lab:projects:12simulation_design_cautions:simple_regression_analysis_with_missing_data
B<-100 N<-1000 R<-0.3 runsim<-function(B, N, R){ ## (1) Simulation based on different data sets b.mcar.all<-NULL b.mar.all<-NULL for (i in 1:B){ x<-rnorm(N) y<-1+2*x +rnorm(N) ## estimation based on MLE ## MAR data y1<-y c.value<-x[rank(x)==N*R] y1[x < c.value]<-NA b.mar<-coef(lm(y1~x)) b.mar.all<-rbind(b.mar.all, b.mar) ##MCAR data x<-rnorm(N) y<-1+2*x +rnorm(N) ## estimation based on MLE #MCAR data y2<-y y2[sample(1:N, N*R)]<-NA b.mcar<-coef(lm(y2~x)) b.mcar.all<-rbind(b.mcar.all, b.mcar) } m.mcar<-apply(b.mcar.all, 2, mean) sd.mcar<-apply(b.mcar.all, 2, sd) m.mar<-apply(b.mar.all, 2, mean) sd.mar<-apply(b.mar.all, 2, sd) res1<-c(m.mcar-c(1,2), m.mar-c(1,2), sd.mar-sd.mcar) ## rbind(m.mcar, sd.mcar, m.mar, sd.mar) ## (2) using same datasets b.mcar.all<-NULL b.mar.all<-NULL for (i in 1:B){ x<-rnorm(N) y<-1+2*x +rnorm(N) ## estimation based on MLE #MAR data y1<-y c.value<-x[rank(x)==N*R] y1[x < c.value]<-NA b.mar<-coef(lm(y1~x)) b.mar.all<-rbind(b.mar.all, b.mar) ##MCAR data ## estimation based on MLE #MAR data y2<-y y2[sample(1:N, N*R)]<-NA b.mcar<-coef(lm(y2~x)) b.mcar.all<-rbind(b.mcar.all, b.mcar) } m.mcar<-apply(b.mcar.all, 2, mean) sd.mcar<-apply(b.mcar.all, 2, sd) m.mar<-apply(b.mar.all, 2, mean) sd.mar<-apply(b.mar.all, 2, sd) res2<-c(m.mcar-c(1,2), m.mar-c(1,2), sd.mar-sd.mcar) ##rbind(m.mcar, sd.mcar, m.mar, sd.mar) c(res1,res2) } allres<-NULL for (k in 1:1000){ temp<-runsim(100,100,.3) allres<-cbind(allres, temp) }
lab/projects/12simulation_design_cautions/simple_regression_analysis_with_missing_data.txt · Last modified: 2016/01/24 09:48 by 127.0.0.1