User Tools

Site Tools


lab:projects:17robust_sem:robust_sem_with_missing_data_sas_codes
* Input raw data (with missing values -99) from an external file;
data raw;
filename data 'Z:\zzy\research\Robust SEM\Missing data with Ke-Hai\mardiaMV25.dat.txt'; *need to be modified;
*filename data 'd:\missingdata-robustSEM\mardiaMV25_contaminated.dat'; *need to be modified;
infile data;
input v1 v2 v3 v4 v5;  *need to be modified;
run;
*-----------------------------------------------------------------------*;
*-----------------------------------------------------------------------*;
** Missing data are on the last variable;
** The first stage is Huber-weight using an extended EM-algorithm;
** The second stage analysis is to minimizing the normal-distribution-based 
   discrepancy function F_ML;
** Rescaled or adjusted statistics is used for inference;
*the asymptotic cov is given by sandwich type matrix;
** as well as the inverse of the information matrix;
options ls=150;
*options nodate nonumber; 
title;
proc iml;
reset noname;
*-----------------------------------------------------------------------*;
*misinfo=j(m,p+2,0), m is the number of missing patterns; 
*misinfo[i,1]=number of cases in pattern i;
*misinfo[i,2]=number of observed variables in pattern i;
*misinfo[i,3:p+2] contains a permutation of {1,2,3,...,p}, 
        the first part corresponding to observed variables,
        the remaining corresponding to missing variables in pattern i;

start pattern(n,p,x,misinfo);
*-------------------------------------------------------------------------;
*use 2^j to order missing data patterns by SAS sort subroutine;
misorder=j(n,1,0);
do i=1 to n;
	misorderj=0;
	do j=1 to p;
		xij=x[i,j];
		if xij=-99 then do;
			misorderj=misorderj+2**(j-1);*this gives each missing pattern a unique number;
		end;
	end;
	misorder[i]=misorderj;
end;
x=x||misorder;
call sort( x, p+1);*sort the rows of x according to the (p+1)th column from small to large;
*-------------------------------------------------------------------------;
print x;
misn=x[,p+1];
x=x[,1:p];
*--------------------------------------------------------------------------;
*identifying the subscripts of missing variables and put them in misinfo;
mi=0; nmi=0; oi=0; noi=0;
do j=1 to p;
			if x[1,j]=-99 then do;
				mi=mi||j; *recording the missing variable subscript in the first case;
				nmi=nmi+1; *number of missing values in the first case;
			end;
			else do;
				oi=oi||j;*recording the observed variable subscript in the first case;
				noi=noi+1;
			end;
end;
		oi=(oi[2:noi+1])`;
if nmi=0 then do;
	misinfo_0=noi||oi;
end;
else do;
		mi=(mi[2:nmi+1])`;
		misinfo_0=noi||oi||mi; *recording the # observed variables, locations;
end;
*--------------------------------------------------------------------------;
patnobs=0; *# of observed cases in a pattern;
totpat=1; ncount=1;
t1=misn[1];
do i=2 to n;
	if 	misn[i]=t1 then do;
		ncount=ncount+1;
	end;
	else do;
		patnobs=patnobs//ncount;
		t1=misn[i];
		ncount=1;
		totpat=totpat+1;

		mi=0; nmi=0; oi=0; noi=0;
		do j=1 to p;
			if x[i,j]=-99 then do;
				mi=mi||j;
				nmi=nmi+1;
			end;
			else do;
				oi=oi||j;
				noi=noi+1;
			end;
		end;
		oi=(oi[2:noi+1])`;
		mi=(mi[2:nmi+1])`;
		misinfo_0=misinfo_0//(noi||oi||mi);
	end;

end;
patnobs=patnobs//ncount;
patnobs=patnobs[2:totpat+1];
misinfo=patnobs||misinfo_0;
print misinfo;
finish;

