
Power and sample size analysis is an important topic 
in study designs. The power of a statistical test is usu-
ally defined as the probability that the test would reject a 
false null hypothesis. Power analysis can be prospective 
or retrospective. The main purpose of a prospective power 
analysis is to plan the sample size for a future study. Thus, 
a prospective power analysis is conducted before data col-
lection. A retrospective power analysis is conducted after 
data collection and analysis, the purpose of which is to 
determine whether the obtained effect size is conclusive. 
In this article, we focus only on the prospective power 
analysis because it can provide us information on plan-
ning a study and is more widely used. Power analysis for 
a variety of statistical tests and models, such as t tests, 
ANOVAs, and multiple regressions, can be conducted eas-
ily in statistical software (e.g., SAS PROC POWER).

In the past half-century, growth curve models have 
become among the most powerful tools in facilitating 
the analysis of change (e.g., M. W. Browne, 1993; M. W. 
Browne & Du Toit, 1991; Laird & Ware, 1982; Mc Ardle 
& Nesselroade, 2003; Meredith & Tisak, 1990; Rao, 
1958; Tucker, 1958, 1966). Growth curve models can be 
fitted in either the latent growth curve modeling frame-
work (a special case of structural equation modeling) or 
the  multilevel/mixed-effects modeling framework. Those 
two frameworks are essentially equivalent, although the 
implementations are different. Growth curve models and 
their estimation methods have been well studied (e.g., 
Bollen & Curran, 2006; Demidenko, 2004; Hox, 2002; 
McArdle & Nesselroade, 2003; Zhang, Hamagami, 
Wang, Grimm, & Nesselroade, 2007), but discussions 
on the determination of sample sizes or power analysis 
of growth curve models are still relatively rare, with a 
few exceptions (see a recent review by Maxwell, Kelley, 
& Rausch, 2008).

Several studies have investigated the power of latent 
growth curve models by utilizing the chi-square difference 
test or the likelihood ratio test from different perspectives. 
For example, Hertzog, Lindenberger, Ghisletta, and von 
Oertzen (2006) studied the power of multivariate latent 
growth curve models in detecting correlated change. Fan 
(2003) discussed the power of latent growth curve models 
for detecting group differences in linear growth trajec-
tory parameters. An earlier study by B. O. Muthén and 
Curran (1997) evaluated the power in detecting treatment 
effects by latent growth curve models. Several other stud-
ies investigated the power of growth curve analysis with 
missing data and found that the required sample size had 
to be increased to maintain the same level of power as 
complete data analysis (Hedeker, Gibbons, & Waternaux, 
1999; Jung & Ahn, 2003; Tu et al., 2007).

Meanwhile, there are power analysis methods avail-
able for multilevel or mixed-effects models. These 
methods can be used to analyze certain types of growth 
curve models. For example, Raudenbush and Liu (2001) 
investigated the influence of different sample sizes on 
the power of group analysis with polynomial changes. 
Snijders and Bosker (1993) studied power for two-level 
models and provided software called PINt to conduct the 
power analysis. Recently, Cools, Van den Noortgate, and 
Onghena (2008) developed a program called ML-DEs, 
and W. J. Browne, Golalizadeh Lahi, and Parker (2009) 
developed a software add-on—MLPowSim—to conduct 
power analysis for multilevel models through MLwiN 
(Rasbash et al., 2000). Both ML-DEs and MLPowSim 
allow simulating unbalanced and incomplete data for 
power analysis.

Many studies on the power analysis of growth curve 
models were based on the chi-square difference test that 
was developed by Saris and Satorra (1993) for covariance 
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In mathematical terms, the latent linear growth curve 
model in Figure 1 can be expressed as follows:
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It is often convenient to use the correlation between the la-
tent level and slope variables to describe the relationship. 
The correlation is defined as   LS/( L S). For better 
interpretability, the initial time point was constrained to 
be 0, so the initial level Li can be interpreted as the true 
score at the first occasion of individual i. The residual 
errors are normally distributed with equal variances and 
uncorrelated in the path diagram for demonstration. How-
ever, the residual variances can vary across time, and the 
residuals can be correlated across time. The deviances of 
individual levels and slopes from the mean level and the 
mean slope follow a bivariate normal distribution. If S 
is statistically significantly different from 0, there is lin-
ear change—either growth or decline—in the observed 
variable. If 2

S differs significantly from 0, one can con-
clude that there are significant individual differences in 
the change.

