codes:basic_mdp_r_code
################################################################
# Code to fit a basic MDP model
#
# Be warned that this is bad code. I've tried to keep the code
# understandable, rather than efficient.
################################################################
################################################################
#
# Part 1. A description of the model
#
# The model is a conjugate, normal-normal model
# Variances are treated as known throughout
#
# The model is the basic model discussed in class
# mu ~ N(mu_0, rho^2)
# F | mu ~ DP(M F_0); F_0 = N(mu, tau^2)
# theta_i | F ~ F
# X_i | theta_i ~ N(theta_i, sigma^2)
#
################################################################
################################################################
#
# Part 2. Some useful objects
#
# First, we'll need information on the clusters
#
# clust$s
# clust$k
# clust$n.i
# clust$theta.star
#
# It's also good to have the data stored as an object--overkill
# in this case, as the data consist of little more than the vector, x
#
# data$x
# data$n
#
# The parameters governing likelihood and prior are also essential
#
# prior$mu.0
# prior$rho.sq
# prior$M
# prior$tau.sq
# prior$sig.sq
#
# Also, we'll track the value of mu as the gibbs sampler progresses
#
# mu
################################################################
################################################################
#
# The real bit of the code -- functions for a variety of small tasks
# first, then a function for a complete iterate of the Gibbs sampler,
# and finally, a function for a small simulation
################################################################
################################################################
#
# Function 1. A function to remove theta_i from the cluster
# structure
#
# Note the silly "dump" of clust into variables of the same
# names at the beginning of the function and the collection
# of the variables at the end. Compare the readability of
# this to later functions without the dump and collect.
#
################################################################
fn.remove.theta.i <- function(i,clust)
{
s <- clust$s
k <- clust$k
n.i <- clust$n.i
theta.star <- clust$theta.star
tmp <- s[i]
if (n.i[tmp] > 1)
n.i[tmp] <- n.i[tmp] - 1
else
{
n.i[tmp] <- n.i[k]
n.i <- n.i[-k]
s[s==k] <- tmp
theta.star[tmp] <- theta.star[k]
theta.star <- theta.star[-k]
k <- k - 1
}
s[i] <- 0
clust$s <- s
clust$k <- k
clust$n.i <- n.i
clust$theta.star <- theta.star
return(clust)
}
################################################################
#
# Function 2. A function to generate theta_i for the cluster
# structure
#
# Tasks: Compute probabilities of joining cluster, beginning
# new cluster
# Generate cluster membership
# Update s and n_i
# Update k and theta_star if needed
#
################################################################
fn.gen.theta.i <- function(i,clust,prior,mu,data)
{
prb <- c(clust$n.i,prior$M)
for (j in 1:clust$k)
{
tmp.m <- clust$theta.star[j]
tmp.v <- prior$sig.sq
prb[j] <- prb[j] * dnorm(data$x[i],mean=tmp.m,sd=sqrt(tmp.v))
}
prb[clust$k + 1] <- prb[clust$k + 1] *
dnorm(data$x[i], mean=mu, sd=sqrt(prior$tau.sq + prior$sig.sq))
tmp <- sample(1:(clust$k+1),size=1,prob=prb)
if (tmp > clust$k)
{
clust$s[i] <- tmp
clust$k <- clust$k + 1
clust$n.i <- c(clust$n.i,1)
tmp.m <- ((1/prior$sig.sq)*data$x[i] + (1/prior$tau.sq)*mu) /
((1/prior$sig.sq) + (1/prior$tau.sq))
tmp.v <- 1/((1/prior$sig.sq) + (1/prior$tau.sq))
tmp <- rnorm(n=1,mean=tmp.m,sd=sqrt(tmp.v))
clust$theta.star <- c(clust$theta.star,tmp)
}
else
{
clust$s[i] <- tmp
clust$n.i[tmp] <- clust$n.i[tmp] + 1
}
return(clust)
