User Tools

Site Tools


lab:blog

Wishart prior in WinBUGS/OpenBUGS

For a multilevel model, we specify the random coefficients as a multivariate normal distribution such as \[ \left(\begin{array}{c} L_{i}\\ S_{i}\end{array}\right)\sim MN\left[\left(\begin{array}{c} \beta_{L}\\ \beta_{S}\end{array}\right),\Sigma^{-1}\right] \]

The prior for the precision matrix $\Sigma^{-1}$ is given a Wishart distribution in BUGS.

\[\Sigma^{-1}\sim W(R[1:2,1:2],m)\]

Here $m$ is the degrees of freedom (scalar) that is equivalent prior sample size and must be greater than or equal to dimension of matrix in order for Wishart to be proper. $m$ determines the degree of certainty you have about the mean.

In WinBUGS, the specification indicate that the mean of the covariance matrix (not the precision matrix) is

\[E(\Sigma^{-1})=mR^{-1}\]

In WinBUGS notation, if the precision matrix $P=\Sigma^{-1}$ follows a Wishart distribution $W(R,m)$, then

\[E(P_{ij})=mR_{ij}^{-1}\]

\[Var(P_{ij})=m(R_{ij}^{-2}+R_{ii}^{-1}R_{jj}^{-1})\]

\[Cov(P_{ij},P_{kl})=m(R_{ik}^{-1}R_{jl}^{-1}+R_{il}^{-1}R_{jk}^{-1})\]

An intuitive way to specify the Wishart prior

  • Let $S$ equal the prior guess for the mean of the $p\times p$ variance/covariance matrix $\Sigma$.
  • Choose a degrees-of-freedom parameter $m (> p + 1)$ that roughly represents an “equivalent prior sample size” – your belief in $S$ as the value of $\Sigma$ is as strong as if you had seen $m$ previous vectors with sample covariance matrix $S$.
  • Define a matrix $R=(m-p-1)S$.
  • In WinBUGS, put the following Wishart prior on the corresponding precision matrix $P=\Sigma^{-1}$
    Inv_sig~dwish(R, m)
  • Based on this specification,
    • $E(\Sigma) = S $
    • $E(\Sigma^{-1}) = \frac{m}{m-p-1}S^{-1}$
    • the variance of the prior will be decreasing in $m$
2010/09/17 15:36 · 0 Comments · 0 Linkbacks

Use of the Lab Blog

This blog is for our lab member to exchange questions and ideas.

2010/08/27 08:55 · 0 Comments · 0 Linkbacks

<< Newer entries

lab/blog.txt · Last modified: 2016/01/24 09:48 by 127.0.0.1