Nonlinear growth curve models have been used to ana-
lyze longitudinal data when the change pattern is not lin-
ear. One widely used latent nonlinear growth curve model 

structure analysis. Thus, the implementation of a power 
analysis often requires the use of commercial structural 
equation modeling or multilevel modeling software, 
such as Mplus, LISREL, HLM, and MLwiN, to get the 
chi-square statistics first. Then, the chi-square differ-
ence usually has to be processed in another statistical 
software, such as SAS, to compute power. The two-step, 
two- software approach makes power analysis cumber-
some and hinders, at least partly, the broad adoption of 
the method. Therefore, we believe that a power analysis 
procedure that can be implemented in general-purpose 
software, such as SAS, will benefit researchers more 
broadly.

Thus, in the present study, we develop a SAS procedure 
consisting of several SAS macros to conduct power analy-
sis for growth curve models under situations with com-
plete data, missing data, and nonlinear growth trajectories. 
The procedure can be used to plan the sample size of a 
longitudinal study. The SAS procedure has advantages 
that include, but are not limited to, the following: (1) The 
SAS codes are publicly available and flexible, so users 
can modify the codes for their own research purposes; 
(2) it conducts the power analysis without requiring extra 
software; (3) it can utilize the SAS PROC NLMIXED 
procedure to conduct power analyses for a wide range of 
models, including nonlinear growth curve models; and 
(4) it can deal with missing data seamlessly.

In the following discussion, we will first introduce 
growth curve models—particularly, the latent linear 
growth curve model and the exponential growth curve 
model. We will then discuss the basic ideas of power anal-
ysis for growth curve modeling through the simulation-
based method. After that, we will present several SAS 
macros that can implement the power analysis procedure. 
Finally, we will discuss several examples that utilize the 
SAS procedure for power analysis.

Growth Curve Models
The latent linear growth curve model (e.g., Laird & 

Ware, 1982; McArdle & Nesselroade, 2003; Meredith & 
Tisak, 1990) is probably the simplest, most widely used 
growth curve model. The path diagram for one form of 
the latent linear growth curve model is portrayed in Fig-
ure 1. The observed variables are drawn as squares. The 
unobserved or latent variables are drawn as circles, and 
the constants are represented by triangles. The squares la-
beled y1 through yT are the observed data at Occasions 1 
through T, respectively. Li is the latent initial level of the 
ith individual, L is the mean of the initial levels across all 
participants, and 2

L is the variability of the initial levels 
representing interindividual difference in the latent initial 
levels. Si corresponds to the slope, S is the mean of the 
slopes across all participants, and 2

S represents its variabil-
ity, or individual differences around the mean slope. Si can 
be interpreted as the rate of change and/or growth. The co-
variance LS between the level and the slope is represented 
by the double-headed arrow between the latent initial level 
and slope variables. The circles labeled e1 through eT are 
random measurement errors.
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Figure 1. Path diagram for a latent linear growth curve model.
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the significance level . The H represents the heavyside 
function expressed as
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For example, M1 is the latent linear growth curve 

model described in Equation 1 with the parameters   
( L, S, L, S, , e). To evaluate the power of this model 
in detecting change, we can fit M1 and M0 derived from 
model M1 by setting the mean slope S  0.1 Then we can 
compare the 2 times log-likelihood (2log-likelihood) dif-
ference to the critical chi-square value from the chi-square 
distribution with df  1 at the significance level .

SAS MACROS FOR POWER ANALYSIS

We have developed several SAS macros to conduct the 
power analysis using the simulation-based likelihood ratio 
test. The complete macros for obtaining a power curve 
include three macro functions. The first macro function 
is used to generate data that are based on a specified full 
model M1 and calculate the 2log-likelihood difference of 
models M0 and M1. The second macro function is used 
to run the first macro function for a given number of times 
and estimate the power for a given sample size. The third 
macro function is used to run the second macro function 
with different sample sizes to obtain the power curve. The 
basic macros for a linear growth curve model are provided 
in Appendix A.