}
################################################################
#
# Function 3. A function to generate theta_star
#
# Tasks: Loop through i = 1, ..., k
# Find cond'l posterior distribution for theta_star[i]
# Generate theta_star[i]
#
################################################################
fn.gen.theta.star <- function(clust,prior,mu,data)
{
for (i in 1:clust$k)
{
tmp.m <- ((clust$n.i[i]/prior$sig.sq)*mean(data$x[clust$s==i]) +
(1/prior$tau.sq)*mu) /
((clust$n.i[i]/prior$sig.sq) + (1/prior$tau.sq))
tmp.v <- 1/((clust$n.i[i]/prior$sig.sq) + (1/prior$tau.sq))
clust$theta.star[i] <- rnorm(n=1,mean=tmp.m,sd=sqrt(tmp.v))
}
return(clust)
}
################################################################
#
# Function 4. A function to generate mu
#
# Tasks: Find cond'l posterior distribution for mu
# Generate mu
#
################################################################
fn.gen.mu <- function(clust,prior)
{
tmp.m <- ((clust$k/prior$tau.sq)*mean(clust$theta.star) +
(1 / prior$rho.sq) * prior$mu.0) /
((clust$k/prior$tau.sq) + (1/prior$rho.sq))
tmp.v <- 1 / ((clust$k/prior$tau.sq) + (1/prior$rho.sq))
mu <- rnorm(n=1,mean=tmp.m,sd=sqrt(tmp.v))
return(mu)
}
################################################################
#
# Function 5. One iterate of the Gibbs sampler
#
# Tasks: Generate each theta_i in turn
# Generate theta_star
# Generate mu
#
################################################################
fn.one.iterate <- function(clust,prior,mu,data)
{
for (i in 1:data$n)
{
clust <- fn.remove.theta.i(i,clust)
clust <- fn.gen.theta.i(i,clust,prior,mu,data)
}
clust <- fn.gen.theta.star(clust,prior,mu,data)
mu <- fn.gen.mu(clust,prior)
ret.obj <- NULL
ret.obj$clust <- clust
ret.obj$prior <- prior
ret.obj$mu <- mu
return(ret.obj)
}
################################################################
#
# Function 6. A brief Gibbs sampler
#
# Tasks: Set up object (here, matrix) to store results
# Run one iterate of Gibbs sampler
# Tally results
#
# Improvements for you to make:
# Burn-in -- allow explicit description of burn-in to be
# discarded
# Subsampling -- Not to be done unless storage issues are
# important. But, allow subsampling of the
# output
# Initialization -- an automated initialization routine.
# Best to allow a couple of options for
# the initialization.
#
################################################################
fn.gibbs.sampler <- function(n.reps,prior,data,clust,mu)
{
# Insert initialization routine if desired
# Insert burn-in period if desired
res.mat <- matrix(rep(0,n.reps*(data$n+1)),nrow=n.reps)
for (i in 1:n.reps)
{
tmp <- fn.one.iterate(clust,prior,mu,data)
clust <- tmp$clust
mu <- tmp$mu
res.mat[i,] <- c(mu,clust$theta.star[clust$s])
# print(clust$k)
}
return(res.mat)
}
# A run of the code is as simple as this--once the called
# objects are set up.
n.reps <- 1000
res.mat <- fn.gibbs.sampler(n.reps,prior,data,clust,mu)
################################################################
#
# As with any code, diagnostics are essential. For one
# example, one could jot down the code below. Set up
# a cluster structure in "bb", along with prior, mu,
# and data. Run the routine fn.gen.theta.star a bunch
# of times. For this normal-normal model (for each theta_star[i]),
# you know the form of the posterior. Check mean and
# variance of each column against known values.
#
# Change mu and repeat
# Change sig.sq and repeat
# Change tau.sq and repeat
#
################################################################
tmp.mat <- matrix(rep(0,4000),ncol=4)
for (i in 1:1000)
{tmp.mat[i,] <- fn.gen.theta.star(bb,prior,mu,data)$theta.star}
apply(tmp.mat,2,mean)
apply(tmp.mat,2,var)
