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Introduction

To study phenomena in their time-related patterns of
constancy and change is a primary reason for collecting longi-
tudinal data. All longitudinal data share at least three features:
(1) the same entities are observed repeatedly over time; (2) the
same measurements (including parallel tests) are used; and
(3) the timing for each measurement is known (Baltes &
Nesselroade, 1979; McArdle & Nesselroade, 2003). The need
to analyze longitudinal data has stimulated the development of
longitudinal data analytic techniques and models that, in turn,
have advanced the collection of longitudinal data. Growth
curve models (McArdle & Nesselroade, 2003; Meredith &
Tisak, 1990) exemplify a widely used technique with a direct
match to the objectives of longitudinal research described by
Baltes and Nesselroade (1979) – to analyze explicitly intrain-
dividual change and interindividual differences in change.

In the past decades, growth curve models have evolved from
fitting a single curve for only one individual to fitting multi-
level or mixed-effects models for multiple individuals and from
linear to nonlinear models (Blozis, Conger, & Herring, 2007;
McArdle, 2001; McArdle & Nesselroade, 2003; Meredith &
Tisak, 1990; Tucker, 1958; Wishart, 1938). The use of these
models in social and behavioral research has grown rapidly
since Meredith and Tisak (1990) showed that growth curve
models can be fitted as a restricted common factor model in
the structural equation modeling framework (see also,
McArdle, 1988; McArdle & Epstein, 1987). For a more
comprehensive discussion of growth curve models, see
McArdle and Nesselroade (2003).

For estimating growth curve models, the maximum likelihood
estimation (MLE) method is commonly used (Demidenko,

2004; Laird & Ware, 1982). MLE for growth curve models is
embedded in commercial statistical packages, such as SAS
PROC MIXED and PROC NLMIXED and Splus LME and
NLME. Recently, Bayesian methods have received more atten-
tion as useful tools for estimating a variety of models including
growth curve models, in particular complex growth curve
models which can be difficult or impossible to estimate in the
current MLE-based software (Lee & Chang, 2000; Lee & Liu,
2000; McArdle & Wang, in press; Menzefricke, 1998; Pettitt,
Tran, Haynes, & Hay, 2006; Seltzer, Wong, & Bryk, 1996).

Bayesian methods have become well established in the
psychological literature since their introduction to psychology
by Edwards, Lindman, and Savage (1963). Since then,
Bayesian methods have been successfully applied to item-
response models (Chang, 1996; Fox & Glas, 2001), factor
analytic models (Bartholomew, 1981; S. Lee, 1981), structural
equation models (Scheines, Hoijtink, & Boomsma, 1999),
genetic models (Eaves & Erkanli, 2003), and multilevel models
(Seltzer et al., 1996). Rupp, Dey, and Zumbo (2004) provided
a valuable review of applications of Bayesian methods in social
and behavioral research and proposed that neither the applied
nor the theoretical measurement communities can afford to
miss the opportunities opened up by Bayesian methods.

Even though Bayesian methods are powerful and can be
used in a variety of analytic models, the strenuous program-
ming and computational demands have discouraged many
researchers from using them. Furthermore, the complexities of
the models that usually need the application of Bayesian
methods make the methods seem remote for empirical
researchers. In this study, we aim to draw researchers’
attention to Bayesian methods and provide an easy way to
implement Bayesian analysis, especially for longitudinal data.
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First, we provide a brief review of basic Bayesian terms and
methods, such as priors, posteriors, and the Markov chain
Monte Carlo (MCMC) method. We then present the basic
concepts of the latent basis growth curve model used in the
empirical data analysis. Finally, we present an empirical
example, step-by-step, to show how to implement Bayesian
analysis practically using the softwareWinBUGS (Spiegelhalter,
Thomas, Best, & Lunn, 2003) and BAUW (Zhang & Wang,
2006). We show that Bayesian methods provide a direct
alternative to MLE and also demonstrate their unique
strengths for analyzing longitudinal data.

Basic ideas of Bayesian methods

This section aims to introduce the basic ideas of Bayesian
methods (see also Walker, Gustafson, & Frimer, 2007) and is
naturally redundant with extant publications. For more
complete descriptions of Bayesian analysis, we recommend
Box and Tiao (1992), Carlin and Louis (2000), and Lee
(2004). Researchers primarily interested in the application of
Bayesian methods may choose to skip the mathematical
formulas and go directly to the verbal explanations.

Bayes’ theorem

Bayesian analysis is based on the tenet that the concept of
probability can be applied to the degree to which a person
believes a hypothesis or a proposition. The degree of belief in
proposition H can be represented as Pr(H), which is also called
the prior degree of belief in H. A simple version of Bayes’
theorem (also known as Bayes’ rule) is,

Pr(H|E) , (1)

which indicates that the degree of belief in proposition H given
the observed evidence E is equal to the joint probability of H
and E divided by the probability of E. Pr(H|E) is called the
posterior degree of belief in H, in the sense of being the
updated belief after observing the evidence.