The first macro function is %MACRO LL(N,T,seed). 
This macro function has three input parameters: N for the 
sample size, T for the number of measurement occasions, 
and seed for the random number generator seed. This macro 
function is the most important part of all of the SAS macros. 
The function can be used to (1) generate the simulated data 
from a given model M1 with given population parameter 
values and (2) estimate the full model M1 and the reduced 
model M0 and calculate the log-likelihood difference be-
tween those two models. This macro function can be modi-
fied for different power analyses. First, one can change the 
data generation part according to different forms of full 
models M1, such as from a linear growth curve model (as 
in Examples 1 and 2, below) to a nonlinear growth curve 
model (as in Example 3, below). Second, one can change 
the model parameter values in M1 to generate data for the 
same model with different effect sizes (as in Examples 1 
and 2). Third, one can also change the model estimation 
part to construct different forms of M0 and implement dif-
ferent estimation methods for a desired power analysis (as 
in Example 3). Fourth, one can change the parameter miss 
to obtain the power of a test with missing data.

The second of the three macro functions is %MACRO 
POWER(R,N,T,seed,df ). This function is designed to esti-
mate power on the basis of a given number of simulation 
replications (R) for a fixed sample size. The five param-
eters for this function are the number of replications in the 
simulation, the sample size, the number of measurement 
occasions, the random number generator seed, and the dif-
ference in the numbers of unknown parameters, in order. 

is the exponential growth curve model. Using the similar 
notation in the latent linear growth curve model, one form 
of the exponential growth curve model (M. W. Browne, 
1993) can be expressed as
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where Li estimates the asymptotic level of individual i, 
Si estimates the difference between the asymptotic level 
and the initial level at the first occasion for individual i. 
p (  0) is the rate of growth or decline. The interindi-
vidual variations in Li and Si are also estimated in the 
model. The exponential growth curve model is especially 
useful for analyzing learning data (e.g., M. W. Browne & 
Du Toit, 1991). For both the linear and nonlinear latent 
growth models, although the measurement occasions are 
often assumed to be equally spaced, the unequally spaced 
data can be accommodated accordingly.

Power Analysis of Growth Curve Models
Currently, there are two main approaches for evaluating 

the power of growth curve models, both of which utilize 
a likelihood ratio test (e.g., Casella & Berger, 2001). The 
first approach was proposed by Saris and Satorra (1993; 
see also Satorra & Saris, 1985) for estimating the power 
of covariance structure analysis and has been widely used 
in analyzing the power of growth curve models (see, e.g., 
Fan, 2003; Hertzog et al., 2006; B. O. Muthén & Cur-
ran, 1997). The Satorra–Saris method is also known as 
the chi-square difference test and is a large sample theory 
approach. The result from this approach is accurate when 
the sample size is large enough. The other approach is the 
simulation-based method. The result from the simulation-
 based method is accurate with large enough replications, 
even when the sample size is relatively small (L. K. Muthén 
& Muthén, 2002; Satorra & Saris, 1985). In this article, 
the simulation-based method is used, and the general idea 
of the simulation-based method is outlined as follows.

Let M1 (full model) denote a model with p unknown 
parameters  : p  1. Assume that M0 is a model (null 
model or reduced model) nested in M1 that can be con-
structed by setting p  q elements in  to be constants, 
usually 0. Thus, for M0, we have  : p  1  ( * : q  1; 
c : p  q  1), with q denoting the number of unknown 
parameters in M0 and c denoting a constant vector. To 
estimate the power of the test on whether we can put those 
constraints in M0, we can generate R sets of independent 
data that are based on M1 using predetermined param-
eter values for . For each (the ith) simulated data set, we 
fit both M1 and M0 and obtain the log-likelihood value 
for each model denoting li1 and li0, respectively. Then the 
power is estimated as
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where 2( p  q) denotes the critical value of the chi-
square distribution with degrees of freedom (df ) p  q at 
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Here “*” represents the slope mean value, which is also 
the effect size in this example. Three factors that can influ-
ence power are considered: the sample size (N ), the effect 
size ( S), and the number of measurement occasions (T ). 
The sample size ranges from 50 to 1,000, and the number 
of measurement occasions ranges from three to six. Three 
effect sizes are evaluated at S  .1, .2, and .3.

Figure 2 presents the power curves for different num-
bers of measurement occasions when S  .2. To obtain 
the power curve for T  3, one only needs to change 
T  5 to T  3 in the beginning part of the SAS codes. 
As in any power analysis, the power is higher with a larger 
sample size. For the growth curve analysis, the power is 
also getting higher with the increase in the number of 
measurement occasions. For example, to obtain a power 
of .8, one needs a sample size about N  300 for a three-
occasion study. However, only about N  210 participants 
are needed for a study with six measurement occasions.

