User Tools

Site Tools


research:luzhanglubke2010

Supplementary materials for Lu, Zhang, & Lubke (2011)

OpenBUGS codes for real data analysis

  • MNAR analysis
    ##############################################
    ##    GMM with non-ignorable missingdata    ##   
    ##############################################
         
    model {
          ########################
          ##         model        
          ########################
          for( i in 1:N )  {      
              # --------- Model the latent mixture, parameter: lambda.---------
              z[i] ~ dcat(lambda[i,1:2])
                  lambda[i,1] <- phi(zeta0+zeta1*x[i])
                  lambda[i,2] <- 1-lambda[i,1]
              # --------- Model the growth curve, parameters: L, S, pre.etasigma, pre.phi ---------
              for(t in 1:Time) {
                  y[i,t] ~ dnorm(mu[i,t], pre.phi[z[i]])
                  mu[i,t]<-eta[i,1]+(t-1)*eta[i,2]
              }
              eta[i,1:2]  ~ dmnorm(etamu[z[i],1:2], pre.etaphi[z[i],1:2,1:2])
              # --------- Model the missingness, parameters:gamma0, gamma1 ---------     
              for (t in 1:Time) {
                  R[i,t] ~ dbern(p[i,t])
                  p[i,t] <- phi(gamma0[t]+gamma1[t]*(z[i]-1)+gamma2[t]*x[i]) 
              }
          } 
          ######################## 
          #      priors parameters 
          ######################## 
          # --------- etamu=beta --------- 
          # Intercept 
          etamu[1,1]~dnorm(0, 1.0E-6)
          etamu[2,1]~dnorm(0, 1.0E-6)  
          # Slope 
          etamu[1,2]~dnorm(0, 1.0E-6)
          etamu[2,2]~dnorm(0, 1.0E-6)  
          # --------- D (pre.etaphi) --------- 
          pre.etaphi[1,1:2,1:2] ~ dwish(V[1:2,1:2],2) 
          pre.etaphi[2,1:2,1:2] ~ dwish(V[1:2,1:2],2) 
           V[1,1]<-1 
           V[2,2]<-1 
           V[1,2]<-0 
           V[2,1]<-V[1,2] 
           Cov[1,1:2,1:2] <-inverse(pre.etaphi[1,1:2,1:2]) 
                      varI[1]  <- Cov[1,1,1] 
                      varS[1] <- Cov[1,2,2] 
                      cov[1]  <- Cov[1,1,2]
           Cov[2,1:2,1:2] <-inverse(pre.etaphi[2,1:2,1:2]) 
                    varI[2]    <- Cov[2,1,1] 
                    varS[2]  <- Cov[2,2,2] 
                    cov[2]   <- Cov[2,1,2] 
          # --------- pre.phi --------- 
          pre.phi[1] ~ dgamma(0.001, 0.001) 
          pre.phi[2] ~ dgamma(0.001, 0.001) 
          phi[1] <- 1/pre.phi[1] 
          phi[2] <- 1/pre.phi[2] 
          # --------- zeta0 & zeta1 --------- 
          zeta0 ~dnorm(0, 1.0E-6) 
          zeta1 ~dnorm(0, 1.0E-6) 
          # --------- gamma --------- 
          for (t in 1:Time) {
              gamma0[t] ~ dnorm(0,1.0E-6) 
              gamma1[t] ~ dnorm(0,1.0E-6) 
              gamma2[t] ~ dnorm(0,1.0E-6) 
          }
          # --------- Re-parametric --------- 
          par[1] <- etamu[1,1] 
          par[2] <- etamu[2,1] 
          par[3] <- etamu[1,2] 
          par[4] <- etamu[2,2] 
          par[5] <- varI[1] 
          par[6] <- varI[2] 
          par[7] <- varS[1] 
          par[8] <- varS[2] 
          par[9] <- cov[1] 
          par[10]<- cov[2] 
          par[11]<- phi[1] 
          par[12]<- phi[2] 
          par[13]<- zeta0  
          par[14]<- zeta1  
          for (j in 1:Time) { 
              par[14+j]          <- gamma0[j]    #par[15],[16],[17],[18],[19] 
              par[14+Time+j]    <- gamma1[j]    #par[20],[21],[22],[23],[24] 
              par[14+2*Time+j] <- gamma2[j]    #par[25],[26],[27],[28],[29] 
          }  
    } 

History plots for real data analysis

Supplementary results

Simulation results for N=1000 and 1500

An example of inaccurate real data analysis and simulation results for N=500

research/luzhanglubke2010.txt · Last modified: 2016/01/24 09:48 by 127.0.0.1