################################################################
#
# Two data sets. For both data sets, the observations are weight
# (in pounds). The first data set is available at statlib (on the
# web at http://lib.stat.cmu.edu/datasets/), where you can find it
# under bodyfat. The second is from the 2008-09 Buckeye football
# roster.
#
# We'll look at a basic compound decision problem for both data
# sets. Eliciting a prior distribution for weights, I went with
# the following values:
# mu.0 = 180, rho.sq = 400 center is 180, give or take 20
# M = 20, tau.sq = 225 together, tau.sq + sig.sq give a
# sig.sq = 100 sd of approx 18
#
# Initially, each observation in its own cluster
# k = data.n, s = 1:k, n.i=rep(1,k), theta.star = data.x
#
################################################################
# create appropriate data object
prior1 <- NULL
prior1$mu.0 <- 180
prior1$rho.sq <- 400
prior1$M <- 20
prior1$tau.sq <- 225
prior1$sig.sq <- 100
clust1 <- NULL
clust1$k <- data1$n
clust1$s <- 1:data1$n
clust1$n.i <- rep(1,data1$n)
clust1$theta.star <- data1$x
mu1 <- prior1$mu.0
# for data set 2, listed in object data2
prior2 <- prior1
clust2 <- NULL
clust2$k <- data2$n
clust2$s <- 1:data2$n
clust2$n.i <- rep(1,data2$n)
clust2$theta.star <- data2$x
mu2 <- prior2@mu.0
# run the code
n.reps <- 10000
date()
res.mat1 <- fn.gibbs.sampler(n.reps,prior,data,clust,mu)
date()
# 39 minutes on my laptop, n=252
n.reps <- 10000
date()
res.mat2 <- fn.gibbs.sampler(n.reps,prior2,data2,clust2,mu2)
date()
# 12 minutes on my laptop, n=112
################################################################
#
# A second analysis removes the distribution over base measures.
# To make the new model more comparable to the old one, we might
# match the prior predictive distributions. To do this, we set
# mu = mu.0 and sweep the variation from rho.sq into tau.sq.
# We also use a routine that does not update mu.
#
# The prior distribution
# mu = 180 center is 180
# M = 20, tau.sq = 625
# sig.sq = 100
#
# Initially, each observation in its own cluster
# k = data.n, s = 1:k, n.i=rep(1,k), theta.star = data.x
#
################################################################
################################################################
#
# Function 5'. One iterate of the Gibbs sampler, no hierarchy
#
# Tasks: Generate each theta_i in turn
# Generate theta_star
#
################################################################
fn.one.iterate.nohier <- function(clust,prior,mu,data)
{
for (i in 1:data$n)
{
clust <- fn.remove.theta.i(i,clust)
clust <- fn.gen.theta.i(i,clust,prior,mu,data)
}
clust <- fn.gen.theta.star(clust,prior,mu,data)
ret.obj <- NULL
ret.obj$clust <- clust
ret.obj$prior <- prior
return(ret.obj)
}
################################################################
#
# Function 6'. A brief Gibbs sampler, no hierarchy
#
# Tasks: Set up object (here, matrix) to store results
# Run one iterate of Gibbs sampler
# Tally results
#
# Improvements for you to make:
# Burn-in -- allow explicit description of burn-in to be
# discarded
# Subsampling -- Not to be done unless storage issues are
# important. But, allow subsampling of the
# output
# Initialization -- an automated initialization routine.
# Best to allow a couple of options for
# the initialization.
#
################################################################
fn.gibbs.sampler.nohier <- function(n.reps,prior,data,clust,mu)
{
# Insert initialization routine if desired
# Insert burn-in period if desired
res.mat <- matrix(rep(0,n.reps*(data$n+1)),nrow=n.reps)
for (i in 1:n.reps)
{
tmp <- fn.one.iterate.nohier(clust,prior,mu,data)
clust <- tmp$clust
res.mat[i,] <- c(mu,clust$theta.star[clust$s])
# print(clust$k)
}
return(res.mat)
}
# Sets up the objects for the analysis ...3 is for the
# bodyfat data set, ...4 is for the Buckeye data set.
prior3 <- prior1
prior3$tau.sq <- 625
clust3 <- clust1
mu3 <- prior3$mu.0
data3 <- data
prior4 <- prior2
prior4$tau.sq <- 625
clust4 <- clust2
mu4 <- prior4$mu.0
data4 <- data2
# run the code
n.reps <- 10000
date()
res.mat3 <- fn.gibbs.sampler.nohier(n.reps,prior3,data3,clust3,mu3)
date()
# 42 minutes on my laptop, n=252
n.reps <- 10000
date()
res.mat4 <- fn.gibbs.sampler.nohier(n.reps,prior4,data4,clust4,mu4)
date()
