
Neural Network Analysis of Psychological Data: A
Step-by-Step Guide

Lingbo Tong and Zhiyong Zhang
University of Notre Dame

Abstract

Artificial Neural Networks (ANN) are receiving more and more attention in the
field of psychology. With the availability of software programs, the wide applica-
tion of ANN becomes possible. However, without a firm understanding of the ba-
sics of the ANN, issues can easily arise. This paper presents a step-by-step guide for
implementing a feed-forward neural network (FNN) on a psychological dataset to
illustrate the critical steps in building, estimating, and interpreting a neural network
model. We start with a concrete example of a basic 3-layer FNN, illustrating the
core concepts, the matrix representation, and the whole optimization process. By
adjusting parameters and changing the model structure, we examine their effects on
model performance. Then, we introduce accessible methods for interpreting model
results and making inferences. Through the guide, we hope to help researchers
avoid common problems in applying neural network models, and machine learning
methods in general.

Keywords: Feed-forward Neural Network (FNN), Psychological Datasets

Neural networks, a cornerstone of artificial intelligence and machine learning, have expe-
rienced rapid development in recent years, becoming an indispensable tool across various research
disciplines (LeCun et al., 2015). Their ability to learn from and make predictions or decisions based
on data has been widely acknowledged and harnessed in multiple fields, ranging from downstream
areas such as natural language processing and computer vision (Goldberg, 2022; Khan et al., 2018),
to cross-cutting disciplines, e.g., computational neuroscience and bioinformatics (Min et al., 2017;
Richards et al., 2019). In psychological research, deep learning has been applied to assisting psy-
chiatrists and psychologists in various tasks such as mental disorder diagnosis (Iyortsuun et al.,
2023; Su et al., 2020), suicide risk detection (Malhotra & Jindal, 2022; Tadesse et al., 2019), and
personality assessment (abdurahman2023deep).

The exponential growth of the internet has facilitated the collection of massive datasets,
combined with the advent of computing resources, granting scientists opportunities to create and
distribute large-scale deep learning models (Abadi et al., 2016; Kaddour et al., 2023). However, the
current research landscape seems oriented towards these large-scale models and extensive datasets,
leaving a gap in exploring the efficacy of portable models in smaller, lab-collected datasets, standard
in social sciences. This issue is particularly pronounced within the field of psychology, where
researchers often struggle to adopt neural-network-based methods in their own research. Therefore,
a tutorial featuring clear and concrete examples focusing on these approaches will be beneficial,

NEURAL NETWORK TUTORIAL 2

as it could assist psychologists in comprehending the fundamental mechanism of neural network
models and their usage.

Addressing this knowledge gap, the present paper offers a step by step tutorial for imple-
menting neural networks in psychological research, through the analysis of the data from the Ad-
vanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study (Jobe et al., 2001).
Particularly, we show how to apply a fundamental 3-layer feed-forward neural network (FNN) to
the dataset and explain the neuron update processes involved. Subsequently, we discuss model op-
timization, examining how various parameter adjustments and model structures can influence the
network’s performance. Additionally, we explore methods for interpreting model results and mak-
ing inferences. Finally, we conclude with an overview on the development of deep learning models
in recent years, offering a primer for psychologists aiming to incorporate neural networks into their
research. The tutorial should provide researchers with a clear understanding on how the methods
work and can help researchers in conditions ranging from building their own models to applying
existing techniques such as ChatGPT.

Dataset

This paper’s data are drawn from the ACTIVE (Advanced Cognitive Training for Indepen-
dent and Vital Elderly) dataset (Jobe et al., 2001). Originating from a large-scale study conducted
from 1999 to 2001 in the United States, the ACTIVE dataset involved six field sites and aimed to
evaluate the impact of three cognitive interventions (focused on memory, executive reasoning, and
processing speed) on daily cognitive activities in older adults. The study included 2,832 partici-
pants, with assessments conducted at baseline, post-training, and annually thereafter. A subset of
11 variables from the ACTIVE study is presented in Table 1, which will be used in our illustration.
After excluding records with empty or invalid values, the dataset comprises 1,573 participants.1

Table 1

Variable names and descriptions in the ACTIVE dataset.

Variable Meaning Occasion

age Participant age Baseline
edu Years of education Baseline
sex 1: male; 2: Female Baseline
booster Whether received booster training Baseline
reason Reasoning ability Baseline
ufov Useful field of view variable Baseline
mmse Mini-mental state examination total score Baseline
hvltt Hopkins Verbal Learning Test total score at time 1 Baseline
hvltt2 Hopkins Verbal Learning Test total score at time 2 Post-training
hvltt3 Hopkins Verbal Learning Test total score at time 3 One year later
hvltt4 Hopkins Verbal Learning Test total score at time 4 Two years later

1The dataset and the code are available at https://github.com/Stan7s/Neural-Network-Tutorial

https://github.com/Stan7s/Neural-Network-Tutorial

NEURAL NETWORK TUTORIAL 3

Feed-Forward Neural Network

A feed-forward neural network (FNN), also known as a multilayer perceptron (MLP), is a
fundamental artificial neural network used in machine learning and deep learning (Schmidhuber,
2015). It represents a basic building block for more complex neural network architectures. In an
FNN, information flows in one direction, from the input layer through one or more hidden layers
to the output layer, without any feedback loops (Sazli, 2006). Each layer consists of interconnected
neurons that process and transform the input information from the previous layer.

The simplest FNN contains three layers: an input layer, a hidden layer, and an output layer,
as shown in Figure 1. Formally, the model can be defined as

Ŷ = ϕ(XW(1) + b(1)) · W(2) + b(2). (1)

Here, X denotes the input data, W(1) denotes the weight parameters connecting the input layer and
the hidden layer, and b(1) denotes the bias parameters associated with the hidden layer. Similarly,
W(2) and b(2) denote the weights and biases between the hidden layer and the output layer, re-
spectively. ϕ(·) represents a linear or nonlinear activation function, and Ŷ indicates the predicted
outcomes of the model in the output layer. The actual outcomes are represented by Y, observed in
the data. We now explain each component using the ACTIVE data example in subsequent subsec-
tions. Suppose in the example, we want to predict the verbal test score at time 4 (hvltt4) using age,
years of education, and gender.

Figure 1

A three-layer feed-forward neural network (FNN).

𝑥!

𝜙(⋅)

𝑥"

𝑦"

𝑥#

𝑏 ! 𝑏 "

𝑏!
"

𝑤!"
(")

𝑤""
(")

𝑤%&
(")

𝑤""
(!)

𝑤!"
(!)

𝑤%"
(!)

𝑤&"
(!)

𝑏#
!

𝑏!
!

𝐖 ! 𝐖 "

ℎ"

ℎ!

