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Abstract Comparison of population means is essential in quantitative research. For
comparing means of three or more groups, analysis of variance (ANOVA) is the
most frequently used statistical approach. Typically, ANOVA is used for continuous
data, but discrete data are also common in practice. To compare means of binary
or count data, the classical ANOVA and the corresponding power analysis are
problematic, because the assumption of normality is violated. To address the issue,
this study introduces an analogous ANOVA approach for binary or count data, as
well as the corresponding methods for statistical power analysis. We first introduce
an analogous ANOVA table and a likelihood ratio test statistic for comparing means
with binary or count data. With the test statistic, we then define an effect size
and propose a method to calculate statistical power. Finally, we develop and show
software to conduct the proposed power analysis for both binary and count data.
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1 Introduction

Comparison of population means is one of the essential statistical analyses in quan-
titative research (Moore et al. 2013). For comparing means of three or more groups,
analysis of variance (ANOVA) is the most frequently used statistical approach in
psychological research (Howell 2012). Typically, it is used for continuous data and
produces an F-statistic as the ratio of the between-group variance to the within-
group variance that follows an F-distribution. To use the F-test for ANOVA, three
assumptions must be met. The first is the independence of observations, which
assumes that all samples are drawn independently of each other. The second is the
normality assumption that requires the distribution of the residuals to be normal. The
third is the equality of variances, which assumes that the variance of the data in all
groups should be the same. In practice, studies with even continuous data cannot
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always meet all three assumptions. For binary or count data, the assumption of
normality is apparently violated. Therefore, it is unreliable to use classical ANOVA
to compare means of binary or count data. Furthermore, the corresponding power
analysis is expected to be problematic.

Since discrete data are very common in practice, there have been discussions on
the statistical methods for mean comparison with binary or count data. The existing
approaches include k x 2 contingency tables and logistic regression to analyze the
mean (proportion) difference among groups of binary data (Cox and Snell 1989;
Collett 1991). Contingency tables are commonly used along with Pearson’s chi-
squared test (Pearson 1947; Larntz 1978), likelihood ratio test (Birch 1963; Grove
1984; Williams 1976), Freeman-Tukey chi-squared statistic (Bishop et al. 1975;
Freeman and Tukey 1950), and Fisher’s exact test (Fisher 1922; Agresti 1992).
Pearson’s chi-squared test is related to Goodman and Kruskal’s 7 (Goodman and
Kruskal 1954; Efron 1978). This test is less accurate with small sample size (less
than 10 for each cell) and is unreliable if more than 20% of cells have expected
values less than 5 (Yates et al. 1999). For likelihood ratio test and Freeman-Tukey
chi-squared test, simulation studies found that the Type I error rates became very
high when the sample size was small and there were cells with small observed
means and moderate expected values (Larntz 1978). Fisher’s exact test is related
to Goodman and Kruskal’s A (Turek and Suich 1989; Efron 1978). This test is more
accurate than the chi-squared tests with small sample size, but it becomes difficult
to calculate with large samples or unbalanced tables (Mehta et al. 1984). Although
none of these tests is perfect, in general, the likelihood ratio test is preferred by
many statisticians (Larntz 1978; Collett 1991), because it is based on the exact
Bernoulli distribution for binary data, and researches (Hoeffding 1965; Bahadur
1967) suggested that it has some asymptotically optimal properties.

Researchers have also used logistic regression to estimate and compare the group
means of binary data (Cox and Snell 1989; Collett 1991). This method utilizes the
likelihood ratio test, which performs well when there are enough observations to
justify the assumptions of the asymptotic chi-squared tests. However, the models
and procedures might be more complicated than necessary. First, the procedure
requires creating dummy variables since regression models are used with categorical
predictors. These dummy variables not only increase the complexity of the model
itself but also make the interpretation of the model more difficult for applied
researchers. Second, the procedure using logistic regression is more complex with
the current software. Third, researchers are interested in whether the groups are
from populations with different means using ANOVA, while logistic regression is
more efficient for parameter estimation (Cox and Snell 1989) and prediction of
proportions (Collett 1991). The meaning of parameters in logistic regression is not
easy to interpret for the purpose of mean comparison.