Usually, we have more than one hypothesis in our research.
For example, if we have n different hypotheses, H1, H2, . . . ,
Hn to explain a phenomenon, then Bayes’ theorem is stated as,

Pr(Hi|E) = , (2)

This declares that our posterior belief on Hi not only depends
on the observed evidence E but also depends on our prior
beliefs regarding each hypothesis.

Bayes’ theorem is useful because it provides a way to calcu-
late the probability of a hypothesis based on the evidence or
data. Given the evidence, the calculation of Pr(E|Hi) is
straightforward. However, when we observe some evidence, we
are interested in the probability of the hypotheses conditional
on the evidence, Pr(Hi|E). Bayes’ theorem provides a way to
calculate this probability. But the calculation also depends on
the prior probabilities Pr(Hi). Thus, Bayes’ theorem provides
a natural way to update our prior belief Pr(Hi) concerning the
hypothesis to our posterior belief Pr(Hi|E) based on the
evidence E.

So far, we have only discussed discrete probability appli-
cations. For continuous probability problems, the hypotheses
are represented by one or more continuous parameters from a
model denoted by θθ. The evidence, represented by the data, is
denoted by y. In this case, Bayes’ theorem is written as,

(3)

in which p(θθ) is the prior belief, prior probability distribution,
or simply the prior of θθ; p(θθ|y) is the posterior belief, poste-
rior probability distribution, or the posterior of θθ; and p(y|θθ)
is the probability of the data which is also the likelihood L(θθ;y)
in MLE.Because ∫θθ

p(θθ)p(θθ|y)dθθ is a normalizing constant, then

p(θθ|y) � p(θθ)p(y|θθ) = p(θθ)L(θθ;y), (4)

which states that a posterior is proportional to the prior times
the likelihood.

Choice of priors

Bayes’ theorem shows how the prior belief is required for
Bayesian analysis. A prior is the available information about the
hypothesis and unknown parameters before the data are
collected. The prior is classified as either an informative prior
or a noninformative prior.

Noninformative priors. When no reliable prior information
concerning the hypotheses or parameters exists, or an infer-
ence based only on the data at hand is desired, noninformative
priors can be used. A noninformative prior does not favor any
hypothesis or value of a parameter. For example, in the discrete
case, the prior

Pr(Hi) = 1/n, i = 1, . . . , n, (5)

is a noninformative prior because it assigns equal probability
to each hypothesis Hi. For the continuous case, a similar prior
is

π(θθ) = c, any c > 0. (6)

This prior is usually called an improper prior because its inte-
gration is infinity.

Priors with only a little information about the unknown
parameters are also called noninformative priors. For example,
to estimate tomorrow’s temperature, we can specify a normal
distribution prior with mean 0 and variance 106. In this case,
because of the large variance, the prior temperature infor-
mation is very vague. In Bayesian analysis, the use of nonin-
formative priors typically yields similar results to MLE.

Informative priors. Informative priors make Bayesian analysis
more subjective because different priors can result in different
conclusions, a situation that has been criticized by frequentists
for a long time. An informative prior may be constructed
from previous studies. For example, if we want to predict
tomorrow’s temperature, it is reasonable to use a normal distri-
bution prior with the mean and variance equal to the mean and
variance of the temperature on the same day over the past
20 years.

Clearly, the use of priors provides a way to pool and capi-
talize on extant scientific findings. For example, before any
experiment is carried out, we may know nothing about a
parameter and thus specify a noninformative prior p(θθ). After
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an experiment in which we obtain the data y1, we update our
knowledge about the parameter to p(θθ|y1). With an additional
experiment, we obtain the data y2, and can use the posterior
p(θθ|y1) from the first experiment as the prior to update the
knowledge about that parameter again.

Conjugate priors. Regardless of whether informative priors are
used, one may try to use conjugate priors when they are appro-
priate to simplify computation. A conjugate prior is a prior
from the family of probability density functions from which the
derived posterior density functions have similar function forms
to the priors. For example, if we use a prior with a normal
distribution and derive a posterior also with a normal distri-
bution based on the Bayes’ theorem, then this prior is a conju-
gate prior (conjugate to the likelihood). The use of conjugate
priors can usually reduce the computation complexity of the
posterior distribution largely. The exponential family of distri-
butions, which includes the normal distribution, gamma distri-
bution, beta distribution, and so on, is the most often used
family of distributions and has conjugate priors.

Statistical inference on posteriors1

Once the posterior distribution of the parameters is obtained,
statistical inference can be performed. Because we know the
posterior distribution of the unknown parameters, we can plot
their densities. However, such plots carry so much information
that they become difficult to apprehend. Several statistics can
be used to summarize the information of the posterior and are
analogous to parameter estimates and standard errors from
MLE. In particular, we consider point estimations and credible
intervals.