Figure 3 portrays the power curves for different effect 
sizes with the same number of measurement occasions 

This macro function repeatedly runs the first macro func-
tion and obtains the 2log-likelihood difference for each 
replicate. Power is then obtained using Equation 3. This 
function should be left untouched. As mentioned earlier, 
implementing this macro can obtain the power for a specific 
sample size. For example, %POWER(1000,100,5,1234,1) 
produces the power for a test on a single parameter in the 
full model with the sample size of 100 and 5 measurement 
occasions, based on 1,000 replications of simulation.

The third macro function, %MACRO powercurve(R, 
seed,st,end,step,T,df ), estimates the power for a given 
range of sample sizes—for example, from N  50 to N  
1,000 in the examples provided later—and plots the power 
curve. The minimum sample size is given by st, and the 
maximum sample size is provided by end. The interval be-
tween two adjacent sample sizes is step. The other input 
parameters are R, seed, T, and df, again for the number of 
replications, the random number generator seed, the num-
ber of measurement occasions, and the difference in the 
numbers of unknown parameters, respectively. This func-
tion utilizes the second macro function to estimate power 
for each sample size and usually does not need to be modi-
fied. If the power of only a single sample size is needed, 
one can use the same sample size value for both st and end 
parameters or just simply run the second macro function.

Using these three macro functions, one can obtain the 
power curve for a designed analysis conveniently. For ex-
ample, %powercurve(1000,1234,50,1000,10,4,1) gener-
ates the power curve for a test on a single parameter in a 
growth curve analysis with sample sizes from 50 to 1,000 
and four measurement occasions. Furthermore, we collect 
all of the parameters that usually should be modified in the 
beginning of the macros. Thus, users can easily change the 
parameters without going through the main macros. Even 
for the power analysis of other different growth curve mod-
els such as exponential growth curve models, one usually 
needs to change only the first macro function.

Availability of the Macros
The SAS macros discussed in this article and the SAS 

macros for other models, such as quadratic growth curve 
models and conditional linear growth curve models, are 
available online at http://saspower.psychstat.org. These 
macros are licensed under the GNU General Public Li-
cense version 2.0 (www.gnu.org/copyleft/gpl.html).

Examples of How to Use the Macros
In this section, we present several examples that utilize 

the SAS macros for power analysis. Example 1 illustrates 
the power analysis for a latent linear growth curve model 
in detecting change with complete data. Example 2 re-
peats the power analysis in Example 1, but with missing 
data. Example 3 provides an example of the power analy-
sis of a nonlinear exponential growth curve model with 
and without missing data.

Example 1: Power and complete data. In this first 
example, we investigate the power of a linear growth curve 
model in detecting change (H0 : S  0) with complete data. 
The true model is the one in Figure 1 with the population 
parameters   ( L, S, L, S, , e)  (10, *, 2, 1, 0, 1). 
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Figure 2. Power curves for T  3, 4, 5, 6, with the effect size of 
S .2.
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Figure 3. Power curves for the effect sizes of S  .1, .2, and .3 
when the number of measurement occasions is T  5.
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Overall, missing data reduce the power. The maximum 
difference in the power for all conditions considered in 
this study is about .1446. Thus, to maintain the same 
power, the required sample size has to be larger than the 
complete data analysis. For example, with the effect size 

S  .2 and the number of measurement occasions T  5, 
a sample size of N  210 at the first occasion is enough to 
obtain a power of .8. However, a sample size of N  270 
at the first occasion has to be used to maintain the same 
power with the missing data rate of 10%.

Example 3: Power for a nonlinear growth curve 
model. In this example, we demonstrate how to estimate 

T  5. To obtain the power curves, one needs to change 
only the parameter value of the slope parameter (MuS) in 
the beginning of the SAS codes. Clearly, larger effect size 
corresponds to larger power. For example, when the effect 
size is .1, a sample size of N  850 is needed to obtain a 
power of .8. When the effect size is as large as .3, a sample 
size of N  100 can achieve the same level of power.

