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Abstract

Bayesian statistics have gained significant traction across various fields over the past few decades.

Bayesian statistics textbooks often provide both code and the analytical forms of parameters for simple

models. However, they often omit the process of deriving posterior distributions or limit it to basic

univariate examples focused on the mean and variance. Additionally, these resources frequently assume a

strong background in linear algebra and probability theory, which can present barriers for researchers

without extensive mathematical training. This tutorial aims to fill that gap by offering a step-by-step guide

to deriving posterior distributions. We aim to make concepts typically reserved for advanced statistics

courses more accessible and practical. This tutorial will cover two models: the univariate normal model

and the multilevel model. The concepts and properties demonstrated in the two examples can be

generalized to other models and distributions.
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Demystifying Posterior Distributions: A Tutorial on Their Derivation

Over the past few decades, Bayesian statistics have gained widespread use, primarily as a result of

the development of Markov chain Monte Carlo (MCMC) sampling techniques and advances in

computational power (e.g., Van de Schoot et al., 2017). These methods have been applied in various fields,

including cognitive psychology (e.g., Lee, 2008), developmental psychology (e.g., Van de Schoot et al.,

2014; Walker et al., 2007), and social psychology (e.g., Marsman et al., 2017). In the Bayesian framework,

parameters are considered random variables, and requires the specification of prior distributions. The

posterior distributions are subsequently derived, and posterior point estimates and credible intervals are

constructed based on a set of plausible parameter values sampled from these posterior distributions.

While software such as Stan (Carpenter et al., 2017), BUGS (Spiegelhalter et al., 1996), jags

(Plummer et al., 2003), Mplus (Asparouhov & Muthén, 2010), and Blimp (Keller & Enders, 2021) enables

users to sample from posterior distributions without requiring analytical derivations, these tools are often

used as black boxes and rely on computationally intensive methods such as MCMC. Once samples from

the posterior are obtained, users can estimate various properties of the parameters, such as posterior means

and standard deviations. The use of MCMC typically involves iterative sampling, convergence diagnostics,

and parameter tuning, which yield an approximation of the posterior under ideal conditions. As a result,

MCMC methods can introduce both computational overhead and interpretive uncertainty. In contrast, for

certainly models, posterior distributions can be derived analytically in a simple form as well-known

distributions. They are faster to compute, easier to interpret, and more transparent in showing how the prior

and data combine. Such solutions also facilitate downstream tasks such as computing posterior

expectations or predictive distributions. It also serves as a valuable benchmark for evaluating the accuracy

and efficiency of MCMC implementations. If MCMC samples deviate from the known posterior, this can

indicate issues such as poor convergence, inadequate mixing, or prior misspecification.
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Bayesian statistics textbooks often provide both code and the analytical forms of parameters for

simple models. However, they often omit the process of deriving posterior distributions or limit it to basic

univariate examples focused on the mean and variance. Furthermore, textbooks often assume a strong

foundation in linear algebra and probability theory, which may pose challenges for researchers lacking

such a background. As a result, methodological researchers without systematical training in statistics may

still have limited intuition about how posterior distributions are actually constructed. As far as we know, no

existing textbook or tutorial offers a step-by-step derivation of posterior distributions for multilevel models.

The goal is to present material usually reserved for advanced mathematical statistics courses in a way that

helps motivated researchers gain a deeper understanding of the essential features of Bayesian posterior

distributions. With this foundation, researchers no longer need to rely solely on software. They can derive

posterior distributions for their own models, directly code them for faster and more accurate inference, and

gain clearer insight into how prior assumptions and observed data interact by studying the analytical form

of the posterior. This also helps researchers better diagnose issues in their code when using existing

software programs such as JAGS and Mplus.

This tutorial will cover two models: the univariate normal model and the multilevel model. If

readers can master the derivation process for these two models, they will be well-equipped to extend the

approach to more complex models. We focus on cases involving conjugate priors, which yield closed-form

posteriors and make the derivation process more transparent and accessible. Conjugate priors are

commonly used in applied Bayesian analysis and offer an ideal entry point for learning, as they allow us to

demonstrate the core logic of posterior construction in a mathematically tractable way.

To familiarize readers with the properties of matrix operations, we provide a summary in the

Appendix. Throughout the derivation process, key algebraic properties and equalities will be emphasized,

with a preview presented in Table 1.

[Table 1]
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Foundational Concepts

Bayes’ theorem is a foundational concept in Bayesian modeling. Let θ denote the unknown

parameter(s), and x denote the observed data. The specified model determines the function f (x|θ),

commonly referred to as the likelihood, where x on the left side of the vertical sign is random, and θ on the

right of the vertical sign is fixed or known. That is, f (x|θ) describes the probability of the data given one

set of fixed parameters. The likelihood function is also often written as L (θ|x) to highlight that it

represents the likelihood of observing a particular x when the true value of the parameter is θ. This

expression is mathematically equivalent to f (x|θ). The goal of Bayes’ theorem is to compute the

posterior distribution f (θ|x), where θ on the left side of the vertical sign is random, and x on the right of

the vertical sign is fixed.

f (θ|x) = f (x|θ) f (θ)

f (x)
(1)

∝ f (x|θ) f (θ)

where f (θ) is the prior distribution, f (x|θ) is the likelihood, and f (x) is a normalizing constant that

ensures that the area under the distribution curve f (θ|x) equals 1. It is not necessary to focus extensively

on f (x) since it is constant that does not depend on θ. Therefore, we can use the proportionality sign to

indicate that the posterior distribution is proportional to the product of the prior distribution and the

likelihood.

Focusing on the terms that only involve θ in Equation (1) allows us to employ an important concept

for deriving posterior distributions, known as the kernel. A kernel refers to the part of a probability density

or mass distribution that characterizes the shape of the distribution. In many cases, the kernel is easier to

work with to derive the corresponding probability density or mass function. We can think of the kernel as

the ’DNA’ of each distribution. Each component in Equation (1), including f (θ), f (x|θ), and f (θ|x),

has a kernel. Thus, by deriving and identifying the kernel of f(x|θ)f(θ), we can infer the form of the
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posterior distribution. For example, for a normal distribution x ∼ N
(
µ, σ2

)
where µ and σ2 are unknown,

its full probability density function is

f
(
x|µ, σ2

)
=

1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
(2)

∝ 1√
σ2

exp

{
−(x− µ)2

2σ2

}
In this equation, µ and σ2 are the parameters, and 1√

2π
is a normalizing constant that ensures the

cumulative density is 1. Line 2 of Equation (2) represents the kernel of f
(
x|µ, σ2

)
, which captures the

essence of the normal distribution’s bell shape. In Figure 1, we plot the density function with µ = 0 and

σ2 = 1 as the black line, and the kernel as the green line. The kernel preserves the normal distribution’s

shape, centered around 0, with a bell curve and the majority of values falling between -2 and 2. However,

unlike the density function, the kernel does not ensure that the total area under the curve adds up to 1.

[Figure 1]

Another key concept in posterior distribution derivation is the conjugate prior. When specifying

prior distributions such as f (θ) in Equation (2), various options are available. We need to choose both the

family of the prior distribution and the values for the parameters in the prior distribution, known as

hyper-parameters. In this paper, we will make use of a particular type of prior, referred to as a conjugate

prior. A conjugate prior is a prior distribution that, when combined with certain types of likelihood, results

in a posterior distribution that belongs to the same distributional family as the prior. We focus on conjugate

priors in this tutorial primarily for pedagogical reasons. Conjugate prior–posterior pairs allow us to derive

closed-form solutions step by step, which helps readers build intuition about how Bayesian updating

works. These cases make the mathematical structure of Bayes’ theorem fully transparent, enabling readers

to see clearly how the prior and likelihood combine to form the posterior. While conjugate priors are

limited in flexibility and may not always be appropriate for real data analysis, they provide a simple and

analytically tractable starting point for learning. By working through these derivations, readers gain the

mathematical foundation and conceptual understanding needed to later engage with more complex models
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with non-conjugate priors and require numerical methods like MCMC. We will also briefly discuss

non-conjugate priors for comparison in the following sections.