*-----------------------------------------------------------------------*;
** EM algorithm for unstructured (mu,sigma) starts here;
start emmusig(x,misinfo,varphi,err,mu1,sig1);
ep=.000000000001;
n=nrow(x); p=ncol(x);
mu0=j(p,1,0);*starting value;
sig0=i(p);*starting value;
n_it=0; **control iterations within 200;
err=0;
dt=1;
prob=1-varphi;
chip=cinv(prob,p);
ck=sqrt(chip);
cbeta=( p*probchi(chip,p+2)+ chip*(1-prob) )/p;
print cbeta;
do until (dt<ep);
sumx=j(p,1,0); sumxx=j(p,p,0); sumw1=0; sumw2=0;

npat=nrow(misinfo); *# of patterns;
p1=misinfo[1,2];*# of observed variables in pattern 1; 
n1=misinfo[1,1];*# of observed cases in pattern 1;
if p1=p then do;*complete data;
    sigin=inv(sig0);
	do i=1 to n1;
        xi=x[i,]`;
        xi0=xi-mu0;
        stdxi0=sigin*xi0;
        di2=xi0`*stdxi0;
        di=sqrt(di2);
       **Huber weight functions;
        if di<=ck then do;
                wi1=1.0;
                wi2=1.0/cbeta;
        end;
        else do;
                wi1=ck/di;
                wi2=wi1*wi1/cbeta;
        end;
        sumw1=sumw1+wi1;
        xxi0=xi0*xi0`;
        sumx=sumx+wi1*xi;
        sumxx=sumxx+wi2*xxi0;
		sumw2=sumw2+wi2;
	end;
end;
else do;
	chip1=cinv(prob,p1);
	ck1=sqrt(chip1);
	cbeta1=( p1*probchi(chip1,p1+2)+ chip1*(1-prob) )/p1;

	o1=misinfo[1,3:(2+p1)];m1=misinfo[1,(2+p1+1):(p+2)];
	mu_o=mu0[o1]; mu_m=mu0[m1];
	sig_oo=sig0[o1,o1]; sig_om=sig0[o1,m1];
	sig_mo=sig_om`; sig_mm=sig0[m1,m1];
	sigin_oo=inv(sig_oo);
	beta_mo=sig_mo*sigin_oo;
	Delt=j(p,p,0); Delt[m1,m1]=sig_mm-beta_mo*sig_om;
	do i= 1 to n1;
  	xi=x[i,]`;
    xi_o=xi[o1];
    xi0_o=xi_o-mu_o;
    stdxi_o=sigin_oo*xi0_o;
    di2=xi0_o`*stdxi_o;
    di=sqrt(di2);
   **Huber weight functions;
    if di<=ck1 then do;
       wi1=1.0;
       wi2=1.0/cbeta1;
    end;
    else do;
       wi1=ck1/di;
       wi2=wi1*wi1/cbeta1;
    end;
    sumw1=sumw1+wi1;
    xm1=mu_m+sig_mo*stdxi_o;  *change here;
    xi[mi]=xm1;
    xi0=xi-mu0;
    xxi0=xi0*xi0`;
    sumx=sumx+wi1*xi;
    sumxx=sumxx+wi2*xxi0+delt;
	sumw2=sumw2+wi2;
end; *repeat the n1 cases;
end; *if p1=p;
*start from pattern 2;
snj=n1;
do j=2 to npat;
	nj=misinfo[j,1]; pj=misinfo[j,2];
	oj=misinfo[j,3:(2+pj)];mj=misinfo[j,(2+pj+1):(p+2)];
	mu_o=mu0[oj]; mu_m=mu0[mj];
	sig_oo=sig0[oj,oj]; sig_om=sig0[oj,mj];
	sig_mo=sig_om`; sig_mm=sig0[mj,mj];
	sigin_oo=inv(sig_oo);
	beta_mo=sig_mo*sigin_oo;
	Delt=j(p,p,0); Delt[mj,mj]=sig_mm-beta_mo*sig_om;
	chipj=cinv(prob,pj);
	ckj=sqrt(chipj);
	cbetaj=( pj*probchi(chipj,pj+2)+ chipj*(1-prob) )/pj;

