User Tools

Site Tools


lab:em_for_mediation_model
## EM for the mediation model
 
## function to calculate the parameters
est<-function(S){
  sX2<-S[1]
  sM2<-S[2]
  sY2<-S[3]
  sXM<-S[4]
  sXY<-S[5]
  sMY<-S[6]
 
  pa<-sXM/sX2
  pb<-(sMY*sX2-sXM*sXY)/(sX2*sM2-sXM^2)
  pc<-(sXY*sM2-sXM*sMY)/(sX2*sM2-sXM^2)
  ps1<-sX2
  ps2<-sM2-sXM^2/sX2
  ps3<-(sX2*sM2*sY2-sX2*sMY^2-sM2*sXY^2-sY2*sXM^2+2*sXM*sXY*sMY)/(sX2*sM2-sXM^2)
  return(c(pa,pb,pc,ps1,ps2,ps3))
}
 
 
## expectation step
EMe<-function(data, para){
  X<-data[,1]
  Y<-data[,3]
  M<-data[,2]
 
  pa<-para[1]
  pb<-para[2]
  pc<-para[3]
  ps1<-para[4]
  ps2<-para[5]
  ps3<-para[6]
 
  n<-dim(data)[1]
 
  sX2<-rep(0,n)
  sM2<-rep(0,n)
  sY2<-rep(0,n)
  sXM<-rep(0,n)
  sXY<-rep(0,n)
  sMY<-rep(0,n)
 
  for (i in 1:n){
    if (!is.na(M[i])){
       if (!is.na(Y[i])){
         ## for complete data case
         sX2[i]= X[i]^2
         sM2[i]= M[i]^2
         sY2[i]= Y[i]^2
         sXM[i]= X[i]*M[i]
         sXY[i]= X[i]*Y[i]
         sMY[i]= M[i]*Y[i]
       }else{
         ## for complete X, M but missing Y
         sX2[i]= X[i]^2
         sM2[i]= M[i]^2
         sY2[i]= pb^2*M[i]^2+pc^2*X[i]^2+2*pb*pc*X[i]*M[i]+ps3
         sXM[i]= X[i]*M[i]
         sXY[i]= pb*X[i]*M[i]+pc*X[i]^2
         sMY[i]= pc*X[i]*M[i]+pb*M[i]^2   
       }
    }else{
       if (!is.na(Y[i])){
         ## for complete X, Y but missing M
         sX2[i]= X[i]^2
         sM2[i]= pa^2*X[i]^2+ps2
         sY2[i]= Y[i]^2
         sXM[i]= pa*X[i]^2
         sXY[i]= X[i]*Y[i]
         sMY[i]= pa*X[i]*Y[i]
       }else{
         ## for complete X but missing M, Y
         sX2[i]= X[i]^2
         sM2[i]= pa^2*X[i]^2+ps2
         sY2[i]= (pa*pb+pc)^2*X[i]^2+pb^2*ps2+ps3
         sXM[i]= pa*X[i]^2
         sXY[i]= (pa*pb+pc)*X[i]^2
         sMY[i]= pa*(pa*pb+pc)*X[i]^2+pb*ps2   
       }
     }
 
  }
 
  return(c(sum(sX2)/(n-1),sum(sM2)/(n-1), sum(sY2)/(n-1), sum(sXM)/(n-1), sum(sXY)/(n-1), sum(sMY)/(n-1)))
}
 
## Simulation to compare the EM method and the listwise delete method
 
## Matrice to store the results
R<-100
comp<-array(NA,dim=c(R,6))
em<-array(NA,dim=c(R,6))
true<-array(NA,dim=c(R,6))
listdel<-array(NA,dim=c(R,6))
 
for (j in 1:R){
## data generation
 X<-rnorm(1000)
 M<-.5*X + .1*rnorm(1000)
 Y<-.5*M + .1*X + .1*rnorm(1000)
 temp<-cov(cbind(X,M,Y))
 par<-est(c(temp[1,1],temp[2,2],temp[3,3],temp[1,2],temp[1,3],temp[2,3]))
 true[j,]<-par
 
## Create missing data
#for (i in 1:1000){
#  if (runif(1)<.1){ M[i]<-NA }
#  if (runif(1)<.1){ Y[i]<-NA }
#}
Y[801:900]<-NA
M[901:1000]<-NA
data<-cbind(X,M,Y)
 
## the list wise delete method
temp<-cov(data,use='complete.obs')
par<-est(c(temp[1,1],temp[2,2],temp[3,3],temp[1,2],temp[1,3],temp[2,3]))
comp[j,]<-par
 
temp<-cov(data,use='pairwise.complete.obs')
par<-est(c(temp[1,1],temp[2,2],temp[3,3],temp[1,2],temp[1,3],temp[2,3]))
listdel[j,]<-par
 
 
e<-1
 
while (e>.00000000001){
  SS<-EMe(data, par)
  para<-est(SS)
  e<-sum(abs(para-par))
  par<-para
  #print(para,digits=20)
}
 
em[j,]<-para
}
 
apply(true,2,mean)
apply(comp,2,mean)
apply(em,2,mean)
apply(listdel,2,mean)
lab/em_for_mediation_model.txt · Last modified: 2016/01/24 09:48 by 127.0.0.1