
Computational Statistics and Data Analysis 71 (2014) 220–240

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Robust growth mixture models with non-ignorable
missingness: Models, estimation, selection, and application✩

Zhenqiu (Laura) Lu a,∗, Zhiyong Zhang b

a University of Georgia, United States
b University of Notre Dame, United States

h i g h l i g h t s

• Four non-ignorable missingness models are proposed.
• Three robust models to deal with outliers are proposed.
• A full Bayesian method is implemented.
• Model selection criteria are proposed in a Bayesian context.
• Three simulation studies and one real data case study are conducted.

a r t i c l e i n f o

Article history:
Received 3 July 2012
Received in revised form 25 July 2013
Accepted 26 July 2013
Available online 7 August 2013

Keywords:
Growth mixture models
Non-ignorable missing data
Robust methods
Bayesian method
Model selecting criteria

a b s t r a c t

Challenges in the analyses of growth mixture models include missing data, outliers, esti-
mation, and model selection. Four non-ignorable missingness models to recover the infor-
mation due to missing data, and three robust models to reduce the effect of non-normality
are proposed. A full Bayesian method is implemented by means of data augmentation al-
gorithm and Gibbs sampling procedure. Model selection criteria are also proposed in the
Bayesian context. Simulation studies are then conducted to evaluate the performances of
the models, the Bayesian estimation method, and selection criteria under different situ-
ations. The application of the models is demonstrated through the analysis of education
data on children’s mathematical ability development. The models can be widely applied to
longitudinal analyses in medical, psychological, educational, and social research.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mixture models offer natural models for unobserved population heterogeneity. The importance of mixture models, their
enormous developments, and their frequent applications are not only remarked by a number of recent books but also by
a diversity of journal publications. For example, Computational Statistics & Data Analysis has published two special issues
on mixture models (Bohning and Seidel, 2003; Bohning et al., 2007) and the current issue is a new one. Latent growth
models are used to study individuals’ latent growth trajectories by analyzing the variables of interest on the same individuals
repeatedly through time (e.g., Bollen and Curran, 2006; McArdle and Bell, 1999; Meredith and Tisak, 1990). These models
are very popular in biological, psychological, educational, and social sciences (e.g., Collins, 1991; Fitzmaurice et al., 2004;
Singer and Willett, 2003). By combining latent growth models and finite mixture models (e.g., McLachlan and Peel, 2000),
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growth mixture models (GMMs, see, e.g., Lubke and Muthén, 2005; Muthén, 2004; Muthén et al., 2011), therefore, provide
researchers with a flexible set of models for growth data with latent population heterogeneity.

However, with the increase in complexity of model specification comes an increase in difficulties estimating GMMs.
First, missing data are almost inevitable (e.g., Little and Rubin, 2002; Yuan and Lu, 2008), especially in longitudinal
studies (e.g., Jelicic et al., 2009; Roth, 1994). Little and Rubin (2002) distinguished ignorable and non-ignorable missingness
mechanisms. Non-ignorable missingness is a crucial and serious concern, because not attending to it may result in severely
biased statistical estimates, standard errors, and associated confidence intervals (e.g., Little and Rubin, 2002; Schafer,
1997; Zhang and Wang, 2012). However, most of the literature on the problems of missing data focuses on ignorable
missingness (e.g., Schafer and Graham, 2002). Second, data may have outliers (e.g., Hoaglin et al., 1983), particularly in
social and behavioral sciences (e.g., Micceri, 1989). The consequences of applying a normal distribution assumption to such
data include unreliable parameter estimates (e.g., Pan and Fang, 2002), unreliable standard errors and confidence intervals,
and misleading statistical tests and inference (e.g., Yuan and Bentler, 1998). Third, for complex models such as GMMs with
missing data and outliers, maximum likelihoodmethodsmight fail or provide biased estimates (e.g., Yuan and Zhang, 2012).
Most of the previous estimations have relied on maximum likelihood methods for parameter estimation and have carried
out inferences through conventional likelihood procedures (e.g., Song et al., 2014). Fourth, even with effective estimation
methods, model selection in such complex situations becomes extremely difficult. Traditional criteria for model selection,
including Akaike’s Information Criterion (AIC, Akaike, 1974), Bayesian Information Criterion (BIC, Schwarz, 1978), consistent
Akaike’s Information Criterion (CAIC, Bozdogan, 1987), sample-size adjusted Bayesian Information Criterion (ssBIC, Sclove,
1987), and Deviance Information Criterion (DIC, Spiegelhalter et al., 2002), are not uniformly effective due to latent effects
and missing data (e.g., Celeux et al., 2006).