	do i=snj+1 to snj+nj;
  	xi=x[i,]`;
    xi_o=xi[oj];
    xi0_o=xi_o-mu_o;
    stdxi_o=sigin_oo*xi0_o;
    di2=xi0_o`*stdxi_o;
	di=sqrt(di2);
   **Huber weight functions;
    if di<=ckj then do;
    	wi1=1.0;
        wi2=1.0/cbetaj;
    end;
    else do;
        wi1=ckj/di;
        wi2=wi1*wi1/cbetaj;
    end;
    sumw1=sumw1+wi1;
    xmj=mu_m+sig_mo*stdxi_o; *change here;
    xi[mj]=xmj;
    xi0=xi-mu0;
    xxi0=xi0*xi0`;
    sumx=sumx+wi1*xi;
    sumxx=sumxx+wi2*xxi0+delt;
	sumw2=sumw2+wi2;
	end; *run through the cases within a pattern;
	snj=snj+nj;
end; *number of patterns;
mu1=sumx/sumw1;
sig1=sumxx/n;
dt=(ssq(mu1-mu0)+ssq(sig1-sig0))/(ssq(mu0)+ssq(sig0));
mu0=mu1;
sig0=sig1;
n_it=n_it+1;
if n_it>200 then do;
        err=1;
        goto label2;
end;
end;
print mu1;
print sig1;
label2:
finish;
*-----------------------------------------------------------------------*;
**** The following subroutine is to perform vech(.) function;
*-----------------------------------------------------------------------*;
start vech(A,Va);
l=0;
p=nrow(A);
pstar=p*(p+1)/2;
Va=j(pstar,1,0);
do i=1 to p by 1;
        do j=i to p by 1;
                l=l+1;
                Va(|l|)=A(|j,i|);
        end;
end;
finish;
***--------------------------------------------------------------------***;
**** The following subroutine is to perform vec(.) function;
***--------------------------------------------------------------------***;
start vec(A,Veca);
l=0;
p=nrow(A);
p2=p*p;
Veca=j(p2,1,0);
do j=1 to p;
	Veca[(j-1)*p+1:j*p]=A[,j];
end;
finish;
***--------------------------------------------------------------------***;
** creates duplication matrix as defined in Magnus&Neudecker;
***--------------------------------------------------------------------***;
start DP(p, dup);
  Dup=j(p*p,p*(p+1)/2,0);
  count=0;
  do j=1 to p;
    do i=j to p;
      count=count+1;
        if i=j then do;
                Dup[(j-1)*p+j, count]=1;
        end;
        else do;
                Dup[(j-1)*p+i, count]=1;
                Dup[(i-1)*p+j, count]=1;
        end;
    end;
  end;
finish;


*-----------------------------------------------------------------------*;
*-----------------------------------------------------------------------*;
**creating index for vec(Sigma_j) corresponding to the observed cases;
*-----------------------------------------------------------------------*;
start index(p,oj,indexj);
index=j(p,p,0);
count=0;
do i=1 to p;
	do j=1 to p;
		count=count+1;
		index[j,i]=count;
	end;
end;
indexoj=index[oj,oj];
nj=nrow(indexoj);
vecj=0;
do i=1 to nj;
	vecj=vecj//indexoj[,i];
end;
indexj=vecj[2:nj*nj+1];
finish;


*-----------------------------------------------------------------------*;
**computing the estimator of the asymptotic covariance of
\hat\Omega_{\hat\beta};
*-----------------------------------------------------------------------*;
start Ascov(varphi,mu0,sig0,x,misinfo, Abeta, Bbeta, Gamma);
n=nrow(x); p=ncol(x);
ps=p*(p+1)/2; pps=p+ps;
run dp(p,dup); dupt=dup`;
i_p=i(p);


