate the conceptual framework.

2 Methods

2.1 Research Design and Study Setting

The study adopted a multifaceted mixed methods design, referred to as mixed
methods embedded design, in which Creswell (2003) pointed out that “one data
set provides a supportive secondary role in a study primarily based on the other
data type.” It was premised on the fact that “a single data set is not sufficient,
emphasizing that different questions need to be answered, and that each type of
question requires different types of data.” The need to include qualitative data
to answer a research question within a largely quantitative study and vice versa
is a cogent justification for using the mixed methods embedded design (Creswell
2003; Schoonenboom and Johnson 2017). It embeds a qualitative (qual) component
within a quantitative (QUAN) design (QUAN + qual), compares a quantitative
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(QUAN) design with a qualitative (QUAL) design (QUAN + QUAL), and embeds
a quantitative (quan) component within a qualitative (QUAL) design (QUAL
+ quan). Hence, the design (i.e., mixed methods embedded design) has been
symbolized as QUAL + quan, QUAN + QUAL, and QUAN + qual which is
implementable, both concurrently and sequentially, for developing 3-version scale
(such as psychoperiscope). Mixed methods embedded design was also adopted
because of the considered suitability for elucidating quality of life variance in
relation to effects of cognitive coping strategies on the variance of illness. This
corroborates the embedded design’s optimal suitability for eliciting three sets of
data (from three sources) on the same target subjects-of-assessment.

The study was conducted at Jos University Teaching Hospital (JUTH) in Plateau
State of Central Nigeria. JUTH’s diversity added impetus to the resulting data in
terms of helping to “adequately prevent and avoid any perceived social desirability
or other unwanted influence(s) that could amount to raping the psychometric quality
of the scale” under consideration (Gandi 2019). This is because diverse professional
and ethnic peculiarities as well as different ideological leanings within JUTH (the
study setting) helped in achieving a study sample that more optimally met the
requirements for adequate participant representativeness. Jos city is a miniature
Nigeria and one of the settlements in the country where men and women exist as
co-equals, without a significant gender bias or discrimination. This also had positive
implication for research participation and the collected data characteristics.

2.2 Target Population and Sample Participants

The study essentially targeted clinical population, comprising patients alongside
their family members and respective clinical practitioners, at the Jos University
Teaching Hospital (JUTH). It must be noted that patients are the primary target
participants (i.e., the subjects of assessment) for whom the new scale (herein
referred to as psychoperiscope) was developed. The participating patients’ family
members (spouse, parent, child, sibling, or others) and the clinical practitioners
(doctor, nurse, or psychologist), as significant others in this case, serve the purpose
of providing relevant data to adequately complement, supplement, and even validate
the individual patient’s respective responses.

Since psychoperiscope is a 3-version scale that can generate data from three
sources and is suitable for studies that adopt mixed methods embedded design,
the pilot sample size consisted of 30*3 participants. Thus, it comprises 30 patients
(the target subjects of assessment) alongside 30 family members (family source
of embedded data) and 30 clinical practitioners (professional source of embedded
data), respectively. This sample size (30*3) was systematically determined by
forming a computation formula that determines the appropriate sample size for any
mixed methods design that adopts concurrent data collection procedure, such as
the mixed methods embedded design. The steps of the integrated formula include:
determining sample size for infinite population (ni), determining attenuating sample
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size (na) adjusted to facilitate avoiding nonresponse effects (ne), and converting the
attenuating adjusted sample size (na) to a sample size for finite population (nf).

First step – Determining sample size for infinite population by using confidence
level, population proportion (P), and error margin (E):

ni = Z2 × P × (1 − P)

E2 , (1)

where in this case Z = 2.576 which is the Z value corresponding to adopted
confidence level which was set to 99%, P was assumed to be 50%, and E was set to
1% in this case.

Second step – Determining attenuating sample size adjusted to facilitate avoiding
nonresponse effects:

na = ni + ni

1 − ne
, (2)

where ne was set to 5%.
Third step – Determining sample size for finite population by using the adjusted

sample size (an):

nf = 1 + ni
ni−1
N

(3)

where N = Population size.
Using the aforementioned adopted formulae (1), (2), and (3) helped to system-

atically determine the study sample size as 30*3 participants, which translates as
30 patients alongside 30 family members and 30 clinical practitioners, respectively.
The 30 selected patients included male (n = 15) and female (n = 15) aged 16–
73 years across different ethnicity, religion, education levels, occupations, and
socioeconomic status.

The 30*3 participants were selected by multistage sampling across the study
setting, Jos University Teaching Hospital (JUTH). Although it is a more complex
method, the choice of multistage sampling premised on reliability and validity of
its combined techniques. Trochim and Donnelly (2008, p. 47) describe multistage
sampling as a method that combines several probability sampling techniques to
create a more reliable and efficient or effective sample than the use of just any one
sampling type can achieve on its own. The sampling techniques that constituted the
multistage sampling method for this study include cluster sampling technique (phase
1) and stratified random sampling technique (phase 2). Cluster sampling helped in
determining the specific study sites (i.e., units/wards) within the hospital and then
stratified random sampling helped in selecting the individual study participants,
i.e., patients (the subjects of assessment) alongside family members (the family
embedded source of data) and clinical practitioners (the professional embedded
source of data) at each of the participating units/wards.
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2.3 Materials and Procedure

Materials
Psychoperiscope, a 21-item scale primarily developed for research and screening,
consists of three versions namely version A (the patient or target participant
version), version B (the patient family member version), and version C (the clinical
practitioner version). Materials used in developing psychoperiscope have been
similar to the instruments and conditions used in Rumor Scale Development chapter
by Gandi (2019). Thus, the materials for psychoperiscope development include
informed consent forms, interview schedule forms, demographic data forms, focus
group discussions checklist, expert reviews rating rubrics, cognitive testing feedback
sheets, video camera, writing materials, SPSS software, and the processing/analysis
system (computer). The conditions considered as significant materials in the study
include the basic necessary and sufficient conditions as well as a great deal
of miscellaneous conditions that Mackie (1965) referred to as “insufficient but
nonredundant part of unnecessary but sufficient (inus) conditions”.

Procedure
Psychoperiscope was developed by applying the nine stages of the Gandi Psy-
chometric Model, which include test conceptualization, item generation, scaling
methods, item pretesting, scoring models, test tryout, item analysis, test revisions,
and scale validation (Gandi 2018). Having conceptualized psychoperiscope to
be developed as a 3-version scale (patient version, family version, and clinician
version), using deductive and inductive methods generated a pool of 64 items as
an item bank. The first 30 items were deductively derived from literature review
on focal constructs and target population as well as from systematic review of
existing related scales. The next 34 items were inductively devised by conducting
focus group discussions, in-depth interviews, and personal brainstorming across
potential stakeholders. Thereafter, all the 64 items in the item bank were subjected to
deliberate pretesting with the aid of expert reviews and cognitive testing interviews
which refined them for more relevance and suitability. Only 28 items survived the
process while 36 items were deleted at this stage for want of suitability. Likert-
type scale has been the adopted scaling method alongside its corresponding scoring
model for the resulting 28 items that survived the preceding rigorous pretesting
reviews.

In implementing the test tryout, required research ethical clearances were earned
based on certificate in human subjects’ research course as well as the social and
behavioral research curriculum completion for collaborative institutional training
initiative (CITI) was appropriately fulfilled. All essential ethical considerations,
such as voluntariness, confidentiality, autonomy, avoiding even minimal risk,
ensuring individual privacy, and other required conditions for studies with human
participants, were observed and consciously adhered to. Prior to the designed
protocol implementation, research field assistants (n = 5) and research confeder-
ates (n = 5) were systematically recruited (one at each of the respective study
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units/wards) among the health professionals. Individual informed consent(s) were
duly obtained from each participating patient as well as their respective family
members and clinical practitioners separately. The recruited field assistants and
research confederates, who facilitated the pilot study protocol implementations
alongside the researcher, lend credence to appropriate task of data collection. After
administering the 28 items as a self-response scale, all the completed forms were
retrieved while individual participants were being appreciated for their time and
kind participation.

The completed and retrieved scale forms were systematically collated and then
coded, preparatory for onward analysis as required. The analysis techniques then
emphasized item reliability index, difficulty index, discrimination index and validity
index which together ensured adequate soundness of the scale (Gandi 2019). Just as
Gandi (2019) earlier noted, the item difficulty index and discrimination index were
qualitatively determined (based on item pretesting process), while the statistical
analysis (quantitative methods) emphasized ensuring reliability index and validity
index of the retained items. The analyses conducted include content validity index
(CVI), item-total statistics, Pearson’s correlation analysis, and exploratory factor
analysis (EFA). A befitting threshold of item minimum excellent significance level,
set at 0.60, was adopted while all the pilot data analyses were respectively carried
out at p ≤ 0.05.

3 Results

Results of the study have shown significant reliability and validity for 21 items
retained out of the pilot-tested 28 items that were subjected to analysis. Item
correlation coefficients, based on Pearson, r = 0.62–0.70 (p < 0.05), had an overall
average Cronbach’s alpha as ά = 0.66. Thus, the raw Cronbach’s and standardized
Cronbach’s alpha values were found to be 0.62 and 0.70, respectively.

The scale mean of the means (3.90) and mean of the variances (0.46) as well
as the variance of means (0.19) and variance of variances (0.24) all corroborated
its reliability, as shown in Table 1 (summary item statistics). Likewise, Table 2
shows that the mean (261.59), variance (574.96), and standard deviation (23.98)
have constituted very good scale statistics.

Item-total statistics, which checks for any item(s) that might be inconsistent with
average behavior of others, was analyzed in order to safely discard inconsistent
item(s). As shown in Table 2, the item-total statistics analysis results reflected scale

Table 1 Summary item statistics

Mean Minimum Maximum Range
Maximum
variance

Minimum
variance

Item means 3.90 3.00 4.67 1.67 1.56 0.19
Item variances 0.46 0.00 2.88 2.87 888.79 0.24
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Table 2 Scale version A for target participants (subjects of assessment) item-total statistics

Case Item
Scale
mean

Scale
variance

Corrected
item-total
correlation

Cronbach
alpha (ά)

1 I have basically done nothing to
prevent my illness before now

22.99 22.02 0.68 0.70

2 I cannot change anything about the
present situation of my illness

22.84 20.13 0.62 0.69

3 I am not able to sustain constructive
thoughts because of my illness

22.96 21.52 0.70 0.75

4 My inactivity (or decreased activity
level) affects me negatively

22.98 22.10 0.56 0.78

5 I cannot perform even my simplest
regular tasks beyond a maximum of
30 min

22.91 21.49 0.50 0.79

6 Anything that requires physical
strength is not for me

23.00 21.12 0.44 0.80

7 I can perform most daily tasks without
any assistance

23.06 20.45 0.68 0.72

8 I feel I am the one to blame for not
being able to overcome my illness
situation

22.89 21.04 0.49 0.72

9 I feel that I have a responsibility to
ensure improvement in my wellbeing

23.10 20.21 0.70 0.68

10 I think I can learn something from the
illness

22.95 22.00 0.57 0.73

11 I think that I will recover and even be a
stronger person than ever

22.79 20.10 0.62 0.72

12 I think it could have been much worse,
but thanks for how it is now

22.89 21.62 0.56 0.77

13 I think that other people go through
much worse experiences with their
health

22.99 22.10 0.60 0.66

14 I continually think how horrible my
health situation has been

22.98 20.38 0.58 0.75

15 It has been difficult for me to cope
with my illness

23.20 21.22 0.43 0.70

16 It was a mild illness but has
deteriorated overtime

23.02 20.52 0.62 0.68

17 I still go about my regular activities,
even without assistance, despite the
illness

22.88 21.00 0.56 0.70

18 My illness was worse than it is now 22.87 22.21 0.57 0.76
19 I now have more insight into my

situation than before
22.90 21.53 0.58 0.88

20 The treatment(s) I have received (or
am receiving) improve my health and
quality of life

22.98 20.64 0.44 0.69

21 My relationship with others (family,
clinicians, colleagues, friends etc.)
enhances my wellbeing

22.89 20.12 0.67 0.70
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mean if item deleted, correlated item-total correlation, and Cronbach’s alpha if item
deleted.

By investigating the item-total correlation, seven items with low correlations
(below required alpha values) were dropped from the preceding 28 items to retain
21 items that correlated highly (0.60 and above). Table 2 shows the scale mean,
if item deleted, for all the retained 21 cases with an average of 22.99 for the duly
summated items. The scale variance, if item deleted, was summed up for all the 21
cases as 22.93, to be the variance of the summed items. By exploring alpha, and
having deleted any or all of the low correlated items, the reliability of the scale
would increase to 0.88 in either case (Table 2).

Table 2 shows that the corrected item-total correlation has provided empirical
evidence to the extent that only few items correlated at low values which, undoubt-
edly, translated to the fact that just few items are construct-irrelevant in this case
and have been deleted. The changes in Cronbach’s alpha (for the retained 21 items)
if any of the items were deleted have effectively supported and corroborated the
corrected item-total correlations by indicating high correlations (as presented in
Table 2) ab initio.

Table 3 presents scale mean, if item deleted, for all the retained 21 cases,
averagely as 23.41, for the duly summated items. The scale variance, if item deleted,
were summed up, for all the 21 cases as 23.02, to be the variance of the summed
items. It presented the overall item-total statistics, which is known to check for any
item(s) that might be inconsistent with average behavior of other items, as analyzed
in order to ascertain the measure by discarding any inconsistent item(s). The item-
total statistics result appropriately reflected scale mean if item deleted, correlated
item-total correlation, and Cronbach’s alpha if item deleted.

By investigating the item-total correlation (Table 3), seven items with low
correlations (below required alpha values) were discarded from the preceding 28
items to retain 21 items that correlated highly (0.60 and above). By exploring
alpha, and having deleted any or all of the low correlated items, the reliability of
the scale would increase to 0.82 in either case (Table 3). The corrected item-total
correlation provided empirical evidence that only few items correlated at low values,
indicating that only few items are construct-irrelevant in this case. As seen in Table
3, the changes in Cronbach’s alpha if any items were deleted have corroborated the
corrected item-total correlations by indicating high correlations.

The mean scale shown in Table 4, if item deleted, for all the 21 cases has an
average of 22.97 for the duly summated retained items. The scale variance (Table
4), if item deleted, was summed up for all the 21 cases as 22.93 which is the
variance of the summed 21 retained items. By evaluating total correlations in Table
4, it could be noticed that the retained 21 items have respectively satisfied the
desired psychometric requirements. There has been no significant variation among
or between the respective patient family members on the presented results.

Likewise, by evaluating the total correlations in Table 4, it could be noticed
that the 21 retained items have respectively satisfied the desired psychometric
requirements. There has been no significant variation among or between clinical
practitioners on the presented results.
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Table 3 Scale version B for family members item-total statistics

Case Item
Scale
mean

Scale
variance

Corrected
item-total
correlation

Cronbach
alpha (ά)

1 Our sick person have basically done
nothing to prevent his/her illness
before now

23.42 22.12 0.68 0.74

2 He/she cannot change anything about
the present situation of his/her illness

22.98 21.30 0.62 0.68

3 He/she reported inability to sustain
constructive thoughts because of the
illness

23.66 21.60 0.70 0.69

4 His/her inactivity (or decreased
activity level) affects him/her
negatively

23.50 22.76 0.56 0.78

5 He/she cannot perform even his/her
simplest regular tasks beyond a
maximum of 30 min

23.71 21.90 0.50 0.77

6 Anything that requires physical
strength is not for him/her

23.22 21.32 0.44 0.82

7 He/she can perform most daily tasks
without any assistance

23.20 20.50 0.68 0.80

8 He/she seem to feel that he/she is the
one to blame for not being able to
overcome the illness situation

22.89 21.41 0.49 0.72

9 He/she reported that he/she have a
responsibility to ensure improvement
in his/her wellbeing

23.15 22.31 0.70 0.68

10 He/she seem to believe that he/she can
learn something from the illness

23.46 21.02 0.57 0.73

11 He/she have faith that he/she will
recover and even be a stronger person
than ever

23.57 20.18 0.62 0.72

12 He/she said it could have been much
worse, but thanks for how it is now

23.00 21.72 0.56 0.79

13 He/she admits that other people go
through much worse experiences with
their health

23.02 22.30 0.60 0.66

14 He/she continually seem to think of
how horrible his/her health situation
has been

22.99 20.31 0.58 0.75

15 It has been (and still seems) difficult
for him/her to cope with the illness

23.30 20.61 0.43 0.70

16 His/her illness initially seems mild but
has deteriorated overtime

23.21 20.80 0.62 0.68

17 I observe that he/she still go about
his/her regular activities, even without
assistance, despite the illness

23.00 21.04 0.56 0.70

(continued)
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Table 3 (continued)

Case Item
Scale
mean

Scale
variance

Corrected
item-total
correlation

Cronbach
alpha (ά)

18 To me, his/her illness was worse than it
is now

22.97 22.31 0.57 0.75

19 He/she now seems to have more
insight into his/her situation than
before

22.98 21.45 0.58 0.80

20 The treatment(s) he/she have received
(or am receiving) seems to improve
his/her health and quality of life

23.32 21.00 0.44 0.68

21 It seems his/her relationship with us
and with others (clinicians, friends
etc.) enhances his/her wellbeing

22.98 20.64 0.67 0.72

Table 4 Scale version C for clinical practitioners item-total statistics

Case Item
Scale
mean

Scale
variance

Corrected
item-total
correlation

Cronbach
alpha (ά)

1 The patient reported that he/she did
nothing to prevent the illness before
now

22.99 22.02 0.68 0.70

2 He/she now seems helpless and cannot
change his/her illness situation

22.84 20.13 0.62 0.69

3 Patient seems unable to sustain
constructive thoughts because of
his/her illness

22.96 21.52 0.70 0.75

4 His/her inactivity (or decreased
activity level) seems to affect him/her
negatively

22.98 22.10 0.56 0.78

5 Patient has not been able to perform
even his/her simplest regular tasks
beyond a maximum of 30 min

22.91 21.49 0.50 0.79

6 I think anything that requires physical
strength is not for this patient

23.00 21.12 0.44 0.80

7 He/she can perform most daily tasks
even without any assistance

23.06 20.45 0.68 0.72

8 Patient reported feeling he/she is the
one to blame for not being able to
overcome the illness situation

22.89 21.04 0.49 0.72

9 He/she reported that it is his/her
responsibility to ensure improvement
in his/her wellbeing

23.10 20.21 0.70 0.68

10 Patient seems to think he/she can learn
something from the illness

22.95 22.00 0.57 0.73

(continued)
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Table 4 (continued)

Case Item
Scale
mean

Scale
variance

Corrected
item-total
correlation

Cronbach
alpha (ά)

11 He/she reported thinking that he/she
will recover and even be a stronger
person than ever

22.79 20.10 0.62 0.72

12 Patient said it could have been much
worse, but thanks for how it is now

22.89 21.62 0.56 0.77

13 He/she admits that other people go
through much worse experiences with
their health

22.99 22.10 0.60 0.66

14 He/she keep reporting thinking how
horrible his/her health situation has
been

22.98 20.38 0.58 0.75

15 It has been (and still seems) difficult
for this patient to cope with the illness

23.20 21.22 0.43 0.70

16 The patient’s illness initially seems
mild but has deteriorated overtime

23.02 20.52 0.62 0.68

17 I observe that he/she still go about
his/her regular activities, even without
assistance, despite the illness

22.88 21.00 0.56 0.70

18 Patient reported that the illness was
worse than it is now

22.87 22.21 0.57 0.76

19 He/she now reports having more
insight into his/her situation than
before

22.90 21.53 0.58 0.80

20 The treatment(s) patient have received
(or am receiving) seems to improve
his/her health and quality of life

22.98 20.64 0.44 0.69

21 It seems his/her relationship with us
and with others (family, colleagues,
friends) enhances his/her wellbeing

22.89 20.12 0.67 0.70

So far, it would be noticed that the respective Tables (i.e., Tables 2, 3, and 4)
have reflected item-total statistics, showing all the retained 21 items with significant
reliability. Items that were not consistent with how other items behaved were
checked for and summarily deleted from the table for their nonsuitability. The
reliability, after deleting inconsistent items from the tables, was based on scale
mean, scale variance, corrected item-total correlation, and Cronbach’s alpha.