Few studies have discussed how to address these common problems in longitudinal research in the framework of GMMs.
Lu et al. (2011) discussed GMMs with non-ignorable missing data using Bayesian methods. However, they (1) considered
only one type of non-ignorable missingness, (2) assumed data are normally distributed without any outlier, and (3) did not
propose any model selection criterion.

This article extends the study of Lu et al. (2011) and addresses these challenges in GMMs: missing data, outliers,
estimation, and model selection. Regarding missing data, we propose new types of non-ignorable missingness in GMMs
and investigate their influences on model estimation under different situations. Regarding outliers, we use robust models
(e.g., Lange et al., 1989) to minimize the effects of contaminated data. Because convenient robust methods often lead to
other problems such as under-estimation of standard errors (e.g., Poon and Poon, 2002), we adopt t-distributions to deal
with heavy-tailed data (Lin et al., 2004; Zhang et al., 2013). Regarding estimation methods, as Bayesian methods provide
many advantages of estimating complex models (e.g., Dunson, 2000), we propose a full Bayesian approach, which is flexible
enough to estimate a variety of models with different missing data mechanisms, contaminated data, and mixture structure.
Regarding model selection, we propose several selection criteria in the Bayesian context. The performances of these criteria
are investigated under different situations.

In the next section of this article, Section 2, we propose GMMs with different types of missing data and outliers. In
Section 3, we present Bayesian estimationmethods. In Section 4, we propose Bayesian model selection criteria. In Section 5,
we conduct three simulation studies on Bayesian GMMs under different conditions. In Section 6, we demonstrate the
application of the GMMs and the Bayesian method by analyzing real education data on children’s mathematical ability
development. In Section 7, we draw conclusions. The Appendices present the technical details of our analyses.

2. Models

The density function of a growth mixture model is

f (yi) =

K
k=1

πk fk(yi), (1)

where πk is the invariant class probability (or weight) for class k, (k = 1, . . . , K), satisfying 0 ≤ πk ≤ 1 and
K

k=1 πk = 1
(e.g., McLachlan and Peel, 2000), and fk(yi) is the density for the kth class, in which yi is a T × 1 vector of outcomes for
participant i (i = 1, . . . ,N) following a latent growth model

yi = 3ηi + ei,
ηi = β + ξi,

(2)

where ηi is a q × 1 vector of latent effects, 3 is a T × q matrix of factor loadings for ηi, ei is a T × 1 vector of residual or
measurement errors, β is a q × 1 vector of fix-effects, and ξi captures the variation of ηi.

In the Extended Growth Mixture Models (EGMMs, Muthén and Shedden, 1999), πk is not invariant any more for all
individuals in class k. It is allowed to vary individually depending on covariates, so it is expressed as πik(xi). In this study, a
probit link function is usedπi1(xi) = Φ(X ′

i ϕ1),
πik(xi) = Φ(X ′

i ϕk) − Φ(X ′

i ϕk−1), (k = 2, 3, . . . , K − 1)
πiK (xi) = 1 − Φ(X ′

i ϕK−1),
(3)
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whereΦ(·) is the cumulative distribution function (CDF) of the standard normal distribution, and Xi = (1, x′

i)
′ with an r ×1

vector of observed covariates xi. Note that Φ(X ′

i ϕk) =
k

j=1 πij(xi) and Φ(X ′

i ϕK ) ≡ 1.
In both cases, a dummy variable zi = (zi1, zi2, . . . , ziK )′ is used to indicate the class membership. If individual i comes

from group k, zik = 1 and zij = 0 (∀j ≠ k). zi is multinomially distributed (McLachlan and Peel, 2000, p. 7).