ℎ#

ℎ$

𝜙(⋅)

𝜙(⋅)

𝜙(⋅)

Activation
Function

Input
Layer

Output
Layer

Weights

Biases

Hidden
Layer

Biases

Weights

NEURAL NETWORK TUTORIAL 4

Input Layer

The input layer of the FNN is represented as an n × p matrix, with n denoting the number
of participants and p signifying the number of input variables or predictors. As an example, we
consider three predictors (p = 3): age, years of education, and sex. For illustration, we let n = 5
here. The resulting input matrix appears as follows with the collected data in the ACTIVE study:

X =


x11 x12 x13
x21 x22 x23
x31 x32 x33
x41 x42 x43
x51 x52 x53

 =


65 12 1
70 13 0
83 12 1
72 16 0
66 13 1

 . (2)

Here, xij indicates the value for the ith participant of the jth predictor. For instance, the first
row in the input matrix represents a record from a 76-year-old female participant with 12 years of
education. The data in the input layer are known and observed.

A common preprocessing step is to normalize the input features by subtracting the mean
and dividing by the standard deviation, i.e., standardizing the data to have zero mean and unit
variance (LeCun et al., 2002). This technique ensures that all input features are on a similar scale,
preventing any single feature from dominating the learning process due to its larger values (Zheng
& Casari, 2018). Furthermore, it helps gradient-based optimization algorithms converge faster and
more effectively during training (Goodfellow et al., 2016). After normalization, the input data
becomes:

X =


−1.4476 −0.6565 0.5421
−0.548 −0.2731 −1.8447
1.7909 −0.6565 0.5421

−0.1882 0.8772 −1.8447
−1.2677 −0.2731 0.5421

 . (3)

Hidden Layer

A hidden layer in an FNN consists of a set of neurons between the input layer and the output
layer. Each neuron in a hidden layer transforms the values from the previous layer with a weighted
linear summation followed by a linear or nonlinear activation function.

The layer transformation takes the form H = ϕ(XW + b), where W denotes the weight
matrix that represents the linear transformation of the input from the previous layer to the current
layer, b is the bias vector that adjusts neurons’ activation thresholds, ϕ(·) is the activation function,
and H is the outcome of the layer transformation. Note that the bias vector b is added to each row
of the product matrix XW —a procedure called broadcasting. This is the same as XW + 1 · b
with 1 denoting a column vector of ones in strict matrix algebra notations.

The dimensions of the weight matrix connecting the input layer to the hidden layer are
p × h, and these of the biases are 1 × h, respectively, where h denotes the number of neurons in the
hidden layer. For instance, if the hidden layer comprises 4 neurons, the weights and biases would
be structured as follows:

NEURAL NETWORK TUTORIAL 5

W(1) =

w
(1)
11 w

(1)
12 w

(1)
13 w

(1)
14

w
(1)
21 w

(1)
22 w

(1)
23 w

(1)
24

w
(1)
31 w

(1)
32 w

(1)
33 w

(1)
34

 b(1) =
[
b

(1)
1 b

(1)
2 b

(1)
3 b

(1)
4

]
, (4)

where w
(1)
ij denotes the ith weight value for the jth neuron of the hidden layer, and b

(1)
j denotes the

bias associated with the jth neuron of that layer. During the linear summation, the input data matrix
X is multiplied by the weight matrix W, yielding a matrix of dimensions n × h. Subsequently, the
bias vector b is added to each row of the product matrix through broadcasting.

The linear summation is typically followed by a nonlinear activation function, although a
linear function can also be used, enabling the network to capture complex patterns and relationships
within the data. The activation function, denoted as ϕ(·), will be applied to each element in the
output matrix of the linear transformation.

Different nonlinear functions could be used as activation functions in FNN. One widely
applied function is the Sigmoid function, characterized by its S-shaped curve, transforming input
values into a value between 0 and 1. The function is represented as:

Sigmoid(t) = 1
1 + e−t

. (5)

Another popular activation function is the ReLU function, a piecewise linear function that outputs
the input value if it’s positive and zero if it’s negative. Formally,

ReLU(t) = max(0, t). (6)

ReLU has become a favored choice in FNNs due to its computational efficiency and ability to
mitigate the vanishing gradient problem during training (Agarap, 2018; Yu & Zhu, 2020). In this
paper, we will consistently utilize ReLU in all our experiments.

Following the activation function, we obtain the output matrix H, maintaining dimensions
n × h, representing the values post-transformation of the input data.

Output Layer

The output layer transforms the values derived from the last hidden layer, yielding the final
output. For regression models where the output can be any continuous value, it is common not to
have an activation function, or to use an identity activation function, in the output layer. Therefore,
this transformation is mathematically represented as Y = HW(2) + b(2). Here, the weight matrix
W(2) and the bias vector b(2) have dimensions of h × q and 1 × q, respectively, with q denoting the
number of output variables. The number of output variables depends on the structure of observed
data and research questions, i.e., how many outcome variables to predict. In the context of this
example, with the single variable hvltt4 specified as the output, q = 1, determining the weights and
biases as follows:

NEURAL NETWORK TUTORIAL 6

W(2) =


w

(2)
11

w
(2)
21

w
(2)
31

w
(2)
41

 b(2) =
[
b

(2)
1

]
. (7)

Consequently, the final output matrix Ŷ possesses the dimensions of n × q. Each element
yij within Ŷ signifies the predicted outcome for the ith participant concerning the jth item. In
instances where q = 1, the final output would be:

Ŷ =


ŷ11
ŷ21
ŷ31
ŷ41
ŷ51

 . (8)

Considering all the weight matrices and bias vectors combined, the total number of param-
eters to estimate in a three-layer FNN is given by the formula

params = (p + 1) × h + (h + 1) × q. (9)

For our specific case, this calculation becomes (3 + 1) × 4 + (4 + 1) × 1 = 21 parameters. The
process of updating these parameters until the model reaches optimization will be described in the
following section.

Model Training and Evaluation

In machine learning, model training refers to the process where a model learns from a
dataset by adjusting its parameters to minimize errors, and model evaluation refers to the assessment
of how well a model’s predictions align with actual outcomes.

Data Split

Before starting model training on our dataset, we need to set aside a portion of the dataset
for evaluation. A common practice is to divide the original dataset into different subsets for training,
validation (optional) and testing. The training set is used for the learning process. The validation set
helps to fine-tune the hyperparameters, determine the appropriate time to stop the training process,
and facilitate model selection. The test set is used for final evaluation.

In this tutorial, we employ a two-tiered splitting strategy: Initially, we randomly selected
15% of the entire dataset as the test set. Subsequently, from the remaining data, we randomly take
15% as the validation set. This partitioning results in training, validation, and test sets comprising
approximately 72.25%, 12.25%, and 15% of the original dataset, respectively.