Notwithstanding the findings from item-total statistics analysis, a purification
based on exploratory factor analysis (EFA) was further conducted for the purifica-
tion of all the scale items. This has addressed the respective items’ skewness and
kurtosis (Table 5). Thus, the retained 21 items were further explored and found to
have significantly score values that adequately satisfied the skewness and kurtosis
requirements.
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Table 5 Exploratory analysis of mean, standard deviation, skewness, and kurtosis

Maximum Mean Std. deviation Skewness Kurtosis
Statistic Statistic Statistic Statistic Std. error Statistic Std. error

1 5 3.36 0.96 −0.65 0.04 −1.39 0.08
2 5 3.68 0.95 0.64 0.04 −1.54 0.08
3 5 3.35 0.49 0.75 0.04 −1.15 0.08
4 4 3.00 0.81 −0.01 0.04 −1.47 0.08
5 5 4.65 0.50 −1.13 0.04 1.06 0.08
6 5 4.33 0.47 0.72 0.04 −1.49 0.08
7 5 3.82 0.59 −2.54 0.04 5.30 0.08
8 4 3.34 0.47 0.50 0.04 −1.51 0.08
9 4 3.67 0.47 −0.72 0.04 −1.49 0.08
10 4 3.33 0.47 0.72 0.04 −1.49 0.08
11 4 3.02 0.82 −0.04 0.04 −1.50 0.08
12 4 3.67 0.48 −0.79 0.04 −1.14 0.08
13 5 4.32 0.47 0.68 0.04 −1.29 0.08
14 5 4.33 0.47 0.74 0.04 −1.46 0.08
15 5 4.33 0.47 0.74 0.04 −1.46 0.08
16 5 4.33 0.47 0.74 0.04 −1.46 0.08
17 5 4.33 0.47 0.74 0.04 −1.46 0.08
18 5 4.33 0.47 0.73 0.04 −1.47 0.08
19 5 4.02 0.82 −0.04 0.04 −1.50 0.08
20 5 4.02 0.82 −0.03 0.04 −1.51 0.08
21 5 4.38 1.06 −1.51 0.04 1.34 0.08

The skewness and kurtosis (Table 5) consideration in the study requires that any
items with absolute values of more than three for skewness and then less than eight
for kurtosis are psychometrically inadequate, therefore not satisfactory for inclusion
in the items to be retained. Consequent upon this, the exploratory purification
retained all the 21 items on the basis of satisfying the criteria for inclusion.

4 Discussion

The study, which was designed to develop a suitable scale for assessing the
mediating-moderating effects of cognitive coping strategies in the relationship
between illness and quality of life, gave rise to psychoperiscope as a 21-item
(3-versions) scale. Using the nine stages of test development, based on Gandi
psychometric model (2018), both deductive and inductive approaches as well as
expert reviews and cognitive interviews were critically implemented. Gandi psy-
chometric model corroborates the perspectives of De Vaus (2001) and Yin (2014),
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which hold that any design that uses more logical and comprehensive approach to
investigating problem ensures that the evidence(s) obtained enables us to answer
initial research questions as unambiguously as possible. Such designs would have
to be adequately representative, by integrating different techniques, to accommodate
various peculiarities toward attenuating/controlling extraneous (or confounding)
variable effects. Combining different techniques in dramatic ways at such magnitude
and intensity have been described in terms of multimethod and mixed methods
designs. A multimethod research involves combining multiple elements of either
a qualitative technique or quantitative technique while mixed methods research
involves combining the elements of both qualitative and quantitative techniques
in one study. The robust procedural nitty-gritty lends credence to psychoperiscope
development.

Mixed methods embedded design was adopted in developing and pilot-testing
the new scale because, according to Creswell (2014), it is the most rigorous
procedure for collecting and analyzing data as well as interpreting and reporting the
study findings that emanate from the data. The four major mixed methods designs
(triangulation, embedded, explanatory, and exploratory designs) have been found
psychometrically suitable in their respective rights. However, the embedded design
which was specifically adopted for the study under review has best addressed the
research problem toward achieving psychoperiscope development. This is because,
in mixed methods embedded design, one data set provides a supportive secondary
role where the study is also based on other data type or source. Creswell (2014)
premised this on the empirical fact that single data set is not sufficient, that different
questions need to be answered, and that each type of question requires different
types of data. As a 3-version scale, the resulting psychoperiscope elicits three data
sets on the same participant (i.e., the same subject of assessment) because one data
set was considered insufficient.

Whatsoever may be the case, designs must be construct-relevant in order to
help minimize or even avoid drawing incorrect causal inferences from data (De
Vaus 2001). The mixed methods designs (triangulation, embedded, explanatory, and
exploratory) have been found to appropriately approach the problem investigation
in various logical ways that mostly lead to correct causal inferences. The overall
goal of these designs has been to expand and strengthen a study’s conclusions
and make more empirical contributions to the published literature. This has been
more significantly demonstrated by the way and manner any mixed methods design
answers research questions more effectively in empirical ways than the other
designs. Johnson and Christensen (2014) subscribe to this by corroborating that
the mixed methods approach heightens knowledge by providing sufficient quality
to achieve more legitimate multiple validities. Although exploratory design is said
to be particularly useful in developing and testing new instruments, the embedded
design is found to be more useful and optimally suitable in developing and testing
new instruments (especially 3-version scales) for complex or multifaceted mixed
methods assessments.
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According to Schoonenboom and Johnson, the mixed methods embedded design
has additional advantage of being implemented either sequentially or concurrently
as the case may be. It is, therefore, more optimally suitable for empirical studies than
other designs. To actualize the envisioned goal of developing psychoperiscope using
mixed methods embedded design in practical terms, a suitable formula for sample
size determination had to be formulated as part of the study. The systematically
formulated computation formula helped in determining appropriate sample size for
the study which adopted the mixed methods embedded design, using concurrent
data collection procedure. The steps of this formula include: determining sample
size for infinite population (ni), determining attenuating adjusted sample size (na) to
facilitate avoiding nonresponse effects (ne), and converting the attenuating adjusted
sample size (na) to a sample size for finite population (nf).

The qualitative and quantitative approaches, which together answer research
questions based on embedded design more adequately, were systematically imple-
mented at every stage of the psychoperiscope development process. Thus, the
embeddedness is twofold: (i) the quantitative components were embedded within
qualitative design and (ii) the qualitative components were embedded within
quantitative design. The mixed methods embedded design was specifically opted
because of its advantages and more optimal suitability in designing performance-
based, perception-based, and evaluation-based measures that the psychoperiscope
represents in QOL assessment. For instance, embeddedness (by its very nature)
helps check and minimize any possibility of social desirability that seems to define
the weakness of some other scales.

Qualitative analysis, supported by Lawshe’s (1975) content analysis, helped
to ensure significant item content validity which translated to having a suitable
construct-relevant scale. Quantitatively, item-total statistics helped to check for
item(s) that might be inconsistent with the average behavior of other items on the
scale as it were. This analysis (item-total statistics) was a huge contribution that
suggested safe discarding of specific items with significant inconsistent character-
istics in relation to the perceived relevant items. This was confirmed based on the
correlated item-total correlation and the Cronbach’s alpha if item deleted which
provided empirical evidence suggesting that the items which correlated at low values
are construct-irrelevant and deserved to be discarded. All the three sets of data that
were analyzed have reflected a similar scenario in the presented findings thereof.

Notwithstanding the findings from item-total statistics analysis, a further purifi-
cation by conducting exploratory factor analysis has added significant impetus to the
scale items. Thus, exploratory factor analysis has effectively addressed the skewness
and kurtosis outlook of respective items on the scale. This presented the retained
items as only those having significant score values that have adequately satisfied the
skewness and kurtosis requirements. Consequent upon this, therefore, the overall
analyses have finally retained all the 21 items on the basis of satisfying the criteria
for inclusion.
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Modeling Household Food Insecurity
with a Polytomous Rasch Model

Victoria T. Tanaka, George Engelhard Jr, and Matthew P. Rabbitt

Abstract The Household Food Security Survey Module (HFSSM) is an 18-item
scale created and maintained by the US Department of Agriculture (USDA) that
measures food insecurity in the United States. The HFSSM includes ten items
that reference food hardships among adults in the household and eight items that
reference food hardships among children. The scale was created and maintained
using a dichotomous Rasch model (Engelhard et al., Educ Psychol Meas 78:1–19,
2017). However, the item responses that are collected for nine of the items are
polytomous that are later dichotomized for creating the final scale. In 2006, the
Committee on National Statistics (CNSTAT) reviewed the HFSSM and the USDA’s
procedures for measuring food insecurity. They suggested modeling polytomous
item responses with a polytomous model instead of dichotomizing item responses
(Wunderlich and Norwood, Food insecurity and hunger in the United States:
an assessment of the measure. The National Academies Press, Washington, DC,
2006). The purpose of this study is to explore modeling polytomous HFSSM
items with a partial credit model, building on Nord’s (Assessing potential technical
enhancements to the US household food security measures. US Department of
Agriculture, Economic Research Service, 2012) work on the partial credit model
and the HFSSM. The polytomous Rasch model is compared to the dichotomous
Rasch model currently used by the USDA. The data suggest that the polytomous
model provides better model-data fit, explaining 62% of the variation as opposed
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to 58% with the dichotomous model. The use of a polytomous model increases the
precision of the estimates of food insecurity.

Keywords Rasch model · Partial credit model · Household food insecurity

Food security exists when all members of a household have access to the food that
they need for a healthy, active lifestyle (Coleman-Jensen et al. 2018). Every year
since 1995, the US Department of Agriculture (USDA) measures household food
insecurity at the national level with the Household Food Security Survey Module
(HFSSM), an 18-item scale that is administered as a supplement to the Current
Population Survey (CPS). The HFSSM was created and has been maintained with
the Rasch measurement model (Engelhard et al. 2017). It is used to estimate national
food insecurity prevalence rates, and influences food and nutrition policy-making
decisions. Although the HFSSM includes polytomous items, item responses that are
collected with the HFSSM are dichotomized for analysis. This study examines the
use of a partial credit model for modeling the polytomous item responses, building
on previous studies that examine the use of alternate models with the HFSSM
(Nord 2012), and furthering the understanding of the psychometric properties of
this scale. The challenges and implications of modeling polytomous item responses
when measuring household food insecurity are also considered.

1 The Household Food Insecurity Survey Module

The full scale of the HFSSM consists of 18 items that describe the behaviors of
households that face difficulty meeting their food needs. The first ten items (Items
1–10) reference food hardships among adults in the household, generally. The last
eight items (Items 11–18) reference food hardships among children below the age
of 18 in the household. Half of the HFSSM items elicit dichotomous responses
(Yes/No) and half elicit polytomous, frequency of occurrence responses that are later
dichotomized for analysis. Some of the polytomous items are follow-up questions
for the dichotomous items that precede them. For example, item 5 is a follow-up
item that asks

(If yes to question 4) How often did this happen—almost every month, some months but
not every month, or in only 1 or 2 months?

where a response of “almost every month” or “some months but not every month”
is coded as a Yes, and “in only 1 or 2 months” is coded No. These frequency of
occurrence items are a source of local dependency that violates the assumptions
of the Rasch model. However, Nord (2012) formally assessed the consequences
of this local dependency for measurement of latent food insecurity and found that
the effect of failing to adjust for local dependency has a negligible practical effect.
To mitigate concerns about local dependency within our data, we combined the
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base and frequency follow-up questions into trichotomous items. We found similar
results to Nord’s (2012) investigation, concluding that not accounting for the local
dependency has negligible potential implications for our study.

In 2006, the Committee on National Statistics (CNSTAT) reviewed and assessed
the HFSSM, noting “frequency and duration are . . . important elements for the
USDA to consider in the . . . measurement of household food insecurity and indi-
vidual hunger” (Wunderlich and Norwood 2006, p. 4). This statement underscores
recommendation 5–1, which recommends exploring alternatives to the dichotomous
Rasch model by modeling the polytomous item responses rather than dichotomized
item responses (Wunderlich and Norwood 2006). Nord (2012) assessed this recom-
mendation, finding that neither the polytomous nor dichotomous Rasch model were
more strongly preferred, though the dichotomous model has advantages over the
polytomous model including its “transparency and ease of explanation” (p. 25).

The purpose of this study is to explore the use of a polytomous Rasch model with
the HFSSM data following the recommendations made by CNSTAT (Wunderlich
and Norwood 2006) and building on previous research in this area (Nord 2012).
The following research questions are addressed:

1. How does a polytomous Rasch model fit responses to the HFSSM compared to
the dichotomous Rasch model that the USDA currently uses?

2. What benefits exist to adopting a polytomous Rasch model over the dichotomous
Rasch model for food security measurement?

3. What are the implications for food security measurement and prevalence esti-
mates when using a polytomous rather than dichotomous Rasch model?

Moving to a polytomous Rasch model has the potential to lead to gains in
measurement precision and improved classification of household food security
status. Therefore, this study adds to the existing body of literature on food security
measurement and classification by considering CNSTAT’s recommendation for
enhancing measurements made with the HFSSM.

2 Methodology

2.1 Participants

The food security survey module the USDA designed is created in such a way that
households that are unlikely to have indicators of food insecurity are not screened
into the HFSSM. Therefore, our sample consists of low-income households more
likely to experience food insecurity. We also pooled several years of cross-sectional
data to ensure the statistical power of our analyses. This study included all
households who provided valid responses to the HFSSM in 2014–2016, who had
at least one child under the age of 18, and who were also below 185% of the federal
poverty line (N = 11, 511). We use the income threshold of 185% of the federal
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poverty line because it is the income screening threshold for a household to be
administered the HFSSM. In the CPS, households with income above 185% of the
federal poverty line that showed no signs of food stress are not administered the
HFSSM to reduce respondent burden. Households with income above 185% of the
federal poverty line that show signs of food stress are administered the HFSSM,
but they represent a small proportion of the households administered the HFSSM
(Engelhard et al. 2017; Nord 2012) and are omitted from our sample. For the Rasch
analyses, all households that had extreme scores—either 0 or 18 for the dichotomous
analyses and 0 or 26 for the partial credit analyses—were removed from the data
set. In psychometric and economic analyses of food insecurity in the United States,
reductions in sample size of this scale are not uncommon because of the screening of
households into the HFSSM. We had a final sample size of N = 6606. All analyses
were completed in the Rasch software, Facets (Linacre 2015).

2.2 Coding

Nord (2012) recommended several scales based on the structure and use of the
scale:

1. Polytomous scale: Responses were coded 0 for “never,” 1 for “sometimes” or
“yes, in only 1 or 2 months,” 2 for “often” or “yes, in some months but not every
month,” and 3 for “yes, in almost every month.” Dichotomous items were coded
0 for “no” and 1 for “yes.”

2. Ever during the year scale: Responses were coded 0 for “never” or “no” and 1
for “sometimes,” “often,” or “yes.”

In the dichotomous analysis, responses are coded 0 for “no,” “never true,” or “yes,
in only 1 or 2 months,” and 1 for “yes,” “often true,” “sometimes,” “yes, in almost
every month,” “yes, in some months but not every month,” and “yes, in only 1 or
2 months.” In the partial credit analysis, responses are coded 0 for “no” or “never
true,” 1 for “yes,” “often true,” or “yes, in almost every month,” 2 for “sometimes”
or “yes, in some months but not every month,” and 3 for “yes, in only 1 or 2 months.”

2.3 The Dichotomous Rasch Model

The dichotomous Rasch model is used by the USDA to calibrate the HFSSM
annually. This model describes the probability of a household endorsing an item of
the HFSSM as a function of the household’s latent food insecurity and the difficulty
of the item. In log-odds form, it is expressed as

ln

(
Pni1

Pni0

)
= θn − δi (1)
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where Pni1 is the probability of household n endorsing item i, Pni0 is the probability
of household n not endorsing item i, θn is the latent food insecurity measure (logit-
scale location) of household n, and δi is the severity measure (logit-scale location)
of item i (Rasch 1960/1980). Households and items are ordered along a line that
represents household food insecurity: Households with greater food insecurity are
expected to endorse more—and more difficult—items. Similarly, more difficult
items are expected to be endorsed by fewer—and more food insecure—households.
The Rasch model also meets the requirements for invariant measurement. These
requirements are:

Household (person) measurement

1. The measurement of households must be independent of the particular items
that happen to be used for the measuring: Item-invariant measurement of
households.

2. A household with greater food insecurity must always have a better chance
of affirming an item than a household with less severe food insecurity: Non-
crossing household response functions.