2.1. Non-ignorable missingness

To build models with non-ignorable missingness, we use selection models (Glynn et al., 1986; Little, 1993, 1995) instead
of patternmixture models (Little and Rubin, 2002), in part, because substantively it is more natural to consider the behavior
of the response variable in the full target population of interests, rather than in sub-populations defined by missing data
pattern (e.g., Fitzmaurice et al., 2008). For individual i, the complete-data likelihood function (see, Celeux et al., 2006) of a
selection model with auxiliary latent variables is expressed as

Li =

K
k=1


πik(xi) fk(ηi) fk(yi|ηi) fk(mi|zi, ηi, yi, xi)

zik , (4)

where mi = (mi1,mi2, . . . ,miT )
′ is a missing data indicator for yi, with mit = 1 when yit is missing and 0 when observed.

Let τit = p(mit = 1) be the probability that yit is missing, then mit ∼ Bernoulli(τit). τit depends on the non-ignorable
missingnessmechanisms. Lu et al. (2011) proposed Latent-Class-Dependent (LCD)missingness (see Fig. 1 panel (a)) inwhich
τit is assumed to depend on latent class membership and observed covariates,

τit = Φ(z′

iγ
∗

zt + x′

iγxt), (5)

where γ∗
zt = (γ ∗

zt1 , γ
∗
zt2 , . . . , γ

∗
ztK )′ is the coefficient vector for the class membership zi, and γxt = (γxt1 , γxt2 , . . . , γxtr )

′ is the
r × 1 coefficient vector for covariates. For LCD, the missingness is ignorable within each latent class.

In reality, however, the missingness mechanism in each class may also be non-ignorable. Lu et al. (submitted for publi-
cation) illustrated some possible missingness. For example, in a given latent class, students may miss a test when they have
few prior knowledge of that course (i.e., low latent initial level), or when their scores did not get much improved during the
semester (i.e., small latent slope). In these cases, the missingness within a class actually depends on some random effects.
Wemay call it Latent-Class-Random-Effect-Dependent (LCRED)missingness. According to different situations under consid-
eration, LCRED can be further divided into more specific sub-types: Latent-Class-Intercept-Dependent (LCID) missingness,
and Latent-Class-Slope-Dependent (LCSD)missingness. Strictly speaking, LCD is another special case of LCREDwhen the de-
pendency on random effect is not significant. In addition to random effects, the missingness may also depend on potential
outcomes that may be missing. For example, a student who feels he is not doing well in a test may be more likely to give up
the test. By considering all these cases, therefore, we build three more non-ignorable missingness models in the framework
of EGMMs: LCID, LCSD, and the Latent-Class-Outcome-Dependent (LCOD)missingness. They are illustrated in Fig. 1: (b)–(d).

(1) For LCID, τit is a function of latent class, covariates, and latent individual initial levels, so we model it as follows.

τIit = Φ(z′

iγ
∗

zt + IiγIt + x′

iγxt), (6)

where Ii is the latent initial levels for individual i, γIt is the coefficient for Ii, and γ zt and γxt are the same as in (5). A special
case of the LCID is the Latent-Intercept-Dependent (LID) missingness in which τit does not depend on the latent class.

τIit = Φ(γ0t + IiγIt + x′

iγxt). (7)

(2) For LCSD, τit is a function of latent class, covariates, and latent individual slopes of growth, so it can be modeled as

τSit = Φ(z′

iγ
∗

zt + SiγSt + x′

iγxt), (8)

where Si is the latent slope for individual i, and γSt is the coefficient for Si. Similarly, a special case is the Latent-Slope-
Dependent (LSD) missingness.