Although contingency tables and logistic regression are two different approaches,
it is not difficult to show that contingency table and logistic regression lead to
the same conclusions when using likelihood ratio tests. Then, is it possible to
provide the equivalent results for binary data by applying likelihood ratio test to
ANOVA? In fact, as suggested by Efron (1978), log-likelihood can be used as
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a general measure of variation. From the perspective of variation decomposition,
Efron (1978) constructed an ANOVA-like table for binary data with emphasis
on descriptive statistics. Based on the work by Efron (1978), we will introduce
an analogous ANOVA table with a closed-form likelihood ratio test statistic for
comparing means with binary data. Then we will define an effect size and provide a
corresponding power analysis method. Software to conduct the power analysis will
also be developed. After that, we will extend the method for binary data to count
data.

The rest of the chapter is organized as follows. Section 2 is a review of one-
way ANOVA with continuous data. Section 3 proposes the method for binary data.
Section 4 discusses the method for count data. Section 5 illustrates the developed
software through examples. Section 6 summarizes and concludes this study.

2 One-Way ANOVA with Continuous Data

Analysis of variance (ANOVA) is a collection of statistical models used to analyze
the differences among group means through variance decomposition (Maxwell and
Delaney 2004; Fisher 1921). The current study focuses on the use of one-way
ANOVA. We first review the basics of one-way ANOVA with continuous data. Let
Y be the outcome variable and A be a categorical variable of k levels; with A as the
grouping variable, we divide the population of Y into k groups. The null hypothesis
H, states that different groups have equal population means, while the alternative
hypothesis H; supposes that at least two groups have different population means.
Let u; be the population mean of the jth group, j = 1,2,--- , k and po be the grand
population mean. The null and alternative hypotheses can be specified as follows:

Ho: pr=p2=...= = o,
Hy: 3 pg#p;, where g#j and g, je[l,2,--- k]
Consider the corresponding models with Hy and H;. The null model M, is

E{Y|A =j} = 1o, (M
where Y|(A = j) ~ N(uo, crg). The alternative model M| is
E{Y|A =} = ;. )

where Y|(A = j) ~ N(u;, 02).

In one-way ANOVA, the observed variance in the outcome variable is partitioned
into between-group variance and within-group variance. If the between-group
variance is greater than the within-group variance, the group means are considered
to be different. For continuous data, “squared error” is deployed as a measure of
variation between an observed data point and corresponding expectation (“‘explana-
tory point”, see Efron 1978). Its function is defined as

Sy, p) = (v — p)? )
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Table 1 ANOVA table for continuous data

Degree of’

Source | Sum of squares freedom | Test statistic P-value

k —
Between: $S3 = >, () —y)? k—1 F = gssf///((’;_% Pr{F(k—1,n—k) > F}
group

k - -
Within- | SSw = >, 2L, (v —¥)* | n—k
group

k n -
Total | SSp =3 _ L=y’ |n—1
-

Note: F(k — 1,n — k) is the F-distribution withdfy =k — 1l anddf, =n—k

with y denoting a data point and p denoting the expectation. Given a sample of data
Y =) ={yhi=12--,n,j =12,k with n; denoting the sample
size of the jth group, the test statistic is equal to the ratio of between-group sample
variance and within-group sample variance and follows an F-distribution under Hy:

F= 6l?etween/6'v%ithin ~ F(k - 17 n— k)’ (4)

where 6—lgetween = ZJ]'C=1 ()_}J _}‘))2/(1{ - l)’ and 6v%'ithin = Zf:l 27;1 ij _57!)2/(” - k)
with y; denoting the sample mean of the jth group and y denoting the grand mean of
data. ANOVA is often conducted by constructing the source of variance table shown
in Table 1.

3 One-Way Analogous ANOVA with Binary Data

3.1 Model and Test Statistic for Binary Data

For comparison of group means, often called proportions, for binary data, the
hypotheses are the same as one-way ANOVA with continuous data. But the models
are different since the distribution of the outcome variable is not normal.