Item calibration

3. The calibration of the items must be independent of the particular households
used for calibration: Household-invariant calibration of test items.

4. Any household must have a better chance of affirming a less severe item than
a more severe item: Non-crossing item response functions.

Unidimensionality

5. Items and households must be simultaneously located on a single underlying
latent variable: Wright map (Engelhard 2013).

2.4 The Partial Credit Rasch Model

The partial credit Rasch model allows for the possibility of different numbers of
response levels for different items on the same test—for example, the HFSSM,
which has both dichotomous (Yes/No) items and polytomous (frequency of occur-
rence) items. Although the partial credit model allows for varying numbers of
response levels, it is essential that these response levels are still ordered in such
a way that an increase in score represents an increase in food insecurity (Engelhard
and Wind 2018). The partial credit Rasch model also provides individual threshold
estimates for each item. In log-odds form, it is expressed as:

ln

(
Pnik1

Pnik0

)
= θn − δik (2)
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where Pnik1 is the probability of household n endorsing category k for item i, Pnik0
is the probability of household n not endorsing category k for item i, θn is the latent
food insecurity measure (logit-scale location) of household n, and δik is the difficulty
measure (logit-scale location) of category k for item i (Engelhard and Wind 2018).
More response categories provide more information, which, in turn, provides greater
measurement precision (Bond and Fox 2005).

3 Results

3.1 Dichotomous Results

The Wright map (Fig. 1) locates households and items on a logit-scale line that
represents the latent construct, household food insecurity. Higher scores correspond
to greater food insecurity, for households, and fewer endorsements, for items. The
distribution of households is positively skewed, though the HFSSM items have good
spread along the line. The child-referenced items tended to be more difficult for
respondents to endorse. Summary results are presented in Table 1. The dichotomous
Rasch model explained 58.48% of the variance in the data. As indicated by
the Wright map, households had a low average measure of −2.63, indicating
low average food insecurity in this sample. Infit and outfit were acceptable for
households and items. Reliability was fairly high for both (0.82 and greater than
0.99, respectively). Table 2 presents the household fit statistics summary. Infit was
considered unproductive or distorting of measures for approximately 22.7% of
households. Outfit was unproductive or distorting for about 9.6% of households.

The item summary is presented in Table 3. Items 1, 2, and 3 were the easiest,
overall, for respondents to endorse. These items were household-level items that
asked respondents about their anxiety about food running out, their access to the
resources necessary to obtain more food, and their ability to afford balanced meals.
Items 16, 17, and 18 were the most difficult for respondents to endorse. These items
were child-referenced items that asked if children ever had to skip a meal and how
often that occurred, and if children were ever unable to eat for an entire day. Overall,
infit was good for all items. Outfit was poor for items 9, 10, 15, 16, 17, and 18, and
bad for items 1, 2, 3, and 11. It should be noted that items 1, 2, and 3 are the first
items of the adult-referenced items, and item 11 is the first of the child-referenced
items.



Polytomous Rasch 325

F
ig

.1
W

ri
gh

t
m

ap
of

th
e

di
ch

ot
om

ou
s

an
al

ys
is

of
th

e
H

ou
se

ho
ld

Fo
od

Se
cu

ri
ty

Su
rv

ey
M

od
ul

e
(H

FS
SM

)
ite

m
s.

H
ou

se
ho

ld
s

an
d

ite
m

s
ar

e
lo

ca
te

d
on

a
lo

gi
t-

sc
al

e
lin

e
th

at
re

pr
es

en
ts

th
e

la
te

nt
co

ns
tr

uc
t,

ho
us

eh
ol

d
fo

od
in

se
cu

ri
ty

.H
ig

he
r

sc
or

es
co

rr
es

po
nd

to
gr

ea
te

r
fo

od
in

se
cu

ri
ty

,f
or

ho
us

eh
ol

ds
,a

nd
fe

w
er

en
do

rs
em

en
ts

,f
or

ite
m

s



326 V. T. Tanaka et al.

Table 1 Summary statistics for the dichotomous analysis

Household Items

Measure
Mean −2.63 0.00
SD 2.14 2.85
Outfit
Mean 0.70 0.78
SD 1.10 0.52
Infit
Mean 1.00 0.97
SD 0.55 0.17
Separation statistic 2.13 40.40
Reliability of separation 0.82 > 0.99
χ2 (df ) 38607.9* (6605) 44850.1* (17)
N 6606 18
Variance explained by the Rasch model 58.48%

Table 2 Summary of household fit statistics

Dichotomous
Rasch

Polytomous
Rasch

Label Description Range
Infit
MSE

Outfit
MSE

Infit
MSE

Outfit
MSE

A Productive for
measurement

0.50 ≤ MSE < 1.50 3117
47.2%

2154
32.6%

3290
49.8%

2864
43.4%

B Less productive for
measurement, but
not distorting of
measures

MSE < 0.50 1984
30.0%

3817
57.8%

1791
27.1%

3276
49.6%

C Unproductive for
measurement, but
not distorting of
measures

1.50 ≤ MSE < 2.00 1152
17.4%

206
3.1%

1114
16.9%

183
2.8%

D Unproductive for
measurement,
distorting of
measures

MSE ≥ 2.00 353
5.3%

429
6.5%

411
6.2%

283
4.3%

Note. MSE is the mean square error

3.2 Partial Credit Results

In the Wright map (Fig. 2), households and items are once again located on a logit-
scale line that represents household food insecurity, where higher scores on the
latent construct correspond to greater food insecurity for households and greater
difficulty for items. The partial credit Wright map also includes the rating scale
structure of the polytomous items of the HFSSM. The distribution of households
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Table 3 Summary of the dichotomous and partial credit Rasch item analyses

Dichotomous Rasch Polytomous Rasch
Item Measure SE Infit Outfit Measure SE Infit Outfit

1 −5.33 0.04 1.01 1.72 −3.17 0.03 1.11 1.12
2 −3.95 0.03 0.95 1.53 −2.08 0.03 1.02 1.01
3 −3.29 0.03 1.17 1.51 −1.77 0.03 1.24 1.26
4 −1.53 0.04 0.72 0.50 −1.84 0.03 0.66 0.44
5 −1.71 0.03 0.79 0.63 −2.01 0.03 0.77 0.59
6 −0.52 0.04 1.31 1.11 −1.12 0.02 0.96 0.60
7 −0.09 0.04 0.87 0.56 −0.53 0.04 0.83 0.53
8 1.07 0.05 1.02 0.55 0.53 0.05 0.94 0.48
9 1.63 0.06 0.89 0.33 1.04 0.06 0.82 0.31
10 2.25 0.07 1.02 0.39 0.87 0.03 1.23 0.55
11 −3.01 0.03 1.31 1.58 −1.60 0.03 1.34 1.47
12 −1.57 0.04 1.11 1.04 −0.46 0.03 1.11 1.02
13 0.28 0.04 1.01 1.04 0.75 0.04 1.05 1.03
14 1.59 0.06 0.93 0.53 1.01 0.05 0.95 0.53
15 2.36 0.07 0.79 0.33 1.71 0.07 0.87 0.36
16 3.10 0.09 0.81 0.25 2.41 0.09 0.84 0.29
17 3.52 0.10 0.87 0.31 1.86 0.05 1.12 0.62
18 5.20 0.20 0.92 0.11 4.39 0.19 1.02 0.17

is still positively skewed and the HFSSM items still have good spread along the
line, with the child-referenced items tending to be more difficult for respondents
to endorse. The rating structure did vary from item to item. A summary table
of the analysis is presented in Table 4. The partial credit Rasch model explained
62.87% of the variance in the data. Households had an average measure of −2.91
(SD = 1.93). Infit and outfit were acceptable, and reliability was fairly high for
both households and items (0.83 and greater than 0.99 respectively). Overall, the
category statistics indicated the rating scales for the polytomous items functioned as
expected. Household fit statistics summary information is presented in Table 2. Infit
was considered unproductive or distorting of measures for approximately 23.1%
of households. Outfit was unproductive or distorting for about 7.1% of households
(Table 2).

The item summary for the partial credit Rasch analysis is also presented in
Table 3. Items 1, 2, and 3 were, again, the easiest items for respondents to endorse.
Items 16, 17, and 18 were the most difficult for respondents to endorse, with item
18 being almost twice as difficult as item 16, the second-most difficult item. Infit
was good for all items overall. Outfit was poor for items 4, 8, 9, 15, 16, and 17. This
represents an improvement in fit over the dichotomous Rasch model that had more
instances of misfit, and several cases of serious misfit.
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Table 4 Partial credit category statistics

Household Items

Measure
Mean −2.91 0.00
SD 1.93 1.95
Outfit
Mean 0.67 0.99
SD 0.84 0.18
Infit
Mean 1.01 0.69
SD 0.62 0.37
Separation statistic 2.19 31.45
Reliability of separation 0.83 > 0.99
χ2 (df ) 49353.3* (6607) 28743.1* (17)
N 6608 18
Variance explained by the Rasch model 62.87%

4 Discussion

The purpose of this study was to compare the dichotomous Rasch model currently
in use by the USDA for food security measurement to a partial credit alternative
that takes advantage of the polytomous structure of the HFSSM’s items. This is in
response to suggestions made to improve the measure (Wunderlich and Norwood
2006) and is the first study since Nord (2012) to address these recommendations
and concerns. We are also the first to examine household (person) fit using the
polytomous Rasch model for food security; prior to this work, household fit had
only been studied using the dichotomous Rasch model (Engelhard et al. 2017).

This paper expands our knowledge of household fit in the context of food
security, which has a substantive effect on the food security monitoring used to
evaluate the effectiveness of food assistance programs such as the Supplemental
Nutrition Assistance Program (SNAP). The first research question was a comparison
of the dichotomous and polytomous Rasch model. The results of this study
demonstrate that, as Nord (2012) pointed out, neither model is clearly preferred.
Both had adequate model-data fit, though the partial credit model explained more
variance and had better outfit than the dichotomous model. The second research
question asked is what benefits exist to adopting the partial credit model over the
dichotomous model. As Nord (2012) noted, the dichotomous Rasch model is both
easy to implement and to explain to policymakers; therefore the results of our
research do not suggest moving away from USDA’s current practice of using this
model.

The final research question addressed the implications for food insecurity
measurement when selecting the polytomous over the dichotomous model. The
use of a polytomous model has the benefit of gains in measurement precision
and an improvement in household food security status classification decisions
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Table 5 Partial credit category statistics

Rasch-Andrich thresholds
Item Cat score Count Cum. % Outfit MS Measure SE

1 0 1115 17 1.1
1 4015 78 1.1 −2.22 0.04
2 1478 100 1.2 2.22 0.04

2 0 2241 34 1.1
1 3448 86 0.9 −1.97 0.03
2 919 100 1.0 1.97 0.04

3 0 2840 43 1.3
1 2865 86 1.2 −1.63 0.03
2 903 100 1.3 1.63 0.05

6 0 4383 66 1.1
1 510 74 0.3 0.24 0.04
2 985 89 0.5 −1.15 0.05
3 730 100 0.9 0.91 0.05

10 0 6137 93 1.6
1 108 95 0.2 1.39 0.07
2 205 98 1.0 −1.59 0.08
3 158 100 1.2 0.20 0.10

11 0 3097 47 1.4
1 2657 87 1.5 −1.52 0.03
2 854 100 1.4 1.52 0.05

12 0 4345 66 1.2
1 1843 94 1.0 −1.34 0.03
2 420 100 1.0 1.34 0.06

13 0 5589 85 1.1
1 834 97 1.0 −0.82 0.04
2 185 100 1.4 0.82 0.09

17 0 6440 97 1.0
1 36 98 0.4 1.90 0.10
2 86 99 1.1 −2.24 0.12
3 46 100 0.5 0.34 0.19

(Nord 2012). Therefore, the utility of this model over the dichotomous model
should be investigated further. This would include a closer inspection of the
polytomous coding scheme. The HFSSM is used to estimate and summarize food
insecurity prevalence rates in the United States and is targeted by policymakers
for interventions intended to reduce food insecurity and improve nutrition across
the country. This study is important because it considers an alternate method of
modeling household food insecurity that could lead to an improved understanding of
the food insecurity measure and of food insecurity prevalence in the United States.
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Classical Perspectives of Controlling
Acquiescence with Balanced Scales

Ricardo Primi , Nelson Hauck-Filho , Felipe Valentini ,
and Daniel Santos

Abstract Acquiescence, the tendency to agree regardless of the content of an
item, is a commonly observed response style that may distort respondent scores.
In the current study, we: (a) revised basic concepts of methods for measuring and
controlling acquiescence, (b) describe some important properties of balanced scales,
(c) examine if methods of controlling acquiescence provide ipsative scales, (d)
explain the mechanism underlying the correction of acquiescence, and (e) compare
the centering and standardizing correction methods. By using simulated data, we
demonstrate that balanced scales are automatically controlled for acquiescence and
that the scoring process does not yield ipsative scales. By contrast, the standardizing
method of correction in fact undo the correction that takes place when using the
centering method.

Keywords Acquiescence bias · Balanced scales · True-keyed items false keyed
items

1 Introduction

1.1 What Is Acquiescence?

Acquiescence is the tendency to endorse the highest Likert categories regardless of
the content of the item. One way to examine acquiescence is to include positively-
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keyed (PK) and negatively-keyed items (NK), that is, markers of opposite poles
of a trait. For instance, suppose an item designed to measure negative emotional
regulation, such as i+: “I adapt easily to new situations without worrying too
much,” for which students must use the following scale to answer: “1” (not at all
like me), “2” (little like me), “3” (moderately like me), “4” (a lot like me), and “5”
(completely like me). Also, suppose an antonym paired item is included, such as
i−: “I have trouble controlling my anxiety in difficult situations.” A student very
high in acquiescence will tend to endorse categories “4” or “5” of both items, which
is semantically inconsistent. By contrast, a student who scores high in emotional
regulation and low in acquiescence, that is, a person whose item responses are
primarily driven by the trait content, will tend to give opposite responses, for
example, “4” to i+ and “2” to i−.

Acquiescence represents a method factor, that is, a systematic source of variance
unrelated to the target construct that researchers intend to measure (systematic error
of measurement, McCrae 2015). It accounts for a sizable portion of the item’s
variance in questionnaires, especially when assessing children. It can distort the
inter-item covariance matrix of an instrument (internal structure validity), and bias
correlations with external variables (criterion validity, see: Primi et al. 2019a, b, c).

Some researchers propose that acquiescence will manifest as an overall tendency
to agree with positively keyed items from orthogonal trait factors. Acquiescence
indeed will affect these scales (e.g., by increasing their correlation), so that it
will be confounded to the true trait. People with high observed scores because
of true elevations in all measured factors will be undistinguishable from people
that have their scores inflated because of acquiescence. Therefore, in those scales
composed of only positively keyed items, acquiescence is confounded with content
trait and cannot be properly disentangled. However, it might be identified if we
have a proper number of logical antonyms measuring both ends of a construct. This
view agrees with Hofstee et al. (1998) who wrote “acquiescence may be defined
as the discrepancy between the average over opposites and the scale midpoint. In
this definition acquiescent responding is illogical and is therefore best treated as an
artifact” (p. 898).

We also stress that negatively keyed items should be constructed avoiding the
word “not” (‘I am not too talkative’), and rather using affirmative statements
measuring the low end of a construct (‘I am a bit quiet’). This will avoid the
burden of higher cognitive load on negatively keyed items, when contrasted to their
positively keyed counterparts.

Research on acquiescence is moving to more advanced modeling approaches
using Multidimensional Item Response Theory (MIRT, see Maydeu-Olivares and
Coffman 2006; Primi et al. 2019b; Savalei and Falk 2014). Nevertheless, some
misconceptions still appear in the literature. Our purpose in this chapter is (a) to
revise basic concepts of methods for measuring and controlling acquiescence, (b)
describe some important properties of balanced scales, (c) examine if methods of
controlling acquiescence yields ipsative scales (d) explain the mechanism underly-
ing the correction of acquiescence, and (e) compare the centering and standardizing
correction methods. We propose a simple simulation providing R code to illustrate
the concepts with visualizations from simulation.
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1.2 How to Measure and Control for Acquiescence?
Re-centering Approach

Consider a six-item scale composed by three pairs of antonym items scored in a
five-point Likert scale using the previously described category labels of similarity
to self. Let i = 1, 2, 3 be positive keyed items (PK), i = a, b, c be the negative ones
(NK), and xij be the original response of subject j on item i. The aquiescence index
acqj of a subject j is given by:

acqj = 1

6

[
3∑

i=1

xij +
c∑

i=a

xij

]
(1)

Note that we are averaging items before reversing negatively phrased items
to capture the overall tendency to agree with the scale categories. Since these
items measure the same trait, but come from opposite ends of the trait continuum,
agreement with positive items should co-occur with disagreement with negative
items. Therefore, the expected score on this index will be acqj = 3. If acqj > 3 or
acqj < 3, this will indicate inconsistent responding in the form of high acquiescence
or disacquiescence (i.e., disagree more than agree), respectively. Note that, in this
example, all three items are logical opposites, the reason why the average over
opposites is an acquiescence index acqj.

When a subject answers “5” (completely like me) to an extraversion item as “I
am often too talkative” and “3” (moderately like me) to its logical opposite “I am
often too quiet,” his or her acquiescence index will be acqj = 4, that is, 1 point
away from the scale mid-point of 3. To this difference from the scale mid-point and
the acquiescence index we call discrepancy. So, in order to re-center this subject
response we can add the discrepancy 3–4 = −1 of each item response, recoding “3”
into “2” and “5” into “4.” In this way, recoded item means are settled back to the
scale mid-point of 3. This method, proposed by Ten Berge (1999), is called re-center
approach, and the recoded scores are controlled for acquiescence.

In brief, the re-centering procedure is done by: (a) calculating the acquiescence
index acqj over semantic opposite pairs for each individual j; (b) recoding original
item responses by subtracting the scale’s midpoint Mo of the acquiescence index:
Mo − acqj, and then adding this discrepancy to the original responses; (c) reversing
negative items; and (d) calculating the total or average scores.