τSit = Φ(γ0t + SiγSt + x′

iγxt). (9)

(3) For LCOD, τit is a function of latent class, covariates, and potential outcomes that may be missing. We express τit as

τYit = Φ(z′

iγ
∗

zt + yitγyt + x′

iγxt), (10)

where yit is the potential outcomes for individual i at time t , and γyt is the coefficient for yit . And a special case of the LCOD
is the Latent-Outcome-Dependent (LOD) missingness.

τYit = Φ(γ0t + yitγyt + x′

iγxt). (11)



Z. Lu, Z. Zhang / Computational Statistics and Data Analysis 71 (2014) 220–240 223

(a) LCD missingness. (b) LCID missingness.

(c) LCSD missingness. (d) LCOD missingness.

Fig. 1. Path diagrams of EGMMs with different missingness.

2.2. Robust GMMs

The effects of outliers can be reduced by using robust components. In this study we adopt the t-distribution, which is a
natural replacement of normal distribution especially when data have outliers and heavy-tails (Zhang et al., 2013). As the
model in Eqs. (1) and (2) has two levels, we propose three robust models as in Fig. 2.

(1) t-Normal (TN) model in which the measurement errors are t-distributed and the latent random effects are normally
distributed,

ei ∼ MtT (0, 2, ν),
ξi ∼ MNq(0, 9),

(12)

where MtT (0, 2, ν) is a T -dimensional multivariate t-distribution with a scale matrix 2 and degrees of freedom ν, and
MNq(0, 9) is a q-dimensional multivariate Normal distribution with a variance 9.

(2) Normal-t (NT) model in which the measurement errors are normally distributed but the latent random effects are
t-distributed,

ei ∼ MNT (0, 2),
ξi ∼ Mtq(0, 9, u). (13)

(3) t–t (TT) model in which both the measurement errors and the latent random effects are t-distributed,
ei ∼ MtT (0, 2, ν),
ξi ∼ Mtq(0, 9, u). (14)

By combining differentmissingness and distributions, the proposedmodels are flexible enough to cover a series of GMMs
with a variety of missing data mechanisms and contaminated data.
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Fig. 2. Different robust GMMs.

3. Bayesian approach

In this section we describe a full Bayesian approach. First, we utilize the data augmentation method (Tanner and Wong,
1987) to obtain the joint likelihood function of the selection model. The observed data yobsi are augmented with the miss-
ing data ymis

i , the latent random effects ηi, and the class membership zi. The detailed likelihood functions are shown in
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Table 1
Prior distributions.

Prior distribution Hyper-parameters

φk ∼ IG(v0k/2, s0k/2) Scalars v0k and s0k
βk ∼ MNq(βk0, 6k0) A q × qmatrix 6k0 , a q-dimensional vector βk0
9k ∼ IW (mk0,Vk0) A scalarmk0 , a q × q matrix Vk0
ϕk ∼ MNr+1(µϕk

, 6ϕk ) An (r +1)-dimensional vector µϕk
, an (r +1)× (r +1) matrix 6ϕk

νk ∼ Uniform(a, b) A scalar a > 2
uk ∼ Uniform(c, d) A scalar c > 2
γ t ∼ MNK+r (γ t0,Dt0) A (K + r)-dimensional vector γ t0 , a (K + r) × (K + r) matrix Dt0

Appendix A. Second, prior distributions are adopted. Table 1 lists the priors and their hyper-parameters. We use uninforma-
tive priors so that all the hyper-parameters carry little information. Third, posterior distributions for unknown parameters
are calculated. We use conditional posterior distributions instead of the joint posterior because the integrations of marginal
posterior distributions of the parameters are hard to obtain explicitly for high-dimensional data. Appendix B lists the de-
tailed posterior distributions. Fourth, with conditional posterior distributions, Markov chains for unknown parameters are
generated by implementing aGibbs sampling algorithm (Geman andGeman, 1984). Fifth, after burn-in periods, convergence
tests (e.g., Geweke’s z statistics, Geweke, 1992) are conducted to test the convergence of generated Markov chains. Sixth, if
the chains pass convergence tests, they are viewed as from the joint distribution, and then statistical inference is conducted.
Let θ denote an unknown parameter in the model, and (θ (1), θ (2), . . . , θ (S)) be the converged Markov chains. Then across S