Let Y be a zero-one outcome variable and A be a categorical variable of & levels,
with A as the grouping variable we can divide the population of Y into k groups.
Let 11 denote the grand probability of the outcome 1, and p; denote the jth group
probability of observing 1,j = 1,2, --- , k. Then the null and alternative hypotheses
are

Ho: pr=p2=...= = o,
Hy: 3 pg#p;, where g#j and g, je[l,2,--- k]

The null model M, is

E{Y|A = j} = po, )
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where Y|(A = j) ~ Bernoulli(o), and the alternative model M is
E{Y|A =} = 1. (©6)

where Y[(A = j) ~ Bernoulli(j;). Given a sample of data Y = (y;) = {y;},

i=12,---,n,j=12,--- k, with n; denoting the sample size of the jth group,

we define minus twice the log-likelihood ratio of M, to M, as a statistic:
Z (ol Y)

L (1, 2y -y uk|Y)

= =2[€ (nolY) — € (1, 12y« - oy i Y)]

= =2(lmy — tmy),

D= —-2In
@)

where .Z (0|Y) denotes the likelihood function of # given data Y. Under the null

hypothesis Hy, this statistic follows a chi-squared distribution D~ y?(df) with the

degrees of freedom df = k — 1 if the sample size tends to infinity (Wilks 1938).
Let the observed grand mean y = Zf Zln’ y;j/n be the estimate of jiy and the

observed group mean y; = 27’ vij/nj be the estimate of y;. For a given sample of
data, we calculate the test statistic as D as follows. We first calculate minus twice
the log-likelihood for M, and M;:

~20y, = —2L (5]Y)

L ®)
=23 Y [yIny+ (1 —yy)n(l -],

j=1 i=1
20y, = =20 (51,52, ... 9]Y)

kon 9)
==23 > [y + (1 =y In(1 5]

j=1 i=1
and then D as their difference:

D=2y, —lu)
k (10
= =2 " {y(ny—InFy) + (1 - 5) [In(1 — 3) — In(1 = )]} .

J=1

It can be proven that the observed grand mean y is the maximum likelihood estimate
of 19, and the observed group mean y; is the estimate of ; (Efron 1978). Other than
the “squared error” used by standard analysis of variance, if we use minus twice the
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Table 2 Analogous ANOVA table for binary data

Degree of
Source Sum of variance freedom Test statistic P-value
Between- | SS5 = —2(lyy — by,) | k—1 D =200y, — by, Pr{y*(k—1)>D}
group
Within- | SSy = —20y, n—k
group
Total SSp = =20y, n—1

Note: y2(k — 1) is the chi-squared distribution with df = (k — 1)

log-likelihood as a measure of variation, the variation function for binary data is as
follows:

—2In(u) if y=1
S1(y, 1) = 1
10 #) 2n(l—p) if y=0 (v

with y denoting a data point and p the expectation. Then the sum of variation S§; =
> 81(Y, 1) = —2In.Z(n]Y) with Y denoting a sample of data (Efron 1978). With
these functions, we can obtain the analogous total variance, within-group variance,
and between-group variance as follows:

S8y = =20y,
SSw = 24y, (12)
SSB = _Z(EM() - éM])

Now with these statistics, we can create an analogous ANOVA table in Table 2 for
binary data similar to that for continuous data.

From the analogous ANOVA table, we see that the likelihood ratio test statistic
here equals the between-group variation. The ratio of between-group variation to
total variation is exactly the R? coefficient for model M, (see Efron 1978), which is
also used by Goodman (1971) for contingency tables.

3.2 Measure of Effect Size for Binary Data

Standardized effect-size measures facilitate comparison of findings across studies
and disciplines, while unstandardized effect-size measures (simple effect size)
with “immediate meanings” may be preferable for reporting purposes (Ellis 2010;
Baguley 2009). The r-family and the d-family effect-size measures are standardized
(Rosenthal 1994), while R>-family effect-size measures such as f> and 5’ are
unstandardized and immediately meaningful (Cameron and Windmeijer 1997). Both
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types of effect-size measures could be defined. But not all types of effect-size
measures can be used for power analysis with a specific test statistic. For the purpose
of power analysis, in this study, we use a standardized effect-size measure like
Cramer’s V, which is a member of the r family (Ellis 2010). It is also an adjusted
version of phi coefficient ¢ that is frequently reported as the measure of effect size
for a chi-squared test (Cohen 1988; Ellis 2010; Fleiss 1994). It can be viewed as
the association between two variables as a percentage of their maximum possible
variation. In the case of one-way analogous ANOVA, the two variables are the
outcome variable and the grouping variable.
For one-way analogous ANOVA with binary data, we define the effect size V:

k
V= | =23 wi{u(npo —Inp) + (1 = ) [In(1 = o) — In(1 — )]} /(k = 1), (13)
j=1

where w; = n;/n is the weight of the jth group, and n = Zf n; is the total sample
size. The small, medium, and large effect size can be defined as 0.10, 0.30, and 0.50,
borrowed from Cohen’s effect-size benchmarks (Cohen 1988; Ellis 2010).