Point estimation. Of the many point estimations, the mean is
the most widely used. Given the posterior, the mean is calcu-
lated by

θθ– = ∫θθp(θθ|y)dθθ, (8)

which is the classical definition of the mean. Similarly, the
associated variance can be obtained with

Var(θθ) = ∫(θθ – θθ–)p(θθ|y)(θθ – θθ–)tdθθ. (9)

These are also called the posterior mean and posterior variance,
respectively.

Credible interval. In Bayesian statistics, credible intervals are
used for purposes similar to those of confidence intervals in
frequentist statistics. Many times, a credible interval is directly
called a confidence interval. Formally, a 100 � (1 – α)%
credible interval (L, U) for θθ is obtained by

1 – α ≤ ∫U

L
p(θθ|y)dθθ, (10)

with L and U are lower and upper bounds, respectively.
Because the parameter θθ is considered a random variable,

we can interpret the credible interval as “The probability that
θθ lies in the interval (L, U) given the observed data is at least
100 � (1 – α)%.” In frequentist statistics, the confidence
interval means that “If the experiment is repeated many times
and the confidence interval is calculated each time, then overall
100 � (1 – α)% of them contain the true parameter θθ.”

Thus, the credible interval has a more intuitively appealing
interpretation.

Markov chain Monte Carlo methods

Statistical inference discussed in the previous section can be
done only when the integration in Equations 8–10 can be solved
implicitly. However, this is usually impossible in practice
especially when multiple unknown parameters are present. In
practice, MCMC methods are generally used to circumvent
the difficulty of multiple dimension integration. Many different
MCMC methods have been proposed, such as Metropolis–
Hastings sampling, Gibbs sampling, and slicing sampling.
Because Gibbs sampling is widely used, we focus on this method.

Gibbs sampling is an algorithm to generate a data point from
the conditional distribution of each parameter, conditional on
the current values of the other parameters (Geman & Geman,
1984). Let θθ = (θθ1, . . . , θθq) with q unknown parameters in the
model of interest. The conditional distribution π(θθi|θθi–1, . . . ,
θθi–1, θθi+1, . . . θθq;y) for θθi can usually be obtained relatively easily
using Bayes’ theorem. Then we can use the following scheme
to sample the data points from the conditional distributions.

At the (i + 1)th iteration with current value θθ(i) = (θθ1
(i), θθ2

(i),
. . ., θθ q

(i)), update θθ(i+1) = (θθ1
(i+1), θθ2

(i+1), . . . , θθq
(i+1)) by means of

sequentially generating

θθ1
(i+1) from π(θθ1|θθ2

(i), θθ3
(i), . . . , θθq

(i);y),
θθ2

(i+1) from π(θθ2|θθ1
(i+1), θθ3

(i), . . . , θθq
(i);y)

. . .
θθq

(i+1) from π(θθq|θθ1
(i+1), θθ2

(i+1), . . . , θθq–1
(i+1);y).

Namely, the first parameter is updated based on values of
parameters from the previous iteration. The second parameter
is updated based on the just-updated first parameter estimate
and the not-yet-updated third to qth parameters. The third
parameter is then updated based on the just-updated first and
second parameter estimates and the not-yet-updated fourth to
qth parameters. This process of updating parameters is
performed up to the qth parameter to finish one complete
iteration. The iteration process above can be repeated I times.
Geman and Geman (1984) showed that for sufficiently large
I, θθ(I ) can be viewed as a simulated observation from the
posterior distribution π(θθ|y).

The simulated observations after I are then recorded for
further analysis. For convenience, these observations are
denoted by θθ(m), m = 1, . . . , M. Sometimes, there are highly
positive autocorrelations between the successive observations.
To reduce autocorrelation and the computing storage space,
one could pick observations with fixed interval (or thin) a
indexed 1, 1 + a, 1 + 2a, 1 + 3a, . . . to perform further analysis
(Zuur, Garthwaite, & Fryer, 2002). The point estimation is
calculated by

θθ– =, θθ1+ma, (11)

with variance

Var(θθ) = (θθ1+ma – θθ–)(θθ1+ma – θθ–)t. (12)

To construct the credible interval, we use the percentiles of
the generated sequences. For example, the lower bound of the
100 � (1 – α)% credible interval is equal to the α/2 percentile
of the sequence and the upper bound is equal to the 1 – α/2
percentile.
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Two keys to using Gibbs sampling are to obtain the
conditional posterior distributions and determine the conver-
gence of the generated Markov chain (or determine I). If
conjugate priors are used, conditional posteriors can usually
be easily obtained. Furthermore, with the emergence of new
software such as WinBUGS, one does not need to specify the
conditional posterior distributions explicitly. However, the
convergence diagnosis of the Markov chain is still under
development although several ways have been suggested to
determine I. In practice, the “eyeball” method, monitoring the
convergence by visually inspecting the history plots of the
generated sequences, is commonly used. Usually, if there is no
change point or trend in the plot, the convergence of the gener-
ated sequence is accepted. To illustrate this, we plotted the
history of generated sequences of three parameters in Figure
1. At the beginning, the sequences either increased quickly
(Figure 1a), or declined quickly (Figure 1b), or fluctuated a
lot (Figure 1c). However, after about 500 iterations, all
sequences appear very flat and there is no noticeable trend or
change. Thus, the sequences converged after 500 iterations, in
other words, I = 500. Furthermore, the sequences for all
parameters converged at approximately the same time and
convergence should not be accepted until the sequences for all
unknown parameters have converged. For example, although