Example 2: Power and incomplete data. Missing 
data are inevitable, even in very well designed longitu-
dinal studies. Little and Rubin (1987, 2002) have distin-
guished three kinds of missing data mechanisms: miss-
ing completely at random (MCAR), missing at random 
(MAR), and missing not at random (MNAR) (see also, 
e.g., Rubin, 1976; Schafer, 1997). The popular statisti-
cal modeling techniques and models in general assume 
that missing data are either MCAR or MAR (e.g., Little 
& Rubin, 2002; Schafer, 1997).

In this example, we investigate how the MCAR data 
influence the power of a latent linear growth curve model 
in detecting change (H0 : S  0). The model is the same 
as the one in Example 1. We further assume that miss-
ing data are generated with a constant attrition rate. For 
example, with a constant missing attrition rate of 10% 
(miss  10%), if there are 100 participants at Occasion 1, 
90 participants are expected at Occasion 2, 80 participants 
at Occasion 3, and only 10 participants at Occasion 10.

The following procedure can be used to generate MCAR 
data. Let Y*  ( y*

it), i  1, . . . , N, t  1, . . . , T denote the 
complete data matrix. The MCAR data are then specified 
according to the missing data indicator matrix M  (mit), 
i  1, . . . , N, t  1, . . . , T. The matrix M takes values 
of 0 (indicating missing data) and 1 (indicating observed 
data). In simulating data, the elements of M are given by 
Equation 4, below. The generated MCAR data Y  ( yit) 
are given by
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where “.” indicates a missing datum. Because the prob-
ability that a datum is missing is independent of Y, the 
generated data are MCAR.

As in the complete data analysis, we estimate the power 
with different effect sizes and numbers of measurement 
occasions. The power can be obtained using the same 
macros for the complete data example, except for setting 
the parameter miss to be .1 instead of 0. The power curves 
are given in Figure 4 and Figure 5. Similar to the com-
plete data results, the power becomes larger as the sample 
size, number of measurement occasions, and effect size 
increase.

By comparing Figure 2 with Figure 4 and Figure 3 with 
Figure 5, we can evaluate the influences of missing data. 
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Figure 4. Power curves for T  3, 4, 5, 6, with the effect size of 
S  .2 in the missing-data condition.
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Figure 5. Power curves for the effect sizes of S  .1, 0.2, and .3 
when the number of measurement occasions is T  5 in the 
missing- data condition.
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DISCUSSION

Here, we developed several SAS macros for estimat-
ing power for growth curve analysis. The SAS macros 
utilized the simulation-based likelihood ratio test. Appli-
cations of the SAS macros were demonstrated through 
several examples. These examples showed that, as in any 
power analysis, the power became larger with larger sam-
ple sizes and effect sizes. Furthermore, for a longitudinal 
study, increasing the number of measurement occasions 
also increased the power. Comparing complete data analy-
sis and MCAR data analysis, we found that missing data 
could reduce power. Given that SAS is widely adopted in 
academic institutes, the SAS procedure should benefit a 
considerable audience.

As shown in Figures 2 and 4, sample sizes of N  210 
and N  270 are needed to obtain the power of .8 for com-
plete data analysis and MCAR data analysis, respectively. 
Since missing data may reduce power, the influence of 
missing data should be considered at the phase of a lon-
gitudinal study design. Therefore, when deciding on the 
sample size, we should consider the effects of attrition rate 
on the power analysis. Usually, the attrition rate can be 
determined from a review of previous similar research.

It is also found that, for a fixed sample size, the power 
increases with larger numbers of measurement occasions, 
regardless of missing data. Thus, to obtain a desired level 
of power, we can adopt a design with either a smaller sam-
ple size and a larger number of measurement occasions 
or a larger sample size and a smaller number of measure-
ment occasions. Which design is better depends on many 
factors, such as costs, time constraints, and the nature of 
the phenomenon under study. For example, the maximum 
number of measurement occasions is sometimes limited 
by the funding period. Therefore, it is sometimes more 
difficult to collect data with more occasions over a long 
period of time than to collect data with more individuals. 
Furthermore, if one wants to study a specific phenom-
enon, such as child development, one may want to col-
lect data at the critical ages, such as 0, 0.5, 1, 2, 5, 7, and 
11–15 years, instead of at equally spaced ages.

Guidelines for the Use of the Macros
Whereas other software and programs for power analy-

sis have certain benefits, our SAS macros have their own 
merits. First, they are customized for growth curve analy-
sis and require only the minimum input of the model in-
formation. Second, the power analysis for both complete 
data and missing data can be conducted seamlessly. Third, 
the macros can be slightly modified for a wide variety 
of linear and nonlinear growth curve models, as demon-
strated by the linear and exponential growth curve model 
examples. The capability of the macros is limited only by 
the capability of PROC MIXED and PROC NLMIXED.