Markov iterations the posterior estimates θ̂ =
S

s=1 θ (s)/S with a standard error s.e.(θ̂ ) =

S
s=1(θ

(s) − θ̂ )2/(S − 1). Both
percentile intervals and the highest posterior density intervals (HPD, Box and Tiao, 1973) are provided. Seventh, model se-
lection criterion is used to compare competingmodels and identify the best-fit model. The details are described in Section 4.
Finally, the results obtained from the selected model are interpreted.

4. Model selection

In the Bayesian context, there are two versions of deviance, which are the Monte Carlo estimation of the deviance,
D(θ) = Eθ |y[−2 log(p(y|θ))] + C , and the estimate plugged-in deviance, D(θ̂) = −2 log(p(y|Eθ |y[θ ])) + C for some con-
stant C . The difference between D(θ) and D(θ̂) comes from Jensen’s inequality (Casella and George, 1992). When D(θ) is
convex, then D(θ) ≥ D(θ̂), and when D(θ) is concave, then D(θ) ≤ D(θ̂). In the detailed framework of Bayesian GMMswith
missing data, these two versions can be approximated by

D(θ) = −2


1
S

S
s=1


N
i=1

K
k=1

z(s)
ik

T
1=t


(1 − mit)l

(s)
ikt (y) + l(s)ikt (m)


and

D(θ̂) = −2


N
i=1

K
k=1

ẑik
T

t=1


(1 − mit)likt(y|θ̂ ) + likt(m|θ̂ )


,

where S is the number of iterations for converged Markov chains, and z(s)
ik is the class membership estimated at the sth it-

eration, ẑik is the posterior mode of class membership, l(s)ikt (y) and l(s)ikt (m) are conditional loglikelihood functions (see, Celeux
et al., 2006) of yit and mit , respectively. In particular, the loglikelihood function for the missing data indicator mit is
likt(m) = mit log(τit) + (1 − mit) log(1 − τit), where τit is defined by Eqs. (5)–(10).

Based on the two versions of deviance and Lu et al. (submitted for publication)’s article, newmodel selection criteria are
proposed in the framework of Bayesian GMMs with missing data, and their definitions are shown in Table 2.

5. Simulation studies

In this section, three simulation studies are conducted to (1) demonstrate the accuracy of the estimates (including
point estimates, standard error estimates, and confidence intervals) of the proposed robust GMMs with missing data using
Bayesian methods, and (2) evaluate the performance of the proposed model selection criteria under different situations.

5.1. Simulation design

The detailed design is presented in Table 3. Three simulation studies are designed such that the model complexity
increases from study 1 to study 3. Within each study, complete data are generated first and then missing data are created
on each occasion. Simulation factors include sample size, missingness pattern, measurement errors distribution, random
effect distribution, and class separation (or distance, Anderson and Bahadur, 1962). Study 1 focuses on robust GMMs in
which class probabilities are fixed and the non-ignorable missingness do not depend on latent class membership. The true
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Table 2
Model selection criteria.

Criterion (index) = Deviance+ Penalty

Dbar.AIC D(θ) 2 p
Dbar.BIC D(θ) log(N) p
Dbar.CAIC D(θ) (log(N) + 1) p
Dbar.ssBIC D(θ) log((N + 2)/24) p
RDIC D(θ) var(Di)/2

Dhat.AIC D(θ̂) 2 p
Dhat.BIC D(θ̂) log(N) p
Dhat.CAIC D(θ̂) (log(N) + 1) p
Dhat.ssBIC D(θ̂) log((N + 2)/24) p
DIC D(θ̂) 2 pD

Note:
p is the number of parameters in the model;
N is the sample size;
pD = D(θ) − D(θ̂).

