lab:projects:02robust_growth_curve_modeling_using_student-t_distribution:latent_basis_gcm_in_bugs
#WinBUGS codes generated by BAUW: http://bauw.psychstat.org
#USE WITH CAUTION!
Model{
# Model specification for linear growth curve model
for (i in 1:NS){
LS[i,1:2]~dmnorm(muLS[i,1:2], Inv_cov[1:2,1:2])
muLS[i,1]<-bL[1]
muLS[i,2]<-bS[1]
for (t in 1:5){
y[i, t] ~ dnorm(muY[i,t], Inv_Sig_e2[i])
muY[i,t]<-LS[i,1]+LS[i,2]*A[t]
# muY[i,t]<-LS[i,1]+LS[i,2]*t
}
w[i]~dgamma(a, a)
Inv_Sig_e2[i]<-w[i]*Pre_e2
}
A[1]<-0
A[2]~dnorm(0, 1.0E-2)
A[3]~dnorm(0, 1.0E-2)
A[4]~dnorm(0, 1.0E-2)
A[5]<-1
#Priors for model parameter
#k~dexp(0.1)
k~dunif(0,100)
a<-k/2
for (i in 1:1){
bL[i] ~ dnorm(0, 1.0E-6)
bS[i] ~ dnorm(0, 1.0E-6)
}
Inv_cov[1:2,1:2]<-inverse(Cov[1:2,1:2])
Cov[1,1]~ dunif(0,100) #dgamma(.001,1000)
Cov[2,2]~dunif(0,100) #dgamma(.001,1000)
Cov[1,2]<-rho*sqrt(Cov[1,1]*Cov[2,2])
Cov[2,1]<-Cov[1,2]
rho~dunif(-1,1)
Pre_e2 ~ dgamma(.001, .001)
para[6]<- 1/Pre_e2
para[1]<-bL[1]
para[2]<-bS[1]
para[3] <- Cov[1,1]
para[4] <- Cov[2,2]
para[5] <- Cov[1,2]
para[7] <- k
para[8] <- A[2]
para[9]<-A[3]
para[10]<-A[4]
}
lab/projects/02robust_growth_curve_modeling_using_student-t_distribution/latent_basis_gcm_in_bugs.txt · Last modified: 2016/01/24 09:48 by 127.0.0.1