# 10 minutes on my laptop, n=112
################################################################
#
# Diagnostics are an essential part of MCMC. The primary questions
# are whether the sampler has converged (i.e., after some burn-in
# period, are the draws from a very close approximation to the
# posterior distribution) and how well the sampler mixes (i.e., is
# the Markov chain moving around the parameter space quickly enough).
#
# As in other areas of Statistics, diagnostics are largely an art.
# A few solid plots and summaries are these:
# (i) time series plots of parameters--use points, not lines
# (ii) plots of one parameter against another
# (iii) a sequence of density estimates for a parameter
# (iv) autocorrelations for the parameters
#
################################################################
# As a brief example, the following addresses convergence/mixing
# for the first example. The plots are for mu, followed by
# theta_1 ... theta_15. A more complete look would examine the
# rest of the thetas as well. Look at these plots with a "full screen"
# graphics device.
par(mfrow=c(4,4))
for (i in 1:16) plot(tmp,res.mat1[tmp,i])
# Note the strange behavior for theta_1. Convergence and mixing
# appear to hold, but there is a "gap" in the small range of values
# for theta_1. Pursue this for an interesting look at the distribution.
# What accounts for the phenomenon?
par(mfrow=c(1,1))
plot(density(res.mat1[,2]))
# One might also track the number of clusters amongst the theta_i
tmp.vec <- rep(0,10000)
for (i in 1:10000)
{tmp.vec[i] <- length(unique(res.mat1[i,]))-1}
plot(tmp,tmp.vec)
# Note: This is a bad way to look at the number of clusters.
# Part of good diagnostics is planning. What is a better way to
# set up and perform this diagnostic since we know we'll want to
# look at this.
# Further diagnostics should be done. Think hard about whether
# or not you're getting the kind of MCMC output that should be
# used for estimation. If not, it's back to the drawing board.
################################################################
#
# Exploration of the posterior distribution and estimation are the
# two main purposes of MCMC when used to fit a Bayesian model.
# Setting exploration aside, one might use basic estimators. For
# the compound decision problem, our primary interest is in each
# of the theta_i. We may also be interested in a new theta for
# which we have no data, or in approximating the decision rule for
# theta_hat given x.
#
# A nonparametric approach to the compound decision problem opens
# up more possibilities. As with theta_1 above, we may find that
# the posterior distribution for a parameter is distinctly non-normal
# (while for other parameters, normality provides a good approximation).
# Is it worth while collecting more information on a particular theta_i?
# With greater variety in the posterior distributions, we expect
# greater variety in our decisions about how valuable further data
# is, and hence about which further data to collect.
#
################################################################
par(mfrow=c(2,2))
theta.hat1 <- apply(res.mat1,2,mean)
plot(data1$x,theta.hat1[2:253])
lines(c(150,300),c(150,300))
theta.hat2 <- apply(res.mat2,2,mean)
plot(data2$x,theta.hat2[2:113])
lines(c(150,300),c(150,300))
theta.hat3 <- apply(res.mat3,2,mean)
plot(data3$x,theta.hat3[2:253])
lines(c(150,300),c(150,300))
theta.hat4 <- apply(res.mat4,2,mean)
plot(data4$x,theta.hat4[2:113])
lines(c(150,300),c(150,300))
theta.hat.new1 <- (prior1$M * theta.hat1[1] + sum(theta.hat1[2:253])) /
(prior1$M + data1$n)
theta.hat.new2 <- (prior2$M * theta.hat2[1] + sum(theta.hat2[2:113])) /
(prior2$M + data2$n)
theta.hat.new3 <- (prior3$M * theta.hat3[1] + sum(theta.hat3[2:253])) /
(prior3$M + data3$n)
theta.hat.new4 <- (prior4$M * theta.hat4[1] + sum(theta.hat4[2:113])) /
(prior4$M + data4$n)
theta.hat.new1
theta.hat.new2
theta.hat.new3
theta.hat.new4
> theta.hat.new1
[1] 179.8613
> theta.hat.new2
[1] 228.7993
> theta.hat.new3
[1] 178.8999
> theta.hat.new4
[1] 221.7696
codes/basic_mdp_r_code.txt · Last modified: 2016/01/24 09:48 by 127.0.0.1