the sequence in Figure 1b seemed to converge after 200
iterations, we cannot say this sequence was converged because
the other two sequences had not yet converged.

Latent basis growth curve model

Growth curve models have been widely used in the analysis of
growth processes in social and behavioral research (McArdle
& Nesselroade, 2003; Meredith & Tisak, 1990). Figure 2
shows a path diagram for the growth curve model used in the
present analyses. The observed variables are drawn as squares,
unobserved or latent variables are drawn as circles, and the
constant is represented by the triangle. The squares labeled y1
through y4 are the observed data on occasions 1 through 4,
respectively. L in the circle is the individual latent initial level,
µL is the mean of the initial level across all the participants, and
σL

2 is the variability around the initial level representing
interindividual differences in the latent initial level. S in the
circle corresponds to the slope, µS is the mean of the slope
across all the participants, and σS

2 represents its variability, or
individual differences around the slope. The covariance, σLS,
between level and slope is represented by the double-headed
arrow between the latent variables. The circles labeled e1
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through e4 are random errors, and their variance (σe
2) is

assumed to be equal across time but it can vary across time. L
and S are random-effects parameters that have different values
for each individual, whereas µL and µS are fixed-effects
parameters that are the same for all the participants.
Mathematically, this model can be written as

yit = Li + αiSi+ eit

Li = µL + νLi i = 1, . . . , N; t = 1, . . . , T, (13)

Si = µS + νSi

with N denoting the sample size and T denoting the number
of occasions.

The model indicates that the observed variables y1–y4 are
determined by the initial level (L), the slope (S), and error (e).
Different growth curve shapes can be produced by adjusting
the weights of α1 through α4. For example, assigning them the
values 1 through 4 would lead to a linear growth curve. α1 and
α4 can be fixed and the values of α2 and α3 can be estimated.
This particular model, in which the weights or basis co-
efficients determine the shape of the growth curve, is known
as a latent basis growth model, and has the advantage that the
form of the function is determined by the data rather than
specified a priori.

The latent basis growth model is very flexible because it can
form many kinds of growth trajectories by assigning different
values to αt. The different growth curves for two individuals
are plotted in Figure 3. In the first plot, α = (0, .33, .66, 1)
indicates a linear growth trajectory. In the second plot, α = (0,
.8, .95, 1) indicates an exponential growth trajectory. In the

third plot, α = (1, .8, .25, 0) indicates a nonlinear decline
curve. Finally, α = (0, –1, 1, 0) indicates a fluctuating change
trajectory. Furthermore, only two of the basis coefficients
need to be fixed for the identification and scaling purposes.
Illustrative is fixing the first and second coefficients to be 0 and
1 and estimating the other basis coefficients (McArdle &
Nesselroade, 2003).

Empirical example

To illustrate how to practically implement Bayesian analysis,
we present an empirical example.

Data

Data in this example are two subsets from the National
Longitudinal Survey of Youth (NLSY).2 The first subset
includes repeated measurements of N = 173 children. At the
first measurement in 1986, the children were about 6–7 years
of age. The same children were then repeatedly measured at
2-year intervals for three additional measurement occasions
(1988, 1990, and 1992). Missing data existed for some of the
children. The second subset includes repeated measurements
of N = 34 children. At their first measurement in 1992, the
children were also about 6–7 years of age. The same children
were also measured again at an approximate 2-year interval
for another three times in years 1994, 1996, and 1998.
Missing data also existed for several of the children. The
children from both data sets were tested using the Peabody
Individual Achievement Test (PIAT) Reading Recognition
subtest that measured word recognition and pronunciation
ability. The total score for this subtest ranged in value from 0
to 84. In the present study, this score was rescaled by dividing
by 10.
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2 For a complete description of NLSY, visit http://www.bls.gov/nls/
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Research questions

For the first set of data, the empirical question was “Is there
systematic change in reading recognition and individual differ-
ences in this change over time (8 years)?”. The technical
question to answer was “Is there difference between Bayesian
estimation and MLE in parameter estimates?”. For the second
set of data, the technical question to answer was “How does
the use of prior information affect the parameter estimates and
standard errors from a small sample?”.