NEURAL NETWORK TUTORIAL 7

Training

Training an FNN is the process of finding the weights and biases in a neural network. It
involves several key stages. The process begins with initialization, where the network’s parameters
(weights and biases) are assigned selected, often random, initial values. For example, for each
linear layer with a input features, its weights and biases can be initialized from U(−

√
k,

√
k),

where k = 1
a , through random number generation. In the context of our example, the initialized

parameter matrices appear as follows:

W(1) =

 0.0387 −0.9131 0.0134 −0.4025
−0.8408 −0.7913 0.0134 0.0391
0.3027 0.7905 0.7644 0.1751

 b(1) =
[
0.4067 0.5735 −0.3693 −0.0427

]
(10)

W(2) =


−1.0246
−0.7404
0.5110

−0.0512

 b(2) =
[
−0.0290

]
. (11)

During forward propagation, input data traverse the network, producing predictions. First,
the input data (the example data in Eq 2) goes through the linear summation in the hidden layer,
which leads to:

Z = XW(1) + b(1) =


1.0667 2.8433 0.0169 0.6092
0.0567 −0.1683 −1.7904 −0.1558
1.1921 −0.1138 0.0603 −0.6943

−0.8966 −1.4071 −1.7702 −0.2557
0.7513 2.3756 0.0244 0.5518

 . (12)

Then, the activation function is applied, here a ReLU, to get:

H = ReLU(Z) =


1.0667 2.8433 0.0169 0.6092
0.0567 0 0 0
1.1921 0 0.0603 0

0 0 0 0
0.7513 2.3756 0.0244 0.5518

 . (13)

And finally, the output layer can be obtained as:

Ŷ = HW(2) + b(2) =


−3.2497
−0.0871
−1.2196
−0.0290
−2.5735

 . (14)

NEURAL NETWORK TUTORIAL 8

Now, we have finished the first round of forward propagation, resulting in a set of predic-
tions Ŷ. The difference between these predictions and actual values is quantified by a loss function,
reflecting how well the network is performing at the current stage in the training process. One of
the most popular loss functions for continuous data is the mean squared error (MSE) (Gareth et al.,
2013), which can be defined as:

MSE = 1
nq

n∑
i=1

q∑
j=1

(yij − ŷij)2 (15)

where n is the sample size, yij is the observed value of the jth dependent variable for the ith

participant, and ŷij is the corresponding predicted value generated from the neural network.
Given the observed values of the outcome variable

Y =


34
27
27
26
27

 , (16)

and the prediction in the output layer in Eq (14), the MSE is then calculated as

MSE = 1
5

5∑
i=1

(yi1 − ŷi1)2 = 178.79, (17)

which is the average squared difference between the predicted values and the actual values in the
dataset. Taking the square root of this value, we obtain a Root Mean Square Error (RMSE) of 13.37.
This metric quantifies how far the model’s predictions are from the observed values on average after
the first round of forward propagation.

The objective of training the neural network is to minimize the loss value by obtaining
the "best" values for the weights and biases. This is achieved through backpropagation, where the
network adjusts its weights and biases based on this loss. The stochastic gradient descent (SGD)
algorithm is commonly employed to optimize these adjustments to get an updated set of parameter
values. Mathematically, the update rule for SGD is given by:

θt+1 = θt − η · ∂l

∂θ
(18)

where θ represents a vector of all the model’s parameters, t is the iteration index, η is the learning
rate — a positive scalar determining the step size in the direction opposite to the gradient, and ∂l

∂θt

is the gradient of the model loss l with respect to θ.
Getting the gradient is critical. Let’s derive the gradients step by step using the example

data, starting from the MSE model loss function:

NEURAL NETWORK TUTORIAL 9

l = MSE∗ = 1
2

n∑
i=1

q∑
j=1

(yij − ŷij)2. (19)

Here, l is a scalar denoting the average squared loss. Note that we have modified the standard
MSE loss to MSE∗ for computational ease during differentiation. Firstly, we omit the constant
coefficient 1

nq , since both n (the number of samples) and q (the number of output variables per
sample) are constants and do not affect the optimization process. Secondly, we introduce a factor
of 1/2. This adjustment is made because the squared term in MSE leads to a factor of 2 when we
take its derivative. By incorporating the 1/2 factor, the 2 will be canceled out when differentiating,
simplifying the equations.

The partial derivative of the loss function with respect to each predicted value ŷij is:

∂l

∂ŷij
= ∂

∂ŷij

(
1
2

n∑
k=1

q∑
l=1

(ykl − ŷkl)2
)

= ŷij − yij . (20)

In matrix form, this gradient is a matrix of the same dimensions as Ŷ, where each element is the
derivative with respect to the corresponding element in Ŷ. Thus, it can also be denoted as:

∂l

∂Ŷ
= Ŷ − Y =


−37.2497
−27.0871
−28.2196
−26.0290
−29.5735

 . (21)

The subsequent steps of computing the gradients are guided by the chain rule of derivatives,
formally, ∂z

∂x = ∂z
∂y · ∂y

∂x . When dealing with functions in matrix formats, and considering that z is a
scalar while X and Y are matrices, we can derive the following chain rule:

z = f(Y), Y = XW + B → ∂z

∂X
= ∂z

∂Y
WT ,

∂z

∂W
= XT ∂z

∂Y
. (22)

This formulation becomes especially handy when deriving gradients in deep learning since
our loss function typically outputs a scalar value, while the model parameters are in matrix or vector
form. For instance, since Y = HW(2) + b(2), the gradient of the loss l with respect to the weight
matrix W(2) is:

∂l

∂W(2) = HT ∂l

∂Ŷ
= HT (Ŷ − Y) =


−97.13

−176.1658
−3.0513
−39.0105

 . (23)

Likewise, the gradient of the loss l with respect to the hidden layer output H is:

NEURAL NETWORK TUTORIAL 10

∂l

∂H = ∂l

∂Ŷ
(W(2))T = (Ŷ − Y)(W(2))T =


38.1661 27.5797 −19.0346 1.9072
27.7534 20.0553 −13.8415 1.3869
28.9138 20.8938 −14.4202 1.4448
26.6693 19.2719 −13.3008 1.3327
30.301 21.8962 −15.112 1.5142

 . (24)

The gradient of l with respect to b(2) can be derived in the same way. Since b(2) is actually
1 · b(2), with 1 denoting a column vector of ones in strict matrix algebra notations, the gradient
concerning b(2) is given by:

∂l

∂b(2) =


1
1
...
1


T

n

∂l

∂Ŷ
=


1
1
...
1


T

n

(Ŷ − Y) =
[
−148.1589

]
. (25)

Next, we come to the output of the first linear transformation Z. Given H = ReLU(Z), and
the derivative of u = ReLU(t):

δu

δt
= sign(max(t, 0)) =

{
1 t > 0
0 t ≤ 0

, (26)

we can apply the chain rule to get:

∂l

∂Z
= ∂l

∂H
· ∂H

∂Z
= (Ŷ − Y)(W(2))T · sign(max(Z, 0)). (27)

