lab:projects:17bayesian_meta_analysis:r_code_for_estimation
#=================== ## R code for the Meta-analysis #=================== #install.packages("BMS") ## to calcuate f21hypergeometric function library(BMS) library(coda)#diagnostic of the chain #log power Likelihood of sample correlation logPowerLik=function(rho, N, r, a){ ## N sample size, >2 ## r sample correlation ## rho random variable rho ## a power I<-length(r) object<-0 for (i in 1:I){ object <- object + a[i]*( -.5*log(2*pi) + log(N[i]-2) +0.5*(N[i]-4)*log(1-r[i]^2) + 0.5*(N[i]-1)*log(1-rho^2) + lgamma(N[i]-1) - lgamma(N[i]-.5) - (N[i]-1.5)*log(1-r[i]*rho) + log(f21hyper(.5, .5, N[i]-0.5, .5*(rho*r[i]+1)))) } object } ## maximimize the likelihood function mlerho<-function(N, r, a, ...){ ## ...: other parameters mle<-optimize(logPowerLik, c(-1,1), maximum=TRUE, N=N, r=r, a=a, ...) return(list(rho=mle$maximum, mle=mle)) } ## mlerho(N=N.sample, r=rho.sample, a=a.sample) ## boundaryrho<-function(N, r, a, interval=1e-4, ep=1e-6){ theta<-seq(-1, 1, interval) exp.density<-exp(unlist(lapply(theta, logPowerLik, N=N, r=r, a=a))) exp.density<-exp.density/max(exp.density) max.ind<-which.max(exp.density) min.ind.left<-which.min(abs(exp.density[1:max.ind]-ep)) min.ind.right<-which.min(abs(exp.density[max.ind:length(exp.density)]-ep))+max.ind-1 return(list(interval=c(theta[min.ind.left], theta[min.ind.right]), density=exp.density)) } # test<-boundaryR(logPowerLik, N=N.sample, r=rho.sample, a=a.sample) # theta<-seq(-1,1,1e-4) # plot(theta, test$density) # abline(v=test$interval) ## the main function to do M-H metroprho <- function(N, r, a, nbi=1000, nmc=10000, init, ...){ ## fun: fun to be sampled from ## nbi: burn-in period ## nmc: length of markov chain after burning ## ...: pass parameters for the likelihood function accept<-0 ## acceptance rate M<-nbi+nmc theta <- rep(0, M) mode<-mlerho(N, r, a)$rho if (missing(init)){ ## may set the initial value at the maximum of the likelihood function to avoid the burn-in theta[1] <- mode }else{ theta[1] <- init } # find a good boundary ab <- boundaryrho(N=N, r=r, a=a, ...) for(t in 2:(M+1)){ thetagen = runif(1, ab$interval) accept.r = min(1,exp(logPowerLik(rho=thetagen, N=N, r=r, a=a)-logPowerLik(rho=theta[t-1],N=N, r=r, a=a))) check = accept.r - runif(1) if(check > 0){ theta[t]=thetagen accept <- accept + 1 } else{ theta[t]=theta[t-1] } } object<-list(theta=theta[(nbi+1):M], mode=mode, accept=accept) class(object)<- 'rho' return(object) } ## summary function and plot function summary.rho<-function(object, alpha=.95, ...){ rhomcmc<-as.mcmc(object$theta) effectN<-effectiveSize(rhomcmc) geweke<-geweke.diag(rhomcmc,...) hpd<-HPDinterval(rhomcmc) ## print the output cat('The results are based on ', length(rhomcmc) , 'MCMC draws', ".\n") cat("The acceptance rate is ", object$accept/length(rhomcmc), ".\n") cat("The Geweke statistic for convergence test is ", geweke$z, ".\n") cat("The effective sample size is ", round(effectN), ".\n") cat("The mode of the posterior distribution is ", object$mode, ".\n") cat("The HPD interval is ", hpd, ".\n") invisible(list(mode=object$model, hpd=hpd, effectN=effectN, gewekw=geweke)) } ## plot the MCMC plot.rho<-function(object, ...){ ## layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE)) theta<-as.mcmc(object$theta) acf(theta, main='Autocorrelation plot',...) plot(density(theta),main='Density plot',...) abline(v=object$mode) plot.ts(theta,ylab='rho',main='Trace plot',...) } ## Cumulative analysis cumrho<-function(N, r, a, hpd=FALSE, nbi=1000, nmc=10000, init, ...){ m<-length(N) rho<-rep(0, m) if (hpd){ hpd.ci<-array(NA, c(m,2)) theta<-list() cat('Please wait while the program is running ') flush.console() for (i in 1:m){ temp.rho<-metroprho(N[1:i], r[1:i], a[1:i], nbi=nbi, nmc=nmc, ...) rho[i]<-temp.rho$mode hpd.ci[i, ]<-HPDinterval(as.mcmc(temp.rho$theta)) theta[[i]]<-temp.rho cat(round(i/m*100),'% ') flush.console() } out<-cbind(rho, hpd.ci) colnames(out)<-c('rho','HPD', 'CI') rownames(out)<-1:m cat("\n\n") print(out) return(list(rho=rho, hpd=hpd.ci,theta=theta)) }else{ for (i in 1:m){ rho[i]<-mlerho(N[1:i], r[1:i], a[1:i])$rho } return(rho=rho) } } ## sensitive analysis of power a arho<-function(N, r, a, id=length(N), m=11, ...){ a.try<-seq(0,1,length=m) rho<-rep(0, m) for (i in 1:m){ a[id]<-a.try[i] rho[i]<-mlerho(N=N, r=r, a=a)$rho } ## plot rho according to a plot(a.try, rho, xlab='a', ylab='correlation') return(rho=rho) } mchains<-function(N, r, a, nbi=1000, nmc=10000, m=3, ...){ mcmc<-mcmc.list() init<-seq(-1,1,length=m) accept<-mode<-rep(0,m) for (i in 1:m){ temp<-metroprho(N=N, r=r, a=a, nbi=nbi, nmc=nmc, init[i], ...) mcmc[[i]]<-as.mcmc(temp$theta) accept[i]<-temp$accept mode[i]<-temp$mode cat("Finished chain ",i,"\n") flush.console() } return(list(mcmc=mcmc, accept=accept, mode=mode)) } ## An example ##data rho.sample=c(0.3, 0.5, 0.8, 0.7) N.sample=c(100, 120, 30, 150) a.sample=c(1, 0.3, 0.2, 0.5) ## sampling res1<-metroprho(N=N.sample, r=rho.sample, a=a.sample) summary(res1) ## plot plot(res1) test1<-cumrho(N=N.sample, r=rho.sample, a=a.sample) test2<-cumrho(N=N.sample, r=rho.sample, a=a.sample, hpd=TRUE) ## each cumulative one can be investigated, too plot(test2$theta[[1]]) summary(test2$theta[[2]]) ## sensitive analysis arho(N=N.sample, r=rho.sample, a=a.sample) ## test multipe chain analysis mcmc<-mchains(N=N.sample, r=rho.sample, a=a.sample) gelman.diag(mcmc$mcmc)
lab/projects/17bayesian_meta_analysis/r_code_for_estimation.txt · Last modified: 2016/01/24 09:48 by 127.0.0.1