B11=j(p,p,0); B12=j(p,ps,0); B22=j(ps,ps,0);
ddl11=j(p,p,0); ddl12=j(p,ps,0); ddl21=j(ps,p,0); ddl22=j(ps,ps,0);
prob=1-varphi;

chip=cinv(prob,p);
ck=sqrt(chip);
cbeta=( p*probchi(chip,p+2)+ chip*(1-prob) )/p;

dl=j(pps,1,0);

npat=nrow(misinfo);
n1=misinfo[1,1]; p1=misinfo[1,2];  
if p1=p then do;*complete data;
  sigin=inv(sig0);
  run vec(sig0,vecsig);
  Wmat=0.5*(sigin@sigin);
  do i=1 to n1;
   	xi=x[i,]`;
    xi0=xi-mu0;
    stdxi=sigin*xi0;
	stdxit=stdxi`;
    di2=xi0`*stdxi;
	di=sqrt(di2); 
  **Huber weight functions;
        if di<=ck then do;
                wi1=1.0;
                wi2=1.0/cbeta;
                dwi1=0;
                dwi2=0;
        end;
        else do;
                wi1=ck/di;
                wi2=wi1*wi1/cbeta;
                dwi1=wi1/di2;
                dwi2=wi2/di2;
        end; 
*for computing B_{\beta};
    dlimu=wi1*stdxi;
    xixi0=xi0*xi0`;
    run vec(xixi0,vecyi);
    wvecyi=wi2*vecyi;
    dlisig=dupt*Wmat*(wvecyi-vecsig);
    B11=B11+dlimu*dlimu`;
    B12=B12+dlimu*dlisig`;
    B22=B22+dlisig*dlisig`;	
dl_i=dlimu//dlisig;
dl=dl+dl_i;
*for computing A_{\beta};
        Hi=stdxi*stdxit;
        tti=wi1*sigin;
        uui=wi2*sigin;
        ddl11=ddl11+(-tti+dwi1*Hi);
        ddl22=ddl22+dupt*(Wmat-( Hi@(uui-.5*dwi2*Hi) ) )*dup;
        ddl12=ddl12+((-tti+.5*dwi1*Hi)@stdxit )*dup;
        ddl21=ddl21+dupt*((-uui+dwi2*Hi)@stdxi );  
end; *repeat the n1 cases;
end; *if p1=p;
else do;
	chip1=cinv(prob,p1);
	ck1=sqrt(chip1);
	cbeta1=( p1*probchi(chip1,p1+2)+ chip1*(1-prob) )/p1;
	o1=misinfo[1,3:(2+p1)];
	mu_o=mu0[o1]; 
	sig_oo=sig0[o1,o1];
	run vec(sig_oo,vecsig_oo);
	sigin_oo=inv(sig_oo);
	E1=i_p[o1,]; Et1=E1`;
	F1=(E1@E1)*dup; Ft1=F1`;
    Wmat1=0.5*(sigin_oo@sigin_oo);
	do i= 1 to n1;
  	xi=x[i,]`;
    xi_o=xi[o1];
    xi0_o=xi_o-mu_o;
    xi0_ot=xi0_o`;
    stdxi_o=sigin_oo*xi0_o;
	stdxit_o=stdxi_o`;
    di2=xi0_ot*stdxi_o;
    di=sqrt(di2);
        **Huber weight functions;
        if di<=ck1 then do;
                wi1=1.0;
                wi2=1.0/cbeta1;
                dwi1=0;
                dwi2=0;
        end;
        else do;
                wi1=ck1/di;
                wi2=wi1*wi1/cbeta1;
                dwi1=wi1/di2;
                dwi2=wi2/di2;
        end;
*for computing B_{\beta};
        dlimu=wi1*Et1*stdxi_o;
        xixi0_o=xi0_o*xi0_ot;
		run vec(xixi0_o,vecyi);
    	wvecyi=wi2*vecyi;
    dlisig=Ft1*Wmat1*(wvecyi-vecsig_oo);
    B11=B11+dlimu*dlimu`;
    B12=B12+dlimu*dlisig`;
    B22=B22+dlisig*dlisig`;
dl_i=dlimu//dlisig;
dl=dl+dl_i;
*for computing A_{\beta};
        Hi=stdxi_o*stdxit_o;
        *tti=wi1*sigooin;
        tti=wi1*sigin_oo;
        *uui=wi2*sigooin;
		uui=wi2*sigin_oo;
        ddl11=ddl11+Et1*(-tti+dwi1*Hi)*E1;
        ddl22=ddl22+Ft1*(Wmat1-( Hi@(uui-.5*dwi2*Hi) ) )*F1; *Wmati to Wmat1;
        ddl12=ddl12+Et1*((-tti+.5*dwi1*Hi)@stdxit_o )*F1;
        ddl21=ddl21+Ft1*((-uui+dwi2*Hi)@stdxi_o )*E1;
end; *1 to n1;
end; *elsedo;  
*start from pattern 2;
snj=n1;	
do j=2 to npat;	
	nj=misinfo[j,1]; pj=misinfo[j,2];
	chipj=cinv(prob,pj);
	ckj=sqrt(chipj);
	cbetaj=( pj*probchi(chipj,pj+2)+ chipj*(1-prob) )/pj;
	oj=misinfo[j,3:(2+pj)];
	mu_o=mu0[oj]; 
	sig_oo=sig0[oj,oj];
	sigin_oo=inv(sig_oo);
	run vec(sig_oo,vecsig_oo);
	sigin_oo=inv(sig_oo);
	Ej=i_p[oj,]; Etj=Ej`;
	Fj=(Ej@Ej)*dup; Ftj=Fj`;
    Wmati=0.5*(sigin_oo@sigin_oo); 
	do i=snj+1 to snj+nj;
		xi=x[i,]`; 
		xi_o=xi[oj];
        xi0_o=xi_o-mu_o;
        xi0_ot=xi0_o`;
        stdxi_o=sigin_oo*xi0_o;
		stdxit_o=stdxi_o`;
        di2=xi0_ot*stdxi_o;
        di=sqrt(di2); 
        **Huber weight functions;
        if di<=ckj then do;
                wi1=1.0;
                wi2=1.0/cbetaj;
                dwi1=0;
                dwi2=0;
        end;
        else do;
                wi1=ckj/di;
                wi2=wi1*wi1/cbetaj;
                dwi1=wi1/di2;
                dwi2=wi2/di2;
        end;  
*for computing B_{\beta};
        dlimu=wi1*Etj*stdxi_o;
        xixi0_o=xi0_o*xi0_ot;
        run vec(xixi0_o,vecyi);
        wvecyi=wi2*vecyi;
        dlisig=Ftj*Wmati*(wvecyi-vecsig_oo);
        B11=B11+dlimu*dlimu`;
        B12=B12+dlimu*dlisig`;
        B22=B22+dlisig*dlisig`;
		dl_i=dlimu//dlisig;
		dl=dl+dl_i;