Then, by Z = HW(1) + b(1), we get

∂l

∂W(1) = HT ∂l

∂Z = HT (Ŷ − Y)(W(2))T · sign(max(Z, 0)), (28)

and

∂l

∂b(1) =


1
1
...
1


T

n

∂l

∂Z =


1
1
...
1


T

n

(Ŷ − Y)(W(2))T · sign(max(Z, 0)). (29)

Plugging in numerical values, we have:

∂l

∂Z =


38.1661 27.5797 −19.0346 1.9072
27.7534 0 −0 0
28.9138 0 −14.4202 0

0 0 −0 0
30.301 21.8962 −15.112 1.5142

 , (30)

NEURAL NETWORK TUTORIAL 11

∂l

∂W(1) =

−60.3886 −42.3639 30.7332 −2.6078
−35.5585 −24.945 18.0965 −1.5355
−46.7778 −32.8156 23.8063 −2.02

 , (31)

and

∂l

∂b(1) =
[
148.336 104.0608 −75.4916 6.4057

]
. (32)

Now that we have derived gradients for all model parameters and hidden layer outputs, we
can update the model parameters following (18) to be:

W(1)
t=1 = W(1)

t=0 − η ∗ ∂l

∂W(1) (33)

b(1)
t=1 = b(1)

t=0 − η ∗ ∂l

∂b(1) (34)

W(2)
t=1 = W(2)

t=0 − η ∗ ∂l

∂W(2) (35)

b(2)
t=1 = b(2)

t=0 − η ∗ ∂l

∂b(2) . (36)

For example, when η = 0.0001, W(1)
t=1 becomes

 0.0449 −0.9086 0.0103 −0.4022
−0.8372 −0.7887 0.0116 0.0393
0.3075 0.7939 0.762 0.1753

 . (37)

This concludes the first round of forward and backward propagation. The process can be
repeated. Concrete values of gradients and updated parameters during the first three rounds and the
associated Python code for reproducing these values can be found in the code repository.

The 5 samples or participants used in the example are called one batch of data, many times
also referred to as minibatch (Masters & Luschi, 2018). In neural network training, a batch is a
subset of the training dataset used for a single step of gradient calculation and weight updating.
The number of training samples in one batch is called batch size. The neural network updates its
parameters with each batch processed, and thus the batch size can influence both the duration of
training and the performance of the model. Once the network has processed all the data in the
training dataset, batch by batch, this completes one training iteration, typically called an epoch.

The training process typically involves multiple epochs. Throughout these epochs, the loss
should ideally decrease, signifying that the network is learning the data. Training usually continues
until the loss reaches an acceptable level or stops decreasing significantly, indicating that the model
has converged.

Both training and validation sets are involved in the training process. Specifically, after
each training epoch, we test the model on the validation set without updating the parameters. This
approach gives us insight into how well the model is learning over time. For instance, we can

NEURAL NETWORK TUTORIAL 12

terminate the training if the model’s loss on the validation set stops decreasing (or decreases by less
than a tiny amount) over a number of consecutive epochs such as 20. This technique, known as early
stopping, prevents overfitting by stopping the training before the total number of epochs reaches a
pre-defined maximum, which is typically set to a large value. Figure 2 illustrates how the FNN’s
training and validation loss changed while being trained with a learning rate of 0.0001 in SGD and
a batch size of 64. The training loss curve appears smooth because we performed gradient descent
on the training set that has more participants, while the validation loss curve has more fluctuations.
The curve flattened out around the 80th training epoch, and was terminated around the 100th epoch,
where early stopping was triggered.

0 20 40 60 80 100
Epoch

0

200

400

600

800

Lo
ss

 (M
S

E
)

Training Loss
Validation Loss

Figure 2

Change of MSE loss with the number of epochs during the training stage.

Evaluation

After training the FNN, our next step is to evaluate its performance on the test set. De-
pending on the task and focus, different metrics can be used to evaluate the performance. In this
paper, we continue to use MSE to assess the performance of model predictions. Other popular
metrics include Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2 for regres-
sion (Hyndman & Koehler, 2006; Miles, 2005), and Accuracy, Precision, Recall, and F1-score for
classification (Powers, 2020).

One primary concern during evaluation is to check the model’s generalizability. Specifi-
cally, overfitting refers to a model that performs exceptionally well on training data, but poorly on
unseen data. Conversely, underfitting occurs when the model is too simple to capture underlying
data patterns, resulting in suboptimal performance on both training and testing data (Goodfellow et
al., 2016). In our analyses using the ACTIVE dataset, overfitting can occur if we develop an overly
complex neural network model. In this case, the model may have almost perfect predictive accuracy

NEURAL NETWORK TUTORIAL 13

on the training data, suggesting that it essentially memorizes the dataset, including the noise and
outliers, rather than learning the underlying patterns. However, when this model is tested on a test
set, its accuracy can drop dramatically because its learned patterns do not generalize well beyond
the training data. On the other hand, an underfitted model may be due to the use of overly simple
methods, such as linear regression that predicts the same scores using only one or two predictors
(e.g., age and sex). Such a model may perform equally poorly on both the training and test sets
because it is too simple to capture the complex relationship between input and outcome variables.

Optimizing Model Performance

The performance of a neural network is associated with a variety of elements. Optimizing
these elements can be crucial for maximizing prediction accuracy. Key factors include hyperpa-
rameters like the learning rate of SGD and the size of training batches, as well as architectural
aspects such as the number of neurons and layers. This section is designed to demonstrate the im-
pact of each factor on the model’s performance, offering practical insights for researchers looking
to enhance their neural network models.

We base our exploration on the FNN illustrated in Figure 2. This model, with a single
hidden layer of 4 neurons, was initially trained with an SGD learning rate of 0.0001 and a batch size
of 64. In the following subsections, we will methodically adjust several elements – learning rate,
batch size, number of neurons, and number of layers – and examine their influence on the model’s
performance. At the end, we introduce grid search, an approach for identifying the most suitable
hyperparameters and network architecture for a given dataset.

Adjusting Learning Rate

The learning rate in SGD controls the step size of parameter updates towards minimizing
the loss function. A learning rate that is too small can lead to premature convergence to the local
minimum. Conversely, a too big learning rate might cause the model to oscillate without stabilizing,
prolonging the convergence time and also increasing the chance of reaching suboptimal solutions.
The optimal selection of learning rates is crucial for efficient and effective model training.

In our experiment, we varied the learning rate across a spectrum from 0.1 to 1e-5. To ensure
the reliability of the result, we trained 100 distinct FNN models for each learning rate value (i.e.,
100 replications under each condition) using the same training set. (To reduce randomness) Their
performance was evaluated on the validation set, applying an early stopping strategy to halt training
if the validation loss decreased by 0.0001 or less over 20 consecutive epochs. Note that some models
did not converge due to issues such as vanishing or exploding gradients. We remove these models
and will discuss this matter in later subsections.