1.3 Some Properties of Balanced Scales

One interesting feature of balanced scales – those in which a positive keyed
item is balanced with a negative opposite – is that their average/sum scores are
automatically controlled for acquiescence. Let scrj be the classical average/total
score on the example of six items. If we do a little regrouping it will be:
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scrj = 1

6

[
3∑

i=1

xij +
c∑

i=a

(
6 − xjj

)] = 1

2

[∑3
i=1 xij

3
−

∑c
i=a xij

3

]
+ 3 (2)

Now let scr. recj be the individual j recoded score using the procedure outlined:

scr.recj = 1
6

[∑3
i=1

(
xij + (

3 − acqj

)) + ∑c
i=a 6 − (

xij + (
3 − acqj

))]

scr.recj = 1
6

[∑3
i=1 xij + 9 − ∑3

i=1 acqj + 18 − ∑c
i=a xij − 9 + ∑c

i=a acqj

]

scr.recj = 1
6

[∑3
i=1 xij − ∑c

i=a xij + 18
]

scr.recj = 1
2

[∑3
i=1 xij

3 −
∑c

i=a xij

3

]
+ 3

(3)

Therefore, scrj = scr. recj. In balanced scales, there is no need for additional
procedures, because the classical score is automatically controlled for acquiescence.

This is a very important characteristic to remember. Total scores are controlled
for acquiescence variance. However, item scores are not. When researchers run
item factor analysis on scales that contain true and false keyed items, raw item
score variance is a mix of true variance, acquiescence, other systematic factors,
and random error. The acquiescence often distorts the factor structure, producing
two factors that separate positively from negatively phrased items, even when these
items are supposed to measure a unidimensional construct (see Primi et al. 2019a).
Based on these results from factor analysis, some might be tempted to conclude that
items cannot be summed up because they measure two different factors.

However, ironically, when summing items from balanced scales, acquiescence –
that is, the core reason that distort correlations and create a two-factor structure –
is partialled out, yielding a cleaned total score close to a unidimensional solution.
This can be verified by running item factor analysis on item scores controlled for
acquiescence using the formula in step b outlined above (Primi et al. 2019a; Soto
and John 2017, p. 2).

1.4 Noise Canceling Mechanism

The way balanced audio cables work offers a good analogy for understanding what
happens on balanced scales. Balanced audio cables use two wires to carry two
copies of the audio signal from a source, for instance a microphone. But the signal
polarity is reversed in one of the wires. When external noise comes along the way
and interferes with the signal while it travels to the receiver, it will affect both
wires/signals. Since noise interfere on both wires, this results in two copies of the
noise with positive sign. The receiver device flips back the signal from the reversed
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wire. While reversing it will flip the voice signal from negative to positive, and it will
flip noise in this wire from positive to negative. Now we end up with two copies of
the noise: one negative and one positive. Finally, when the two signals are summed
up in the receiver, noise cancels out, and the signal remains intact and amplified.

This is analogous to what happens with balanced personality scales: Person’s
true trait is the source signal we are interested in; acquiescence is the noise that
comes along with the source signal. The inclusion of items that are logical bipolar
opposites will make a copy of the signal with a positive sign – on true keyed items –
and a negative sign – on false keyed items. Similarly, acquiescence will influence
both items by introducing a positive sign (overall tendency to agree). When scoring
the test, we reverse negative items and sum them up just as the audio device does
with signal from two wires. Therefore, the source signal is intact and amplified, and
acquiescence cancels out.

To make the analogy clearer, let us assume a simple model with no measurement
errors and item effects, that is, no differences in item difficulties (see Primi et al.
2019c, for a MIRT formulation of this, conceiving acquiescence as differential
person functioning). In this model, agreement with the item i by a person j, xij is
a function of a person’s true trait Tj and acquiescence Aj. In positively phrased
items xij = Tj + Aj whereas in negatively phrased items xij = − Tj + Aj. The
core part of the formula describing the scoring procedure is the difference between
positive and negative items

∑3
i=1 xij − ∑c

i=a xij . So, for a balanced test with
two items scr. recj = 1/2 (Tj + Aj − (−Tj + Aj)) = Tj. It is interesting that this
noise canceling mechanism was used intentionally by Mirowsky and Ross (1991) to
create a measure of locus of control that have acquiescence and social desirability
canceled.

1.5 Does Re-centering Produce Ipsative Scores?

Some researchers name the centering transformation as an ipsative transformation.
Chan and Bentler (1998) explain what an ipsative scoring is: “Let x = (x1 . . . xp) be
a p ×1 column vectors such that

∑p

i=1 xi = l′x = c where l is a p × 1 unit vector
and c is constant scalar. So x is a p-dimensional data vector with ipsative property”
(p. 215).

The transformation outlined above that subtracts acqj, the subject mean, from
each item score xij producing a transformed score x′

ij = xij − acqj is indeed an
ipsative transformation because if we sum these transformed scoresx′

ij for all items
they will sum to zero for each individual:

3∑
i=1

(
xij − acqj

) +
c∑

i=a

(
xij − acqj

) = 0 (4)
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Ten Berge (1999) examined properties of ipsative transformation of balanced
personality scales containing NK and PK items. He noted that balanced scales are
a special case with peculiar properties. The detail that needs to be remembered
is that when calculating subjects’ scores, we reverse half x′

ij item scores of NK
items and then calculate average item scores. Because of this reversal, the scores are
not further ipsative. There will be between-subject variance left. But this variance
is disentangled from acquiescence (the variance related to acqj). If scales are
composed with only true keyed items or only false-keyed items, then we will have
ipsative scores. This is the idea of Ten Berge (1999) paper’s title: “A Legitimate
Case of Component Analysis of Ipsative Measures, and Partialling the Mean as an
Alternative to Ipsatization.”

2 Simulation

2.1 What Does Correction for Acquiescence Really Do?

In order to understand the result of the acquiescence correction, we prepared a
simple simulation in R1. We first simulated all response patterns of a balanced scale
of six items: three positively keyed and three negatively keyed. All items are scored
on a five-point Likert scale. This resulted in 56 = 15,625 possible response patterns,
which composed a database for the analyses that follows. Using this database, we
computed scrj, acqj, scr. recj. Upper part of Figure 1 shows the scatter diagram of
scrj vs scr. recj colored by acqj. It can be observed (upper part) that the classical
scores are the same as controlled for acquiescence scores.

Lower part shows scrj vs acqj, illustrating how acquiescence correction operates.
When acquiescence is equal to the expected value of 3 under a consistent responding
(x-axis), that is, negative item responses reflected from positive item responses,
scores have a full amplitude of variation from 1 to 5 (y-axis). As responses deviate
from the expected value either because individuals are acquiescent acqj > 3 or
disacquiescent acqj < 3, scores amplitude is shrunk. So, when individuals agree with
items in an inconsistent manner, their scores are regressed toward the mid-point of
the scale. In extreme cases, when individual’s acquiescence is 1 (pattern 11111) or
5 (pattern 55555), scores will equal the mid-point with no variance.

Figure 1 also illustrates how acquiesce variance is being partialled out. Imagine
that a sample has many acquiescent individuals with acqj = 4. The amplitude of
their scores will have less variance. Hence, the total variance will be less than the
maximum amplitude possible for a sample of consistent responders with acqj = 3.
This happens because part of the item response variance is due to acquiescence and,
therefore, it is partialled out.

1R code is available here: http://www.labape.com.br/acqu_mirt/methods_of_recoding.html
see also: https://github.com/rprimi/acqu_mirt

http://www.labape.com.br/acqu_mirt/methods_of_recoding.html
https://github.com/rprimi/acqu_mirt
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Fig. 1 Correlation of scrj vs scr. recj colored by acqj (upper panel) and scr. recjvs acqj (lower
panel)

2.2 What Happens When We Center and Standardize
by an Individual’s Spread?

Another method of acquiescence correction proposes that after subtracting the indi-
vidual’s mean on all items (acquiescence index acqj) we divide by the individual’s
standard deviation. Hofstee et al. (1998) called this method “row standardization
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that additionally corrects for individual differences in spread,” and they warn us
that “contrary to the case of acquiescence a cogent rationale for this correction is
lacking” (p. 901).

Using our simulated database, we computed the standardized score:

scr.z.recj = 1

6

[
3∑

i=1

[(
xij − acqj

)
/sdj

] − 1
c∑

i=a

[(
xij − acqj

)
/sdj

]]
(5)

The formula for the individual standard deviation can be written as:

sdj =
√√√√

(∑i=6
1 x2

ij

6
− acq2

j

)
(6)

Note that standard deviation is dependent on squared acquiescence. Figure 2
shows the relationship between the subject’s standard deviation (y-axis) and his
acquiescence index (x-axis) making this dependency clear. Formula (6) has a
quantity plus − 1 multiplying acquiescence squared so it has the shape of an inverted
parabola. Note that, as acquiescence diverge from its expected value of 3 on both
directions (to 1 or 5), the standard deviation decreases.

Note that the numerator of formula (5) is the re-centering approach, which
decreases the item score – i.e., makes the item score less extreme, closer to the
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Fig. 2 Relationship between the individuals’ acquiescence index (x-axis acqj) and their standard
deviation (sdj)
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Fig. 3 Relationship between the individuals’ standardized score and their original score colored
by individual’s standard deviation (spared of responses sdj)

scale midpoint – proportionally to high acquiescence (or increases item score
proportionally to high disacquiescence). Nevertheless, dividing this transformed
score by sdj will expand the amplitude of item score back, since high acquiescence
is related to low sdj.

Figures 3 and 4 illustrate these relationships. Figure 3 shows how the stan-
dardized score (y-axis) is related to the original score (x-axis) that is the result of
re-centering approach with points colored by acquiescence. Note that individuals
with high acquiescence had original scores with reduced amplitude (around 2–4)
due to the automatic correction, but they are mapped onto the same amplitude −1
to 1 as individuals with expected acquiescence of 3.

Figure 4 shows standardized score on the y-axis versus acquiescence on the x-
axis, similar to lower graph of Figure 1. Note that this figure does not have the
diamond shape as before, meaning that the correction for acquiescence is not work-
ing properly. Even individuals with high acquiescence (or high disacquiescence)
have the same amplitude on the recoded scores (y-axis). Another way to interpret
this figure is that standardized scores are unrelated to acquiescence. In conclusion,
standardizing misses the essence of controlling for acquiescence.

Imagine a subject A, that endorses “5” (completely like me) to an item “I am too
talkative” and “1” (not at all like me) to “I am too quiet.” Now imagine a subject B,
that also endorses “5” (completely like me) to the first item, but “4” (a lot like me)
to the second item. Subject A will have a scrj =5 and scr. z. recj = 1.5 indicating
high extraversion. Subject B will have a score scrj =3.5. The model will regress
the subject B score toward the mid-point due the inconsistent pattern. Is person
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Fig. 4 Relationship between individual’s standardized score and individual’s acquiescence col-
ored by the standard deviation (spared of responses sdj)

B talkative or quiet? It is difficult to know considering his inconsistent response
pattern.

Importantly, subject B standardized score will be scr. z. recj = 1.5 indicating
a similar level of extraversion to subject A. The logic of standardized score is that
person B uses only a tiny gradient of the full amplitude of the scale (4 and 5). Person
B has a sdj = .5 compared to sdj = 2 of Person A. Therefore, this method considers
this tiny deviation as indicative of a high level of extraversion in the context of a
restricted use of the scale. This method standardizes the scale across subjects.

3 Discussion

We revised several basic properties of measuring and controlling for acquiescence.
We emphasize four key conclusions that are important for research practice. First,
we conclude that the mainstream unfavorable view about negatively phrased items
is based on a questionable practice of internal structure analysis (Suarez-Alvarez et
al. 2018). Researchers usually run item factor analysis on raw responses without
controlling for acquiescence. As a consequence, results will likely show factors
grouping PK items separate from NK items. This will lead to a conclusion advising
that scales should be splitted into two factors or negative items should be avoided
(Gehlbach and Artino 2017). Nevertheless, as we have shown, when we sum PK
and NK items, a “noise canceling” mechanism operates, and part of the cause for the
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separation of the two factors is removed from the total score. Our conclusion advises
that researchers should run item factor analysis based on recoded item scores, as
this removes acquiescence systematic error, producing unbiased item-correlation
matrices that, in turn, will provide better evidence about whether items conform to
a unidimensional bi-polar solution (Primi et al. 2019a).

Second key point refers to the method of measuring acquiescence. We concluded
that good semantic opposite pairs requiring PK vs. NK items are needed to measure
aquiescence as inconsistent responding. Other operationalizations do not require
NK items and propose averaging agreement over several uncorrelated dimensions
of scales composed of PK items (Wetzel et al. 2016). It can be inferred from our
demonstration that scales composed of items with the same key (only PK or only
NK) will not create the noise canceling mechanism.

The third key point refers to the methods of correction. This study shows
graphically that the correction is essentially a “partialing out” action that removes
acquiescence variance from the item scores (as was explained by Ten Berge 1999).
By using this procedure, we can expect the scores validity to increase at the level
of individuals. However, after correction, we shrink extreme scores that regress to
the mid-point because we do not have much confidence on item scores to assert
individual’s salience in one or another direction due to inconsistent responding. This
is not exactly a more valid score. By contrast, when we study groups of individuals
and correlations between measures, we do have more valid coefficients due to the
clearance of a systematic error that might suppress or inflate correlations (see: Primi
et al. 2019a).

Still one conclusion related to the method of correction is that centering is the
method that should be used. We have shown that row standardization may undo the
correction. Hofstee et al. (1998) has warned about the need of more studies for this
method. We consider that studies on response process and cognitive laboratories will
be important to shed light on the underlying processes of inconsistent responding
or agreement behavior. If inconsistent responding over semantic opposites is due
to general idiosyncratic restriction in the use of the full Likert categories, then
row-standardization that equate scale use is justified. Alternatively, if inconsistent
responding is more related to Messick’s (1966) “interpretative acquiescence” related
to verbal comprehension skills, then only the centering method should be used.

Last, we highlight the mechanism of noise canceling as a clever method for
identifying and disentangling systematic error from true trait variance. Interesting
examples of using this mechanism in other types of bias (like defense bias) is tested
by Mirowsky and Ross (1991). This is an example of experimental manipulation of
item design features to create more pure measures as it is proposed for cognitive
testing by Embretson (1994).

Finally, we point to some limitations of this study. An important one is the
classical test theory assumptions of equal item difficulties of antonym pairs. Another
limitation is the restriction of our simulations to balanced scales only. An interesting
follow-up study would be to relax these assumptions with MIRT methods and
investigate the scale properties when items are unbalanced as it is done in some
examples in Ferrando and Lorenzo-Seva (2010), Primi et al. (2019b) and Savalei
and Falk (2014).
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Testing Heterogeneity in Inter-Rater
Reliability

František Bartoš , Patrícia Martinková , and Marek Brabec

Abstract Estimating the inter-rater reliability (IRR) is important for assessing and
improving the quality of ratings. In some cases, the IRR may differ between groups
due to their features. To test heterogeneity in IRR, the second-order generalized
estimating equations (GEE2) and linear mixed-effects models (LME) were already
used. Another method capable of estimating the components for IRR is generalized
additive models (GAM). This paper presents a simulation study evaluating the
performance of these methods in estimating variance components and in testing
heterogeneity in IRR. We consider a wide range of sample sizes and various
scenarios leading to heterogenous IRR. The results show, that while the LME and
GAM models perform similarly and yield reliable estimates, the GEE2 models may
lead to incorrect results.
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1 Introduction

Ratings by multiple raters are used in assessing quality of scientific articles,
grant proposals or job candidates. The credibility of ratings is contingent upon
its reliability, validity, and fairness (American Educational Research Association,
American Psychological Association, and National Council on Measurement in
Education 2014). One type of reliability, the inter-rater reliability (IRR), measures
the degree of consistency between raters. It can be defined as the ratio of true score
variance to total score variance (Lord 1959; Novick 1966) which in the simplest
case corresponds to the intra-class correlation coefficient in a random-effect model.

Furthermore, the IRR may differ between groups. For example, Martinková et
al. (2018) proposed linear mixed-effect models (LME) to account for differences
in variance terms between groups and confirmed significant differences in IRR
when rating internal vs. external applicants. Whereas Mutz et al. (2012) utilized the
second-order generalized estimating equations (GEE2) and confirmed differences
in IRR in ratings of grant proposals from different disciplines. A question arises
which of these two, or other possible approaches is superior for testing heterogeneity
in IRR.

The aim of this study is to compare precision of different procedures in testing
differences in IRR between two groups. We present a simulation study comparing
LME, GEE and a newly considered approach based on generalized additive models
(GAM). We designed a simulation study testing how do individual methods compare
across scenarios in which the heterogeneity is introduced by differences in structural
variances (variance of the random-effects in the LME framework), differences
in residual variances, differences in means of the ratings, or their combination.
Moreover, we varied the number of ratees and raters to explore how sample size
influences precision of estimation of the individual model parameters and IRR itself.

2 Methods

2.1 Inter-Rater Reliability

In cases with nested measurements, such as the case of ratees rated by multiple
raters, the IRR1 might be estimated using a variance decomposition and calculating
the intra-class correlation (ICC) (McGraw and Wong 1996; Shrout and Fleiss 1979).
In the most trivial example, when assuming the only structural effect causing
differences in ratings being the ratees themselves, the ICC can be described by a
single random intercept mixed-effect model (Eq. 1) with the observed jth rating of

1We are using IRR to refer to single-rater IRR in the paper.



Testing Heterogeneity in Inter-Rater Reliability 349

ith ratee Yi,j modeled as the sum of overall mean μ, rate-specific intercept αi and
random error εi. j

Yi,j = μ + αi + εi,j . (1)

The IRR is then defined as a proportion of the ratee variance σ 2
α to the overall

variance in ratings (Eq. 2), which corresponds to ICC

IRR = σ 2
α

σ 2
α + σ 2

ε

. (2)

Even in this trivial case, heterogeneity in the IRR might emerge due to differences in
the structural variance σ 2

α – the variability of the ratees’ true score, due to differences
in the residual variance σ 2

ε , or their combination. Although possible differences in
the overall mean ratings μ do not affect the (2) directly, they might lead to a biased
estimate if they are not accounted for in (1).