Experienced SAS users can modify the SAS macros ac-
cording to their own research purposes. For users who are 
new to SAS, the following guidelines can be considered. 
First, if users want to conduct the same power analyses 
that we have explained in this study, they only need to 

the power for a nonlinear growth curve model. Assume that 
the true model is an exponential growth curve model with 
the rate of growth p  1 and the other model parameters 

  ( L, S, L, S, , e)  (10, 5, 2, .5, .25, 1). The power 
analysis is on testing whether there is inter individual dif-
ference in the Si parameters (the differences between the 
asymptotic level and the initial level at the first occasion; 
H0 : S  0,   0). If S is not statistically significantly 
different from 0, then there is no significant interindividual 
difference in Si. To obtain the power, we estimate the full 
model (freely estimate both S and  parameters) and the 
null model (constrain both parameters to be 0) using PROC 
NLMIXED to obtain the 2log- likelihood difference. The 
2log-likelihood difference can then be compared with the 
critical value from the chi-square distribution with df  2 
at the .05 significance level.

The power for this test is estimated with sample sizes 
ranging from 100 to 1,000 and six measurement occasions. 
Power for both the complete and missing data conditions is 
obtained. The obtained power is plotted in the power curves 
in Figure 6. Thus, on the basis of the specified model pa-
rameters in this example, an approximate sample size of 
N  250 is required in order to obtain a power of .8 without 
any missing data. If we assume a missing data rate of 10%, 
the required sample size increases to about 350 for us to 
obtain the same power. It seems that the effect of missing 
data is larger in a nonlinear growth curve model than in a 
linear growth curve model. We also want to point out that, 
when one estimates the exponential growth curve mod-
els, convergence is a potential problem, as in many other 
nonlinear multilevel model estimation situations (see, e.g., 
Wang & McArdle, 2008). In this example, 93% of the sim-
ulations with complete data and 75% of the simulations 
with missing data converged when the sample size was 
100. The power curves were generated from data based on 
the converged simulations. In the SAS macros presented 
here, convergence is satisfied if the absolute gradient is 
less than 10 5 or the relative gradient is less than 10 8. The 
convergence is monitored in SAS automatically.
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Figure 6. Power curves for the exponential growth curve model 
example.
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using PROC NLMIXED, as in the nonlinear growth curve 
analysis example. An experienced SAS user can conduct 
these power analyses by modifying the provided SAS 
macros. SAS macros for other different kinds of complex 
longitudinal data analysis will be developed and provided 
on the Web site at http://saspower.psychstat.org.
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APPENDIX A 
SAS Macros for a Linear Growth Curve Model

/*Suppress the output and the log */
options nosource nonotes nosource2 nomprint;

/*Power analysis of growth curve models using SAS*/
/*CHANGE THE PARAMETERS HERE*/
*model parameters;
%LET MuL=10; *mean level/initial status;
%LET MuS=.2; *mean slope/rate of change;
%LET Sigma_e=1; *residual standard deviation;
%LET Sigma_L=2; *level standard deviation;
%LET Sigma_S=1; *slope standard deviation;
%LET rho=0; *correlation between levels and slopes;
%LET miss=0; *missing data rate, 0: no missing data;
*power parameters;
%LET R=5000; *number of simulation replications;
%LET T=5; *number of measurement occasions;
%LET start=50; *the minimum sample size to consider;
%LET end=1000; *the maximum sample size to consider;
%LET step=50; *the step between two sample sizes;
%LET df=1; *the difference in the numbers of parameters;
%LET seed=123; *random number generator seed;