The compiled results are presented in Figure 3, showcasing a box plot that depicts the
distribution of MSE across converged replications at each learning rate setting. We noted an initial
reduction in MSE as the learning rate increased from 1e-5 to 0.001. However, a subsequent rise in
the mean and variance of MSE was observed when the learning rate was further increased from 0.01
to 0.1, aligned with the mechanism shown in Figure 3.

Changing Batch Size

The value of batch size is another hyperparameter in neural network training, profoundly
impacting model performance. Larger batch sizes typically offer a more precise gradient estimation,

NEURAL NETWORK TUTORIAL 14

0.00001 0.0001 0.001 0.01 0.1
Learning Rate

30

40

50

60

70

80

M
S

E

Figure 3

Model performance with different SGD learning rates.

promoting stable and consistent updates during gradient descent. However, they would require more
computing resources and carry the risk of converging to local minima, potentially inhibiting optimal
performance.

Conversely, smaller batch sizes introduce a level of noise that acts as a regularizer (Wilson
& Martinez, 2003), often resulting in a reduced generalization error and a swifter and more robust
convergence path (Masters & Luschi, 2018). Smaller batch sizes also align well with environments
with memory constraints, such as GPU-based training. However, training with smaller batches
typically necessitates a greater number of training steps and may also require a lower learning rate
to preserve stability, given the higher variance in gradient estimation. These factors can potentially
increase the total runtime of the training process (Goodfellow et al., 2016).

In practical applications, smaller batch sizes are generally favored. Bengio (2012) recom-
mended a batch size range from 1 to a few hundred for effective training, with 32 as a common
default. Research by Masters and Luschi (2018) indicates optimal test performance even with batch
sizes as small as 2. Nonetheless, the ideal batch size is contingent on factors like the neural net-
work’s architecture and the dataset’s characteristics (Radiuk, 2017).

The base FNN model depicted in Figure 2 used a batch size of 64. To explore the impact
of different batch sizes, we conducted experiments with batch sizes of 8, 16, 32, 64, and 128, while
keeping other parameters constant. Consistent with our approach for learning rate adjustment, each
batch size setting underwent 100 replications. The outcomes on the validation set are illustrated
in Figure 4. Although the average performance differences across various batch sizes were subtle,
we noted that larger batch sizes led to a significantly higher variance in MSE, suggesting decreased
consistency in model predictions.

Adding More Neurons

The complexity of a neural network, influenced by its number of neurons and layers, sig-
nificantly affects its ability to model complex functions. An increase in the number of neurons

NEURAL NETWORK TUTORIAL 15

8 16 32 64 128
Batch Size

26

28

30

32

34

36

38

40

M
S

E

Figure 4

Model performance with different training batch sizes.

enhances the network’s capacity to learn intricate patterns, aiding in more accurate function approx-
imation. However, an excess of neurons can lead to overfitting, where the model excessively learns
the idiosyncrasies of the training data, including noise and anomalies, resulting in poor performance
on new, unseen data. Moreover, a larger number of neurons increases the model’s computational
complexity, extending training times and demanding more computational resources. The ideal num-
ber of neurons should be determined considering the task complexity, available data volume, and
the desired equilibrium between model generalization and specificity (Qiao et al., 2017).

We start by investigating a single-hidden-layer FNN model with different numbers of neu-
rons. Specifically, we increased the number of neurons from 4 to 8, 32, 64, and 128. As shown
in Figure 5, as the neuron count increases, there is a continuous increase in MSE on the validation
set. This suggests that for simpler datasets, a single-layer FNN with a lower neuron count may be
adequate.

Adding More Layers

Our investigation extended to the influence of augmenting the number of hidden layers in
the FNN. We tested configurations comprising 1, 2, and 3 hidden layers, each with 4, 32, and 128
neurons. In each model, all hidden layers contained an equal number of neurons. For instance, in
the 4-neuron scenario, the configurations included a single-layer model with 4 neurons, a two-layer
model with 4 × 4 neurons, and a three-layer model with 4 × 4 × 4 neurons. This exploration led to
a total of 9 distinct conditions.

The outcomes are illustrated in Figure 7. In scenarios with 4 neurons per layer, the MSE
exhibits minimal variation across the different layer counts. This suggests that even a single-layer
FNN is sufficiently complex for capturing the underlying patterns in the data. A similar trend is
observed in the 32-neuron per-layer setups. With 128 neurons per layer, an increase in the num-
ber of layers seems to correlate with a decrease in MSE, indicating enhanced model performance.
However, the configuration with 3 layers and 128 neurons per layer shows comparable performance

NEURAL NETWORK TUTORIAL 16

4 8 32 64 128
Number of neurons

26

28

30

32

34

36

38

40

M
S

E

Figure 5

Model performance with different neuron counts in the hidden layer.

with models having 2 layers and 4 neurons per layer. These observations suggest that increasing
network depth is not necessarily associated with improved predictive accuracy.

Grid Search

Having explored various hyperparameters and their impact on model performance, the ques-
tion arises: how can we identify an effective combination of these parameters? One common tech-
nique is grid search, which employs an exhaustive search strategy to explore a predefined space
of hyperparameter combinations by constructing a grid (Hutter et al., 2019). Each point on the
grid represents a unique set of hyperparameters. By evaluating the model’s performance for each
combination, grid search identifies the optimal set that yields the best performance according to a
predefined metric, such as MSE. This approach ensures that all possible combinations within the
specified range are considered, providing a comprehensive picture of how different hyperparameters
affect a model’s performance. Grid search is particularly suitable for the psychological research in
which the sample size is often not too big.

When optimizing the FNN using our example data, we implemented grid search by iterating
over various learning rates (.1, .01, .001, .0001, and .00001), batch sizes (8, 16, 32, 64, and 128),
and numbers of neurons (4, 8, 32, 64, and 128) and layers (1, 2, and 3). Table 2 shows the top
10 models sorted by the lowest mean MSE. The best model configuration simply based on MSE
consists of 2 layers with 64 neurons each, a learning rate of 0.0001, and a batch size of 8. This
model converged in 89 out of 100 replications. Among these successful cases, the mean MSE was
30.597, and the average number of training epochs required for convergence was 93. However, note
that differences in MSE among different specifications in the table were not big, and the selection
of the final model is eventually a preference of the researcher.

Besides prediction accuracy and training efficiency, researchers should also pay attention
to the convergence issue when selecting models. For instance, the 10th-ranked model had a conver-
gence rate of only 1%, i.e., it converged once in 100 replications. Despite its high accuracy in this

NEURAL NETWORK TUTORIAL 17

Table 2

Top 10 models from grid search (with 3 predictors). CR: convergence rate. MSE and the number of
training epochs are based on converged cases.

ID # layers # neurons
Learning

rate
Batch
size

CR (%)
MSE # training epochs

mean std. mean std.