Univariate Normal Model

Textbooks on Bayesian statistics frequently restrict the step-by-step derivations of posterior

distributions to the univariate normal model with unknown mean and variance. We will begin with a review

of this model, which will provide a foundational basis for exploring more complex models.

Consider a sample of n students who independently completed a mathematical test. Their scores can

be denoted as x = {x1, ..., xn}. We are interested in estimating the population mean and variance of

mathematical ability based on this sample. We assume that the population of mathematical abilities follows

a normal distribution N
(
µ, σ2

)
, where both the population mean µ and population variance σ2 are

unknown. Thus, we denote the likelihood function as f
(
x|µ, σ2

)
, where x is a function of µ and σ2

(which can also be expressed as L
(
µ, σ2|x

)
). The likelihood alone provides the requisite information for

frequentist inference. In a conditional probability function, it is important to note that the vertical line

separates two components: the part before the vertical line represents the variables being determined and

considered random, while the part after the vertical line represents the variables considered fixed. In Line 2

of Equation (3), we employ the proportionality sign to emphasize the kernel, as 1√
2π

serves solely as a

normalizing constant.

f
(
x|µ, σ2

)
=

n∏
i=1

1√
2πσ2

exp

{
−(xi − µ)2

2σ2

}
(3)

∝
(
σ2
)−n/2

exp

{
−
∑n

i=1(xi − µ)2

2σ2

}
When dealing with a product of individual likelihoods, exponent rules allow us to rewrite the product

across individuals as a sum within the exponential function. To draw Bayesian inferences regarding the

parameters, it is necessary to determine their posterior distributions, as represented on the left side of

Bayes’ theorem in Equation (2). This will allow us to sample from or summarize the posterior distributions
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of µ and σ2.

Prior Distributions

We first consider conjugate priors. For simplicity, we specify independently prior distributions for µ

and σ2, respectively. Strictly speaking, this tutorial discusses semi-conjugate priors, meaning only the

conditional posterior distribution belongs to the same family as the prior. In contrast, fully conjugate priors

for this example would require using a normal-inverse-gamma prior: a normal conditional prior for µ

(f
(
µ|σ2

)
) and an inverse gamma prior for σ2 (f

(
σ2
)
).

The (semi-)conjugate prior for µ in the Gaussian (i.e., normal) likelihood is a normal distribution

N(µ0, σ
2
0), resulting in the conditional posterior distribution of µ also being normal. µ0 and σ2

0 are the

mean and variance of the prior distributions, respectively. µ0 serves as a prior guess about the population

mean µ. σ2
0 reflects our confidence in this initial estimate: a smaller σ2

0 suggests strong confidence that µ is

close to µ0, while a larger σ2
0 introduces greater uncertainty into the prior distribution. When σ2

0 is

sufficiently large, the prior distribution has minimal influence on the posterior estimation and inference

because the normal curve is essentially flat over the plausible parameter space. In such cases, the prior is

considered non-informative or diffuse. The determination of what value of σ2
0 makes a prior

non-informative depends on the sample size of the data. Researchers can conduct sensitivity analyses by

varying σ2
0 , but the details of setting hyper-parameters are beyond the scope of this tutorial.

We begin by writing out the density function of the normal prior, utilizing the proportionality sign to

focus on the kernel. Note that in the kernel, we omit 1√
2πσ2

0

since it is not a function of the unknown

parameter µ. Again, the difference between Lines 1 (density function) and 2 (kernel) in Equation (4) is

illustrated in Figure 1. Getting rid of 1√
2π

does not affect the essential properties in a normal distribution
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shape.

f(µ) =
1√
2πσ2

0

exp

{
−(µ− µ0)

2

2σ2
0

}
(4)

∝ exp

{
−(µ− µ0)

2

2σ2
0

}
The conjugate prior for σ2 in the Gaussian likelihood is an inverse gamma distribution IG(a, b),

which results in the conditional posterior distribution of σ2 also being inverse gamma. a > 0 is a shape

parameter and b > 0 is a scale parameter. Researchers often use small hyper-parameters such as a = 0.001

and b = 0.001 to specify a non-informative inverse gamma prior distribution. We utilize the proportionality

sign to focus on the kernel of the density function where we omit ba

Γ(a) since it is not a function of the

unknown parameter σ2.

f
(
σ2
)
=

ba

Γ (a)

(
σ2
)−(a+1)

exp

{
− b

σ2

}
(5)

∝
(
σ2
)−(a+1)

exp

{
− b

σ2

}
In Figure 2, we plot the density function with a = 1 and b = 2 as the black line, and the kernel as the green

line. The kernel preserves the right-skewed shape of the density function; however, unlike the density

function, its total area under the curve is less than 1.

[Figure 2]

For illustrative purposes, we assume µ and σ2 are independent. Therefore, the joint prior distribution

is f
(
µ, σ2

)
= f (µ) f

(
σ2
)
. After selecting and simplifying the prior distributions, we can proceed with

the step-by-step derivation of each parameter’s conditional posterior distribution.

Joint Posterior Distribution

We begin by writing the joint posterior distribution f
(
µ, σ2|x

)
by applying Equation (1).

Specifically, we multiply the kernel in the likelihood (Equation 3), the kernel in the prior for µ (Equation

4), and the kernel in the prior for σ2 (Equation 5) together. We first group the two terms outside the

exponential functions together. Then, we apply Property 1: exp (a + b) = exp (a) exp (b)
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(summarized in Table 1). By utilizing Property 1, we combine the three exponential functions by adding

the terms inside the three sets of curly braces to obtain a single set of curly braces.

f
(
µ, σ2|x

)
∝ f

(
x|µ, σ2

)
f (µ) f

(
σ2
)

(6)

∝
(
σ2
)−n/2

exp

{
−
∑n

i=1(xi − µ)2

2σ2

}
× exp

{
−(µ− µ0)

2

2σ2
0

}

×
(
σ2
)−(a+1)

exp

{
− b

σ2

}
∝
(
σ2
)−(n+2a+2)/2exp

{
−
∑n

i=1(xi − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

− b

σ2

}
(Property 1)

Conditional Posterior Distribution of µ

We have two options here. One approach is to use integration to compute the marginal posterior

distributions as f (µ|x) =
∫
f
(
µ, σ2|x

)
dσ2 and f

(
σ2|x

)
=
∫
f
(
µ, σ2|x

)
dµ. Although the analytical

derivation of these integrals is manageable in this case, in many problems, analytical and closed-form

marginal distributions do not exist. A more widely used approach is to compute conditional posterior

distributions f
(
µ|x, σ2

)
and f

(
σ2|x, µ

)
. A full conditional posterior distribution describes the

distribution of a parameter given the observed data and all other parameters. For example, in f
(
µ|x, σ2

)
,

µ is treated as the unknown parameter while σ2 is treated as known. With the conditional posterior

distributions, we can use the Gibbs sampling algorithm to sample each variable one at a time sequentially

(Gelfand & Smith, 1990). For example, for the tth iteration, sample µ(t) based on σ2(t−1) in the previous

iteration using f
(
µ|x, σ2

)
, and sample σ2(t) based on updated µ(t) using f

(
σ2|x, µ

)
. In this way, we keep

updating µ and σ2 based on each other iteratively.