/*DO NOT CHANGE CODES BELOW UNLESS YOU KNOW WHAT YOU ARE DOING*/

/*The first Macro: LL*/
/*Calculate the chi-square difference of two nested models*/
%MACRO LL(N,T,seed);
DATA Sim_LinGM;
  N = &N; seed = &seed;
* setup arrays for repeated measures;
  ARRAY y_score{&T} y1-y&T;
  ARRAY M{&T} m1-m&T;
  m1=1;
* generate raw data with considering the missing data rate;
  DO _N_ = 1 TO N;
    e_L=RANNOR(seed);
    e_S=&rho*e_L+SQRT(1-&rho**2)*RANNOR(seed);
    L_score=&MuL+&Sigma_L*e_L;
    S_score=&MuS+&Sigma_S*e_S;
    DO t = 1 TO &T;
      y_score{t} = L_score + (t-1) * S_score + &Sigma_e*RANNOR(seed);
    END;
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APPENDIX A (Continued)
* include indicator variables to generate missing data;
DO t=2 TO &T;
  m{t}=m{t-1};
  IF m{t-1}=1 AND  RANUNI(seed) > (1-&miss * (t-1))/(1-&miss * (t-2))
      THEN m{t} = 0;
      IF m{t}=0  THEN y_score{t}=.;
END;
    KEEP y1-y&T;
    OUTPUT;
    END;
RUN;
DATA LinGM;
  SET Sim_LinGM;
  %DO t = 1 %TO &T;
    id = _N_; time=&t-1; y=y&t; OUTPUT;
  %END;
  KEEP id time y;
RUN;

/*Fit two nested models to the data*/
ODS OUTPUT FitStatistics(persist=proc)=fit;
*Model 1: the true model;
TITLE1 ’Linear Growth Model’;
PROC MIXED DATA=LinGM NOCLPRINT COVTEST MAXITER=100 METHOD=ML;
  CLASS id;
  MODEL y = time  /SOLUTION DDFM=BW CHISQ;
  RANDOM INTERCEPT time / SUBJECT=id TYPE=UN GCORR;
RUN;
*Model 2: mean slope = 0;
PROC MIXED DATA=LinGM NOCLPRINT COVTEST MAXITER=100 METHOD=ML;
  CLASS id;
  MODEL y =    /SOLUTION DDFM=BW CHISQ;
  RANDOM INTERCEPT time / SUBJECT=id TYPE=UN GCORR;
RUN;

ODS OUTPUT CLOSE;
%MEND LL;

/*The second Macro: POWER*/
/*This Macro calls the first Macro LL for each replication*/
* Calculate power based on R replications;

%MACRO POWER(R,N,T,seed,df);
DATA tempfit;
  DO _N_=1 TO 8;
    tempfit=_N_;
 OUTPUT;
  END;
RUN;

%LL(&N,&T,&seed);
DATA fit;
  MERGE fit tempfit;
RUN;

DATA allfit;
  SET fit;
RUN;

%DO I = 2 %TO  &R;
  PROC DATASETS LIBRARY=WORK; DELETE fit; RUN; QUIT;
  %LL(&N,&T,%eval(&seed+&I*1389));
  DATA fit;
    MERGE fit tempfit;
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  RUN;
  DATA allfit;
    SET allfit fit;
  RUN;
  DM ’CLEAR LOG’;
%END;

DATA allfit;
  SET allfit;
  IF MOD(_N_,4) ~= 1 THEN DELETE;
  KEEP Value;
RUN;

DATA allfit;
  SET allfit;
  id =INT((_N_-.1)/2)+1;
  modelnum = MOD(_N_+1, 2);
RUN;

PROC TRANSPOSE DATA=allfit OUT=allfit prefix=model;
  BY id;
  ID modelnum;
  VAR Value;
RUN;

DATA allfit;
  SET allfit;
  ss = &N;
  diff = model1 - model0;
  ind = 1;
  IF diff=. THEN DELETE;
  IF diff<0 THEN DELETE;
  IF diff < CINV(.95, &df) THEN ind = 0;
  DROP id _NAME_ model0 model1;
RUN;

PROC MEANS DATA = allfit;
  VAR ss ind;
  OUTPUT OUT=power mean(ss ind)=ss power;
RUN;

%MEND POWER;

/*The third Macro: POWERCURVE*/
/* This Macro calls the second Macro for each sample size*/
%MACRO powercurve(R,seed,st,end,step,T,df);
%POWER(&R, &st, &T, %eval(&seed+&st), &df);
DATA allpower;
  SET power;
  RUN;

%LET st = %eval(&st + &step);
%DO %WHILE (&st <=  &end);
  %POWER(&R, &st, &T, %eval(&seed+&st), &df);
  %LET st = %eval(&st + &step);
  DATA allpower;
    SET allpower power;
  RUN;
  DM ’CLEAR LOG’;
%END;

* Save the results for possible future use;
DATA allpower;
  SET allpower;
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  FILE "power.txt";
  PUT ss power;
RUN;