1 2 64 0.0001 8 89 30.597 0.983 93.011 21.506
2 3 32 0.001 64 71 30.666 5.741 49.648 14.344
3 1 4 0.001 32 83 30.700 1.771 44.940 15.607
4 3 64 0.0001 16 74 30.742 0.789 84.622 19.176
5 1 32 0.001 64 93 30.751 5.526 49.441 16.907
6 3 64 0.0001 8 70 30.762 1.611 71.614 21.716
7 2 128 0.00001 8 93 30.764 1.087 394.108 78.920
8 3 4 0.001 64 57 30.769 4.532 52.386 29.186
9 2 128 0.0001 8 93 30.782 2.362 84.538 20.004

10 3 64 0.1 128 1 30.790 - 26.000 -

one case, such a low convergence rate undermines the model’s reliability and generalizability, and
thus should not be selected. This example emphasizes the importance of evaluating models not only
on their performance metrics, but also on their stability and consistency across multiple runs.

Convergence Rate

We further examine the effect of hyperparameters on model convergence. Figure 6 illus-
trates a case of non-convergence during training, where the training loss stagnated at an early stage,
and the validation loss exhibited substantial fluctuations, suggesting being trapped in a local mini-
mum. The convergence rates for different hyperparameter configurations are shown in Fig 8. Specif-
ically, Fig 8a shows a clear trend where the convergence rate initially increases with the learning
rate, but decreases as the learning rate continues to increase. This pattern is similar to the associa-
tion between learning rate and MSE. On the other hand, as shown in Fig 8b, the effect of increasing
the batch size seems minimal and generally results in a slight decrease in the probability of conver-
gence. Meanwhile, Figure 8c shows that adding more neurons per layer tends to help with model
convergence in general; however, all three plots suggest that adding more layers tends to decrease
the likelihood of model convergence.

Other Influencing Factors

In addition to the hyperparameters that are directly related to a FNN model, there are other
factors that can influence the performance of a model.

Number of Predictors

Incorporating more relevant predictors will generally improve the model’s performance.
To illustrate this effect, we extended our initial three predictors (age, education, and sex) to ten
predictors: age, education, sex, site, booster, ufov, mmse, hvltt, hvltt2, and hvltt3. The performance

NEURAL NETWORK TUTORIAL 18

0 50 100 150 200
Epoch

720

740

760

780

800

820

Lo
ss

 (M
S

E
)

Training Loss
Validation Loss

Figure 6

Example of non-convergence.

1 2 3
Number of Layers

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

M
S

E

4 neurons per Layer

1 2 3
Number of Layers

M
S

E

32 neurons per Layer

1 2 3
Number of Layers

M
S

E

128 neurons per Layer

Figure 7

Model performance with different numbers of layers.

NEURAL NETWORK TUTORIAL 19

10
5

10
4

10
3

10
2

10
1

Learning Rate

20

40

60

80

C
on

ve
rg

en
ce

 R
at

e

Number of Layers
1
2
3

(a) Learning rate.

20 40 60 80 100 120
Batch Size

40

50

60

70

80

90

C
on

ve
rg

en
ce

 R
at

e

Number of Layers
1
2
3

(b) Batch size.

0 20 40 60 80 100 120
Number of Neurons

40

50

60

70

80

90

C
on

ve
rg

en
ce

 R
at

e

Number of Layers
1
2
3

(c) Number of neurons.

Figure 8

Model convergence rate across different hyperparameter settings.

outcomes are shown in Table 3. The optimal model converged in 90% cases with a mean MSE of
17.430. When compared to the results presented in Table 2, it is evident that adding these predictors
substantially reduced the MSE and increased the convergence rate. Additionally, we can observe a
trend towards simpler models being more effective with the extended predictor set: all of the ten
best models consisted of only one hidden layer. This observation indicates that the selection of
model hyperparameters can vary greatly depending on the particular circumstances.

Sample Sizes

Number of samples in the dataset can significantly affect the prediction results of a neural
network. Larger sample sizes typically yield better performance by providing a more comprehensive

Table 3

Top 10 models from grid search (with 10 predictors). CR: convergence rate. MSE and the number
of training epochs are based on converged cases.

ID # layers # neurons
Learning

rate
Batch
size

CR (%)
MSE # training epochs

mean std. mean std.
1 1 4 0.0001 8 90 17.430 1.023 92.378 28.080
2 1 4 0.001 16 88 17.447 0.710 46.466 22.773
3 1 4 0.00001 8 82 17.464 1.692 414.354 154.924
4 1 4 0.001 64 91 17.525 2.956 56.198 16.578
5 1 4 0.0001 16 90 17.527 0.650 108.289 30.446
6 1 8 0.0001 8 93 17.599 0.918 103.387 28.296
7 1 4 0.001 128 86 17.638 0.795 73.849 18.637
8 1 4 0.001 8 85 17.656 0.696 35.894 11.484
9 1 4 0.0001 32 79 17.661 1.344 110.190 25.181

10 1 4 0.001 32 85 17.689 1.652 52.894 15.217

NEURAL NETWORK TUTORIAL 20

representation of the data distribution, while smaller sizes may lead to outfitting due to insufficient
data. To test this, we built seven datasets with varied sample sizes (N = 25, 50, 100, 200, 300, 500,
700, 1,000, 1250, and 1,500) by randomly drawing subsets of samples from the original dataset.
As we did before, each dataset was then randomly divided into training/evaluation/test sets with
a 72:13:15 ratio. For every distinct sample size, we trained 100 separate FNN models with the
default configurations and evaluated their performance. Note that we did the 100 replications for
each different sample size on a fixed subset of samples instead of 100 random subsets of samples.
This was to avoid importing extra randomness from different datasets.

0 200 400 600 800 1000 1200 1400
Sample Size

20

30

40

50

60

70

M
S

E

(a) MSE.

0 200 400 600 800 1000 1200 1400
Sample Size

0

1000

2000

3000

4000

5000

6000

N
um

be
r o

f E
po

ch
s

(b) Number of epochs.

Figure 9

Model performance with different sample sizes.

The model was trained using the 10 predictors outlined previously. Figure 9a illustrates
the variation in MSE across different sample sizes. With the smallest sample size (N = 25),
the MSE exhibited a high mean and high variance, indicating that the dataset was too limited for
effective training. Increasing the sample size from 25 to 50 led to a notable decrease in MSE. Further
increasing the sample size continued to lower the mean MSE and slightly reduced its variance,
thereby enhancing the model’s accuracy and consistency. Regarding the number of training epochs,
as depicted in Figure 9b, very small datasets required an exceedingly large number of epochs since
the model struggled to learn from the scant data, resulting in instability. As the sample size grew, the
required number of training epochs diminished, reflecting improved learning efficiency. However,
the number of epochs rose again with very large datasets, probably attributed to the complexity of
learning from a large pool of data.