Step 1. Identify and Retain the Terms Involving µ. We derive the conditional posterior distribution of

µ first. In this case, we assume that σ2 is known and fixed, treating it as a constant. During estimation, the

Gibbs sampler will plug in the current value of σ2 into the conditional posterior distribution of µ for each

iteration. Consequently, we need only to retain the terms involving µ from Equation (6) and write down
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them after the proportionality sign. The first two lines of Equation (7) use Property 1:

exp (a+ b) = exp (a) exp (b). After separating the two exponential components, we can eliminate

exp
{
− β

σ2

}
because it does not contain µ, resulting in the final line of Equation (7). If we plan to use

MCMC methods to draw posterior samples, we can stop here, as the kernel in Equation (7) is sufficient.

f
(
µ|x, σ2

)
∝ exp

{
−
∑n

i=1(xi − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

− b

σ2

}
(7)

∝ exp

{
− b

σ2

}
exp

{
−
∑n

i=1(xi − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

}
(Property 1)

∝ exp

{
−
∑n

i=1(xi − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

}

Step 2. Expand Parentheses and Remove Components. Since we are utilizing a conjugate prior, the

conditional posterior distribution f
(
µ|x, σ2

)
should be normal. Our primary objective is to rearrange the

components to piece together a normal kernel. In this kernel, µ is the random variable, while x and σ2 are

considered fixed. Hence, we want to combine the terms inside the curly braces into one normal kernel

where µ appears in only one location. To achieve this, we must expand all parentheses to evaluate whether

any components can be removed for simplification.

f
(
µ|x, σ2

)
∝ exp

{
−
∑n

i=1 (xi − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

}
(8)

∝ exp

{
−
∑n

i=1

(
x2i + µ2 − 2xiµ

)
2σ2

−
(
µ2 + µ2

0 − 2µµ0

)
2σ2

0

}

∝ exp

{
−
∑n

i=1 x
2
i + nµ2 − 2µ

∑n
i=1 xi

2σ2
− µ2 + µ2

0 − 2µµ0

2σ2
0

}
In the last line of Equation (8), we can see that

∑n
i=1 x

2
i and µ2

0 do not involve µ, and can be

omitted. In addition, we replace
∑n

i=1 xi with nx̄ where x̄ is the sample mean to simplify the notation. The
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top line of Equation (9) below shows these simplifications.

f
(
µ|x, σ2

)
∝ exp

{
−nµ2 − 2µnx̄

2σ2
− µ2 − 2µµ0

2σ2
0

}
(9)

∝ exp

{
−nµ2σ2

0 − 2µnx̄σ2
0 + µ2σ2 − 2µµ0σ

2

2σ2σ2
0

}
∝ exp

{
−
µ2
(
nσ2

0 + σ2
)
− 2µ

(
nx̄σ2

0 + µ0σ
2
)

2σ2σ2
0

}

∝ exp

{
−
µ2 − 2µ

(
nx̄σ2

0 + µ0σ
2
)
/
(
nσ2

0 + σ2
)

2σ2σ2
0/
(
nσ2

0 + σ2
) }

Notice that the two terms in the top line of Equation (9) have different denominators. In Line 2, we

introduce a common denominator so components inside the exponential function can be combined. In Line

3, we group the terms involving µ2 and µ respectively. Then, in Line 4, we divide both the numerator and

the denominator by
(
nσ2

0 + σ2
)

to ensure that µ2 does not multiply any additional factors in the numerator,

to be consistent with the posterior kernel of µ in Step 3.

Step 3. Compare with the Normal Kernel. At this point, Equation (9) represents the most simplified

form we can achieve. Because we are using a conjugate prior, we know that the posterior distribution must

have a kernel of the form exp
{
− (µ−A)2

2B

}
∝ exp

{
−µ2−2Aµ

2B

}
where A is the posterior mean and B is the

posterior variance. We can now compare exp
{
−µ2−2Aµ

2B

}
with the last line of Equation (9) to identify A

and B. Hence, A =
(
nx̄σ2

0 + µ0σ
2
)
/
(
nσ2

0 + σ2
)

and B = σ2σ2
0/
(
nσ2

0 + σ2
)
. Based on A and B, the

conditional posterior distribution is as follows.

f
(
µ|x, σ2

)
= N

(
nx̄σ2

0 + µ0σ
2

nσ2
0 + σ2

,
σ2σ2

0

nσ2
0 + σ2

)
(10)

= N

( n
σ2 x̄+ 1

σ2
0
µ0

n
σ2 + 1

σ2
0

,
1

n
σ2 + 1

σ2
0

)
n
σ2 x̄+

1

σ2
0
µ0

n
σ2+

1

σ2
0

is the posterior mean and 1
n
σ2+

1

σ2
0

is the posterior variance for µ. Equations (10) and (9) differ by

a normalizing constant,

√
n
σ2+

1

σ2
0

2π exp

{
−(nx̄σ2

0+µ0σ2)
2
/(nσ2

0+σ2)
2σ2σ2

0

}
. Since this constant does not involve µ,

we can focus directly on the kernel, as excluding it does not affect the posterior distribution derivation. The

posterior variance is a function of data population variance (σ2) and prior variance of µ (σ2
0). The posterior
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mean is a weighted average of sample mean (x̄) and prior mean of µ (µ0). When σ2
0 → ∞, 1

σ2
0
→ 0 and

posterior mean converges to x̄. In this case, the posterior mean coincides with the maximum likelihood

estimation (MLE) of µ. This is why the prior distribution with large σ2
0 is considered non-informative.

Conditional Posterior Distribution of σ2

At each iteration, once the Gibbs sampler has completed the estimation of µ by drawing a random

sample from the normal curve in Equation (10), it proceeds to estimate σ2 with treating the sampled µ as a

known constant in the posterior distribution of σ2. Next, we derive the conditional posterior distribution of

σ2, assuming µ is known and treated as a constant.

Step 1. Identify and Retain the Terms Involving σ2. We begin by selecting all functions involving σ2

in the final line of Equation (6) and writing them down after the proportionality sign. In Line 2, we identify

the common denominator to combine all terms. If we plan to use MCMC methods to draw posterior

samples, we can stop here, as the kernel in Equation (11) is sufficient.

f
(
σ2|x, µ

)
∝
(
σ2
)−(n+2a+2)/2exp

{
−
∑n

i=1(xi − µ)2

2σ2
− b

σ2

}
(11)

∝
(
σ2
)−(n+2a+2)/2exp

{
−
∑n

i=1(xi − µ)2 + 2b

2σ2

}
Deriving the posterior of µ required several simplification steps because µ appeared in multiple terms of

the Equation (7). For σ2, however, we do not need to expand the parentheses and remove components

because σ2 is by itself in the denominator inside the exponential function.

2. Compare with the Inverse Gamma Kernel. With the conjugate prior, we know that the posterior

distribution must be inverse gamma and possess a kernel of the form
(
σ2
)−(A+1)

exp
{
− B

σ2

}
. Now we can

compare
(
σ2
)−(A+1)

exp
{
− B

σ2

}
with the last line of Equation (11) to identify A and B. Therefore,

A = n+2a
2 and B =

∑n
i=1(xi−µ)2+2b

2 . Based on A and B, the conditional posterior distribution is as follows.

f
(
σ2|x, µ

)
= IG

(
n

2
+ a,

∑n
i=1(xi − µ)2

2
+ b

)
(12)
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When a → 0 and b → 0, the prior becomes non-informative, and the posterior distribution is

dominated by the likelihood. In this case, the posterior mode of σ2 approaches MLE.

Non-Conjugate Priors

Conjugate priors are limited to specific distributions that pair with certain likelihoods. They may

impose unrealistic assumptions, such as symmetry or unbounded parameter ranges, which may not align

with our prior beliefs. In these cases, we will consider non-conjugate priors. For example, there are various

potential non-conjugate priors for µ and σ2 in the Gaussian likelihood. Here, we illustrate one such prior

for σ2. In hierarchical models with a small number of groups, Gelman (2006) suggested that a half-Cauchy

prior might be more effective and inverse gamma prior, as it avoids distorting inferences in regions of high

likelihood: σ ∼ half − Cauchy (γ). This prior leads to the following form for f
(
σ2|x, µ,

)
:

f
(
σ2|x, µ,

)
∝ f

(
x|µ, σ2

)
f
(
σ2
)

(13)

∝
(
σ2
)−n/2

exp

{
−
∑n

i=1(xi − µ)2

2σ2

}
× 1

1 + σ2/γ2

Even after identifying the kernel of the conditional posterior distribution of σ2, it is still challenging to

identify which distribution family f
(
σ2|x, µ,

)
belongs to. However, with the kernel in Equation (13), we

can apply the Metropolis-Hastings (MH) algorithm to sample the posterior distribution (Gilks et al., 1996;

Hastings, 1970). However, compared to the analytical posterior derived from a conjugate prior, it is less

straightforward to assess the influence of the prior when using a non-conjugate prior.