Design of analyses

First, the first data set was analyzed using the Bayesian method
with noninformative priors. Then the same data set was
analyzed using MLE. The results from two methods were
compared. Second, the second data set was first analyzed using
the Bayesian methods with noninformative priors as the
baseline. Then the informative priors were constructed from
the results of the first data set and used in the analysis of the
second data set. To further demonstrate the use of informative
priors in the small sample study, we selected part of the data
(N = 20) from the second data set. Both full informative priors
and half informative priors as defined in the next section were
used to analyze the selected data.

In all Bayesian analysis, conjugate priors were used. For the
means of initial level and slope, the normal distribution prior
was used. For the variance of measurement error, the inverse
gamma distribution prior was used and for the covariance
matrix of the random effects parameters, the inverse Wishart
distribution prior was used. Finally, normal distribution priors
were used for the basis coefficients.

Implementation of the analyses

All Bayesian analyses were implemented using WinBUGS and
BAUW. WinBUGS is widely used free software for Bayesian
analysis and is very flexible for both simple and complex models.
Although WinBUGS can be used as menu-driven software, it is
still not easy to use for at least two reasons. First, programming
a model in WinBUGS requires understanding the details of the
probability form for that model, which is usually missing in most
textbooks especially for empirical researchers. Second, the data
format of WinBUGS is similar to that of R or Splus, which
makes the data conversion frustrating.

In order to advance the application of Bayesian analysis and
make the implementation of the analysis easier, the software
called BAUW (Zhang & Wang, 2006) was used. BAUW can
be used to generate WinBUGS programs for many kinds of
models, such as growth curve models, latent difference score
models (McArdle & Hamagami, 2001), and IRT models
(Embretson & Reise, 2000). BAUW is the menu-driven
software and only needs a few inputs to generate full
WinBUGS programs, including data conversion. For the
analysis of the first data set by using the latent basis model, we
need to input the sample size (173), the number of occasions
(4), the missing data indicator (dot “.” in the data file for this
example), and the data file. WinBUGS program generated
from BAUW is given in Appendix A. The program can then
be run in WinBUGS by clicking menus.3

As shown in Appendix A, a complete WinBUGS program
has three parts, model specification, starting values, and data.
In the model specification part, all codes for the latent basis
model using WinBUGS syntax are put in model{ }. Then for
each parameter in the model, a prior was specified. Notice that
neither posterior nor conditional distributions were specified.
WinBUGS calculated them based on the model and specified
priors. Because the precision (reciprocity of the variance) was
used in the normal distribution (dnorm), it was transformed
back to variance in the transformation part. Finally, all the
parameters were put into a parameter vector for convenience.
All starting values were put together into list( ). Usually,
researchers need to change the starting values according to
their data for fast convergence. In this example, we used the
mean score at the first occasion as the staring value for the
mean initial level parameter (µL) and used the difference
between the mean scores from the first occasion and the fourth
occasion as the starting value for the slope parameter (µS).
Finally, the data were also put together into list( ). In
WinBUGS, the missing data are represented by “NA”. All
missing data in the original data file indicated by dot “.” were
replaced by “NA” in WinBUGS data. In the codes generated
by BAUW, the residual variances are assumed to be equal at
each time point and the first and last basis coefficients are fixed
at 0 and 1. However, WinBUGS allows the residual variances
to be estimated at each time point. Similarly, one can fix any
two basis coefficients and estimate the others.4

BAUW always generates the WinBUGS scripts using non-
informative priors. To use informative priors, the priors need
to be modified. In the current example, the mean initial level
parameter (µL) was initially given a noninformative prior
bL[1]~dnorm(0, 1.0E-6). To use the informative prior
constructed from the first data set, this prior needs to be
changed to bL[1]~dnorm(2.047, 410) with the precision 410
equal to 1 over the variance .0024. This prior can be called a
full informative prior because it used all the parameter infor-
mation from the first data set. A half informative prior was also
used which was bL[1]~dnorm(2.047, 200). In this case, the
precision was only half of that from the first data set, which
means only partial information from the first data set was
incorporated in analyzing the second data set. Note that the
half informative priors are not exactly same with those
discussed by Ibrahim and Chen (2000). They generally used
the power a0 to specify informative priors.

Similarly, the priors for the other parameters need to be
changed accordingly. The complete specifications of informa-
tive priors are given in Table 1.The complete WinBUGS codes
for the use of the full informative prior are provided in
Appendix B. For maximum likelihood estimation, SAS PROC
NLMIXED was used to obtain the parameter estimates.

Results

The results from both Bayesian methods and MLE for the first
data set are provided in Table 2. For Bayesian methods, the
history plot showed that the generated sequences for all
parameters converged after 1000 iterations. The iterations
from 1000 to 5000 were used to calculate the parameter
estimates and the credible intervals. The parameter estimates
and standard errors using Bayesian estimation methods from
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3 For researchers who use WinBUGS for the first time, a video has been
created to demonstrate the analytic process. To view it, go to http://bauw.
psychstat.org.