Training and Validation Set Sizes

The way in which the data is divided into a training set and a validation set can also affect the
performance of the model. Specifically, allocating too large a portion of the dataset to the validation
set can prevent the model from getting enough training data, which can lead to underfitting, i.e., the
model is unable to effectively capture the underlying patterns in the data. Conversely, allocating too
small a portion to the validation set may cause large variation in the validation step, thus preventing
accurate optimization judgments such as when to terminate training and which model to choose.
To empirically demonstrate these effects, we kept 15% of the original data as the test set in our

NEURAL NETWORK TUTORIAL 21

experiments and varied the ratio of the training set to the validation set so that the validation set
accounted for 10%, 20%, 30%, . . . , 90% of the rest of the dataset, respectively.

Figure 10 shows the results. When the validation set comprises only 10% of the visible
dataset (i.e., the combination of training and validation set), it contains 1, 573 × 0.85 × 0.1 =
133 participants, which is insufficient to accurately reflect the model’s performance, resulting in
inappropriate early stopping and a high MSE. As the proportion of the validation set increases to
0.4, the MSE decreases, but beyond that point, the MSE starts to increase again, which is mainly
caused by insufficient training data. This suggests that for this particular dataset and the FNN model,
allocating 40% of the visible data to the validation set is likely the optimal choice. Notably, Figure
10b shows a positive correlation between validation set size and the number of epochs required for
training. One plausible explanation is that a smaller training set contains less information from the
predictors, which might cause underfitting and require more epochs to converge.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Validation Size

15

16

17

18

19

20

21

M
S

E

(a) MSE.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Validation Size

100

200

300

400

500

600

700

800

N
um

be
r o

f E
po

ch
s

(b) Number of epochs.

Figure 10

Model performance with different validation set sizes.

Model Interpretation

Interpreting the outcomes of deep learning models is crucial yet difficult, particularly in
fields like psychology and other social sciences, where understanding the model’s predictions can
offer valuable insights into human behaviors and decision-making processes (Hassija et al., 2024;
Orrù et al., 2020; Ribeiro et al., 2016; Rudin, 2019). This section outlines two simple, accessible
methods for interpreting model results.

One common approach for model interpretation is partial dependence plots (PDPs), which
visualize the relationship between the target variable and a subset of input features of interest while
marginalizing over the values of all other input features (Hastie et al., 2009; Pedregosa et al., 2011).
Intuitively, partial dependence can be interpreted as the expected target response as a function of the
selected input features. By plotting the partial dependence, one can gain insights into the marginal
effect of the input features on the model’s predictions.

Figure 11 shows three one-way PDPs, each plotting a single input variable against the
predicted outcome. From Figure 11a, we observe a trend where the model predicts better test
performance with younger participants. Similarly, Figure 11b indicates that in general, participants

NEURAL NETWORK TUTORIAL 22

with longer education years are predicted to perform better in tests. Additionally, Figure 11c reveals
a tendency of the model to predict higher test scores for female participants. These plots facilitate a
potential understanding of the relationships between different input variables and outcomes.

70 80 90
age

20

22

24

26

28

30

32

34

hv
ltt

4

(a) Age.

10 15 20
edu

20

22

24

26

28

30

32

34

hv
ltt

4

(b) Education.

0.00 0.25 0.50 0.75 1.00
sex

20

22

24

26

28

30

32

34

hv
ltt

4

(c) Sex.

Figure 11

One-way partial dependence plots (PDPs).

In addition to visualization, there are various methods to assess feature importance in neural
network models (Molnar, 2020). A straightforward technique is feature permutation, i.e., randomly
shuffling the values of each input variable and observing the impact on the network’s performance
(Breiman, 2001). A notable increase in MSE upon permuting a variable suggests its significant
influence on the model’s predictions. This process is repeated for each input variable (or subset of
variables) to determine their relative importance.

In our study using the ACTIVE dataset with 10 variables, we observed distinct changes in
model performance upon permutation. We conducted 500 replications, where in each replication,
we randomly split the data into training, validation, and test sets. During the testing stage, we first
tested the model on the original test set, then permuted each predictor in the test set and allowed
the model to make predictions. As shown in Figure 12, permuting hvltt3, hvltt, and hvltt2 led to
the most substantial increase compared to the original average MSE (the red dotted line), indicating
that previous test scores could be the most substantial predictors for accurately predicting the latest
test score. Permuting the demographic variables sex and age also led to a slight increase in MSE,
indicating their importance. The remaining predictors did not result in significant differences, which
may suggest either that they are correlated with other predictors and thus contribute little additional
information, or that they are irrelevant.

Discussion

In this paper, we presented a step-by-step guide for employing FNNs in psychological re-
search. We started with a concrete example of a basic 3-layer FNN on a psychological dataset, in-
cluding the matrix representation, the forward propagation, and the backpropagation process. Sub-
sequent experiments demonstrated the impact of hyperparameter adjustments and network structure
variations on model performance. Additionally, we showed two simple ways of interpreting neural
network predictions and assessing feature importance.

NEURAL NETWORK TUTORIAL 23

age edu sex hvltt hvltt2 hvltt3 reason booster ufov mmse
Predictor Permuted

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
S

E

Figure 12

MSE with permuted predictors.

FNNs are the simplest form of neural networks. Subsequent innovation builds on its foun-
dation but introduces new architecture and mechanisms to handle more complex data patterns, espe-
cially in sequence and spatial recognition tasks. These advancements allow for better performance
in tasks involving sequences (like text and audio) and spatial data (like images). Specifically, Recur-
rent Neural Networks (RNNs, Rumelhart et al., 1985) and Convolutional Neural Networks (CNNs,
LeCun et al., 1989) evolved from FNNs. RNNs can handle sequences by maintaining a memory of
previous inputs, while CNNs excel in pattern recognition within image data through convolutional
layers. Transformers (Vaswani et al., 2017), including models like BERT (Devlin et al., 2018) and
the GPT series (Brown et al., 2020; Radford et al., 2019), represent a further advancement, introduc-
ing the self-attention mechanism. This allows them to process long-range dependencies and context
more effectively, especially in complex tasks like language understanding and generation. However,
it is important to note that these advanced models still rest on the foundational principles of FNNs.
The understanding of core concepts, such as backpropagation, loss functions, and the intricacies
of training and testing, is universal across these neural network architectures. The hyperparameter
tuning strategies for FNNs are also applicable to more advanced models.

Although not considered in this tutorial, the type of loss functions, depending on the task
type, also play an important role. Our primary task in this paper was regression, and we employed
MSE as the loss function. However, when dealing with categorical data, other loss functions are
more appropriate. For example, in classification tasks, cross-entropy loss is commonly used (Good-
fellow et al., 2016; Hastie et al., 2009). In binary classification scenarios, binary cross-entropy is
effective (Ruby & Yendapalli, 2020), while for multi-class problems, categorical cross-entropy and
its variations are more suitable (Gordon-Rodriguez et al., 2020; Rusiecki, 2019). These loss func-
tions are better aligned with the nature of categorical data and help accurately model the probability
distribution of the class labels.