Table 3
Simulation study design.

Sim. study Model Data distribution Missingness depends on Sample size Class separationk

eib ηi
c

Nd te N t Cf Xg Ih Si Yj 1000 1500 S M

Study 1 Robust GMMs: Use relative large sample sizes due to multiple classes data, and small class separation due
to fixed class probabilities.

TN-ignorable ✓ ✓ ✓ ✓ ✓ ✓

TN-XI ✓ ✓ ✓ ✓ ✓ ✓ ✓

TN-XSa ✓ ✓ ✓ ✓ ✓ ✓ ✓

TN-XY ✓ ✓ ✓ ✓ ✓ ✓ ✓

TT-ignorable ✓ ✓ ✓ ✓ ✓ ✓

TT-XI ✓ ✓ ✓ ✓ ✓ ✓ ✓

TT-XS ✓ ✓ ✓ ✓ ✓ ✓ ✓

TT-XY ✓ ✓ ✓ ✓ ✓ ✓ ✓

NT-ignorable ✓ ✓ ✓ ✓ ✓ ✓

NT-XI ✓ ✓ ✓ ✓ ✓ ✓ ✓

NT-XS ✓ ✓ ✓ ✓ ✓ ✓ ✓

NT-XY ✓ ✓ ✓ ✓ ✓ ✓ ✓

NN-ignorable ✓ ✓ ✓ ✓ ✓ ✓

NN-XI ✓ ✓ ✓ ✓ ✓ ✓ ✓

NN-XS ✓ ✓ ✓ ✓ ✓ ✓ ✓

NN-XY ✓ ✓ ✓ ✓ ✓ ✓ ✓

In total, there are 16 models × 2 levels of sample size = 32 cases.

Study 2 Robust EGMMs: Select 5 competing models based on the performance in study 1. Use relative large sample
sizes due to multiple-class data and varied class probabilities.

TN-CXS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TN-CX ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TT-CXS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NN-CXS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NN-CX ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

In total, there are 5 models × 2 levels of sample size × 2 levels of class separation = 20 cases.

(continued on next page)

model is the ‘‘TN-XS’’ GMMwith t-distributedmeasurement errors andmissingness depending on both covariates and latent
slope. In total, there are 16 × 2 = 32 conditions. Study 2 is designed for the robust Extended GMMs (EGMMs) in which
class probabilities are not fixed and may depend on values of covariates. Also, the missingness may depend on latent class
membership. The truemodel is the ‘‘TN-CXS’’ EGMMwith t-distributedmeasurement errors andmissingness depending on
observed covariates, the latent slope, and latent class membership. Based on the findings in study 1, 5 competing models
(TN-CXS, TT-CXS, NN-CXS, TN-CX, NN-CX) are selected to fit the data. In addition to the factors in study 1, two levels of class
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Table 3 (continued)

Sim. study Model Data distribution Missingness depends on Sample size Class separationk

eib ηi
c

Nd te N t Cf Xg Ih Si Yj 1000 1500 S M

Study 3 Number of classes: Select 3 competing models and focus on distributions. Single-class LGCMs vs.
multiple-class GMMs.

1 class LGCMs
TN-XS ✓ ✓ ✓ ✓ ✓ ✓

TT-XS ✓ ✓ ✓ ✓ ✓ ✓

NN-XS ✓ ✓ ✓ ✓ ✓ ✓

2 classes GMMs

TN-XS ✓ ✓ ✓ ✓ ✓ ✓ ✓

TT-XS ✓ ✓ ✓ ✓ ✓ ✓ ✓

NN-XS ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 classes GMMs
TN-XS ✓ ✓ ✓ ✓ ✓ ✓