2.2 The Second-Order Generalized Estimating Equations

One way of estimating the IRR is by using the GEE2. Generalized estimating
equations were originally introduced as a way of dealing with clustered data by
using a “working correlation matrix” easing the computation in comparison to
mixed-effect models (Lipsitz and Fitzmaurice 2008). GEE2 in comparison to the
generalized estimating equations as introduced by Liang and Zeger (1986) allow
not only to specify the model for the mean (Eq. 3) but also the residual variance
(Eq. 4) and intra-class correlation (Eq. 5), to depend on a set of covariates (Yan
and Fine 2004). We consider only a specific case in which the covariate is group
membership, thus the Eqs. (3), (4), (5) consist only of group-specific (g) intercepts
γ transformed to appropriate parameter (group specific mean μg, residual variance
σ 2

ε,g and ICCg) by a given link function (f1, f2, f3 respectively).

f1
(
μg

) = γ1,g, (3)

f2

(
σ 2

ε,g

)
= γ2,g, (4)

f3
(
ICCg

) = γ3,g. (5)
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2.3 Linear Mixed-Effect Models

LME models offer a different way of accounting for clustering in observed ratings
Yi, j, g of jth rating of ith individual from group g by fully specifying joint distribution
within clusters via latent variables (Eq. 6). In contrast to GEE2, they do not specify a
model for ICC but random-effects directly, leading to estimates of the group-specific
structural variances σ 2

α,g, assuming normally distributed random effects with mean

zero, group specific residual variance σ 2
ε,g, assuming normally distributed residuals

with mean zero, and group specific mean μg

Yi,j,g = μg + αi,g + εi,j,g. (6)

The mixed-effect models can be estimated either in a classical frequentist
framework using maximum or restricted maximum likelihood (ML, REML) or by
Markov Chain Monte Carlo (MCMC) in a Bayesian framework (Browne and Draper
2006).

2.4 Generalized Additive Models

The GAM models (Wood 2017) are generally fitted using penalized likelihood with
quadratic penalties and generalized cross-validation (GCV) estimates of unknown
penalization constants. LME models can be viewed as a special case of this
general formulation, where the penalty matrix has (somewhat unusually in the
context of GAMs motivated by smoothing) full rank, leading to more convenient
computations. Penalty coefficients are related to the variance of random effects. In
our context, we view (part of the) GAM framework just as a tool for alternative and
flexible estimation of LME models.

3 Simulation Study

3.1 Data Generation

The data generating mechanism corresponds to the LME model specification in
Eq. 6 with a given number of ratees (I) from two groups (g) who are being rated
J times. Equation 6 implies the average rating of ratees (μg), structural variance
(σ 2

α,g), and residual variance (σ 2
ε,g) resulting in group-specific IRR

IRRg = σ 2
α,g

σ 2
α,g + σ 2

ε,g
. (7)
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Table 1 The simulation scenarios setting

Scenario μ1 μ2 σα, 1 σα, 2 σε, 1 σε, 2 IRR1 IRR2

1 0.00 0.00 0.67 0.67 0.74 0.74 0.45 0.45
2 0.00 0.00 0.67 0.67 0.67 0.82 0.50 0.40
3 0.00 0.00 0.60 0.74 0.74 0.74 0.40 0.50
4.1 0.00 0.00 0.60 0.73 0.66 0.81 0.45 0.45
4.2 0.00 0.00 0.73 0.60 0.66 0.81 0.55 0.35
5 −0.20 0.20 0.67 0.67 0.74 0.74 0.45 0.45
6 −0.20 0.20 0.67 0.67 0.67 0.82 0.50 0.40
7 −0.20 0.20 0.60 0.74 0.74 0.74 0.40 0.50
8.1 −0.20 0.20 0.60 0.73 0.66 0.81 0.45 0.45
8.2 −0.20 0.20 0.73 0.60 0.66 0.81 0.55 0.35

With values inspired by results of Martinková et al. (2018) we manipulated standard-
ized mean differences between the groups (μ2 − μ1 = 0, 0.4), structural variance

ratios
(
σ 2

α,1/σ
2
α,2 = 1, 1.5

)
, and residual variance ratios

(
σ 2

ε,1/σ
2
ε,2 = 1, 1.5

)
, while

constraining the overall variance to 1 and the mean IRR across groups to 0.45. This
led to eight simulation scenarios, with scenarios 4 and 8 split into two subscenarios
depending on whether the structural and residual variance ratios differed in the same
or the opposite direction (Table 1). Moreover, we manipulated the number of times
the ratees were rated (J = 3, 5) and the number of ratees per group (I = 25, 50, 100,
200) in each scenario. In total, 10 (scenarios including subscenarios) × 2 (number
of ratings) × 4 (number of ratees) = 80 conditions were simulated, 1000 times each,
implying 80,000 randomly generated datasets. Code for the data generating process
is provided in the Appendix.

3.2 Model Implementation

The GEE2 models were estimated in R (R Core Team 2019) using geepack
package (Halekoh et al. 2006) with fully iterated jackknife variance estimator,
exchangeable covariance matrix, identity link to mean, exponential link to the
residual variance, and modified Fisher-z transformation restricting the ICC to
[−1, 1] interval as in Mutz et al. (2012). All the remaining settings of geese()
function were left at their default values, with the maximal number of iterations
being increased to 500 just for the case of slower convergence.

To fit LME models, we used three types of implementation as specified below.
First, the lme4 package (Bates et al. 2015) was used as in Martinková et al. (2018).
Because lme4 does not allow for the specification of the residual variance in
LME, we also used the nlme package (Pinheiro, Bates, DebRoy, Sarkar, and R
Core Team 2019). Finally, Bayesian estimates through MCMC were implemented
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through customized models written in Stan (Carpenter et al. 2017) and fitted via
the rstan package (Stan Development Team 2019).

The LME with lme4 package were fitted using REML with default settings.
The results were bootstrapped 1000 times, as in Martinková et al. (2018), in
order to obtain the standard errors for the structural and residual variance and the
IRR estimates with confidence intervals (CI). In the case of nonconvergence, the
nonconvergent fit was updated using 20,000 additional function evaluations.

In models fitted with the nlme package the structural variance was specified
using the “pdDiag” argument in random, and the residual variance by the “varI-
dent” argument in weights, in order to allow variances to differ by group. The
models were fitted by REML with all other settings kept at default values. All the
transformations and computation required for obtaining the final estimates and their
standard errors, including the one IRR, were done by a delta method implemented in
the car package (Fox and Weisberg 2019), which is a method for error propagation
that allows to obtain an approximate distribution for a function of an asymptotically
normal statistical estimator (Doob 1935). In the case of nonconvergence, the number
of iterations, optimizations steps, and objective function evaluations were increased
to 500 and initial estimate refinements to 50.

The Stan models were written with identity link to the dummy coded group
means, structural variances, and residual variances. For all parameters estimated
using Stan, 95% CI were computed using the samples from the posterior distribu-
tion. After a preliminary check of computations, we used a noncentral parametriza-
tion for the models with i = 25, and central parametrization otherwise (Betancourt
and Girolami 2015). We used a normal prior distribution with mean 0 and standard
deviation 1 for the means and a half-normal prior distribution with mean 0 and
standard deviation 1 for the structural and residual variances. The models were
fitted using Hamiltonian Monte Carlo with two chains and iterations set to 2000 out
of which 1000 was set aside for warm-up. All the remaining settings were kept at
the default values. In the case of nonconvergence, the average proposal acceptance
probability was increased to 0.95 and the maximum tree-depth to 15.

The GAM models were fitted using the mgcv R package (Wood 2011) which
allows estimating the random-effects using a “smoother function” – which leads
to penalized likelihood estimation. The model specification for residual variance
requires gaulls family function, however, we did not manage to set the optimizer in
a way that would not produce underestimated estimates for the structural variance
across all our simulation scenarios. We, therefore, used model facilitating Gaussian
family function which does not allow to specify a model for the residual variance.
The random effects were specified using a “re” type spline and the models were
fitted using REML, with all the remaining settings at the default values. The IRR
and its standard errors were computed using the delta method. In the case of
nonconvergence, the maximum number of iterations was increased to 500. Code
for the models corresponding to the most complex scenarios is provided in the
Appendix; codes for all models is accessible in the online supplementary material
available at https://osf.io/9sajx/.

https://osf.io/9sajx/
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3.3 Simulation Evaluation

Models were deemed as nonconvergent if there was a warning or error message
returned while the model was fit or accessed. In the case of Stan models, we deemed
the model as nonconvergent in following cases: any divergent iteration, an effective
sample size below 100, Bayesian fraction of missing information below 0.20, or R-
hat above 1.10, where R-hat is an indicator of chains not converging to stationary
distribution, defined as the average variance ofdraws fromone chain to the variance
of draws from all chains (Gelman et al. 1992). Otherwise, the model was refitted
using the settings specified above. The fitting times include the refitting process and
the bootstrap, in case of models fitted using lme4, with both chains in Stan models
running in parallel.

The bias of group means, structural variances, residual variances, and IRR
estimates were computed as an average difference between the estimated and
true values. Root mean square error (RMSE) was calculated by taking the root
of the mean of squared differences between true and estimated values. Both of
these indices were computed from all models corresponding to the data generating
mechanism and also for only those marked as converged.

In addition, the coverage of 95% CI was computed as a proportion of CI
containing the true value.

Furthermore, the methods were also compared in terms of power and error rate.
In cases where the models corresponding to the data generating mechanism allowed
for a particular estimate to differ between the groups, the power was computed as
a proportion of significant z-tests at the alpha = 0.05 level. In the remaining cases,
the error rate for a particular estimate was computed as a proportion of significant
z-tests at the alpha = 0.05 level in a model identical to the one corresponding to the
data generating process but allowing the particular parameter to vary by group.2 In
Stan and lme4 models, the difference in IRR was tested by an overlap of 95% CI for
the difference between the by group IRR with zero.

Because there were minimal differences in all evaluation metrics between all
models and only models that converged, we present only results for all models
(unconditional on convergence). The differences between J = 3 and J = 5
were also rather minimal (apart from up to 10% increase in power for structural
variances); therefore, only results from simulations with J = 3 are presented. Results
conditional on convergence and J = 5 can be found in the online supplemental
material.

2That is, in scenario 1, the error rate for mean parameter in mixed-effect model was computed
using estimates from a model corresponding to the scenario 5. Furthermore, the error rate for IRR
in scenario 1 was computed only for GEE2, because only GEE2 offers the possibility to let the
ICC parameter vary by group with the remaining parameters being equal across groups.
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4 Results

4.1 Convergence and Fitting Times

All the GEE2 and GAM models converged and only three GEE2 models needed
to be refitted. The nlme and Stan models also converged in almost all simulations.
The lowest convergence for nlme models occurred in scenarios 3 and 7 for nlme
models with 97.9% of models converging before and 99.7% after a refit, and Stan
models not dropping below 98.8% in scenario 4.2 before and 99.4% after refitting.
However, while the lme4 models almost always converged in scenario 1 and 5, with
100.0% and 99.8% convergence before refit and 100.0% after refitting, in scenario
3 and 7 the convergence dropped to 23.1% and 22.4% before and only to 39.4%
and 39.3% after refitting (Supplementary Table 1). A closer look into the lme4
convergence issues revealed that a higher sample size led to worse convergence,
51.0% and 50.0% convergence after refit in scenarios 3 and 7 with I = 25 and
J = 3, and 23.9% and 25.2% convergence after refit with I = 200 and J = 5, for
more details see supplementary Table 2.

In regard to fitting times, the GEE2 models were fitted the fastest (Mdn = 0.02 s),
followed by LME models implemented in nlme (Mdn = 0.09 s), the GAM models
(Mdn = 1.07 s), LME models implemented in Stan (Mdn = 5.28 s), with the
slowest models being the LME models implemented in lme4 due to bootstrapping
(Mdn = 16.42 s). All of the fitting times increased with the sample size (see Fig. 1).

4.2 Bias and RMSE

The bias of the mean estimates was very low across all scenarios and methods (<
|0.009|). However, GEE2 produced a significant amount of positive bias for residual
standard deviations (> 0.217) and for IRR estimates (> 0.238) across all sample
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Fig. 1 Median fitting times (in seconds) of different algorithms for the number of ratings J = 3,
across scenarios (plots) and number of ratees per group (I = 25, 50, 100, 200, see x-axis)
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sizes and scenarios. The remaining methods provided reasonable estimates with
a considerably lower bias for structural standard deviations (< |0.014|), residual
standard deviations (< |0.020|), and IRR (< |0.034|) (Fig. 2).

The RMSE tells a very similar story, with very low values for mean estimates
across all models with a visible improvement with the sample size. As in the
bias case, the RMSE for residual standard deviation (> 0.239) and IRR (> 0.277)
estimates from GEE2 models were rather high and mostly the result of bias. The
remaining methods produced RMSE considerably smaller in structural standard
deviation (< 0.167), residual standard deviation (< 0.089), and IRR (< 0.124), with
all RMSE decreasing with the sample size (Fig. 3).

4.3 CI Coverage

The CI coverage of the mean estimates was close to the nominal bound across all
models (94.3%). However, the mean CI coverage across all scenarios of GEE2
models was low not only for residual variances (M = 2.9%) but also for IRR
estimates (M = 26.2%). The other methods performed much better, with the only
CI coverage lower than 90% for one of the structural variances in scenario 4.2
and 8.2 in nlme models, with mean CI coverage of 94.7% for structural variances,
94.9% for residual variances and 94.0% for IRR across all models and sample sizes
(Fig. 4).

4.4 Power and Error-Rate

The error rate for testing differences between group means was around the nominal
level for all scenarios and on average 5.4% and power was swiftly improving
with the sample size across all models (Fig. 5). The models fitted with GEE2
showed a high error rate (up to 48.3%) in testing the group differences in the
residual standard deviations in scenarios when the structural standard deviations
differed as well, which increased with the sample size (scenarios 3 and 7, Fig.
5). Moreover, GEE2 models exhibited much lower power (as low as 12.6%) to
detect group differences in IRR estimates in comparison to the other methods (>
21.7%) when the residual variances were different (scenarios 2, 4.2, 6, and 8.2).
The occasional nonmonotonic patterns in GEE2 models resulted from high bias and
RMSE of the estimated parameters. The remaining methods retained adequate error
rate when testing group differences in structural standard deviations (M = 4.3%),
residual standard deviations (M = 5.1%), and IRR estimates (M = 5.0%). The
power of LME and GAM models increased with the sample size; however, while
it approached 100% for both the tests of differences between residual standard
deviations (max = 99.0%) and IRR (max = 99.1%), it was rather low for tests
of differences between structural standard deviations (max = 53.5%).



356 F. Bartoš et al.

S
ce

na
rio

μ 1
μ 2

σ α
,1

σ α
,2

σ ε
,1

σ ε
,2

IR
R

1
IR

R
2

(1
)

μ 1
=

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(2
)

μ 1
=

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(3
)

μ 1
=

μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(4
.1

)
μ 1

=
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(4
.2

)
μ 1

=
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(5
)

μ 1
≠

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(6
)

μ 1
≠

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(7
)

μ 1
≠

μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(8
.1

)
μ 1

≠
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(8
.2

)
μ 1

≠
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

l
l

l
l

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

l

l
l

l

l

l
l

l

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

l
l

l
l

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

l
l

l
l

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

l
l

l
l

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
50

10
0

20
0

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

l
l

l
l

l
l

l
l

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

−
0.

03
−

0.
01

0.
01

0.
03

25
10

0
25

10
0

G
E

E
2

l
lm

e4
nl

m
e

S
ta

n
G

A
M

F
ig

.2
T

he
bi

as
of

pa
ra

m
et

er
s

(c
ol

um
ns

)
fr

om
al

lm
od

el
s

co
rr

es
po

nd
in

g
to

th
e

da
ta

ge
ne

ra
tin

g
m

ec
ha

ni
sm

(r
ow

s)
an

d
nu

m
be

r
of

ra
tin

g
J

=
3

ac
ro

ss
nu

m
be

r
of

ra
te

es
pe

r
gr

ou
p

(I
=

25
,5

0,
10

0,
20

0,
se

e
x-

ax
is

)
(b

ia
s

of
re

si
du

al
va

ri
an

ce
an

d
IR

R
in

G
E

E
2

m
od

el
s

is
ou

to
f

th
e

pl
ot

tin
g

ra
ng

e)



Testing Heterogeneity in Inter-Rater Reliability 357

S
ce

na
rio

μ 1
μ 2

σ α
,1

σ α
,2

σ ε
,1

σ ε
,2

IR
R

1
IR

R
2

(1
)

μ 1
=

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(2
)

μ 1
=

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(3
)

μ 1
=

μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(4
.1

)
μ 1

=
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(4
.2

)
μ 1

=
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(5
)

μ 1
≠

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(6
)

μ 1
≠

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(7
)

μ 1
≠

μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(8
.1

)
μ 1

≠
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(8
.2

)
μ 1

≠
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

l

l
l

l

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

l

l
l

l

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

l
l

l
l

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

l
l

l
l

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

l

l
l

l

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

l

l
l

l

l

l
l

l

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

l
l

l
l

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

l

l
l

l

l

l
l

l

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

l

l

l
l

l

l

l
l

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

l

l
l

l

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

l
l

l
l

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

l
l

l
l

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

l

l
l

l

l

l

l
l

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

l

l

l
l

l

l

l
l

0.
00

0.
05

0.
10

0.
15

25
50

10
0

20
0

l
l

l
l

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

l

l

l
l

l

l
l

l

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

0.
00

0.
05

0.
10

0.
15

25
10

0
25

10
0

G
E

E
2

l
lm

e4
nl

m
e

S
ta

n
G

A
M

F
ig

.3
T

he
R

M
SE

of
pa

ra
m

et
er

s
(c

ol
um

ns
)f

ro
m

al
lm

od
el

s
co

rr
es

po
nd

in
g

to
th

e
da

ta
ge

ne
ra

tin
g

m
ec

ha
ni

sm
(r

ow
s)

an
d

nu
m

be
ro

fr
at

in
g

J
=

3
ac

ro
ss

nu
m

be
r

of
ra

te
es

pe
r

gr
ou

p
(I

=
25

,5
0,

10
0,

20
0,

se
e

x-
ax

is
)

(R
M

SE
of

re
si

du
al

va
ri

an
ce

an
d

IR
R

in
G

E
E

2
m

od
el

s
is

ou
to

f
th

e
pl

ot
tin

g
ra

ng
e)



358 F. Bartoš et al.

S
ce

na
rio

μ 1
μ 2

σ α
,1

σ α
,2

σ ε
,1

σ ε
,2

IR
R

1
IR

R
2

(1
)

μ 1
=

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(2
)

μ 1
=

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(3
)