   *for computing A_{\beta};
        Hi=stdxi_o*stdxit_o;
        tti=wi1*sigin_oo;
        uui=wi2*sigin_oo;

        ddl11=ddl11+Etj*(-tti+dwi1*Hi)*Ej;
        ddl22=ddl22+Ftj*(Wmati-( Hi@(uui-.5*dwi2*Hi) ) )*Fj;
        ddl12=ddl12+Etj*(( (-tti+0.5*dwi1*Hi)@stdxit_o ) )*Fj;
        ddl21=ddl21+Ftj*((-uui+dwi2*Hi)@stdxi_o )*Ej; 
	end; *repeat cases within jth pattern; 
  snj=snj+nj;
end; *repeat pattern;

Bbeta=(B11||B12)//(B12`||B22);

Abeta=(ddl11||ddl12)//(ddl21||ddl22);

Abin=inv(Abeta);
Omega=n*Abin*Bbeta*(Abin`);
*Gamma=Omega[p+1:pps,p+1:pps];
gamma=Omega;
finish;
*-----------------------------------------------------------------------*;
*-----------------------------------------------------------------------*;
**creating index for vech(Sigma) corresponding to the selected variables;
*p=#all variables;
*ps=# selected variables;
*V_forana contains the selected subscripts;
start indexv(p,V_forana,index_s);
pv=nrow(V_forana);
pvs=pv*(pv+1)/2;
index_s=j(pvs,1,0);
count=p;
countv=0;
do i=1 to p;
	do j=i to p;
		count=count+1;
	
		do iv=1 to pv;
			do jv=iv to pv;
				
				if i=V_forana[iv] then do;
					if j=V_forana[jv] then do;
						countv=countv+1;
						index_s[countv]=count;
					end;
				end;
			end;
		end;
	end;
end;
index_s=V_forana//index_s;
finish;