For a given sample of data, the sample effect size can be calculated as

V =+/D/nk—1)

k
= | =2 wi{Hiny —ny) + (1 =) [In(1 = 5) — In(1 = 3]} /(k = 1).

J=1

(14)

3.3 Statistical Power Analysis with Binary Data

Power analysis is often applied in the context of ANOVA in order to assess the
probability of successfully rejecting the null hypothesis if we assume a certain
ANOVA design, effect size in the population, sample size, and significance level.
Power analysis can assist in study design by determining what sample size would
be required in order to have a reasonable chance of rejecting the null hypothesis
when the alternative hypothesis is true (Strickland 2014).

For one-way analogous ANOVA with binary data, when the null hypothesis Hy
is true, the test statistic D follows a central chi-squared distribution y?(df), where
df = k — 1 is the degree of freedom. If D is larger than the critical value C =
X%—a (df), one would reject the null hypothesis Hy. When the alternative hypothesis
H, is true, the test statistic D follows a noncentral chi-squared distribution )(2 (df, A),
where df = k—1 is the degree of freedom and A = D = n(k—1)V? is the noncentral
parameter. Let @24 5 () be the cumulative distribution function of the noncentral
chi-squared distribution; then the statistical power of the test is
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power = Pr{D > C|H;}
= Pr{)*(df,}) = C}
=1=Ppy(C)
= 1= D 2p— -1 [ X1—ak— D].

5)

With this formula, the power, minimum detectable effect size V, minimum required
sample size n, or significance level o can be calculated given the other parameters.

4 One-Way Analogous ANOVA with Count Data

For comparison of group means with count data, the statistical inference is similar to
that for binary data. The main difference lies in that the distribution of the outcome
variable in the model is Poisson instead of Bernoulli.

4.1 Model and Test Statistic for Count Data

To construct the models for count data, let Y be the outcome variable, which can
take only the nonnegative integer values, and A be a categorical variable of k levels.
The null and alternative hypotheses are

Ho: pr=p2=...= = o,
Hy: 3 u,#p;, where g#j and g, je[l,2,--- k]

The null model M, is
E{Y|A = j} = po, (16)
where Y|(A = j) ~ Poisson(lio), and the alternative model M| is
E{Y|A =j} = ;. a7

where Y|[(A = j) ~ Poisson(u;), j = 1,2,--- k. Given a sample of data, Y =
y) =y i=12,---,n,j=1,2,---  k, with n; denoting the sample size of the
Jjth group, minus twice the log-likelihood ratio of model M, to M is

< (1olY)
2L (s 12, ] Y)
= =200 (olY) — € (s 2y -+ oy i Y)]
= =2y, — my)

D= -2In

(18)
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Under null hypothesis Hy, this statistic follows a chi-squared distribution D~ y?(df)
with the degrees of freedom df = k — 1 if the sample size tends to infinity (Wilks
1938). Let the grant mean y = ij Z:lf yii/n be the estimate of o, and the group
mean y; = Zln’ v;j/n; be the estimate of u;. For a given sample of data, we can
calculate the test statistic as D as follows. We first calculate minus twice the log-
likelihood for M and M;:

k nj

SSr = =20y, =2 ) (5ny —3). (19)

j=1i=1

k nj
SSw =20y, = =23 (¥jIny; — ) (20)
j=1 i=1
and then D as their difference:
. . k
SSp =D = =2(m, — bw,) = =2 _mi[Hi(Iny—In§) — G—-3)]. @D

J=1

For count data, we can also create an analogous ANOVA table like Table 2.

4.2 Effect Size and Power Analysis for Count Data

For one-way analogous ANOVA with count data, the effect size is also defined as
V = /D/n(k — 1). The sample effect size can be calculated as

(22)

k
=2 “wi[3(Iny —In3) + (3 — )] /k = 1),

J=1

where w; = n;/n is the weight of the jth group, and n = ij n; is the total sample
size. The power analysis of one-way analogous ANOVA with count data is the same
as that with binary data.
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5 Software

To carry out the power analysis for analogous ANOVA with binary or count data,
we have developed online applications that can be used within a Web browser. The
link for the binary analogous ANOVA is http://psychstat.org/anovabinary and for the
count analogous ANOVA is http://psychstat.org/anovacount. The software interface
of power analysis for analogous ANOVA with binary data is shown in Fig. 1. Among
number of groups, sample size, effect size, significance level, and power, any of
them can be calculated given the rest of the information. The following examples
illustrate the usage of the interface.