μ 1
=

μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(4
.1

)
μ 1

=
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(4
.2

)
μ 1

=
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(5
)

μ 1
≠

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(6
)

μ 1
≠

μ 2

σ α,
1

2
=

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(7
)

μ 1
≠

μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
=

σ ε,
2

2

(8
.1

)
μ 1

≠
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

(8
.2

)
μ 1

≠
μ 2

σ α,
1

2
≠

σ α,
2

2

σ ε,
1

2
≠

σ ε,
2

2

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

l
l

l
l

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

l

l
l

l
l

l
l

l

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

l
l

l
l

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

l
l

l
l

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

l
l

l
l

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
50

10
0

20
0

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

l

l

l
l

l
l

l
l

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

0.
85

0.
90

0.
95

1.
00

25
10

0
25

10
0

G
E

E
2

l
lm

e4
nl

m
e

S
ta

n
G

A
M

F
ig

.4
T

he
C

I
co

ve
ra

ge
of

pa
ra

m
et

er
s

(c
ol

um
ns

)
fr

om
al

lm
od

el
s

co
rr

es
po

nd
in

g
to

th
e

da
ta

ge
ne

ra
tin

g
m

ec
ha

ni
sm

(r
ow

s)
an

d
nu

m
be

r
of

ra
tin

g
J

=
3

ac
ro

ss
nu

m
be

r
of

ra
te

es
pe

r
gr

ou
p

(I
=

25
,5

0,
10

0,
20

0,
se

e
x-

ax
is

)
(t

he
C

I
co

ve
ra

ge
of

re
si

du
al

va
ri

an
ce

an
d

IR
R

in
G

E
E

2
m

od
el

s
is

ou
to

f
th

e
pl

ot
tin

g
ra

ng
e)



Testing Heterogeneity in Inter-Rater Reliability 359

Scenario μ σα σε ρ
(1)

μ1 = μ2

σα,1
2 = σα,2

2

σε,1
2 = σε,2

2

(2)
μ1 = μ2

σα,1
2 = σα,2

2

σε,1
2 ≠ σε,2

2

(3)
μ1 = μ2

σα,1
2 ≠ σα,2

2

σε,1
2 = σε,2

2

(4.1)
μ1 = μ2

σα,1
2 ≠ σα,2

2

σε,1
2 ≠ σε,2

2

(4.2)
μ1 = μ2

σα,1
2 ≠ σα,2

2

σε,1
2 ≠ σε,2

2

(5)
μ1 ≠ μ2

σα,1
2 = σα,2

2

σε,1
2 = σε,2

2

(6)
μ1 ≠ μ2

σα,1
2 = σα,2

2

σε,1
2 ≠ σε,2

2

(7)
μ1 ≠ μ2

σα,1
2 ≠ σα,2

2

σε,1
2 = σε,2

2

(8.1)
μ1 ≠ μ2

σα,1
2 ≠ σα,2

2

σε,1
2 ≠ σε,2

2

(8.2)
μ1 ≠ μ2

σα,1
2 ≠ σα,2

2

σε,1
2 ≠ σε,2

2

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

l l l l

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

l l l l

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

l l l l

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

l l
l

l

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

l l
l

l

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

l

l

l l

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

l l l l

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

l

l

l l

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

l
l

l

l

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

l l
l

l

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(error rate)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

25 50 100 200
0.00
0.25
0.50
0.75
1.00

(power)

GEE2 l lme4 nlme Stan GAM

Fig. 5 The error-rate and power for a z-test of difference between parameters (columns) from all
models corresponding to the data generating mechanism (rows) and number of rating J = 3 across
number of ratees per group (I = 25, 50, 100, 200, see x-axis)

5 Discussion

This study compared the GEE2, LME and GAM models in estimating IRR and
other parameters. As a main result, we uncovered an unsatisfactory performance of
GEE2 implemented in the geepack package in estimating group residual variances
and IRR as measured by bias, RMSE, and CI coverage, and in testing differences in
group residual variances and IRR as measured by error-rate, and power. This may be
due to less precise model specification in GEE2 than in LME and GAM models. We
might only speculate that some fine-tuning of geese.control tolerances could lead
to improvements in the quality of fit (while possibly also worsening convergence
rates), but in this study we insisted on using default values as a proxy for the
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behavior of a typical user. Nevertheless, the estimates of group means produced
by GEE2 and also by all other methods were precise and with both standard errors
improving with the sample size.

The LME implemented in the lme4 package exhibited the worst convergence
behavior, especially in cases with different structural variances by groups and higher
sample sizes. The results from the nonconverged models did not seem to affect
the results,3 hinting on a possible difference in the strictness of the convergence
checks. Finally, the disadvantage of the mixed-effect models implemented in lme4
over implementation in nlme was in longer fitting times, due to bootstrapping
when calculating CI for variance components and IRR, while the biggest drawback
was being their inability to estimate models with different parameters for residual
variances across groups.

On the other hand, models implemented in the nlme package showed almost
perfect convergence, allowed to fit a model with different parameters for residual
variances across groups and displayed the second fastest fitting times next to GEE2.
On top of that, the estimated parameters were satisfactory and comparable to the
remaining LME methods and GAM models. Nonetheless, one of the drawbacks
of nlme might be the difficulty of obtaining CI for the IRR estimates, requiring
numerous transformations and the delta method.

In comparison to models implemented in the nlme package, the models imple-
mented in Stan required a longer time to fit and their coding was more challenging.
However, this burden might be overcome, for example, by the brms package
(Bürkner 2017) and when using the Bayesian approach, the subsequent manipu-
lation with the estimates was much simpler.

The time required to fit the GAM models was on the higher end, especially
with the increasing number size. But there were no problems with convergence
and models yielded estimates with similar qualities, power and error rate as those
obtained by LME models. Moreover, the GAM models allow formulating a wider
range of models than LME models, thus creating further possibilities for future
applications.

Furthermore, it is important to note that a small number of ratings for each ratee
implied a low power to detect differences in the structural variances between the
groups no matter which method was used. An increasing number of ratings per ratee
led to a noticeable improvement; however, more than five ratings per ratee would be
still needed to achieve adequate power.

There are several limitations worth mentioning. In order to make the simulations
feasible, the study relied on the most simplified data generating processes possible.
This way, we were able to assess the difficulty of estimating the individual
components and their combinations; however, the generalizability of the findings
to more complex data scenarios is unsure. Further studies will be needed to
explore more complicated scenarios. Furthermore, throughout the study, it was
assumed that the data generating process is known and the only issue to solve

3The authors do NOT advise to ignore convergence warnings. These results might be solely due to
the specific simulation scenarios settings and models fitted.
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is a proper estimation of parameters of the given model or testing differences in
given parameters. That is scarcely the case in the most real-life problems, where
a substantial theory and/or model selection mechanisms are needed. While from
ordinary user perspective testing significance of group effects seems straightforward
in GEE2 even in case of more effects or their interactions, model-building and
testing may seem more complicated in LME and GAM framework. All that said,
the presented simulations may serve as a helpful guideline for estimating and testing
differences in IRR between groups.

6 Conclusions

This simulation study has shown that while both LME and GAM are reliable
methods for estimating differences in IRR between groups, GEE2 can lead to biased
results, inadequate coverage of CI and tests with high error-rates. Therefore, we
advise that either LME or GAM is used for testing heterogeneity in IRR.
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A.1 Appendix

Function for data simulation takes vectors of length two as an argument for
group-specific means (mu), structural standard deviation (sigma_alpha), residual
standard deviation (sigma_epsilon), and two integers (I, J) defining the
number of ratees in each group I and number of ratings per ratee J.

simulate_data <- function(mu, sigma_alpha, sigma_epsilon,
I, J){

# create group membership
g <- c(rep(1,I), rep(2,I))
# random effects / ratees’ true scores
alpha <- rnorm(2∗I,mu[g],sigma_alpha[g])
# ratees’ indices
id <- rep(1:(2∗I),J)
# observed values Y
Y<-rnorm(length(id),alpha[id],sigma_epsilon[g[id]])
data <- cbind.data.frame(“id”=id,“group”= g,“y”=Y)
data <- data[order(data$id),]
return(data)

}
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Thus, the data for the first simulation scenario with 25 ratees rated 3 times could
be generated as follows:

data <- simulate_data(mu = c(0.00, 0.00),
sigma_alpha = c(0.67, 0.67),
sigma_epsilon = c(0.74, 0.74),
I = 25, J = 3)

Functions for fitting models corresponding to the most complex scenario 8:

### GEE2 model corresponding to scenario 8
# design matrix for correlation parameters
z <- with(data[!duplicated(data$id),],
model.matrix(~ as.factor(group) - 1))
gee_model <- geepack::geese(y ~ as.factor(group) - 1,

zcor = z, corstr = “exchangeable”,
sformula = ~ as.factor(group) -1,
id = id, data = data,
mean.link = “identity”,
sca.link = “log”,
cor.link = “fisherz”,
family = gaussian)

### nlme model corresponding to scenario 8
lme_model <- nlme::lme(y ~ as.factor(group) - 1,

random= list(id = nlme::pdDiag(
form = ~ as.factor(group) - 1)),
weights = nlme::varIdent(
form = ~ 1 | as.factor(group)),
data = data, method = “REML”)

### lme4 model corresponding to scenario 4
lmer_model <- lme4::lmer(y ~ as.factor(group) - 1

+ (0 + as.factor(group)|id),
data = data, REML = TRUE)

### Stan model corresponding to scenario 8
# stan code with non-central parametrization
stan_code_111_nc <- c(’
data {

int<lower=0> N;
int<lower=0> N_id;
int id[N];
int group[N];
int id_group[N_id];
vector[N] y;

}
parameters {

vector[2] mu_group;
vector[N_id] alpha_z;
vector<lower=0>[2] sigma_alpha;
vector<lower=0>[2] sigma_epsilon;

}
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transformed parameters {
vector[N_id] alpha;

for(j in 1:N_id){
alpha[j] = alpha_z[j]∗sigma_alpha[id_group[j]];
}

}
model {

vector[N] mu;
vector[N] sigma;

target += normal_lpdf(mu_group | 0, 1);
target += normal_lpdf(sigma_alpha| 0, 1)

- normal_lccdf(0 | 0, 1);

target += normal_lpdf(sigma_epsilon| 0, 1)
- normal_lccdf(0 | 0, 1);

target += normal_lpdf(alpha_z | 0, 1);

for(n in 1:N){
mu[n] = mu_group[group[n]] + alpha[id[n]];
sigma[n] = sigma_epsilon[group[n]];

}

target += normal_lpdf(y | mu, sigma);
}
’)
# formatting data for stan
data_stan <- list(

“id” = data$id,
“group” = as.integer(data$group),
“y” = data$y,
“id_group” = data$group[!duplicated(data$id)],
“N” = nrow(data),
“N_id” = length(unique(data$id))

)
# compiling model
stan_111_nc <- rstan::stan_model(model_code =

stan_code_111_nc)
# sampling the model
model_stan <- rstan::sampling(stan_111_nc,

data = data_stan,
iter = 2000, warmup = 1000,
chains = 2, cores = 2)

# GAM model corresponding to data generating scenario 8
# remapping the ids for more efficient fitting
data$id_new <- as.factor(ifelse(data$group == 1,data$id,

data$id - length(unique(data$id))))
data$group <- as.factor(data$group)
mgcv_model <- mgcv::gam(y ~ group - 1

+ s(id_new,bs = “re”, by = group),
data = data, method = “REML”)
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An Application of Regularized Extended
Redundancy Analysis via Generalized
Estimating Equations to the Study of
Co-occurring Substance Use Among US
Adults
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Abstract According to the National Survey on Drug Use and Health (NSDUH), the
co-use of recreational substances is prevalent in the US population and engenders
serious public health consequences. Additionally, substance use is an example of a
complex social phenomenon that involves a large number of potentially correlated
predictors. Considering the interdependence in the use of cigarettes, alcohol, and
marijuana among US adults, the purpose of this study is to investigate simultane-
ously the effects of multiple sets of predictors (regarding substance initiation age,
mental health status, and socioeconomic status) on the use of these three substances.
For this, we applied a recently proposed extension of extended redundancy analysis
(ERA), named GEE-ERA, to the 2012 NSDUH data. ERA performs data reduction
and linear regression simultaneously, producing a simpler description of directional
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relationships between multiple sets of predictors and response variables. The new
extension, GEE-ERA, combines ERA with generalized estimating equations (GEE)
to enable fitting a regression on a set of correlated responses with unknown
correlation structure. This method also adopts ridge-type regularization to address
any potential overfitting, while the strength of the regularization is determined
automatically through cross-validation. The major findings obtained by applying
GEE-ERA to the 2012 NSDUH data are (1) earlier substance use was associated
with greater current use of both cigarettes and alcohol; (2) worse mental health
status influenced greater marijuana use, only; and (3) a lower level of SES was
associated with higher levels of both cigarette and marijuana use.

Keywords Co-occurring substance use · Substance initiation age · Mental
health · Socioeconomic status · Component-based dimension reduction ·
Extended redundancy analysis · Generalized estimating equations ·
Regularization

1 Background

The current substance use epidemic in the US leads to adverse public health
consequences, such as drugged driving (National Institute on Drug Abuse 2019)
and smoking- or alcohol-related cancers (US Department of Health and Human
Services (DHHS) 2004). According to the 2012 National Survey on Drug Use and
Health (NSDUH), an estimated 62% of Americans aged 12 and older used at least
one recreational psychoactive substance (i.e., tobacco, alcohol, or illicit drug) within
the past year, including 9% who met the criteria for substance abuse disorder (US
DHHS, Substance Abuse and Mental Health Services Administration (SAMHSA),
Center for Behavioral Health Statistics and Quality (CBHSQ) 2013). Moreover, the
same 2012 NSDUH data show a positive association between cigarette and alcohol
use, as well as a correlation between degree of alcohol use and rate of illicit drug
use (of which marijuana use accounts for the vast majority) (US DHHS, SAMHSA,
CBHSQ, 2013). Considering that the vast majority of substance users (91% in 2012)
use more than one substance, either concurrently or sequentially, a statistical model
that simultaneously analyzes use of multiple substances would provide a more
complete representation of the phenomenon of substance co-use among US adults.

Further complicating the study of substance use among US adults is the large
number of predictors that have been demonstrated in previous studies to explain
the use of one or more substances (e.g., Daza et al. 2006; Hu et al. 2006;
Kandel et al. 2004; Robinson et al. 2006). Categories of such predictors include
(1) substance initiation age (i.e., age of first cigarette, alcohol, and/or marijuana
use), (2) indicators of mental health (e.g., major depressive episode during past
year, daily functional impairment level, etc.), and (3) indicators of socioeconomic
status (SES; education level, health insurance coverage, family income, employment
status). Considering such a high-dimensional set of predictors, the major difficulty in
investigating the effect of numerous predictors on the concurrent use of substances
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is the lack of statistical methods capable of providing a comprehensible description
of directional relationships among many sets of variables, without suffering from
potential multicollinearity issues.

Thus, in the present work, we use extended analysis (ERA; Takane and Hwang
2005) combined with generalized estimating equations (GEE; Liang and Zeger
1986) to investigate associations between the aforementioned predictor sets and
correlated use of multiple substances. ERA is a statistical method that relates
multiple sets of predictors to response variables. In ERA, a component is extracted
from each set of predictor variables such that it accounts for the maximum variation
of response variables. In this regard, ERA performs data reduction and linear
regression simultaneously, producing a simpler description of directional relation-
ships between multiple sets of predictors and response variables. Recently, a new
extension of ERA was proposed for the analysis of clustered or correlated response
variables (Lee et al. 2019). In this extension, GEE is combined with ERA to
model response variables with an unknown correlation structure. This new method,
called GEE-ERA hereinafter, can handle different types of response variables (e.g.,
continuous, binary, or count) that are assumed to follow an exponential family
distribution. The method also incorporates ridge-type regularization to address
potential overfitting when many predictors per component are considered or when
many components influence the response variables. The regularization strength is
determined automatically using cross-validation (CV).

The remainder of the paper is organized as follows. We begin by briefly reviewing
GEE-ERA focusing especially on its advantages for the analysis of co-occurring
substance use in the US. We then apply the method to data from the 2012 National
Survey on Drug Use and Health (NSDUH), an annual survey that provides extensive
statistical information on the use of recreational psychoactive substances and
various associated sociopsychological variables. This application shows that GEE-
ERA can identify meaningful predictors while taking into account the correlation
structure of nicotine, alcohol, and marijuana use and preventing overfitting by the
regularization strategy. We conclude by discussing the implications of the method
and topics for future research.

2 Method

2.1 Model Specification

In GEE-ERA (Lee et al. 2019), we assume that there are Q response variables and K

different sets of predictors, each of which consists of Pk predictors (k = 1, . . . , K).
Let yiq denote the value of the qth response variable measured on the ith respondent
(i = 1, . . . , N; q = 1, . . . ,Q). We assume that yiq follows an exponential family
distribution with a mean μiq and variance φσ 2

iq , where φ is a dispersion parameter
which may or may not be of substantive interest. Let wkp denote the component

weight assigned to xikp. Let fik = ∑Pk

p=1 xikpwkp denote the ith component score of
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Fig. 1 An example of GEE-ERA model. Square boxes indicate observed predictor and response
variables. Circles represent predictor components. Two regularization parameters, λW and λB,
determine the strength of the regularization on component weights and regression coefficients,
respectively

the kth component, which is the sum of weighted predictors for the ith observation
in the kth predictor set. Let βkq denote the regression coefficient relating the kth
component to the qth response variable. Let ηiq and g(·) denote the ith linear
predictors of the qth response and a link function, respectively. We assume that
all the predictors and response variables are standardized with zero means and unit
variances (Takane and Hwang 2005). The GEE-ERA model is then expressed as

g(μiq) = ηiq =
K∑

k=1

⎡
⎣

Pk∑
p=1

xikpwkp

⎤
⎦βkq =

K∑
k=1

fikβkq, (1)

where the marginal expectation of the responses μiq is related to a linear predictor
through a known link function. Figure 1 displays an example of the GEE-ERA
model, where three response variables are assumed to be affected by each of the
two components.