*-----------------------------------------------------------------------*;
*-----------------------------------------------------------------------*;
**creating index for vech(Sigma) corresponding to the selected variables;
*p=#all variables;
*ps=# selected variables;
*V_forana contains the selected subscripts;
start indexvc(p,V_forana,index_s);
pv=nrow(V_forana);
pvs=pv*(pv+1)/2;
index_s=j(pvs,1,0);
count=0;
countv=0;
do i=1 to p;
	do j=i to p;
		count=count+1;
	
		do iv=1 to pv;
			do jv=iv to pv;
				
				if i=V_forana[iv] then do;
					if j=V_forana[jv] then do;
						countv=countv+1;
						index_s[countv]=count;
					end;
				end;
			end;
		end;
	end;
end;
index_s=index_s+j(pvs,1,p) ;
finish;



*-----------------------------------------------------------------------*;
**generating a permutation matrix from the order of vech(A) to the 
vecs(A) as used by EQS;
***--------------------------------------------------------------------***;
start switch(p, permuc, permu);

ps=p*(p+1)/2;
bmat=j(p,p,0);
nb=0;
do i=1 to p;
	do j=1 to i;
		nb=nb+1;
		bmat[i,j]=nb;
	end;
end;
run vech(bmat,vb);

Imatc=i(ps);
permuc=Imatc[,vb];

Imat=i(p+ps);
vp=1:p;
vs=vp`//( vb+j(ps,1,p) );
permu=imat[,vs];
permu=permu[(p+1):(p+ps),]//permu[1:p,]; *EQS puts the covariance first;

finish;

*-----------------------------------------------------------------------*;
*** The following is the main program;
use raw;
read all var _num_ into x;
close raw;
n=nrow(x); print "n=" n;
p=ncol(x);
V_forana={1, 2, 4, 5}; *need to be specified;
*V_forana={1, 2,3, 4, 5,6,7,8,9}; *need to be specified;
varphi=0.10; *need to be specified;
print "varphi=" varphi;
p_v=nrow(V_forana); 
print p_v;
pvs=p_v+p_v*(p_v+1)/2;
run pattern(n,p,x,misinfo);
print x;
totpat=nrow(misinfo);

print "#total observed patterns="  totpat;
print "cases--#observed V--observed V--missing V=";
print misinfo;
run emmusig(x,misinfo,varphi,err,hmu1,hsigma1);
hmu=hmu1[V_forana]`;
hsigma=hsigma1[V_forana,V_forana];
print "hat\mu=";
print hmu;
print "hat\Sigma=";
print hsigma;
run Ascov(varphi,hmu1,hsigma1,x,misinfo, Abeta, Bbeta, hupsilon);

run indexv(p,V_forana,index_beta); *index for both means and covariances; 
run indexvc(p,V_forana,index_sig); *index for only the covariances; 
run switch(p_v, permu_sig, permu_beta); *generating permutation matrices;
print index_beta;

hgamma_sig=hupsilon[index_sig,index_sig]; 
hgamma_sig=permu_sig*hgamma_sig*permu_sig`;*needed for the 2nd stage ML in EQS;
print "\hat\Gamma_sig=";
print hgamma_sig;

hgamma_beta=hupsilon[index_beta,index_beta]; 
hgamma_beta=( permu_beta*hgamma_beta*permu_beta`||j(pvs,1,0) )//(j(1,pvs,0)||1);*needed for the 2nd stage ML in EQS;
print "hat\Gamma_beta=";
print hgamma_beta;
lab/projects/17robust_sem/robust_sem_with_missing_data_sas_codes.txt · Last modified: 2016/01/24 09:48 by 127.0.0.1