Multilevel Model

A multilevel model is appropriate when the data have a hierarchical structure where observations are

nested within higher-level groups, such as students within schools or repeated measures within individuals.

For example, suppose there are N students from J different schools, and we are interested in analyzing

their mathematics achievement scores. In this case, student-level data are nested within schools. The

dataset includes several covariates: parents’ social and economic status (ses), whether the school is private



Demystifying Posterior Distributions: A Tutorial on Their Derivation 15

or public (pri), and the average social and economic status of the schools (mses). A multilevel model for

this dataset can be specified as follows.

yij = b1j + b2j × sesij + εij (14)

b1j = β11 + β12 ×msesj + β13 × prij + u1j

b2j = β21 + β22 ×msesj + β23 × prij + u2j

where yij and sesij indicate the mathematics score and ses of the ith student from the jth school

respectively, b1j and b2j are the random effects of the jth school, and msesj and prij are the average ses

and school type of the jth school. u1j and u2j are level-2 residuals and follow a multivariate normal

distribution: uj = (u1j , u2j)
′ ∼ MN (0,Σ). εij is the level-1 residual and follows a univariate normal

distribution: εij ∼ N
(
0, σ2

ε

)
.

To derive the posterior distribution of all fixed effects simultaneously, we employ a matrix notation

for notation convenience and simplicity.

yj = Xjβ +Zjuj + εj (15)

yj is a nj × 1 vector of the outcome (mathematics scores) for nj student in the jth school.

Xj =


1 msesj prij sesij msesjsesij prijsesij

...
...

...
...

...
...

1 msesj prij sesnjj msesjsesnjj prijsesnjj

 is a nj × p design matrix for the fixed

effects, corresponding to the p fixed effects (p = 6 in this example).

β =

(
β11 β12 β13 β21 β22 β23

)
is a 1× p vector of fixed effects coefficients.

Zj =


1 sesij

...
...

1 sesnjj

 is a nj × q design matrix for the random effects, corresponding to the q random



Demystifying Posterior Distributions: A Tutorial on Their Derivation 16

effects (q = 2 in this example). uj =

 u1j

u2j

 is a q × 1 vector of random effects in the jth school.

Equation (15) can be applied to clustered and longitudinal data, regardless of whether the design is

balanced.

There are three sets of unknown parameters: β (fixed effects), Σ (level-2 covariance matrix), and σ2
ε

(level-1 residual variance). The random effects uj are known as the latent variables in the data

augmentation framework. Alternatively, we can model b1j and b2j , which is equivalent to modeling uj .

Assuming independence across J schools, the joint distribution of u and y is as follows, where

f (yj |Xj ,β,Zj ,uj) is based on Equation (15), and f (uj |Σ) is based on uj ∼ MN (0,Σ). We further

keep the kernel that only involving β, Σ, and σ2
ε to simplify the equation.

f
(
y,u|X,β,Z,Σ, σ2

ε

)
=

J∏
j=1

f
(
yj |Xj ,β,Zj ,uj , σ

2
ε

)
f (uj |Σ) (16)

=
J∏

j=1

(
(2π)−nj/2

∣∣σ2
εInj

∣∣− 1
2 exp

{
−1

2
(yj −Xjβ −Zjuj)

′ (σ2
εInj

)−1

(yj −Xjβ −Zjuj)} × (2π)−q/2 |Σ|−
1
2 exp

{
−1

2
uj

′Σ−1uj

})
∝

J∏
j=1

(∣∣σ2
εInj

∣∣− 1
2 exp

{
−1

2
(yj −Xjβ −Zjuj)

′ (σ2
εInj

)−1

(yj −Xjβ −Zjuj)} × |Σ|−
1
2 exp

{
−1

2
uj

′Σ−1uj

}
In deriving Equation (16), we used the data augmentation method to get the joint distribution of u

and y. An alternative approach is to integrate out u and use the marginal likelihood of y directly.

Information criteria based on the marginal likelihood have generally shown higher detection rates

compared to those based on the conditional likelihood (Du et al. 2024; Merkle et al. 2019; Tong et al. 2022;

Zhang et al. 2019). However, since the marginal covariance matrix depends nonlinearly on both Σ and σ2
ε ,

their conditional posterior distributions no longer have simple expressions with well-known distributions,

although β still retains an analytical conditional posterior. We will illustrate this in a later section.
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Prior Distributions

For simplicity, we specify independent prior distributions for β, Σ, and σ2
ε , respectively. Given the

likelihood, the (semi-)conjugate prior for β is a multivariate normal distribution f (β) = MN (β0,Σ0),

and the resulting conditional posterior distribution of β will also be multivariate normal. In this

multivariate normal prior, β0 represents the prior mean, and Σ0 denotes the prior variance-covariance

matrix. β0 indicates a prior estimate of β, while Σ0 reflects our confidence regarding the values of β. The

density function of the multivariate normal prior distribution of β is provided in Equation (17), where |Σ0|

indicates the determinant of Σ0. In Line 2, we remove (2π)−
p+1
2 |Σ0|−

1
2 to retain the kernel as it does not

depend on β.

f (β) = (2π)−
p+1
2 |Σ0|−

1
2 exp

{
−1

2
(β − β0)

′Σ−1
0 (β − β0)

}
(17)

∝ exp

{
−1

2
(β − β0)

′Σ−1
0 (β − β0)

}
The conjugate prior for Σ is an inverse Wishart distribution Σ ∼ IW (m,V ) where m is the degrees

of freedom and V is the scale matrix, since the resulting conditional posterior distribution of Σ is also

inverse Wishart. The inverse Wishart distribution is a multivariate generalization of inverse Gamma

distribution. If individuals have strong prior knowledge, they can set V close to the covariance matrix they

expect, and choose a high degree of freedom m, indicating high confidence. If individuals less prior

knowledge, they might set m lower. The inverse Wishart density function is in Equation (18). In addition to

m and V in the density function, p is the dimension of Σ, Γ () is the multivariate gamma function, and

tr
(
V Σ−1

)
indicates the trace of V Σ−1. On Line 2 of Equation (18), we remove the terms not involving

Σ (i.e., |V |m/2 and 2mp/2Γ (m/2)) and keep the kernel for this prior distribution.

f (Σ) =
|V |m/2|Σ|−(m+p+1)/2exp

(
−tr

(
V Σ−1

)
/2
)

2mp/2Γ (m/2)
. (18)

∝ |Σ|−(m+p+1)/2exp
(
−tr

(
V Σ−1

)
/2
)

The conjugate prior for σ2
ε is an inverse gamma distribution σ2

ε ∼ IG(a, b), which is identical to the
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univariate normal case in Equation (5). We do not need to specify a prior distribution for uj , however, it is

necessary to derive its posterior distribution. This is because the posterior distributions of β, Σ, and σ2
ε

depend on uj as a data augmentation approach.

Joint Posterior Distribution

We write out the joint posterior distribution f
(
β,Σ, σ2

ε ,u|X,β,Z,Σ,y
)

by applying Equation (1)

(multiplying Equations 16, 17, 18, and 5 together).

f
(
β,Σ, σ2

ε ,u|X,β,Z,Σ,y
)
∝


J∏

j=1

f (yj ,uj |Xj ,β,Zj ,Σ)

 f
(
σ2
ε

)
f (β) f (Σ) (19)

∝
J∏

j=1

(∣∣σ2
εInj

∣∣− 1
2 exp

{
−1

2
(yj −Xjβ −Zjuj)

′ (σ2
εInj

)−1

(yj −Xjβ −Zjuj)} × |Σ|−
1
2 exp

{
−1

2
uj

′Σ−1uj

})
×
(
σ2
ε

)−(a+1)
exp

{
− b

σ2
ε

}
× exp

{
−1

2
(β − β0)

′Σ−1
0 (β − β0)

}
× |Σ|−(m+q+1)/2exp

(
−tr

(
V Σ−1

)
/2
)

The Gibbs sampler is applied to sample β, Σ, σ2
ε , and uj iteratively: it first samples β from its

conditional posterior distribution with treating Σ, σ2
ε , and uj as known constants, samples Σ with treating

the β, σ2
ε , and uj as known, draws σ2

ε with treating the β, Σ, and uj as known, and draws uj with treating

the β, Σ, and σ2
ε as known.