Finally, our experiments employed supervised learning (Hastie et al., 2009), as we had
labeled training data, i.e., the actual values of the outcome variables. However, there are research
scenarios where unsupervised learning could be beneficial (Xu & Wunsch, 2005). For instance,
tasks like topic modeling (Blei et al., 2003) or clustering (Jain, 2010), which aim to discover inherent
patterns or groupings in the data without pre-defined labels, can be approached with unsupervised

NEURAL NETWORK TUTORIAL 24

learning techniques (Ghahramani, 2003; Suominen & Toivanen, 2016).

Acknowldegment

This research was upported by the Institute of Education Sciences (R305D210023) the Lucy
Family Institute for Data and Society and Notre Dame Global.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,
J., Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467.

Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade: Second edition (pp. 437–478). Springer.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan), 993–1022.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,

P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances
in neural information processing systems, 33, 1877–1901.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Gareth, J., Daniela, W., Trevor, H., & Robert, T. (2013). An introduction to statistical learning: With
applications in r. Spinger.

Ghahramani, Z. (2003). Unsupervised learning. In Summer school on machine learning (pp. 72–
112). Springer.

Goldberg, Y. (2022). Neural network methods for natural language processing. Springer Nature.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Gordon-Rodriguez, E., Loaiza-Ganem, G., Pleiss, G., & Cunningham, J. P. (2020). Uses and abuses

of the cross-entropy loss: Case studies in modern deep learning.
Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., Scardapane, S., Spinelli,

I., Mahmud, M., & Hussain, A. (2024). Interpreting black-box models: A review on ex-
plainable artificial intelligence. Cognitive Computation, 16(1), 45–74.

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical
learning: Data mining, inference, and prediction (Vol. 2). Springer.

Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated machine learning: Methods, systems,
challenges. Springer Nature.

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. Interna-
tional journal of forecasting, 22(4), 679–688.

Iyortsuun, N. K., Kim, S.-H., Jhon, M., Yang, H.-J., & Pant, S. (2023). A review of machine learning
and deep learning approaches on mental health diagnosis. Healthcare, 11(3), 285.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern recognition letters, 31(8),
651–666.

NEURAL NETWORK TUTORIAL 25

Jobe, J. B., Smith, D. M., Ball, K., Tennstedt, S. L., Marsiske, M., Willis, S. L., Rebok, G. W.,
Morris, J. N., Helmers, K. F., Leveck, M. D., et al. (2001). Active: A cognitive intervention
trial to promote independence in older adults. Controlled clinical trials, 22(4), 453–479.

Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., & McHardy, R. (2023). Challenges
and applications of large language models. arXiv preprint arXiv:2307.10169.

Khan, S., Rahmani, H., Shah, S. A. A., Bennamoun, M., Medioni, G., & Dickinson, S. (2018). A
guide to convolutional neural networks for computer vision (Vol. 8). Springer.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436–444.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D.

(1989). Backpropagation applied to handwritten zip code recognition. Neural computation,
1(4), 541–551.

LeCun, Y., Bottou, L., Orr, G. B., & Müller, K.-R. (2002). Efficient backprop. In Neural networks:
Tricks of the trade (pp. 9–50). Springer.

Malhotra, A., & Jindal, R. (2022). Deep learning techniques for suicide and depression detection
from online social media: A scoping review. Applied Soft Computing, 109713.

Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural networks. arXiv
preprint arXiv:1804.07612.

Miles, J. (2005). R-squared, adjusted r-squared. Encyclopedia of statistics in behavioral science.
Min, S., Lee, B., & Yoon, S. (2017). Deep learning in bioinformatics. Briefings in bioinformatics,

18(5), 851–869.
Molnar, C. (2020). Interpretable machine learning (3rd). Christoph Molnar. https : / /christophm.

github.io/interpretable-ml-book/
Orrù, G., Monaro, M., Conversano, C., Gemignani, A., & Sartori, G. (2020). Machine learning in

psychometrics and psychological research. Frontiers in psychology, 10, 492685.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-

tenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12, 2825–2830.

Powers, D. M. (2020). Evaluation: From precision, recall and f-measure to roc, informedness,
markedness and correlation. arXiv preprint arXiv:2010.16061.

Qiao, J., Li, S., Han, H., & Wang, D. (2017). An improved algorithm for building self-organizing
feedforward neural networks. Neurocomputing, 262, 28–40.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language models
are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Radiuk, P. M. (2017). Impact of training set batch size on the performance of convolutional neural
networks for diverse datasets. Information Technology and Management Science, 20(1),
20–24.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “why should i trust you?” explaining the predic-
tions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, 1135–1144.

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., Clopath,
C., Costa, R. P., de Berker, A., Ganguli, S., et al. (2019). A deep learning framework for
neuroscience. Nature neuroscience, 22(11), 1761–1770.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

NEURAL NETWORK TUTORIAL 26

Ruby, U., & Yendapalli, V. (2020). Binary cross entropy with deep learning technique for image
classification. International Journal of Advanced Trends in Computer Science and Engi-
neering, 9(4).

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature machine intelligence, 1(5), 206–215.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1985). Learning internal representations by
error propagation.

Rusiecki, A. (2019). Trimmed categorical cross-entropy for deep learning with label noise. Elec-
tronics Letters, 55(6), 319–320.

Sazli, M. H. (2006). A brief review of feed-forward neural networks. Communications Faculty of
Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 50(01),
11–17.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85–
117.

Su, C., Xu, Z., Pathak, J., & Wang, F. (2020). Deep learning in mental health outcome research: A
scoping review. Translational Psychiatry, 10(1), 116.

Suominen, A., & Toivanen, H. (2016). Map of science with topic modeling: Comparison of unsu-
pervised learning and human-assigned subject classification. Journal of the Association for
Information Science and Technology, 67(10), 2464–2476.

Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of suicide ideation in social media
forums using deep learning. Algorithms, 13(1), 7.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Wilson, D. R., & Martinez, T. R. (2003). The general inefficiency of batch training for gradient
descent learning. Neural networks, 16(10), 1429–1451.

Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on neural net-
works, 16(3), 645–678.

Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and applications.
arXiv preprint arXiv:2003.05689.

Zheng, A., & Casari, A. (2018). Feature engineering for machine learning: Principles and tech-
niques for data scientists. O’Reilly Media, Inc.

	Dataset
	Feed-Forward Neural Network
	Input Layer
	Hidden Layer
	Output Layer

	Model Training and Evaluation
	Data Split
	Training
	Evaluation

	Optimizing Model Performance
	Adjusting Learning Rate
	Changing Batch Size
	Adding More Neurons
	Adding More Layers
	Grid Search
	Convergence Rate

	Other Influencing Factors
	Number of Predictors
	Sample Sizes
	Training and Validation Set Sizes

	Model Interpretation
	Discussion
	Acknowldegment

