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In Bayesian analysis, the posterior distribution, or posterior, is the distribution of a set of unknown parameters, 

latent variables, or otherwise missing variables of interest, conditional on the current data. The posterior dis-

tribution uses the current data to update previous knowledge, called a prior, about that parameter. A posterior 

distribution, p(θ|x), is derived using Bayes’s theorem 

p(θ |x) =
p(x |θ)p(θ)

p(x)
=

p(x |θ)p(θ)

∫p(x |θ)p(θ)dθ
,

where θ is the unknown parameter(s) and x is the current data. The probability of the data given the parameter 

p(x|θ) is the likelihood L(θ|x). The prior distribution, p(θ), is user specified to represent prior knowledge about 

the unknown parameter(s). The last piece of Bayes’s theorem, the marginal distribution of data, p(x), is com-

puted using the likelihood and the prior. The distribution of the posterior is determined by the distributions of 

the likelihood and the prior and scaled by the marginal distribution of the data. Therefore, the posterior can 

be represented as 

Posterior distribution∝ Likelihood

×Prior distribution,

where ∝ means “proportional to.” The relationship between the posterior, the prior, and the likelihood is shown 

in Figure 1. 
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Figure 1 The likelihood and the prior determine the posterior distribution 

The prior distribution is conjugate to the likelihood if the resulting posterior distribution has the same form as 

the prior distribution. The mean and variance of the posterior distribution are also determined by these two 

distributions. In certain situations, the posterior mean is a weighted average of the mean of the data and the 

prior, using the precision of each as weight. The precision, the reciprocity of variance, of the posterior is a 

function of the precision of the data and the prior. Thus, when a researcher is more confident in a prior, it is 

given more weight by specifying a smaller variance for the prior distribution. 

The posterior distribution can be analytically computed by integration or it can be approximated using a 

Markov chain Monte Carlo algorithm. With increases in computational power, the latter is often the easier op-

Sage

© 2018 by SAGE Publications, Inc.

Sage Research Methods

Page 4 of 7 The SAGE Encyclopedia of Educational Research, Measurement, and

Evaluation



tion, and the Markov chain Monte Carlo method is what is used in software such as WinBUGS and Mplus. A 

commonly used Markov chain Monte Carlo method is Gibbs sampling, which recursively generates random 

numbers from the conditional posterior distribution for each parameter in turn, conditional on the current val-

ues of all other parameters. 

The resulting posterior distribution is what is used to make inferences about the model. The mean, median, 

or mode of the posterior distribution can be used as a point estimate, much like a maximum likelihood es-

timate (MLE) can be used within the frequentist framework. If the prior p(θ) is a constant, the mode of the 

posterior, if it exists, is equivalent to the MLE. Credible intervals can also be constructed using the posterior 

distribution. These are analogous to confidence intervals in the frequentist framework but differ in theory and 

interpretation. Credible intervals provide the (1 − α)% probability that a parameter lies between a lower and 

upper bound. Thus, credible intervals assume the parameter is random and the lower and upper bounds are 

fixed, whereas confidence intervals assume the opposite. 

Example 

To illustrate, let’s say Researcher F finds a coin in his attic. He wants to know whether the coin is fair, so he 

flips it 20 times and records 15 heads landings. He is a frequentist, so he would like to find an MLE of the 

probability of the coin landing on heads. First, he computes the likelihood using a binomial distribution, 

L(θ | x)~Bin(n, p) = θk(1 – θ)n − k,

where n is the number of tosses, p is the probability of landing on heads, and k is the number of heads land-

ings (n × p). This results in an MLE of 
^
θ = 0.75. Using a binomial test, he concludes that the coin is not fair, z 

= 2.236, p < .05. 

The next day, Researcher F tells his colleague, Researcher B, about the coin he found that lands on heads 

significantly more often than it lands on tails. In response, Researcher B says “Wait a minute, shouldn’t we 

take into account that most coins are fair?” She would like to use Bayesian analysis to investigate further 

by choosing a prior that is centered at 50% with small variance because she knows that most coins land on 

each side with equal probability. Because the β distribution is conjugate to the binomial likelihood function, 

she would like to use a prior with the following form: 

p(θ) ∼ β(a, b) =
Γ(a + b)
Γ(a)Γ(b)

θa − 1(1 − θ)b − 1.

She chooses p(θ) ~ β(5,5), which is a symmetrical distribution with mean = 0.5 and variance = 0.007. Using 

this prior with the binomial likelihood, she calculates the posterior distribution for the proportion of heads, 
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p(θ |x) =
L(θ |x)p(θ)

∫0

1

L(θ |x)p(θ)dθ

=
Γ(a + b + n)

Γ(a + k)Γ(b + n − k)
θa + k − 1(1 − θ)b + n − k + 1.

Because she used conjugate distributions, she gets a β distribution with parameters a + k and b + n − k. 

Plugging in a and b from the prior and n and k from the data, she obtains β(20,10) as the posterior. Using the 

mean of the posterior, the new point estimate of the fairness of the coin is 
^
θ = 0.67, slightly less extreme than 

it was for Researcher F. The credible interval is [0.49,0.82], and so we are not quite sure whether the coin 

lands on heads more than tails. 

If Researcher F had instead flipped the coin 100 times and gotten 75 heads, using the same prior would have 

yielded the posterior β(80,30) with point estimate 
^
θ = 0.73. This is because getting 75 heads out of 100 toss-

es is much stronger evidence against the coin being fair than getting 15 heads out of 20 tosses. In this case, 

the data are given more weight in calculating the posterior, so our point estimate is closer to that of the data. 

The credible interval in this case would be [0.64,0.81], indicating that there is a 95% probability that the coin 

is not fair. 

In sum, the posterior distribution is proportional to the product of the likelihood and the prior in Bayesian analy-

sis, and it can be used to make inferences about model parameters. Any inference made with the posterior 

is based on prior information about a model that has been updated after collecting new data. Inferences can 

be made using the mean, median, or mode of the posterior as point estimates or through credible intervals, 

among other methods. 

See also Bayes’s Theorem; Bayesian Statistics; Binomial Test; Markov Chain Monte Carlo Methods; Prior 

Distribution 

Meghan K. Cain Zhiyong Zhang 
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