Let ỹi = [
yi1, . . . , yiQ

]′ be a Q by 1 vector of the responses of the ith
respondent. Let Σi be the Q by Q within-respondent covariance matrix of ỹi .
When respondents are measured on multiple response variables simultaneously, the
assumption of independence of response variables in ordinary ERA can be violated.
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Moreover, the true covariance structure is often unknown in practice. To resolve
these issues in ERA, the method of GEE (Liang and Zeger 1986) was applied to
specify the unknown covariance structure using the so-called “working” correlation
matrix. The working covariance matrix has the form

cov(ỹi) = Σi = φA
1/2
i Ri(a)A

1/2
i , (2)

where Ri(a) is a Q by Q working correlation matrix that is assumed to be fully
specified by the vector of unknown nuisance parameters a, and A

1/2
i is a Q by Q

diagonal matrix of marginal variances with var(μiq) as the qth diagonal element
(Liang and Zeger 1986). Liang and Zeger (1986) suggested various choices for
Ri(a) (see Sect. 3.2), which is constant across all respondents. In this way, we
can treat the covariance structure as a nuisance instead of attempting to model it
accurately when estimating ERA parameters. This method also can provide asymp-
totically unbiased parameter estimates and their robust standard errors regardless of
the covariance structure specified (Lee et al. 2019).

2.2 Parameter Estimation and Significance Testing

GEE-ERA aims to estimate both ERA parameters (i.e., wkp and βkq ) and nuisance
correlation parameters (i.e., a and φ) in an iterative manner. Specifically, it seeks to
minimize the following penalized least squares criterion for estimating parameters:

φ(α,W,B) =
N∑

i=1

[
(z̃i − B′W′x̃i )

′Σ−1
i (z̃i − B′W′x̃i )

]

+λWtrace(W′W) + λBtrace(B′B), (3)

where z̃i is a Q by 1 vector of the so-called adjusted response variable (McCullagh
and Nelder 1989, Ch. 2), W denotes a

∑K
k=1 Pk by K matrix of component weights,

B denotes a K by Q matrix of regression coefficients, x̃i denotes a vector of
predictors for the ith respondent, and λW and λB denote tuning parameters for
component weights and regression coefficients, respectively. The tuning parameters
control the influence of the ridge penalty terms, trace(W′W) and trace(B′B). We
apply G-fold CV to determine the values of λW and λB automatically. To minimize
(3), GEE-ERA uses a regularized alternating least squares algorithm, in which each
of W, B, and Σi is updated, with the other two parameter sets held constant, until
convergence. Refer to Lee et al. (2019) for a detailed description of the algorithm.

To test statistical significance of parameter estimates, GEE-ERA can use resam-
pling methods, such as permutation tests for obtaining exact p-values (as described
in Lee et al. 2019) and bootstrapping (Efron and Tibshirani 1986) for constructing
confidence intervals. In the present analysis, we used bootstrap percentile con-
fidence intervals, i.e., the 5th and 95th percentiles of bootstrap distribution of
parameter estimates based on 1,000 bootstrapped replications of the data.
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3 An Empirical Application

3.1 Data and Model Specification

The data used here is a subset of the 2012 National Survey on Drug Use and
Health (NSDUH) dataset (US DHHS, SAMHSA, CBHSQ, 2013). NSDUH has been
conducted every year in all 50 states and the District of Columbia since 1971. The
objective of this survey is to serve as a major source of information on tobacco,
alcohol, and illicit drug use, and on mental health and other health-related issues in
the US. The 2012 NSDUH was conducted from January through December 2012
and interviewed US residents aged 12 and older. Among 51 states, eight of them
had a sample designed to yield 3,600 respondents per state, and the remaining 43
states had a sample designed to yield 900 respondents per state. The respondents
were asked to answer various questions regarding their use of substances, as
well as mental and physical health issues. Each respondent’s sociodemographic
characteristics (e.g., age, race, marital status, education, financial circumstances,
etc.) were also measured. A description of the data set is provided on GitHub
at https://github.com/QuantMM/2012NSDUH. On the page, we also explained in
detail where readers can download the original dataset.

In the present analysis, we examined the effects of predictors related to substance
initiation age, mental health, and SES on cigarette, alcohol, and marijuana use.
To do so, we utilized the subset of data with valid responses to three substance
use variables. This did not result in any missing values for predictor variables of
interest. Table 1 presents summary statistics of all variables included in the analysis
using data from N = 881 respondents. The three response variables, all referring
to monthly use on average, are the number of cigarettes smoked (Y1), the number
of alcoholic beverages consumed (Y2), and the number of days of marijuana or
hashish use (Y3). We identified a total of 11 predictors that were available in the
2012 NSDUH data based on previous studies concerning the predictors of substance
use on samples of US adults. Then, the predictors were grouped into the three
categories—substance initiation age (F1), mental health (F2), and SES (F3)—which
were represented as components in the ERA model. Table 1 also shows which
component is associated with which predictors. Figure 2 displays the specified GEE-
ERA model, where three sets of predictors related to F1, F2, and F3 were to influence
each of three response variables.

3.2 Working Correlation Structure of Substance Use Variables

As noted above, previous studies suggested the co-occurrence of the three response
variables. In the present data, there was a significant positive association between
Y1 and Y2, r = .18, p < .01. Also, Y1 and Y3 were positively correlated, r = .16,
p < .01, whereas Y2 and Y3 were not, r = −.02, p = .58.

https://github.com/QuantMM/2012NSDUH
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F1

Cigarette initiation age
Alcohol initiation age

Marijuana initiation age
Psychological distress level

Daily functional impairment
Suicidal thoughts

Major depressive episode
Education level

Health insurance
Family income

Emplyoment Status

.90

F2

F3

.92

.94

Y1: Cigarettes

Y2: Alcohol

Y3: Marijuana

-.26

-.17

.15

-.26

-.14

Fig. 2 The specified ERA model for the 2012 NSDUH dataset. Black and bolded arrows
represent statistically significant component weights and regression coefficients using bootstrapped
confidence intervals with λW = 0.12 and λB = 0

Table 2 The estimated working correlation and dispersion parameters across four different
working correlation structures using the 2012 NSDUH data

Independent Exchangeable AR-1 Unstructured

Working correlation structures
⎛
⎜⎝

− 0 0

0 − 0

0 0 −

⎞
⎟⎠

⎛
⎜⎝

− ρ ρ

ρ − ρ

ρ ρ −

⎞
⎟⎠

⎛
⎜⎝

− ρ ρ2

ρ − ρ

ρ2 ρ −

⎞
⎟⎠

⎛
⎜⎝

− ρ1 ρ2

ρ3 − ρ4

ρ5 ρ6 −

⎞
⎟⎠

Working correlation estimates

— ρ̂ = −.003 ρ̂ = −.005
ρ̂1 = −.015

ρ̂2 = .001

ρ̂3 = .036

φ̂ .002 .002 .002 .002

QIC 2.853 2.853 2.860 2.869

The top row of Table 2 illustrates the four different working correlation struc-
tures considered in GEE-ERA to model the relationships in their co-occurrence:
independent (all pairwise correlations fixed to zero), exchangeable (all correlations
assumed to be equivalent), autoregressive or AR-1 (all first-order correlations
assumed to be equivalent and higher-order correlations a function of the first-order
correlation parameter), and unstructured (all correlations assumed to be different
and not systematically related). Table 2 also summarizes the working correlation
and estimated dispersion parameters for each type of correlation structure from
the present analysis, as well as the values of QIC, a modified Akaike information
criterion for GEE models (Pan 2001). All results in the table were obtained without
any regularization, i.e., λW = λB = 0.

As shown in the table, the estimated correlation parameters changed noticeably
in both sign and magnitude across the chosen correlation structures. However,
the GEE-ERA parameter estimates in Tables 3 and 4 were robust across different
working correlation specifications. The final working correlation was chosen based
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Table 3 The estimated component weights for the GEE-ERA model in Fig. 2 with different
working correlation structures using the 2012 NSDUH data. Bolded numbers indicate statistically
significant estimates using bootstrapped confidence intervals

Working correlation

Components Predictors Independent Exchangeable AR-1 Unstructured

F1: Age of first use Cigarette onset .90 .90 .90 .90
Alcohol onset .34 .34 .34 .33

Marijuana onset .02 .02 .02 −.01

F2: Mental Health Distress level −.16 −.16 −.16 −.16

Impairment .92 .92 .92 .92
Suicidal thought .45 .45 .44 .44

Depression −.19 −.17 −.17 −.17

F3: SES Education .94 .94 .94 .94
Insurance .28 .28 .27 .27

Family income −.09 −.09 −.08 −.08

Employment status −.29 −.29 −.29 −.29

Table 4 The estimated regression coefficients for the GEE-ERA model in Fig. 2 with four different
working correlation structures using the 2012 NSDUH data. Bolded numbers indicate statistically
significant estimates using bootstrap confidence intervals

Working correlation

Components Responses Independent Exchangeable AR-1 Unstructured

F1: Age of first use → Y1: Cigarettes −.26 −.26 −.26 −.26
Y2: Alcohol −.17 −.17 −.17 −.17
Y3: Marijuana −.09 −.09 −.08 −.08

F2: Mental health → Y1: Cigarettes .12 .12 .12 .12

Y2: Alcohol −.02 −.02 −.02 −.02

Y3: Marijuana .15 .15 .15 .15

F3: SES → Y1: Cigarettes −.26 −.26 −.26 −.26
Y2: Alcohol −.05 −.05 −.05 −.05

Y3: Marijuana −.14 −.14 −.14 −.14

on the value of QIC: Since independent and exchangeable structures resulted in
equal QIC values, the more parsimonious of the two, i.e., independent, was chosen.

3.3 Regularization and Empirical Results

After choosing the final correlation structure, we applied regularization on both
component weights and regression coefficients. As the values of the regularization
strengths, i.e., λW and λB, are dependent on the data, they can be determined using
data-driven methods, such as CV. We used 10-fold CV for different possible values
of λW and λB. The optimum values were chosen by comparing the average mean-
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squared errors, where the values ranged from 0 to 10 with a step size of .05. The
lowest error was obtained with λW = .15 and λB = 0. The statistically significant
estimates of component weights and regression coefficients with these final values
are given in Fig. 2.

As depicted in Fig. 2, the component weight estimate for cigarette initiation
age was positive and statistically significant, indicating that cigarette initiation
age contributed to forming F1, initiation of substance use, in explaining substance
uses. Neither alcohol nor marijuana initiation age was statistically significant. For
F2, mental health status, only the level of daily functional impairment showed a
statistically significant contribution. Finally, for F3, SES, only education level made
a significant contribution to explaining the use of the three substances.

Figure 2 also shows the statistically significant regression coefficient estimates.
First, the negative association between F1 and both Y1 and Y2 indicated that a
younger age of substance initiation was associated with an increased number of
cigarettes smoked and alcoholic beverages consumed, with the effect appearing
larger for cigarette use. Additionally, worse mental health status was associated
with more days of marijuana use among American adults. There was no influence
of mental health status either on cigarette or on alcohol use. Finally, American
adults with lower levels of SES were found to report greater levels of both cigarettes
smoked and days of marijuana use, where cigarette use was more strongly associated
with SES level than marijuana use.

4 Conclusion

The present analysis applied GEE-ERA, a recently proposed extension to ERA, to
data from the 2012 NSDUH survey on substance use. Substance use, including use
of multiple substances, is prevalent in the American population and the source of
numerous public health concerns. Additionally, substance use is known to involve
multiple categories of predictors, including the predictor sets considered in the
present analysis—initiation of substance use, mental health status, and SES. We
investigated the relationship of these predictors with cigarette, alcohol, and mari-
juana use. GEE-ERA permits the simultaneous analysis of the numerous predictors
and multiple, correlated response variables by simultaneously conducting data
reduction and multivariate multiple regression while also modeling the correlation
structure of the response variables. This method also employs ridge-type regulariza-
tion to address potential overfitting, determining the strength of the regularization
automatically through CV, and conducts significance tests on ERA parameters (i.e.,
component weights and regression coefficients) using bootstrapping. The method
thus protects against the common problems of multicollinearity among predictors,
overfitting, and improper use of asymptotic statistical inference while producing
easy-to-interpret parameter estimates.

The present analysis has demonstrated the utility of GEE-ERA while also
providing insight on the phenomenon of substance use in the US. Nevertheless,
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there are several ways to expand upon the present analysis. First, given that the
NSDUH is an annual survey, the present analysis can be replicated with data
from subsequent years. Also, future studies should include additional predictors
that have been found to significantly relate to substance use, such as personality
characteristics (Hittner et al. 2020) or sexual orientation discrimination (Evans-
Polce et al. 2019). Unfortunately, the 2012 NSDUH data did not include variables
relevant to these factors. Additionally, as noted earlier, we used a subset of the
2012 NSDUH data with valid responses to the substance use variables. However, in
practice, missing data occur frequently, and listwise deletion—a simple and oft-used
approach to missing value imputation—may lead to substantial loss of information.
Future work is needed to explore an alternative way of dealing with missing data
for the proposed method. For example, it may be worthy of incorporating doubly
robust estimation (Carpenter et al. 2006) into the method, which has been a popular
approach for handling missing data within GEE, seeing that the results obtained
from GEE are only valid under the strong assumption of missing completely at
random. And finally, considering previous research that uncovered heterogeneous
subgroups characterized by demographic covariates (e.g., gender or ethnicity),
each of which yielded different effects of predictors on substance use, it will
be worthwhile to further extend GEE-ERA to identify potentially heterogeneous
subgroups of observations based on such covariates.
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Permutation Test of Regression
Coefficients in Social Network Data
Analysis

Wen Qu, Haiyan Liu, and Zhiyong Zhang

Abstract In social and behavioral sciences, researchers are interested in the
relationships between individuals’ attributes and the formation of social relations
within a social network. Logistic modeling is a popular approach to address those
research interests (Wasserman and Pattison (1996) Psychometrika 61:401–425.
https://doi.org/10.1007/BF02294547). However, the nature of network data (e.g.,
small size, non-normality, and dependence) violates the assumptions of logistic
regression, which can lead to an unreliable inference. To remedy the consequences
of these violations with a normal-based hypothesis test, we present the permutation
test procedure within the social network framework. The permutation test, on the
significance of a regression parameter, can improve the accuracy of the hypothesis
decision. In this study, we conducted a simulation to compare the performance of the
permutation test and the asymptotic likelihood ratio test under various conditions.
The simulation results confirm the advantages of the permutation test as expected.

Keywords Permutation test · Social network · Logistic regression

1 Introduction

1.1 Social Network

Social network analysis (SNA) has been increasingly implemented by researchers
in social and behavioral sciences in recent decades. Its application ranges from
academic research in fields, such as anthropology, sociology, and psychology, to

W. Qu (�) · Z. Zhang
University of Notre Dame, Notre Dame, IN, USA
e-mail: wqu@nd.edu; zzhang4@nd.edu

H. Liu
University of California, Merced, CA, USA
e-mail: hliu62@ucmerced.edu

© Springer Nature Switzerland AG 2020
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings in
Mathematics & Statistics 322, https://doi.org/10.1007/978-3-030-43469-4_28

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43469-4_28&domain=pdf
https://doi.org/10.1007/BF02294547
mailto:wqu@nd.edu
mailto:zzhang4@nd.edu
mailto:hliu62@ucmerced.edu
https://doi.org/10.1007/978-3-030-43469-4_28


378 W. Qu et al.

practical usage in areas like politics, communication, and marketing (Hoff et al.
2002; Maya-Jariego and Holgado 2015; Wasserman and Pattison 1996). A social
network typically encompasses a set of actors and social relations among them
(Wasserman and Pattison 1996). The actors could be individuals or other social
units but not limited to human beings. In a network graph, a dyad comprises a pair
of actors and the relationship between them. When researchers use SNA to design
studies with dyads, they engage in dyadic level analysis. SNA can also be conducted
with different levels of actors in the structure. However, in this study, we focus on
the dyadic level.

In psychology area, SNA is ideally suited for many subfields including social,
developmental, clinical, and educational psychology because it naturally links
individuals’ attributes and the relationships among them (Clifton and Webster 2017;
Saqr et al. 2018; Wasserman and Faust 1994; Westaby 2014). Different techniques
of evaluating social network information have been used in the literature, such as
the exponential random graph model (ERGM) (Anderson et al. 1999; Robins et al.
2007), latent space model (Hoff et al. 2002; Liu et al. 2018b), and structural equation
model (Liu et al. 2018a). The underlying model among the methods mentioned is
related to logistic regression. Therefore, in this study, we limit our scope to the
multiple logistic regression model with network structured data.

1.2 Permutation Test

Normal-based statistics are often used in statistical hypothesis testing, which,
however, requires either normally distributed data or a large sample size. Moreover,
independent observations are assumed. In other words, given the level of predictors,
the observations on the outcome variable should be independent of each other.
However, with social network data, these assumptions can be easily violated because
the networks are often of small sizes and dyads in a network are not independent
of each other. For example, in a friendship network, for one actor to have three
friends in the network, it requires three different actors to have at least one friend.
Because of the dependency of social ties, the standard error estimate based on Fisher
information is no longer valid, leading to incorrect empirical type I error rates and
power rates.

One of the alternative approaches is the permutation test, which can be conducted
with social network data due to its flexibility (Farine and Whitehead 2015; Farine
2017; LaFleur and Greevy 2009). Specifically, the permutation test does not require
independent observations and normal population distributions for reliable statisti-
cal analysis. The only assumption is exchangeability under the null hypothesis.
Additionally, the permutation test is more robust to outliers and missing data. In
the existing literature, the permutation test is adopted by researchers to address
the inaccurate standard error estimates with a small sample size (Potter 2005) or
dependence among data (Ke and Zhang 2018). The community of social network
analysis has also paid attention to the application of the idea of permutation to
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social network data. For instance, Farine (2017) used a permutation procedure to
compare the subnetwork structures in different communities. For example, they
used the permutation test to compare the degree (i.e., number of social connections
an actor has) differences between females and males. In this study, we would
generalize or adapt the idea of permutation to a more general modeling framework
of social network data. We thus introduce a permutation procedure under the logistic
modeling framework to test the effect of a covariate on the presence/absence of
a social connection while controlling other potential confounders. The proposed
approach is more flexible in at least two aspects. First, it can model the effects of
multiple covariates and allows us to control the impact of potential confounders.
Second, the covariate of interests is not necessary to be categorical but could also
be continuous.