Conditional Posterior Distribution of β

First, we derive the conditional posterior distribution of β.

1. Identify and Retain the Terms Involving β. To simplify the notation, we denote

f
(
β|X,Z,y,Σ, σ2

ε ,u
)

as f (β|· ), where · indicates all parameters that β is conditional on. By focusing

on the terms involving β in Equation (19), we can significantly simplify the equation. We identify all
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functions involving β of Equation (19) and list them following the proportionality sign.

f (β|· ) ∝
J∏

j=1

(
exp

{
−1

2
(yj −Xjβ −Zjuj)

′ (σ2
εInj

)−1
(yj −Xjβ −Zjuj)

})
(20)

× exp

{
−1

2
(β − β0)

′Σ−1
0 (β − β0)

}

∝ exp

−1

2

J∑
j=1

(yj −Xjβ −Zjuj)
′ (σ2

εInj

)−1
(yj −Xjβ −Zjuj)


× exp

{
−1

2
(β − β0)

′Σ−1
0 (β − β0)

}
In the first two lines of Equation (20), we retain the terms involving β. In the bottom two lines, we move

the product function
J∏

j=1
inside the exponential function, thereby transforming the product function into a

sum function
∑J

j=1.

2. Expand Parentheses and Remove Components. Since we utilize a conjugate prior, we know the

conditional posterior distribution f (β|· ) follows a multivariate normal distribution. The goal is to

rearrange the components to construct a multivariate normal kernel in which β is the random variable. To

achieve this goal, the following derivation utilizes Properties 2 and 3 from Table 1. Another essential

operation underlying the computational steps is the distributive property for matrix multiplication. This

property is reviewed in the appendix. By applying the distributive property for matrix multiplication, we

expand the parentheses of (yj −Xjβ −Zjuj)
′ (σ2

εInj

)−1
(yj −Xjβ −Zjuj) and
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(β − β0)
′Σ−1

0 (β − β0) from Equation (20) as Lines 1-2 and 3 in Equation (21), respectively.

f (β|· ) ∝ exp

−1

2

J∑
j=1

[
(Xjβ)

′ (σ2
εInj

)−1
(Xjβ) + (yj −Zjuj)

′ (σ2
εInj

)−1
(yj −Zjuj) (21)

− (yj −Zjuj)
′ (σ2

εInj

)−1
(Xjβ)− (Xjβ)

′ (σ2
εInj

)−1
(yj −Zjuj)

]}
× exp

{
−1

2

(
β′Σ−1

0 β + β0
′Σ−1

0 β0 − β0
′Σ−1

0 β − β′Σ−1
0 β0

)}

∝ exp

−1

2

J∑
j=1

[
(Xjβ)

′ (σ2
εInj

)−1
(Xjβ)− 2 (yj −Zjuj)

′ (σ2
εInj

)−1
(Xjβ)

] (Property 2)

× exp

{
−1

2

[
β′Σ−1

0 β − 2β′
0Σ

−1
0 β

]}
(Property 2)

∝ exp

−1

2

J∑
j=1

[
(Xjβ)

′ (σ2
εInj

)−1
(Xjβ)− 2 (yj −Zjuj)

′ (σ2
εInj

)−1
(Xjβ)

]

−1

2

[
β′Σ−1

0 β − 2β′
0Σ

−1
0 β

]]}
(Property 1)

In Line 1, we can get rid of (yj −Zjuj)
′ (σ2

εInj

)−1
(yj −Zjuj) since it is not a function β, further

simplifying the expression in Line 4.

In Line 2, we notice that both (yj −Zjuj)
′ (σ2

εInj

)−1
(Xjβ) and

(Xjβ)
′ (σ2

εInj

)−1
(yj −Zjuj) lead to scalar result. To simplify the expression, we can combine these

two terms by applying Property 2: a′Bc = c′Ba if both sides yield a scalar (summarized in Table 1).

Hence, treating (yj −Zjuj) as a,
(
σ2
εInj

)−1 as B, and (Xjβ) as c, we find that

(yj −Zjuj)
′ (σ2

εInj

)−1
(Xjβ) = (Xjβ)

′ (σ2
εInj

)−1
(yj −Zjuj). These duplicate terms are

combined as a single term, resulting in 2 (yj −Zjuj)
′ (σ2

εInj

)−1
(Xjβ) in Line 4.

In Line 3, we can similarly combine β0
′Σ−1

0 β and β′Σ−1
0 β0. With treating β0 as a, Σ−1

0 as B,

and β as c, we find that β0
′Σ−1

0 β = β′Σ−1
0 β0. These duplicate terms are combined into a single term,

resulting in 2β0
′Σ−1

0 β in Line 5. Additionally, we can eliminate β0
′Σ−1

0 β0 in Line 5, as it does not

depend on β, further simplifying the expression.

By applying Property 1: exp (a+ b) = exp (a) exp (b), we combine the two exponential functions

in Lines 4-5, leading to the expressions in Lines 6 and 7.
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Equation (21) is still not succinct enough. To refine it further, we will rearrange the terms to

construct a multivariate normal kernel. First, we move the summation
∑J

j=1 from outside the square

brackets in Equation (21) to inside. Next, we rearrange the quadratic forms

(
∑J

j=1 (Xjβ)
′ (σ2

εInj

)−1
(Xjβ) and β′Σ−1

0 β) at the end of Equation (21) into Line 1 of Equation (22).

Additionally, we rearrange the terms −2
∑J

j=1 (yj −Zjuj)
′ (σ2

εInj

)−1
Xjβ and −2β′

0Σ
−1
0 β into Line

2 of Equation (22).

f (β|· ) ∝ exp

−1

2

 J∑
j=1

(Xjβ)
′ (σ2

εInj

)−1
(Xjβ) + β′Σ−1

0 β (22)

−2

J∑
j=1

(yj −Zjuj)
′ (σ2

εInj

)−1
(Xjβ)− 2β′

0Σ
−1
0 β


∝ exp

−1

2

β′
J∑

j=1

(
Xj

′ (σ2
εInj

)−1
Xj

)
β + β′Σ−1

0 β

−2
J∑

j=1

(yj −Zjuj)
′ (σ2

εInj

)−1
Xjβ − 2β′

0Σ
−1
0 β


∝ exp

−1

2

β′

 J∑
j=1

(
Xj

′ (σ2
εInj

)−1
Xj

)
+Σ−1

0

β (Property 3)

−2

 J∑
j=1

(yj −Zjuj)
′ (σ2

εInj

)−1
Xj + β′

0Σ
−1
0

β


In Lines 1, we move

∑J
j=1 to the middle of (Xjβ)

′ (σ2
εInj

)−1
(Xjβ) by expanding the parentheses of

(Xjβ) and (Xjβ)
′. This leads to β′∑J

j=1

(
Xj

′ (σ2
εInj

)−1
Xj

)
β in Line 3. Line 4 is the same as Line

2.

In Line 3, we can combine β′∑J
j=1

(
Xj

′ (σ2
εInj

)−1
Xj

)
β and β′Σ−1

0 β, as both are quadratic

terms. Specifically, we can apply Property 3: a′Ba + a′Ca = a′ (B + C) a (summarized in Table 1).

By treating β as a,
∑J

j=1

(
Xj

′ (σ2
εInj

)−1
Xj

)
as B, and Σ−1

0 as c, we have

β′∑J
j=1

(
Xj

′ (σ2
εInj

)−1
Xj

)
β + β′Σ−1

0 β = β′
(∑J

j=1

(
Xj

′ (σ2
εInj

)−1
Xj

)
+Σ−1

0

)
β in Line 5.