TT-XS ✓ ✓ ✓ ✓ ✓ ✓

NN-XS ✓ ✓ ✓ ✓ ✓ ✓

4 classes GMMs
TN-XS ✓ ✓ ✓ ✓ ✓ ✓

TT-XS ✓ ✓ ✓ ✓ ✓ ✓

NN-XS ✓ ✓ ✓ ✓ ✓ ✓

In total, there are 3 models × 4 different numbers of classes = 12 cases.
a The shaded model is the true model.
b Measurement errors.
c Random effects.
d Normal distribution.
e t distribution.
f Latent class dependent (non-ignorable).
g Observed covariates.
h Latent intercept dependent (non-ignorable).
i Latent slope dependent (non-ignorable).
j Potential outcome y dependent (Non-ignorable).
k Class separation (Anderson and Bahadur, 1962) when generating data (S: small = 1.7, M: medium = 2.7).

separation are considered, which are 2.7 (medium) and 1.7 (small). In total, there are 5 × 2 × 2 = 20 conditions. Study 3
focuses on the number of classes. GMMs with different classes are compared. Based on the performance in the previous
two studies, we focus on the robust part with correct missingness. In total, there are 3 models × 4 numbers of classes = 12
conditions.

5.2. Simulation results

In each of the simulation cases, parameter estimates are summarized based on 100 converged replications. We have
also tried 1000 replications for a small set of conditions and found no noticeable differences in the results. Each replication
generates at least 10,000 iterations for a burn-in period and Markov chains with 50,000 iterations for convergence testing
and statistical inference.

5.2.1. Results from study 1
All the 32 summary tables in study 1 (Tables 1–32) are uploaded to the website of http://nd.psychstat.org/research/

csda2013. As an example, the summary table of the true mode ‘‘TN-XS’’ when N = 1500 is shown in Table 4, from which
one can see that, except for the estimates of both degrees of freedom which are inflated due to mis-classification, the true
model recovers parameters accurately. For true models, we further summarize all results in Table 5.

Misspecified models perform not as good as the true model (shown in Tables 3–32). With estimates of slope (S)
significantly lower than the true value 3, misspecified models may reject the true value with a high chance, and then
conclusions will be severely misleading. Also, the misspecified measurement errors distribution leads to low coverages
for var(e), var(I), and class proportion. Note that among misspecified models, the model TT-XS performs similarly to the
true model TN-XS because the only difference is between a normal distribution and a t distribution with df ≥ 50. This is
because the t distribution approach the normal distribution with the increase of degrees of freedom.

Next, model selection proportions for 10 indices are listed in Table 6. The performances of the criteria in study 1 are
ranked, from high to low, as CAIC, BIC, ssBIC, AIC, and DIC.

http://nd.psychstat.org/research/csda2013
http://nd.psychstat.org/research/csda2013
http://nd.psychstat.org/research/csda2013
http://nd.psychstat.org/research/csda2013
http://nd.psychstat.org/research/csda2013
http://nd.psychstat.org/research/csda2013
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Table 4
Summary of TN-XS GMM (the true model) with N = 1500 and class separation = 2.7.

Par.a Trueb est.c BIAS SE CI (α = 0.05)i HPD (α = 0.05)j

smp.d rel.e emp.f avg.g MSEh lower upper cover
(0.95)

lower upper cover
(0.95)

Growth
curve
parameters

Class 1

I 5 4.968 −0.032 −0.006 0.182 0.158 0.06 4.643 5.265 0.93 4.656 5.274 0.93
S 3 3.007 0.007 0.002 0.119 0.116 0.028 2.78 3.234 0.95 2.78 3.233 0.97
var(I) 1 1.065 0.065 0.065 0.352 0.292 0.217 0.567 1.708 0.90 0.526 1.641 0.89
var(S) 4 4.022 0.022 0.006 0.294 0.308 0.182 3.453 4.663 0.97 3.431 4.634 0.97
cov(IS) 0 0.009 0.009 0.009 0.201 0.195 0.079 −0.381 0.383 0.95 −0.375 0.387 0.95
var(e) 1 1.06 0.06 0.06 0.107 0.106 0.027 0.863 1.276 0.94 0.857 1.269 0.94