To conduct such a permutation test, we first need to build a distribution of
parameters of interest under the null hypothesis using a permutation procedure.
This procedure is accomplished by creating a randomized relationship between the
outcome variable (social network structure) and the covariate(s) at each permutation
step. The critical point of the permutation procedure involves creating a random
dataset where only the part of interest is randomly permuted while all the other parts
remain unchanged. Finally, the statistical decision of a hypothesis is made based on
the achieved significance level (ASL), which is computed as

ASL = #{|β̂∗
i | ≥ |β̂|}/Np, (1)

where β̂ is the logistic coefficient of the original dataset, β̂∗
i is the logistic coefficient

of the ith permuted dataset, and Np is the number of permutations.
The subsequent sections of the paper are arranged as follows. Firstly, we use an

empirical study, as an example, to illustrate the procedure. Secondly, we present a
simulation study to compare the performance of the permutation approach against
that of the normal-based test. Finally, we conclude with a discussion.

2 Network Data Permutation

In this section, we illustrate the permutation procedure using an empirical example.
The data were collected by the Lab for Big Data Methodology at the University of
Notre Dame. The dataset contains the information of 165 junior college students.
Each student was asked to report the friendship status (0 = not friends; 1 =
friends) with the other 164 students. In addition, information related to gender,
smoking status (0 = not smoking cigarettes; 1 = smoking cigarettes), and academic
performance (continuous scores from 18 to 87) were also collected and used in this
study.

We adopted a logistic regression model to test whether predictors like gender,
smoking status, and academic performance were related to the existence of the
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friendship. We were particularly interested in the relationship between friendship
and smoking status.

yij ∼ Bernoulli(pij )

logit (pij ) = α + β ′Hij (2)

where yij is the friendship indicator between students i and j (0 = not friend, 1 =
friend). The effects of the predictors were tested in the form of nodal covariates Hij

which is a vector of three covariates (HGenderij ,HSmokeij ,HGPAij )
′. Further,

each of the nodal covariates was defined as follows:

HGenderij =
{

1, if students i and j are of the same gender

0, otherwise
(3)

HSmokeij =
{

1, if both students i and j smoke cigarette

0, otherwise
(4)

HGPAij = |gpai − gpaj | (5)

We used a three-step procedure to conduct the permutation test.

1. First, we obtain model parameter estimates through a maximum likelihood
approach, and the model parameters are named as β̂gender , β̂smoking , and β̂gpa ,
which are the coefficient estimates of the three nodal covariates defined by
Equation (3), (4), and (5), respectively.

2. Second, we construct a null distribution of parameters. For instance, to construct
a null distribution of the coefficient of Hsmoking, we randomly permute the
data of Hsmoke without replacement, and the resulting data are denoted as
Hsmoke∗. Meanwhile, data on the other two nodal covariates, Hgender and
Hgpa, remain the same. We then fit logistic regression model in Equation (2)
using data on Hgender , Hsmoke∗, and Hgpa. The parameter estimates of
Hsmoke∗ is recorded (i.e., β̂∗

smoke). By repeating this step 10,000 times, we
could obtain β̂∗

smoke,1, β̂∗
smoke,2, · · · , β̂∗

smoke,10,000, which form an empirical

distribution of β̂smoke under the null model because the link between friendship
network data and the smoking covariate is broken with the permuted data.

3. Third, we evaluate the position of the parameter estimates, i.e., β̂smoke, in the null
distribution by computing the ASL using Equation (1).

The result for the smoking covariate is shown in Fig. 1a, where the blue line
indicates the original parameter estimate β̂smoke. The ASL value equals to 0, which
means that β̂smoke is above (or below) all the values of its empirical distribution
under the null model. We can then conclude that the observed association (i.e.,
β̂smoke) are unlikely to happen by chance. We therefore reject the null hypothesis
and conclude that in this dataset, students who both smoke are more likely to be
friends.
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Fig. 1 Permutation distribution of (a) smoking, (b) gender, (c) GPA effects with friendship data
under the null

Similarly, we find that the ASLgender = 0 (Fig. 1b), which indicates that with this
data, students of the same gender are more likely to be friends. On the other hand, the
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GPA plot in Fig. 1c suggests that academic performance is not a significant predictor
in the context of existence of friendship in this dataset with the ASL = 0.635.

3 Simulation Study

Our goal at this stage is to compare the performance of the permutation approach
against that of the normal-based test. To do so, we conduct a simulation study by
manipulating three factors: parameter values, sample size, and covariance among
dyads.

3.1 Study Design

We use the model in the empirical data analysis as the data generation model. The
three covariates are generated in the following way:

Gender ∼ Binomial(N, p = 0.5),

Smoking ∼ Binomial(N, p = 0.25),

GPA ∼ N(3.3, 0.5).

Using the generated data for smoking, gender, and GPA, we then construct the nodal
covariate Hgender,Hsmoke, and Hgpa using the Equation (3), (4), and (5).

In the data generation procedure, we specified two sets of slope parameters (β),
and for each set, three intercept parameter values (α) were used to quantify the
network density, which is the friendship percentage in the network. The settings are
shown in Table 1. The two sets of slopes indicate whether or not the effects of the
covariates exist on the friendship network data. The values of the second set were
obtained from the empirical study.

Table 1 Slope and intercept
parameter settings

β α Network density

(0, 0, 0) −1.30 10%

−0.60 30%

0 50%

(0.50, 0.55, −0.02) −1.76 10%

−0.80 30%

−0.27 50%

Since we focus on undirected binary networks, we only need to generate either
the upper triangle or lower triangle part of a network. In a network with N actors,
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there are N(N − 1)/2 dyads in the upper triangle of the adjacency matrix of a
network. Considering the inherently dependent structure of the social network, we
incorporate the potential dependence among dyads. We first generated the underly-
ing continuous latent variable Y∗ following a multivariate normal distribution with
a specified covariance matrix which ensured the correlated data structure. We then
dichotomized Y∗ by setting a threshold of 0, to form a binary Y variable. Even
though the outcome Y was a binary variable, it still inherited dependence from the
underlying continuous variable.

To evaluate the impact of the degrees of dependence among dyads, we considered
correlation among them from low to high using values 0, 0.1, 0.3, and 0.5. These
correlation values allowed us to examine if the friendship network structure could
be fully explained by the covariates or not.

For each combination of parameters, the sample sizes were set to be 20, 35,
and 50.1 The corresponding dyads sizes were 190, 595, and 1225.

In total, the number of conditions was 72 per parameter set, and 1,000 repli-
cations of the data were generated under each condition. With each generated
replication, we compared the normal-based hypothesis test and the permutation test.
The significance level of both tests was recorded (p-value and ASL).

3.2 Evaluation

The evaluation of the normal-based and the permutation tests was based on the
comparison between type I error and the achieved statistical power for both tests.
The simulation conditions involving the true zero effect slope set were used for
investigating the type I error rate, while the other simulation conditions were used
for evaluating the power.

3.3 Results

3.3.1 Without Dependence

These conditions were obtained with zero covariance in the friendship data. In
Fig. 1a, we plotted the type I error rate against the network density. The permutation
test was closer to 0.05 than the normal-based test across almost all network density
conditions. Figure 2a shows that the patterns of powers were very similar between

1In logistic regression, the rule of sample size is NP ≥ 10K/p (NP denotes dyads sizes which
represents the sample size in logistic regression in this context, k is the number of predictors, p
is the proportion of outcome variable equal to 1). Therefore, given 20 people in the friendship
network, the NP would be equal to 190. Given three predictors with p = 0.1, the size would be at
least 300. Therefore, NP = 190, would still be considered a small sample.
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Fig. 2 Type I error rates of likelihood ration test (LRT) and permutation test (PR)

these two tests. That is, when sample size and network density increased, the
power increased. Although the difference was trivial, the permutation test still had
a slightly larger power rate across all conditions.

3.3.2 With Dependence

When we introduced dependence into the network data, the results showed a pattern
similar to previous outcomes. In Fig. 2b, c, d, the permutation test shows more stable
results in terms of type I error rate, compared to the non-dependence conditions,
especially when network density is low. In Fig. 3b, c, d, the power shows similar
patterns. Specifically, powers increased with a higher network density and a larger
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sample size. On the other hand, larger dependence (increasing covariance) increased
the power of both tests.

4 Conclusion and Discussion

In this paper, we proposed a permutation test of logistic regression coefficients in
social network data analysis. The main advantages of the permutation approach
are its capacity to handle relatively small samples and the fact that it does not
require the independence assumption to be met. Compared to the traditional normal
distribution-based hypothesis test approach, the permutation test can better control
type I error and yield slightly larger power across all conditions.
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One concern, however, is that using the logistic regression approach with
transitivity in the network may result in a biased estimate of the covariate (van
Duijn et al. 2009). Future study should consider a transitivity term in the logistic
model to address this problem. Furthermore, in the current study, we permuted the
covariate. It is also possible to permute the network, which can also be investigated
in the future.
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Non-equivalent groups with covariates (NEC)

design, 122
Non-parametric bootstrap

collection information, 233–234
differential evolution, 231–232
finding estimates, optimization, 231
finite mixtures

data generation, 239
generating modal parameters, 238–239
min-log-likelihood function, 237
probabiltiy density function, 238
univariate normal density functions, 237

generating new datasets, 230–231
multiple cost functions, 232–233

Nonverbal synchrony, 249

O
Objectivity in science, 23–24
One-factor model

Gaussian likelihood, 175
mean and variance, 182–183
regression parameter, 174
unidimensional IRT, 173

One parameter logistic (1PL) model, 73, 114
One parameter logistic with guessing (1PL-G)

model, 73
Optimization procedure, 240

P
Partial identification approach

conditional expectation, 137–138
marginal effect, 138–140

Pedagogical competencies
definition, 286
descriptive analyses, 292–293
exploratory factor analyses, 294–296
higher education, 285, 287
institutions, 286
measurement, 287–288
method

data analysis, 291
instrument, 288–289
participants, 289–291
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Pedagogical competencies (cont.)
national policies, 286
post-secondary education, 285
psychometric evaluation, 286
reliability analyses, 293

Penalized estimation
estimated core arrays, 169
interpretable solutions, 161
machine learning problems, 164–165
multivariate analysis procedures, 167
penalty function, 162
SPCA (see Sparse principal component

analysis (SPCA))
target matrix, 168
See also Multivariate Regression

Penalty function, 162
Permutation test

with dependence, 384–385
flexibility, 378
independent observations, 378
logistic modeling framework, 379
network data permutation, 379–382
normal-based statistics, 378
null hypothesis, 378, 379
simulation study

evaluation, 383
study design, 382–383

SNA, 377–378
without dependence, 383–384

Person-invariant item calibration, 24
Person parameter estimation

Bayesian estimation
composite likelihood, 40–41
genuine likelihood, 39–40
independence likelihood, 40

maximum likelihood
composite likelihood, 38–39
efficiency, 39
genuine likelihood, 36
independence likelihood, 37–38

precision, 32
Thurstonian IRT models, 42
weighted likelihood estimation

composite likelihood, 41–42
genuine likelihood, 41

Philosophy of measurement, 27
Positively worded (PW) items, 46, 48–52
Prcent relative error (PRE), 130
Predictive validity

behavior of interest, 136
conditional distribution, 137
definition, 136
educational measurement literature, 137
estimation, identification bounds, 141

evolution, 141
explicit expression, 143–144
higher education, 136
identification bounds, 137
language and communication test, 142
marginal effects, 142
mathematics test, 142
methodological approach, 137
non-observed group, 143
observed group, 143
partial identification approach, 137
problem of learning, 136
quality of selection, 136
selection process, 141
selection test, 136, 137
statistical procedures, 136

Principal component analysis (PCA), 291
Procrustes penalty function, 162
Professional successes, 2
Programme for International Student

Assessment (PISA), 95, 105–107
Propensity scores (PS)

average absolute maximum covariate
balance, 153

average parameter recovery statistics,
153–155

condition and estimation method, 151–152
covariates, 154
data mining models, 154
definition, 148
difference-in-differences designs, 149
estimation of multiple-group propensity

scores, 157
intervention and comparison groups,

147–148
machine learning models, 156
MG IWPS and trimming, 156
multiple-group (MG), 148, 149
non-randomized designs, 156
observational and quasi-experimental

designs, 148
regression models, 153
simulation study, 149–151
social and health sciences, 147
treatment effect estimation, 148, 151–152,

156
treatment groups, 156

PSU standardized test, 72, 74, 75, 78, 141
Psychometric models

linear models, 25
modern measurement theories, 26
scaling tradition, 26
test-score tradition, 25

Psychometrics, 300, 301, 303–306
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Psychometrics history
bifactor model, 5
CAT research and development, 5
eugenics research, 4
factor analytic techniques, 4
foundation, 3
IMPS19 session, 2
instructional materials, 4
IRT models, 4
journal, 3
LOGIST software, 4
missionary, 4
Nightingale Rose Diagram, 3
“a personal equation”, 3
Polar Area Diagram, 3
Rule-Space model, 5
“test guru” psychometrician, 4

Psychoperiscope
behavioral vs. cognitive coping, 300
clinimetrics, 301
cognitions, 300
conceptual framework, 303–305
coping, 300
deductive and inductive approaches, 315
exploratory analysis, 315
Gausian graphical model, 300
item correlation coefficients, 309
item statistics, 309
item-total correlation, 311
item-total statistics, 310, 312–314, 317
logical and comprehensive approach, 301,

316
materials, 308
mediating-moderating effects, 315
methods

research design and study setting,
305–306

target population and sample
participants, 306–307

mixed method, 301–303, 316, 317
multimethod method, 301, 316
network structure, 300
procedure, 308–309
psychometrics, 301
QOL measures, 300, 301
qualitative and quantitative approaches, 317
statement of problem and purpose, 303

Q
Quality of life (QOL), 300, 301, 303, 305, 306,

315

R
Random effects, 80, 82–87
Rasch measurement theory

bibliometric search, 20
complementary approach, 22
concepts, 23
description, 20
dichotomous and polytomous responses, 21
frequency of articles, 21
guiding research questions, 27
invariant measurement (see Invariant

measurement)
IRT, 20
models for measurement, 26, 27
objectivity in science, 23–24
psychometric models, 25–26
research, 27

Rasch models, 320
binomial trials, 21, 26
dichotomous, 21, 26
extensions, 22
facets, 26
partial credit, 21, 26
philosophy of measurement, 27
Poisson count, 21, 26
rating scale, 21, 26

Regression solutions, 180–182
Regularization, 367, 368, 373, 374
Reliability, 286, 291–293
Reliability and structure validity, see

Pedagogical competencies
Re-sampling methods

bootstrap, 228
computational burden, 228
cross-validation methods, 228
data characteristics, 229
degree of overlap, 228
fingerprint method, 229
flexibility, 228
optimization procedures, 230
prepaid method, 229
statistical inference tasks, 228
synergized bootstrap method, 230

Response time (RT)
and accuracy, 96
application, 105
BRT model, 97–98
with 4PNO (see Four-parameter normal

ogive (4PNO) model)
hierarchical framework of response and RT,

56, 57, 64
lognormal distribution, 96
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Response time (RT) (cont.)
measurement accuracy, 56
mental activity, 96
simplex distribution, 96–97

Root mean square error (RMSE), 60–62, 64,
104, 105, 206, 353

R packages for test equating
artificial intelligence, 132
CDF, 121
data collection designs, 121–122
equating methods, 122–123
equipercentile transformation, 121
IRT parameter linking, 124–127
IRT true-score and observed-score

equating, 127–128
machine learning, 132
NEAT design, 123
test equating methods, 122
traditional methods, 123–124

S
Sandard error of equating (SEE), 130
a-Stratification method, 202
Second-order generalized estimating equations

(GEE2), 348, 349, 359–361
Sensitivity, 281
Simplex distribution, 96–98, 101, 105, 107
Simulation

acquiescence correction, 338–339
automatic correction, 341
database, 340
re-centering approach, 340
standard deviation, 340–342

Simulation-based procedure, 280
Single group (SG) design, 122
Slipping parameters, 56, 59–61, 63, 64
Social network analysis (SNA), 377–378
Societal structures, 5–6
Socioeconomic status, 307
Sparse principal component analysis (SPCA)

interpretability of solutions, 161
minimization procedure, 164
wine data

components, 166, 167
PARAFAC, 167
Tucker3, 167
UCI Machine Learning Repository, 166
varimax-rotated loading matrix, 166

Specificity, 277, 280–282
Squared correlation (sqrC), 250, 251, 257
Standard DE method, 241
Standard error of measurements (SEM), 208
STEM domains, 2

Substance initiation age, 366, 370
Supervised LDA (sLDA), 264–265

economic tests, 272
model prediction and score proportion, 271
model selection, 270
regression, 269
topic proportion matrix, 270

Supplemental Nutrition Assistance Program
(SNAP), 329

Synergized bootstrap
comparing methods, 241
DE populations, 235
D*M optimization, 243
fingerprint method, 243
initial updating scheme, 234
standard DE method, 241–242
traditional DE, 236–237

T
Three-parameter logistic (3PL) model, 114,

125, 216
bias analysis, 73
with Cox PH model, 57
4PL and 4PNO, 56
interpretation, 70
measurement theories, 26
and 1PL-G, 71

Thurstonian IRT model
forced-choice data

binary coding, 33–34
model equations, 34
notation, 33

normal-ogive Thurstonian models, 41
person parameter estimation, 32, 42 (see

also Person parameter estimation)
Time-invariant membership, 248
Time series classification, 248

alignment/synchrony, 249
balanced/imbalance condition, 258, 259
clustering problem, 249
DTW, 250
Euclidean distances, 250
intraindividual time profiles, 249
nearest neighbor classification, 256–257
phase alignment, DTW, 251–253
similarity design/data generation, 257–258
similarity measures, 251
WCDmin, 258
windowed cross lagging, 253–255

Transparency, 6, 321
True-/false keyed items, 337, 338
Two parameter logistic (2PL) model, 73, 114,

278
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U
Unidimensional likelihood-based score

estimates
IRT scoring, 172–173
ML estimation, 175–176
one-factor model, 174–176
quick closed form computation, 176–177

Unweighted least squares (ULS) method, 187
US Department of Agriculture (USDA), 320

V
Variance components, 80–82, 360

W
“Watterson estimator”, 5
Windowed cross lagging

breaking time-dependent data, 253
data sequences, 254
DTW, 254
procedure, 255
R scripts, 255

Wording effects
BF-IRT model, 48–49, 52
empirical data, 50
IRTree models, 46
NW items, 48, 49, 51
PW items, 48, 49
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