4 An example script file can be found at http://bauw.psychstat.org. These
features will be incorporated into the next version of BAUW.
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WinBUGS were very similar to those using MLE from SAS
PROC NLMIXED. There was slight difference in the esti-
mates of covariance matrix of initial level and slope because
the two programs deal with missing data in different ways.5

From our simulation study, we found that the two methods
obtained exactly the same results when there was no missing
data.When there were missing data, the two methods obtained
similar results. However, Bayesian methods gave slightly
smaller standard errors.6

In terms of the empirical question raised above, first, the
average initial level of reading recognition was 2.05 (µL) and
the variance for the initial level was .25 (σL

2).The variance was
significantly larger than 0, so we can conclude there was indi-
vidual variability in the initial level.7 Second, the overall change
of reading recognition was about 3.54 (µS) across the eight
years. There were also significant individual differences in this
change because the variance of this change (σS

2 = .80) was
significantly larger than 0. Furthermore, change in reading
recognition was positively correlated with the initial level
(σLS = .18). Finally, the change of reading recognition was
nonlinear as approximately 50% of the overall change occurred
between 6–7 years of age and 8–9 years of age.

The parameter estimates and associated standard errors
from the second data set (N = 34) and its subset (N = 20)
using noninformative prior are given in Table 3. The standard
errors were very large and those for N = 34 were smaller than
those for N = 20. Particularly when N = 20, the variance for
the slope and the covariance between the initial level and slope
were not significant any more. Based on the results of the first
data set, the nonsignificant results were because of the small
sample size.

When estimating the data again with the half and full
informative priors, the standard errors were largely reduced. It
was also clear that with more information in the priors the
standard errors became smaller by comparing those obtained
using full informative priors and half informative priors. This
illustrates that using the informative prior can increase the
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Table 1
(Non-)Informative priors used in WinBUGS for the analysis of the second data set

Noninformative prior Full informative priors Half informative priors

α2 dnorm(0, 1.0E-6) dnorm(.5, 6957) dnorm(.5, 3500)
α3 dnorm(0, 1.0E-6) dnorm(.8, 5131) dnorm(.8, 2500)
µL dnorm(0, 1.0E-6) dnorm(2.047, 410) dnorm(2.047, 200)
µS dnorm(0, 1.0E-6) dnorm(3.542, 127) dnorm(3.542, 60)
1/σe

2 dgamma(.001, .001) dgamma(121.5, 20.4) dgamma(60, 10)

dwish dwish dwish

Note. All priors were constructed based on the results from the analysis of the first data set. Because of the multi-
variate complexity of Wishart distribution, the Wishart priors are only an approximation.
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5 SAS uses the full information maximum likelihood estimation method in
which only the time point with data is used in estimating the parameters.
WinBUGS takes every missing data as a parameter to sample from its posterior
distribution.

6 An article on the simulation is still in development. Interested researchers
may refer to the preliminary results at http://bauw.psychstat.org.

7 A strict way to test whether the variance is equal to 0 is to fit a reduced
model and compare the difference in the change of fit statistics. Here, we simply
used the t test that is usually employed in MLE.

Table 2
Estimates of the parameters from the first data set for the latent
basis growth model

Bayesian MLE

Estimate SE CI Estimate SE

α1 0 = 0 — = 0 — = 0
α2 0.50 0.012 0.48 0.52 0.50 0.012
α3 0.80 0.014 0.77 0.83 0.80 0.014
α4 = 1 — — — = 1 —
µL 2.05 0.049 1.95 2.15 2.05 0.048
µS 3.54 0.089 3.37 3.72 3.55 0.088
σL

2 0.25 0.044 0.17 0.34 0.23 0.042
σS

2 0.80 0.139 0.55 1.10 0.76 0.138
σLS 0.18 0.054 0.07 0.28 0.19 0.056
σe

2 0.17 0.015 0.14 0.20 0.17 0.016

SE, standard error; CI, credible interval.

Table 3
Parameter estimates with different priors for the second data set

Noninformative Half informative Full informative

Estimate SE Estimate SE Estimate SE

N = 34
α2 0.48 0.035 0.49 0.014 0.50 0.011
α3 0.80 0.037 0.80 0.017 0.80 0.012
µL 2.04 0.139 2.04 0.060 2.04 0.045
µS 3.24 0.225 3.46 0.109 3.49 0.081
σL

2 0.39 0.145 0.29 0.072 0.27 0.053
σS

2 1.06 0.379 0.98 0.233 0.92 0.176
σLS 0.27 0.155 0.26 0.093 0.24 0.070
σe

2 0.29 0.049 0.21 0.022 0.20 0.015

N = 20
σ2 0.50 0.054 0.50 0.015 0.50 0.011
σ3 0.77 0.055 0.79 0.017 0.79 0.013
µL 2.18 0.228 2.07 0.065 2.06 0.047
µS 3.13 0.295 3.46 0.117 3.49 0.085
σL

2 0.66 0.305 0.36 0.104 0.31 0.067
σS

2 0.98 0.515 0.97 0.266 0.90 0.183
σLS 0.38 0.254 0.30 0.117 0.26 0.082
σe

2 0.36 0.077 0.22 0.024 0.20 0.016

SE, standard error.
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statistical efficiency and power. The informative priors can be
viewed as additional or extra data. Sometimes, researchers may
“pool” data sets, which is analogous to the use of informative
priors. Using informative priors is like to pooling one set of
data with another.