Similarly, in Line 4,
∑J

j=1 (yj −Zjuj)
′ (σ2

εInj

)−1
Xjβ and β′

0Σ
−1
0 β are summarized as a single

term
(∑J

j=1 (yj −Zjuj)
′ (σ2

εInj

)−1
Xj + β′

0Σ
−1
0

)
β in Line 6.
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3. Compare with the Multivariate Normal Kernel. As a multivariate normal distribution, the

posterior distribution must have a kernel of the form

exp
{
−1

2 (β −A)′B−1 (β −A)
}
∝ exp

{
−1

2β
′B−1β +A′B−1β

}
. By comparing with the last two

lines of Equation (22),we can get two relationships:

B−1 =

 J∑
j=1

(
Xj

′ (σ2
εInj

)−1
Xj

)
+Σ−1

0


A′B−1 = (yj −Zjuj)

′ (σ2
εInj

)−1
Xj + β′

0Σ
−1
0

Solving these two equations leads to B =
(∑J

j=1

(
Xj

′ (σ2
εInj

)−1
Xj

)
+Σ−1

0

)−1
,

A′ =
(∑J

j=1 (yj −Zjuj)
′ (σ2

εInj

)−1
Xj + β′

0Σ
−1
0

)
B,

A = B
(∑J

j=1Xj
′ (σ2

εInj

)−1
(yj −Zjuj) +Σ−1

0 β0

)
(B is a symmetric matrix so B′ = B). Based

on A and B, the conditional posterior distribution is as follows.

f (β|· ) = MN

B

 J∑
j=1

Xj
′ (σ2

εInj

)−1
(yj −Zjuj) +Σ−1

0 β0

 ,B =

 J∑
j=1

(
Xj

′ (σ2
εInj

)−1
Xj

)
+Σ−1

0

−1
(23)

We can see when the diagonal elements of Σ0 growing large, or equivalently, the precision matrix

Σ−1
0 approaching the zero matrix. In this limit, the influence of the prior diminishes, and the posterior

mean of β converges to the generalized least squares estimate, which is also equivalent to MLE.

Conditional Posterior Distribution of σ2
ε

Next, we derive the conditional posterior distribution of σ2
ε , treating Σ, β, and uj as constants.

1. Identify and Retain the Terms Involving σ2
ε . Driving the conditional posterior distribution of σ2

ε is

not different from the process in the univariate normal model. We denote the conditional posterior

distribution as f
(
σ2
ε |·
)

for brevity. Focusing on the terms involving σ2
ε in Equation (19), we express them
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after the proportionality sign:

f
(
σ2
ε |·
)
∝

J∏
j=1

(∣∣σ2
εInj

∣∣− 1
2 exp

{
−1

2
(yj −Xjβ −Zjuj)

′ (σ2
εInj

)−1 (24)

(yj −Xjβ −Zjuj)} ×
(
σ2
ε

)−(a+1)
exp

{
− b

σ2
ε

}

∝
(
σ2
ε

)−(N
2
+a+1)

exp

−1

2

J∑
j=1

(yj −Xjβ −Zjuj)
′ (σ2

εInj

)−1

(yj −Xjβ −Zjuj)−
b

σ2
ε

}
(Property 1)

∝
(
σ2
ε

)−(N
2
+a+1)

exp

{
−
∑J

j=1 (yj −Xjβ −Zjuj)
′ (yj −Xjβ −Zjuj)− 2b

2σ2
ε

}
In Lines 1-2, we retain the terms involving σ2

ε . We notice that there are multiple σ2
ε terms that can be

combined. In Line 1,
J∏

j=1

∣∣σ2
εInj

∣∣− 1
2 =

J∏
j=1

(
σ2
ε

)−nj
2 =

(
σ2
ε

)−∑J
j=1 nj

2 =
(
σ2
ε

)−N
2 where N is the total

sample size across all schools. Thus, we combine this with
(
σ2
ε

)−N
2 ×

(
σ2
ε

)−(a+1) , resulting in(
σ2
ε

)−(N
2
+a+1) in Line 3. Additionally, we merge all terms inside the exponential functions from Lines 1-2

to Lines 3-4 by applying Property 1. In the final line, we identify a common denominator of 2σ2
ε inside the

exponential function.

2. Compare with the Inverse Gamma Kernel. Similar to the univariate normal model, with the

conjugate prior, we know that the posterior distribution must follow an inverse gamma distribution. Its

kernel takes the form
(
σ2
)−(A+1)

exp
{
− B

σ2

}
. By comparing this with the last line of Equation (24), we

can get A = N
2 + a and B =

∑J
j=1(yj−Xjβ−Zjuj)

′
(yj−Xjβ−Zjuj)+2b

2 . Based on these values of A and B,

the conditional posterior distribution of σ2 is given by:

f
(
σ2
ε |·
)
= IG

(
N

2
+ a,

∑J
j=1 (yj −Xjβ −Zjuj)

′ (yj −Xjβ −Zjuj)

2
+ b

)
(25)

Similar to the univariate normal example, when a → 0 and b → 0, the posterior distribution

becomes dominated by the likelihood, and the posterior mode converges to MLE.

Conditional Posterior Distribution of Σ

When deriving the conditional posterior distribution of Σ, we treat β, σ2
ε , and uj as constants.
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1. Identify and Retain the Terms Involving Σ, and Add Trace Function. We select all functions

involving Σ in Equation (19) and write down them after the proportionality sign.

f (Σ|· ) ∝
J∏

j=1

(
|Σ|−

1
2 exp

{
−1

2
uj

′Σ−1uj

})
|Σ|−(m+q+1)/2exp

(
−tr

(
V Σ−1

)
/2
)

(26)

∝ |Σ|−(J+m+q+1)/2 exp

−1

2

J∑
j=1

uj
′Σ−1uj −

1

2
tr
(
V Σ−1

)
∝ |Σ|−(J+m+q+1)/2 exp

−1

2

J∑
j=1

tr
(
uj

′Σ−1uj

)
− 1

2
tr
(
V Σ−1

) (Property 4)

∝ |Σ|−(J+m+q+1)/2 exp

−1

2

J∑
j=1

tr
(
ujuj

′Σ−1
)
− 1

2
tr
(
V Σ−1

) (Property 5)

∝ |Σ|−(J+m+q+1)/2 exp

−1

2
tr

 J∑
j=1

ujuj
′Σ−1

− 1

2
tr
(
V Σ−1

) (Property 6)

∝ |Σ|−(J+m+q+1)/2 exp

−1

2
tr

 J∑
j=1

ujuj
′ + V

Σ−1

 (Property 6)

In Line 1, there are multiple |Σ| terms that can be combined as |Σ|−(J+m+q+1)/2 in Line 2. In addition, we

can move the product function
J∏

j=1
inside the exponential function, transforming the product function into a

sum function
∑J

j=1 in Line 2. In addition, the two exponential terms in Line 1 are combined as one term in

Line 2.

In Line 2, we notice that uj
′Σ−1uj yields a scalar. For a scalar, adding a trace function does not

change anything. Property 4: tr (A) = A is A is a scalar (summarized in Table 1). That is,

uj
′Σ−1uj = tr

(
uj

′Σ−1uj

)
in Line 3.

Now, in Line 3, there are two trace expressions: tr
(
uj

′Σ−1uj

)
and tr

(
V Σ−1

)
. However, in the

first expression, Σ−1 appears in the middle, while in the second, it is positioned at the end. Our target

kernel is of the form |Σ|−(A+p+1)/2exp
(
−tr

(
BΣ−1

)
/2
)
. To align with this form, we must place Σ−1 at

the end in both expressions. This can be accomplished using the cyclic property of the trace. Property 5:

tr (ABC) = tr (CAB) = tr (BCA) (summarized in Table 1). With treating A = u′
j , B = Σ−1,

and C = uj , we conclude that tr
(
uj

′Σ−1uj

)
= tr

(
ujuj

′Σ−1
)
, which is reflected in Line 4.
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From Lines 4 to 5, we move the summation symbol
∑J

j=1 inside the trace function. In this step, we

apply Property 6: tr (A) + tr (A) = tr (A + B) (summarized in Table 1).

Now in Line 5, there are two trace functions within the curly brackets: tr
(∑J

j=1 ujuj
′Σ−1

)
and

tr
(
V Σ−1

)
. To combine them, we apply Property 6 again, which leads to tr

((∑J
j=1 ujuj

′ + V
)
Σ−1

)
in the final line.