Suppose a student researcher hypothesizes that freshman, sophomore, junior, and
senior college students have different rates of passing a reading exam. Based on
his prior knowledge, he expects that the effect size is about 0.15. Based on the
information, he wants to know (1) the power for him to find the significant difference
among the four groups if he plans to collect data from 25 students in each of the four
groups and (2) the minimum required sample size for him to find the significant
difference among the four groups with power 0.8.

For the calculation of power, the number of group k = 4, the total sample size
n = 25x4 = 100, and the effect size V = 0.15. Let the significance level ¢« = 0.05,
then we can use formula (15) to calculate the power as

power =1 =@ 241 iy [X1—o (k= 1)]
=1- czj;(2(3,100x3xo.152) [X<2J.95(3)]
= 1 - ¢X2(3’6'75) (78147)
= 0.572.
We can also use the online interface to estimate the power (see Fig. 1a). Given
four groups, sample size 100, effect size 0.15, and significance level 0.05, the output
indicates the power for this design is again 0.572.

With the required power = 0.8, k = 4, V = 0.15, and o« = 0.05, we solve the
following equation:

power =1 — @2y yg—nyv2y [ X1—o(k— D]
0.8 =1—=®,;3,x3x0.15) [X5.05s(3)]
0.8 =1—D,233,1x0.0675)(7-8147)
n = 161.520.
So, the minimum required sample size is 162.
Figure 1b shows how to use the interface to calculate the minimum required

sample size. Given four groups, effect size 0.15, significance level 0.05, and the
desired power 0.8, the output showed that a sample size 162, the near integer of
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a b
One-way ANOVA with Binary Data One-way ANOVA with Binary Data
Parameters (Help) Parameters (Help)
Number of groups 4 Number of groups 4
Sample size 100 Sample size 100
Effect size (Calculator) 0.5 Effect size (Calculator) 0.5
Significance level 0.05 Significance level 0.05
Power Power
Type of analysis Overall Type of analysis Overall ¥
Power curve No power curve v Power curve No power curve
Note Binary ANOVA Note Binary ANOVA
Calculate Calculate
Output Output
One-way Analogous ANOVA with Binary Data One-way Analogous ANOVA with Binary Data
k n V alpha power k n V alpha power
4 100 0.15 0.05 0.5723 4 161.5 0.15 0.05 0.8

NOTE: n is the total sample size

X NOTE: n is the total sample size
URL: http://psychstat.org/anovabinary

URL: http://psychstat.org/anovabinary

Fig. 1 Examples of power analysis for analogous ANOVA with binary data. (a) Given sample
size, calculate power. (b) Given power, calculate sample size

161.5, is needed. A power curve can also be plotted by providing multiple sample
sizes in the Sample size field. The interface for analogous ANOVA with count data
is the same.

6 Discussion

In this chapter, an analogous ANOVA table and the closed-form likelihood ratio
test statistic were introduced for comparing mean differences among groups of
binary and count data, respectively. Based on the analogous ANOVA table and
test statistic, the effect size V statistic, an adjusted phi coefficient, was defined.
The power analysis involved four parameters, number of groups, total sample size,
statistical significance level, and effect size. In addition, corresponding free online
software were developed.

We recommend the application of these methods in binary and count data
analysis. First, these methods are analogous to procedures in classical ANOVA
as they decompose variation in observed outcomes for binary and count data.
Specifically, the analogous ANOVA tables can help the researchers intuitively
understand the exact meanings of the likelihood ratio test statistics used to compare
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means of binary or count data. Second, by using raw data and closed-form statistics,
these methods are easier to use and more efficient than logistic regression or
Poisson regression. Third, through the analogous ANOVA tables, we provide a
unified solution for both binary and count data, while contingency tables cannot
deal with count data. Future studies can investigate how to conduct power analysis
for multiple comparisons and extend the methods to two-way ANOVA.
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