After using the informative priors, the results from the first
and second data sets were very consistent and the conclusions
reached were the same for the two data sets. This is reasonable
because the two data sets measured participants with the same
age from two different cohorts (1979/1980 cohort and
1985/1986 cohort).

Discussion

The power of Bayesian methods in estimating complex models
for complex data analysis is indisputable. Besides the capabil-
ity for implementing estimation procedures, which generally
cannot be done in MLE, the ease, flexibility, and computation
time were also very acceptable (Arminger & Muthen, 1998;
Dunson, 2003; McArdle & Wang, in press). Other merits of
Bayesian methods have also been demonstrated throughout the
present article. First, Bayesian methods interpret traditional
statistics in a more intuitive way. For example, the meaning of
the credible interval and p-value matches the common sense
interpretation of these concepts. Second, Bayesian methods
provide a clear way to incorporate prior information that both
increases the statistical power of analysis and formulizes the
accumulation of scientific findings. In the current study, even
when the sample size was only 20, we still obtained reasonable
results through using informative priors. Because Bayesian
inference is not based on the asymptotic nature of the estima-
tors as MLE is (Casella & Berger, 2001), it can be argued to
be a more plausible way to analyze small sample data sets
(Rindskopf, 2006).

We believe that it is timely for empirical researchers to give
serious consideration to trying out Bayesian methods for their
initial data analysis. To facilitate such efforts, the primary goal
of this article has been to provide the basics of Bayesian
methods in the context of a popular modeling technique
(latent growth curve models) and to render the application of
Bayesian methods practical by using currently available
software. To meet the special needs of longitudinal data
analysts, we demonstrated the step-by-step application of
Bayesian methods on a latent basis growth model using an
empirical data set. The results showed that Bayesian methods
can obtain similar parameter estimates to those from MLE
when using noninformative priors. More importantly, they had
unique strengths, such as the intuitive interpretation of the
results and the efficient incorporation of prior information to
empirical data analysis.

Although Bayesian methods can be used as the direct
alternative to MLE for parameter estimation when using
noninformative priors, we would like to emphasize the appli-
cation of informative priors. Progress in scientific research
rests on accumulated knowledge. The Bayesian methods and
Bayes’ theorem provide a natural “chain” for incorporating
previous findings with current findings through the use of
informative priors, which generally cannot be done formally in
traditional statistics. Thus, informative priors should be used
if reliable prior information is available. Furthermore, prior
information is usually available for social and behavioral
research. One type of prior information arises from theory.The

theory underlying an experiment can be used to build our
model.This theory actually acts as prior information. A second
type of prior has been widely used in quantitative models. For
example, in factor analytic models and IRT models, factor
scores are usually assumed to come from a normal distribution
with means of 0 and 1. This kind of specification is equivalent
to specifying the prior distribution in Bayesian framework. The
third type of prior information arises from previous research
outcomes. In the present study, we used the results from
modeling growth of reading recognition of 6–7-year-old
children from a 1979/1980 cohort to construct informative
priors for the study of 6–7-year-old children from a 1985/1986
cohort.

Bayesian methods using informative priors can also be
viewed as the alternative to meta-analysis (Wolf, 1986) and
mega-analysis (McArdle & Horn, 2004). A meta-analysis
combines the results of several closely related studies and a
mega-analysis combines the raw data of several related studies
directly. Because raw data from different studies are usually not
available, the use of the research results from public sources is
a more frequent occurrence than is the use of raw data.
Bayesian methods using informative priors actually provide a
feasible way to combine data of a current study with the results
from related previous related studies, which is more practical
than meta-analysis and mega-analysis. Our present analyses
also demonstrate that we can use only partially available infor-
mation in Bayesian analysis. If the prior information is not very
reliable, a less informative prior can be constructed from all
the available information.

Bayesian methods have been criticized for the choice of
priors. For example, in the present analyses, when we analyzed
the same subset of participants with noninformative priors, full
informative priors, and half informative priors, the results were
different. Discrepancies may become greater when different
researchers use different prior information because of their
accessibility to currently available information. Thus, when
priors are used, these priors should be reported explicitly.
Furthermore, when conclusions are drawn, the use of priors
should be kept in mind.