2. Compare with the Inverse Wishart Kernel. With a conjugate prior, the posterior kernel takes the

form as |Σ|−(A+p+1)/2exp
(
−tr

(
BΣ−1

)
/2
)
. By comparing with the last line in Equation (26), We can

get A = J +m and B =
∑J

j=1 ujuj
′ + V . Based on A and B, the conditional posterior distribution is as

follows.

f (Σ|· ) = IW

J +m,
J∑

j=1

ujuj
′ + V

 (27)

By studying Equation (27), we can see as m → q − 1 (where q is the dimension of Σ) and the

diagonal elements of V → ∞, the prior contributes less information, allowing the data to dominate the

posterior inference. This reflects a diffuse prior for the level-2 covariance structure.

Conditional Posterior Distribution of uj

As the final step, we derive the conditional posterior distribution of uj , treating β, σ2
ε , and Σ as

constants.

1. Identify and Retain the Terms Involving uj . We extract all functions involving uj in Equation

(19) and present them after the proportionality sign of Equation (28). We use f (uj |· ) to denote

f
(
uj |X,Z,y,β,Σ, σ2

ε

)
where · indicates all parameters that uj is conditional on.

f (uj |· ) ∝ exp

{
−1

2
(yj −Xjβ −Zjuj)

′ (σ2
εInj

)−1
(yj −Xjβ −Zjuj)

}
(28)

× exp

{
−1

2
uj

′Σ−1uj

}
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2. Expand Parentheses and Remove Components. Deriving the conditional posterior distribution of

uj follows a similar process as for β. The key step is to expand the parentheses and eliminate terms that do

not involve uj . First, we expand the parentheses of

(yj −Xjβ −Zjuj)
′ (σ2

εInj

)−1
(yj −Xjβ −Zjuj) in Equation (28), which leads to Lines 1-2 in

Equation (29).

f (uj |· ) ∝ exp

{
−1

2

[
(yj −Xjβ)

′ (σ2
εInj

)−1
(yj −Xjβ) + (Zjuj)

′ (σ2
εInj

)−1
(Zjuj) (29)

− (yj −Xjβ)
′ (σ2

εInj

)−1
(Zjuj)− (Zjuj)

′ (σ2
εInj

)−1
(yj −Xjβ)

]}
× exp

{
−1

2
uj

′Σ−1uj

}
∝ exp

{
−1

2

[
(Zjuj)

′ (σ2
εInj

)−1
(Zjuj)− 2 (yj −Xjβ)

′ (σ2
εInj

)−1
(Zjuj)

]}
(Property 2)

× exp

{
−1

2
uj

′Σ−1uj

}
In Line 1, we observe that both (yj −Xjβ)

′ (σ2
εInj

)−1
(Zjuj) and (Zjuj)

′ (σ2
εInj

)−1
(yj −Xjβ)

result in a scalar. Therefore, by applying Property 2 (a′Bc = c′Ba if both sides yield a scalar), we can

combine these duplicate terms, yielding 2 (yj −Xjβ)
′ (σ2

εInj

)−1
(Zjuj) in Line 4. And Lines 3 and 5

are identical. In this process, we also get rid of (yj −Xjβ)
′ (σ2

εInj

)−1
(yj −Xjβ) in Line 1 as it does

not contain uj .

We can further simplify terms in Equation (29) by utilizing Property 1:

exp (a+ b) = exp (a) exp (b). This allows us to rearrange the quadratic forms

((Zjuj)
′ (σ2

εInj

)−1
(Zjuj) and uj

′Σ−1uj) in the bottom two lines of Equation (29) into Line 1 of



Demystifying Posterior Distributions: A Tutorial on Their Derivation 27

Equation (30).

f (uj |· ) ∝ exp

{
−1

2

[
(Zjuj)

′ (σ2
εInj

)−1
(Zjuj) + uj

′Σ−1uj (30)

−2 (yj −Xjβ)
′ (σ2

εInj

)−1
(Zjuj)

]}
(Property 1)

∝ exp

{
−1

2

[
uj

′Zj
′ (σ2

εInj

)−1
Zjuj + uj

′Σ−1uj

−2 (yj −Xjβ)
′ (σ2

εInj

)−1
Zjuj

]}
∝ exp

{
−1

2

[
uj

′
(
Zj

′ (σ2
εInj

)−1
Zj +Σ−1

)
uj (Property 3)

−2 (yj −Xjβ)
′ (σ2

εInj

)−1
Zjuj

]}
In Lines 1, we can expand the parentheses of (Zjuj) and (Zjuj)

′, which leading to

uj
′Zj

′ (σ2
εInj

)−1
Zjuj in Line 3. Line 4 is the same as Line 2.

In Line 3, the quadratic term uj
′Zj

′ (σ2
εInj

)−1
Zjuj and uj

′Σ−1uj are combined using Property

3: a′Ba + a′Ca = a′ (B + C) a. Treating a as uj , this yields uj
′
(
Zj

′ (σ2
εInj

)−1
Zj +Σ−1

)
uj in

Line 5. Line 6 remains identical to Line 4.

3. Compare with the Multivariate Normal Kernel. The posterior distribution appears to have a

multivariate normal kernel, which might be readily recognized by researchers familiar with density

functions. Even if one is not, consider this approach: the posterior distribution of uj is proportional to the

product of two normal density functions, f (uj |· ) ∝ f
(
yj |Xj ,β,Zj ,uj , σ

2
ε

)
f (uj |Σ). Given this, it is

highly likely that f (uj |· ) is multivariate normal. Thus, we aim to approximate this distribution with a

multivariate normal kernel.

A multivariate normal kernel has the form

exp
{
−1

2 (β −A)′B−1 (β −A)
}
∝ exp

{
−1

2β
′B−1β +A′B−1β

}
. By comparing with the bottom two

lines of Equation (30), we can get two relationships.

B−1 = Zj
′ (σ2

εInj

)−1
Zj +Σ−1

A′B−1 = (yj −Xjβ)
′ (σ2

εInj

)−1
Zj
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Solving these two equations leads to B =
(
Zj

′ (σ2
εInj

)−1
Zj +Σ−1

)−1
,

A′ = (yj −Xjβ)
′ (σ2

εInj

)−1
ZjB, A = BZj

′ (σ2
εInj

)−1
(yj −Xjβ). Based on A and B, the

conditional posterior distribution is as follows.

f (uj |· ) = MN

(
BZj

′ (σ2
εInj

)−1
(yj −Xjβ) ,B =

(
Zj

′ (σ2
εInj

)−1
Zj +Σ−1

)−1
)

(31)

Sampling Procedure

The full cadre of step-by-step Gibbs sampler procedure is given below. Interested researchers can

follow the outlined steps and posterior distributions to implement their own Bayesian code for drawing

posterior samples.

0. Initialization step: set initial values for β(0), Σ(0), σ2(0)
ε , and uj

(0) (for the individuals who have

missing outcome). For the individuals who have missing outcome yij , set initial values for y(0)ij .

1. In the tth iteration, given Σ(t−1), σ2(t−1)
ε , and uj

(t−1), sample β(t) from Equation (23).

2. Given β(t) , Σ(t−1), and uj
(t−1), sample σ

2(t)
ε from Equation (25).

3. Given β(t) , σ2(t)
ε , and uj

(t−1), sample Σ(t) from Equation (27).

4. Given β(t) , σ2(t)
ε , and Σ(t), sample uj

(t) from Equation (30).

5. If yij is missing, sample y
(t)
ij from f (yj |Xj ,β,Zj ,uj) given by Equation (15), which is

yij ∼ N
(
Xijβ

(t) +Zijuj
(t), σ

2(t)
ε

)
where Xij and Zij are the ith row of the design matrices Xj and

Zj respectively.

