lab:em_for_mediation_for_monents
## EM for the estimate the covariance matrix ## function to calculate the parameters par.est<-function(pM, pS){ sX2<-pS[1,1] sM2<-pS[2,2] sY2<-pS[3,3] sXM<-pS[1,2] sXY<-pS[1,3] sMY<-pS[2,3] mX <-pM[1] mM <-pM[2] mY <-pM[3] pa<-sXM/sX2 pb<-(sMY*sX2-sXM*sXY)/(sX2*sM2-sXM^2) pc<-(sXY*sM2-sXM*sMY)/(sX2*sM2-sXM^2) ps1<-sX2 ps2<-sM2-sXM^2/sX2 ps3<-(sX2*sM2*sY2-sX2*sMY^2-sM2*sXY^2-sY2*sXM^2+2*sXM*sXY*sMY)/(sX2*sM2-sXM^2) pm1<-mX pm2<-mM - pa*mX pm3<-mY - pb*mM - pc*mX return(c(pm2,pm3,pa,pb,pc,ps2,ps3)) } ## the M-step M_step<-function(sM, sS, N){ ## sM: first moment vector ## sS: second moment pM <- sM/N pS <- sS/(N-1) - N/(N-1)*pM%*%t(pM) return(list(pM=pM, pS=pS)) } ## the E-step E_step<-function(dset, pM, pS){ X<-dset[,1] M<-dset[,2] Y<-dset[,3] n<-dim(dset)[1] sX2<-rep(0,n) sM2<-rep(0,n) sY2<-rep(0,n) sXM<-rep(0,n) sXY<-rep(0,n) sMY<-rep(0,n) mX <-rep(0,n) mM <-rep(0,n) mY <-rep(0,n) for (i in 1:n){ ## process missing data in X if (!is.na(X[i])){ ## X is available if (!is.na(M[i])){ ## M is available if (!is.na(Y[i])){ ## X, M, Y is available mX[i]<-X[i] mM[i]<-M[i] mY[i]<-Y[i] sX2[i]<-X[i]^2 sY2[i]<-Y[i]^2 sM2[i]<-M[i]^2 sXM[i]<-X[i]*M[i] sXY[i]<-X[i]*Y[i] sMY[i]<-M[i]*Y[i] }else{ ## X & M observed but Y is missing mX[i]<-X[i] mM[i]<-M[i] mY[i]<-pM[3] + pS[3,1:2]%*%solve(pS[1:2,1:2])%*%(c(X[i]-pM[1], M[i]-pM[2])) sX2[i]<-mX[i]*mX[i] sM2[i]<-mM[i]*mM[i] sY2[i]<-mY[i]*mY[i]+pS[3,3]-pS[3,1:2]%*%solve(pS[1:2,1:2])%*%(pS[1:2,3]) sXM[i]<-mX[i]*mM[i] sXY[i]<-mX[i]*mY[i] sMY[i]<-mM[i]*mY[i] } }else{ ## M is missing if (!is.na(Y[i])){ ## X, Y is available but M is missing mX[i]<-X[i] mM[i]<-pM[2] + pS[2,c(1,3)]%*%solve(pS[c(1,3),c(1,3)])%*%(c(X[i]-pM[1],Y[i]-pM[3])) mY[i]<-Y[i] sX2[i]<-mX[i]*mX[i] sM2[i]<-mM[i]*mM[i]+pS[2,2]-pS[2,c(1,3)]%*%solve(pS[c(1,3),c(1,3)])%*%(pS[c(1,3),2]) sY2[i]<-mY[i]*mY[i] sXM[i]<-mX[i]*mM[i] sXY[i]<-mX[i]*mY[i] sMY[i]<-mM[i]*mY[i] }else{ ## X is observed but M and Y are missing mX[i]<-X[i] mM[i]<-pM[2] + pS[1,2]/pS[1,1]*(X[i]-pM[1]) mY[i]<-pM[3] + pS[1,3]/pS[1,1]*(X[i]-pM[1]) sX2[i]<-mX[i]*mX[i] sM2[i]<-mM[i]*mM[i] + pS[2,2]-pS[1,2]^2/pS[1,1] sY2[i]<-mY[i]*mY[i] + pS[3,3]-pS[1,3]^2/pS[1,1] sXM[i]<-mX[i]*mM[i] sXY[i]<-mX[i]*mY[i] sMY[i]<-mM[i]*mY[i] + pS[2,3]-pS[1,2]*pS[1,3]/pS[1,1] } } }else{ ## X is missing if (!is.na(M[i])){ ## M is available if (!is.na(Y[i])){ ## X is missing, M & Y are available mX[i]<-pM[1] + pS[1,2:3]%*%solve(pS[2:3,2:3])%*%(c(M[i]-pM[2], Y[i]-pM[3])) mM[i]<-M[i] mY[i]<-Y[i] sX2[i]<-mX[i]*mX[i]+pS[1,1]-pS[1,2:3]%*%solve(pS[2:3,2:3])%*%pS[2:3,1] sM2[i]<-mM[i]*mM[i] sY2[i]<-mY[i]*mY[i] sXM[i]<-mX[i]*mM[i] sXY[i]<-mX[i]*mY[i] sMY[i]<-mM[i]*mY[i] }else{ ## Y and X is missing but M is available mX[i]<-pM[1]+pS[1,2]/pS[2,2]*(M[i]-pM[2]) mM[i]<-M[i] mY[i]<-pM[3]+pS[2,3]/pS[2,2]*(M[i]-pM[2]) sX2[i]<-mX[i]*mX[i]+pS[1,1]-pS[1,2]^2/pS[2,2] sM2[i]<-mM[i]*mM[i] sY2[i]<-mY[i]*mY[i]+pS[3,3]-pS[2,3]^2/pS[2,2] sXM[i]<-mX[i]*mM[i] sXY[i]<-mX[i]*mY[i]+pS[1,3]-pS[1,2]*pS[2,3]/pS[2,2] sMY[i]<-mM[i]*mY[i] } }else{ ## X, M is missing mX[i]<-pM[1]+pS[1,3]/pS[3,3]*(Y[i]-pM[3]) mM[i]<-pM[2]+pS[2,3]/pS[3,3]*(Y[i]-pM[3]) mY[i]<-Y[i] sX2[i]<-mX[i]*mX[i]+pS[1,1]-pS[1,3]^2/pS[3,3] sM2[i]<-mM[i]*mM[i]+pS[2,2]-pS[2,3]^2/pS[3,3] sY2[i]<-mY[i]*mY[i] sXM[i]<-mX[i]*mM[i]+pS[1,2]-pS[1,3]*pS[2,3]/pS[3,3] sXY[i]<-mX[i]*mY[i] sMY[i]<-mM[i]*mY[i] } } } sM<-c(sum(mX),sum(mM),sum(mY)) sS<-array(c( sum(sX2),sum(sXM),sum(sXY),sum(sXM),sum(sM2),sum(sMY),sum(sXY),sum(sMY),sum(sY2)),dim=c(3,3)) return(list(sM=sM, sS=sS)) } ## Matrice to store the results R<-100 pairdel<-array(NA,dim=c(R,7)) em<-array(NA,dim=c(R,7)) em2<-array(NA,dim=c(R,7)) em3<-array(NA,dim=c(R,7)) true<-array(NA,dim=c(R,7)) listdel<-array(NA,dim=c(R,7)) ml<-array(NA,dim=c(R,7)) N<-100 for (j in 1:R){ ## dset generation X<-rnorm(N) M<-.5+.5*X + sqrt(.1)*rnorm(N) Y<-1+1*M + .1*X + sqrt(.3)*rnorm(N) dset<-cbind(X,M,Y) sampM<-c(sum(X),sum(M),sum(Y)) sampS<-array(c(sum(X^2),sum(X*M),sum(X*Y),sum(X*M),sum(M^2),sum(M*Y),sum(X*Y),sum(M*Y),sum(Y^2)),c(3,3)) ## results from complete data analysis para<-M_step(sampM, sampS, N) true[j,]<-par.est(para$pM, para$pS) ## For the missing data analysis for (i in 1:N){ # if (runif(1)<.1) X[i]<-NA if (runif(1)<.1) M[i]<-NA if (runif(1)<.1) Y[i]<-NA } dset<-cbind(X,M,Y) e<-1 while (e>.0000001){ E.res<-E_step(dset,para$pM, para$pS) M.res<-M_step(E.res$sM, E.res$sS, N) e<-sum(abs(M.res$pM-para$pM))+sum(abs(M.res$pS-para$pS)) para<-M.res } em[j,]<-par.est(para$pM,para$pS) temp1 <- prelim.norm(dset) temp2 <- em.norm(temp1) temp3 <- getparam.norm(temp1,temp2) em3[j,]<-par.est(temp3$mu, temp3$sigma) #test<-prelim.norm(dset) #res<-em.norm(test) #getparam.norm(test,res) ## ML method ## save the data write.table(dset, "data.dat", na='.',row.names=F, col.names=F) system('c:\\programs\\mplus\\mplus.exe mle.inp',show.output.on.console = F) tempres<-scan('est.txt',quiet=T) ml[j,]<-tempres[c(2,1,6,4,5,7,8)] ## the list wise delete method isna<-is.na(dset) sumisna<-apply(isna,1,sum) listdata<-dset[sumisna==0,] sampN[j]<-dim(listdata)[1] temp<-cov(listdata,use='complete.obs') par<-par.est(c(mean(listdata[,1]),mean(listdata[,2]),mean(listdata[,3])),temp) listdel[j,]<-par ## pairwise delete temp<-cov(dset,use='pairwise.complete.obs') par<-par.est(c(mean(dset[,1],na.rm=T),mean(dset[,2],na.rm=T),mean(dset[,3],na.rm=T)),temp) pairdel[j,]<-par ## EM for path model temp<-cov(dset,use='pairwise.complete.obs') par<-est(c(temp[1,1],temp[2,2],temp[3,3],temp[1,2],temp[1,3],temp[2,3],mean(dset[,1],na.rm=T),mean(dset[,2],na.rm=T),mean(dset[,3],na.rm=T))) e<-1 while (e>.00001){ SS<-EMe(dset, par) para<-est(SS) e<-sum(abs(para-par)) par<-para # print(par,digits=10) } em2[j,]<-para[c(8,9,1,2,3,5,6)] } apply(true,2,mean) apply(pairdel,2,mean) apply(em,2,mean) apply(em2,2,mean) apply(em3,2,mean) apply(listdel,2,mean) apply(ml,2,mean)
lab/em_for_mediation_for_monents.txt · Last modified: 2016/01/24 09:48 by 127.0.0.1