To simplify the demonstration, we employed a univariate
growth curve model. However, the Bayesian methods used
here can be expanded to include multiple growth models to
evaluate how intraindividual differences in intraindividual
change covary across more than one set of variables
(Hamagami, Zhang, & McArdle, submitted). Furthermore,
Bayesian methods can be used to estimate more complex
nonlinear models, such as univariate and bivariate nonlinear
change points models (McArdle & Wang, in press). Besides
DIC produced by WinBUGS (Spiegelhalter, Best, Carlin, &
Linde, 2002), the other statistics can be constructed based on
the log-likelihood statistics given by WinBUGS to compare
models.

Programming and computational demands have limited the
application of Bayesian methods in the past. However, the
availability of WinBUGS and BAUW and other software now
renders the programming process a series of mouse-clicking.
Also, current computational power makes computing time no
longer a significant concern. For example, in this study, it took
a laptop with Celeron CPU = 1.7 GHZ and RAM = 512 less
than 30 seconds to finish the computations. More importantly,
complexities of models make the programming and computa-
tional demands for Bayesian methods even less than those for
the traditional MLE methods (McArdle & Wang, in press).
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Appendix A

WinBUGS program for the latent basis model
generated from BAUW

#model specification 
model{

for (i in 1:N){
LS[i,1:2]~dmnorm(Mu[i,1:2], Inv_cov[1:2,1:2]) 
Mu[i,1]<-bL[1]
Mu[i,2]<-bS[1]
for (t in 1:T){

y[i,t]~dnorm(MuY[i,t], Inv_sig_e)
MuY[i,t]<-LS[i,1]+LS[i,2]*A[t]

}
}

#Prior distribution, can be changed to use informative prior
for (i in 1:1){

bL[i]~dnorm(0,1.0E-6)
bS[i]~dnorm(0,1.0E-6)

}
A[1]<-0
for (t in 2:T-1){

A[t]~dnorm(0,1.0E-6)
}
A[T]<-1
Inv_cov[1:2,1:2]~dwish(R[1:2,1:2], 2)
R[1,1]<-1
R[2,2]<-1
R[2,1]<-R[1,2]
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R[1,2]<-0
Inv_sig_e~dgamma(.001,.001)
#Transform the parameters
Cov[1:2,1:2]<-inverse(Inv_cov[1:2,1:2])
Sig_L<-Cov[1,1]
Sig_S<-Cov[2,2]
rho<-Cov[1,2]/sqrt(Cov[1,1]*Cov[2,2])
Sig_e<-1/Inv_sig_e
#all parameter are put into Para 
Para[1]<-Sig_L
Para[2]<-Sig_S
Para[3]<-Cov[1,2]
Para[4]<-rho
Para[5]<-Sig_e
Para[6]<-bL[1]
Para[7]<-bS[1]
Para[8]<-A[2]
Para[9]<-A[3]

} #end of model part

#Starting values
#You can change the starting values by yourself here.
list(Inv_cov= structure(.Data = c(1,0,0,1),.Dim=c(2,2)), Inv_sig_e=1,

A=c(NA,0.333333,0.666667,NA), 
bL=c(2),bS=c(3))

#Data 

list(N=173,T=4,y = structure(.Data = c(2.6,4.9,5.5,7.2,
......
1.8,3.9,NA,NA), .Dim = c(173,4)))

Appendix B

WinBUGS program with informative priors

model{
for (i in 1:N){

LS[i,1:2]~dmnorm(Mu[i,1:2], Inv_cov[1:2,1:2]) 

Mu[i,1]<-bL[1]
Mu[i,2]<-bS[1]
for (t in 1:T){

y[i,t]~dnorm(MuY[i,t], Inv_sig_e)
MuY[i,t]<-LS[i,1]+LS[i,2]*A[t]

}
}

#Prior distribution, can be changed to use informative prior
for (i in 1:1){

bL[i]~dnorm(2.047, 410)
bS[i]~dnorm(3.542, 127)

}
A[1]<-0
A[2]~dnorm(.5, 6957)
A[3]~dnorm(.8, 5131)
A[T]<-1

Inv_cov[1:2,1:2]~dwish(R[1:2,1:2], 40)
R[1,1]<-9.344603
R[2,2]<-29.765950
R[2,1]<-R[1,2]
R[1,2]<-7.343389

Inv_sig_e~dgamma(121.5, 20.4)
#Transform the parameters
Cov[1:2,1:2]<-inverse(Inv_cov[1:2,1:2])
Sig_L<-Cov[1,1]
Sig_S<-Cov[2,2]
rho<-Cov[1,2]/sqrt(Cov[1,1]*Cov[2,2])
Sig_e<-1/Inv_sig_e
#all parameter are put into Para 
Para[1]<-Sig_L
Para[2]<-Sig_S
Para[3]<-Cov[1,2]
Para[4]<-rho
Para[5]<-Sig_e
Para[6]<-bL[1]
Para[7]<-bS[1]
Para[8]<-A[2]
Para[9]<-A[3]

} #end of model part
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