6. Repeat steps 1 to 5 until a sufficient number of posterior samples have been obtained.

Marginal Likelihood

As mentioned earlier, we can integrate out u and use the marginal likelihood to derive the posteriors

of β, Σ, and σ2
ε . This is feasible but Σ and σ2

ε no longer have simple known posterior distributions. Based

on Equation (15), after integrating out u, the distribution for the outcome becomes yj ∼ MN (Xjβ,Vj)
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where Vj = ZjΣZj
′ + σ2

εI . The marginal likelihood is as follows:

f
(
y|X,β,Z,Σ, σ2

ε

)
=

J∏
j=1

f (yj |Xj ,β,Vj) (32)

=
J∏

j=1

(
(2π)−nj/2 |Vj |−

1
2 exp

{
−1

2
(yj −Xjβ)

′ (Vj)
−1 (yj −Xjβ)

})
We still assume a multivariate normal distribution prior for β, f (β) = MN (β0,Σ0). To derive the

posterior of β, we follow the same steps as in the conditional likelihood approach. Specifically, we (1)

identify and retain the terms involving β, (2) expand the quadratic form and remove constants, and (3)

match the resulting expression to the multivariate normal kernel. This yields the multivariate normal

posterior distribution:

f (β|· ) = MN

B

 J∑
j=1

Xj
′V −1

j yj +Σ−1
0 β0

 ,B =

 J∑
j=1

(
Xj

′V −1
j Xj

)
+Σ−1

0

−1 (33)

The conditional posterior distributions for Σ and σ2
ε are as follows.

f
(
Σ|y,X,β,Z, σ2

ε

)
∝ f (Σ)

J∏
j=1

f (yj |Xj ,β,Vj) (34)

f
(
σ2
ε |y,X,β,Z,Σ

)
∝ f

(
σ2
ε

) J∏
j=1

f (yj |Xj ,β,Vj) (35)

Since as illustrated in Equation (32), f (yj |Xj ,β,Vj) contains |Vj | and an exponential function of Vj .

These are nonlinear functions of Σ and σ2
ε that cannot be algebraically separated into standard conjugate

kernel forms. More specifically, the conditional posterior of Σ cannot be written in inverse Wishart form

because Σ is embedded within ZjΣZj
′ inside the covariance matrix Vj , and thus also appears inside both

the determinant and inverse of Vj . And the conditional posterior of σ2
ε cannot be written in inverse Gamma

form because Vj includes σ2
ε as part of a matrix sum, as Vj = ZjΣZj

′ + σ2
εI . In this form, σ2

ε does not

appear as a simple scalar factor applied to the entire covariance matrix, which breaks the algebraic

structure needed for constructing a conjugate inverse gamma posterior. Without a known simple form, we

can still use the MH algorithm to sample posteriors with Equations (34) and (35). Although this approach

is feasible, it no longer allows us to directly observe how the prior contributes to the posterior or assess its
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influence as clearly as in the conjugate case.

Summary

To summarize, we have covered the fundamental concepts of Bayesian statistics and the derivation

of posterior distributions. The key steps are as follows.

1. Identify Parameters and Specify Priors. Determine which parameters are unknown and define

the prior distributions for these identified parameters. The model you specify for the data will determine

the likelihood function of the parameters.

2. Formulate the Joint Posterior Distribution. Write out the joint posterior distribution for all

unknown parameters. To simplify the derivation and minimize errors, we suggest focusing on the terms in

the likelihood function and prior distributions that only involve the unknown parameters (i.e., kernel).

Keeping too many terms can complicate the derivation are error-prone.

3. Compute Conditional Posterior Distribution. For each unknown parameter, we select the

corresponding kernel in the joint posterior distribution to compute the conditional posterior distribution.

4. Simplify Conditional Posterior Distribution. When deriving the conditional posterior

distribution, we suggest the following steps: (1) expand all parentheses to eliminate terms that do not

involve the parameter of interest; (2) add or remove trace functions as needed; (3) reorder the components

to facilitate easier manipulation; and (4) group similar components together to streamline the expression

and highlight key features.

5. Compare with Kernel. We compare the kernel of the posterior distribution with the target kernel

we suspect it might resemble. If we use conjugate priors, this process is more straightforward, as we can

anticipate the general shape of the posterior distribution. However, if we are unsure whether conjugate

priors are used, we need to determine which family the posterior distribution belongs to, which often relies

on individual experience. In many cases, the posterior distribution may not fit any familiar family. In such
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situations, we can use the Metropolis-Hastings (MH) algorithm to sample from the posterior distribution

based solely on the kernel.

For methodological researchers with knowledge in linear algebra but struggle to connect it with

Bayesian derivation, this tutorial offers both conceptual clarity and practical skills. By walking through the

full derivation of posterior distributions for the univariate normal and multilevel models, the step-by-step

algebra fosters intuition about how priors and likelihoods combine, how conditional distributions are

constructed, and how matrix operations such as transposition, inversion, and trace properties are applied in

derivations. Readers learn not only how to recognize familiar distributional forms (e.g., normal, inverse

gamma, inverse Wishart) from algebraic expressions but also how to manipulate and simplify complex

joint and conditional posteriors. This empowers them to (1) better understand how Bayesian methods

work, (2) identify potential issues in their software code, and (3) improve algorithm efficiency when

working with more complex models or large datasets by utilizing opportunities to replace computational

approximations with analytical solutions. By bridging the gap between abstract linear algebra and applied

Bayesian inference, this tutorial fills a pedagogical void by offering the kind of hands-on mathematical

reasoning often assumed but rarely shown in existing resources.

We hope this tutorial can be helpful to researchers who wish to learn how to derive posterior

distributions on their own. The concepts and properties demonstrated in the two examples can be

generalized to other models and distributions.
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Appendix

Properties of Matrix Operations

Here are some key properties of matrix operations relevant to this tutorial. Assume r and s are

scalars, and the matrices A, B, and C are of appropriate dimensions to ensure each operation is valid.

Multiplication and Addition

A+B = B +A

(A+B) + C = A+ (B + C)

r (A+B) = rA+ rB

(r + s)A = rA+ sA

A (BC) = (AB)C

A (B + C) = AB +AC

(B + C)A = BA+ CA

r (AB) = (rA)B = A (rB)

Transpose

(A+B)′ = A′ +B′

(AB)′ = B′A′

(ABC)′ = C ′B′A′

(rA)′ = rA′

(
A′)′ = A

Inverse

A−1A = AA−1 = I
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(AB)−1 = B−1A−1

(ABC)−1 = C−1B−1A−1

(rA)−1 = r−1A−1

(
A−1

)−1
= A

Trace

tr (A) = tr
(
A′)

tr (AB) = tr (BA)

tr (ABC) = tr (BCA) = tr (CAB)

tr (A+B) = tr (A) + tr (B)

tr (A+) = tr (A) + tr (B)

Determinants

|A|r |A|s = |A|r+s



Demystifying Posterior Distributions: A Tutorial on Their Derivation 36

Table 1: properties and equalities

Property 1
exp (a + b) = exp (a) exp (b)

It is a property of exponential functions that allows the sum of exponents
to be represented as the product of their individual exponentials.

Property 2

a′Bc = c′Ba if both side yield a scalar
If both sides yield a scalar, the transpose of the product of vector a with
matrix B and vector c is equal to the transpose of the product of vector c
with matrix B and vector a.

Property 3
a′Ba + a′Ca = a′ (B + C) a

The sum of the quadratic forms a′Ba and a′Ca is equivalent to the quadratic
form obtained by multiplying vector a by the sum of matrices B and C.

Property 4
tr (A) = A if A is a scalar
The trace of a scalar A is equal to the scalar itself, as the trace operation sums
the diagonal elements of a matrix and a scalar can be viewed as a 1× 1 matrix.

Property 5
tr (ABC) = tr (CAB) = tr (BCA)

This is the cyclic property of the trace function. The trace of a product of matrices
remains invariant under cyclic permutations of the matrices.

Property 6
tr (A) + tr (B) = tr (A +B)

This is the additive property of the trace function, indicating that the trace of the
sum of two matrices equals the sum of their individual traces.
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Figure Captions

Figure 1. Density and Kernel of a Normal Distribution

Figure 2. Density and Kernel of a Inverse Gamma Distribution
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Figure 1: Density and Kernel of a Normal Distribution

We plot the density function with µ = 0 and σ2 = 1 as the black line, and the kernel as the green line.
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Figure 2: Density and Kernel of a Inverse Gamma Distribution

We plot the density function with a = 0 and b = 1 as the black line, and the kernel as the green line.