* Plot the power curve;
ODS PDF FILE=’power.pdf’ NOTOC;
PROC GPLOT DATA = allpower;
  SYMBOL I=JOIN;
  PLOT power*ss;
RUN;
QUIT;
ODS PDF CLOSE;
%MEND powercurve;

ODS RESULTS OFF;
ODS LISTING CLOSE;
%powercurve(&R,&seed,&start,&end,&step,&T,&df);
ODS RESULTS ON;
ODS LISTING;

Appendix B 
The SAS LL Macro for the Exponential Growth Curve Model

/*CHANGE THE PARAMETERS HERE*/
*model parameters;
%LET MuL=10;        *mean asymptotic level;
%LET MuS=5;         *mean change between the initial status
                     and the asymptotic level;
%LET Sigma_e=1;     *residual standard deviation;
%LET Sigma_L=2;     *level standard deviation;
%LET Sigma_S=.5;  *change standard deviation;
%LET rho=.25;         *correlation between Li and Si;
%LET miss=0;        *missing data rate, 0: no missing data;
%LET p=1;           *rate of growth/decline;
*power parameters;
%LET R=10000;        *number of simulation replications;
%LET T=6;           *number of measurement occasions;
%LET start=100;     *the minimum sample size to consider;
%LET end=1000;      *the maximum sample size to consider;
%LET step=50;       *the step between two sample sizes;
%LET df=2;          *the difference in the number of parameters;
%LET seed=123;      *random number generator seed;

/*DO NOT CHANGE CODES BELOW UNLESS YOU KNOW WHAT YOU ARE DOING*/

/*Calculate the chi-square difference between two nested models*/
%MACRO LL(N,T,seed);
DATA Sim_ExpGM;
* set statistical parameters;
  N = &N; seed = &seed;
* setup arrays for repeated measures;
  ARRAY y_score{&T} y1-y&T;
  ARRAY M{&T} m1-m&T;
  m1=1;

* generate raw data with considering the missing data rate;
  DO _N_ = 1 TO N;
    e_L=RANNOR(seed);
    e_S=&rho*e_L+SQRT(1-&rho**2)*RANNOR(seed);
    L_score=&MuL+&Sigma_L*e_L;
    S_score=&MuS+&Sigma_S*e_S;
    DO t = 1 TO &T;
      y_score{t} = L_score - S_score*exp(-(t-1)*&p)
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         + &Sigma_e*RANNOR(seed);
      END;
* include indicator variables to generate missing data ;
DO t=2 TO &T;
  m{t}=m{t-1};
  IF m{t-1}=1 AND  RANUNI(seed) > (1-&miss * (t-1))/(1-&miss * (t-2))
      THEN m{t} = m{t-1}*0;
      IF m{t}=0  THEN y_score{t}=.;
  END;
    KEEP y1-y&T;
    OUTPUT;
  END;
RUN;

DATA ExpGM;
  SET Sim_ExpGM;
  %DO t = 1 %TO &T;
    id = _N_; time=&t-1; y=y&t; OUTPUT;
  %END;
  KEEP id time y;
RUN;

/*Fit two nested models to the data*/
ODS OUTPUT FitStatistics(persist=proc)=fit;
*Model 1: the true model - exponential growth curve model;
PROC NLMIXED DATA = ExpGM;
  traject = level-slope*exp(-p*(time));
  MODEL y ~ NORMAL(traject, v_e);
  RANDOM level slope ~ NORMAL([m_l, m_s], [v_l, c_ls, v_s])
  SUBJECT = id;
  PARMS m_l = 10 m_s=5 v_l = 4 c_ls = 0 v_s = .25 v_e = 1 p=1;
RUN;

*Model 2: the null model - no variation in Si;
PROC NLMIXED DATA = ExpGM;
  traject = level-m_s*exp(-p*(time));
  MODEL y ~ NORMAL(traject, v_e);
  RANDOM level ~ NORMAL(m_l, v_l)
  SUBJECT = id;
  PARMS  m_l = 10  m_s=5  v_l = 4  v_e = 1 p=1;
RUN;
ODS OUTPUT CLOSE;
%MEND LL;

/*The remaining parts are the same as in Appendix A
   and thus are omitted here.*/

(Manuscript received November 25, 2008; 
revision accepted for publication May 1, 2009.)