Class 2

I 1 1.001 0.001 0.001 0.183 0.155 0.058 0.711 1.319 0.91 0.702 1.307 0.91
S 3 3.004 0.004 0.001 0.113 0.118 0.027 2.773 3.235 0.96 2.773 3.235 0.96
var(I) 1 0.999 −0.001 −0.001 0.275 0.283 0.158 0.517 1.619 0.95 0.479 1.555 0.94
var(S) 4 3.965 −0.035 −0.009 0.318 0.316 0.202 3.38 4.62 0.92 3.36 4.593 0.91
cov(IS) 0 0.026 0.026 0.026 0.211 0.194 0.083 −0.361 0.401 0.95 −0.357 0.404 0.95
var(e) 1 1.057 0.057 0.057 0.127 0.107 0.031 0.857 1.274 0.85 0.852 1.267 0.85

Probit
parameters

CP1
k 0.5 0.508 0.008 0.017 0.041 0.04 0.003 0.431 0.587 0.93 0.432 0.586 0.94

CP2 0.5 0.492 −0.008 −0.017 0.041 0.04 0.003 0.413 0.569 0.93 0.414 0.568 0.94

Wave 1
γ01

l
−1 −1.037 −0.037 0.037 0.148 0.149 0.045 −1.339 −0.753 0.96 −1.33 −0.75 0.96

γx1
m

−1.5 −1.535 −0.035 0.023 0.091 0.103 0.02 −1.748 −1.343 0.96 −1.74 −1.338 0.96
γS1

n 0.5 0.516 0.016 0.033 0.05 0.053 0.006 0.417 0.625 0.97 0.416 0.621 0.98

Wave 2
γ02 −1 −1.031 −0.031 0.031 0.147 0.146 0.044 −1.327 −0.754 0.93 −1.32 −0.753 0.94
γx2 −1.5 −1.53 −0.03 0.02 0.095 0.1 0.02 −1.736 −1.344 0.95 −1.726 −1.337 0.94
γS2 0.5 0.513 0.013 0.026 0.053 0.051 0.006 0.417 0.618 0.95 0.415 0.613 0.96

Wave 3
γ03 −1 −1.008 −0.008 0.008 0.139 0.142 0.04 −1.295 −0.738 0.96 −1.287 −0.734 0.96
γx3 −1.5 −1.516 −0.016 0.011 0.098 0.095 0.019 −1.711 −1.338 0.94 −1.703 −1.333 0.94
γS3 0.5 0.506 0.006 0.011 0.045 0.049 0.004 0.415 0.605 0.98 0.413 0.601 0.98

Wave 4
γ04 −1 −1.034 −0.034 0.034 0.155 0.149 0.047 −1.339 −0.753 0.94 −1.327 −0.748 0.91
γx4 −1.5 −1.545 −0.045 0.03 0.1 0.098 0.022 −1.747 −1.362 0.94 −1.74 −1.357 0.94
γS4 0.5 0.518 0.018 0.036 0.052 0.05 0.006 0.424 0.621 0.93 0.422 0.616 0.91

df dfy1o 5 6.164 1.164 0.233 1.913 1.551 8.308 3.999 9.944 0.93 3.797 9.315 0.96
dfy2 5 6.598 1.598 0.32 2.634 1.717 13.517 4.139 10.656 0.81 3.96 10.09 0.83

Note: The results are summarized based on 100 converged replications with a convergence rate of 100/101 ≈ 99%.
a Parameters. Growth model parameters for both classes are ‘‘I ’’: Intercept, ‘‘S’’: Slope, ‘‘var(I)’’: the variance of intercept, ‘‘var(S)’’: the variance of slope,

‘‘cov(IS)’’: the covariance of intercept and slope, and ‘‘var(e)’’: the variance of errors.
b The true value of the corresponding parameter.
c The parameter estimate, calculated by the Bayesian posterior mean est.j =

¯̂
θ j =

100
i=1 θ̂ij/100.

d The simple bias, defined by BIAS.smpj =
¯̂
θ j − θj .

e The relative bias, defined by BIAS.relj =
¯̂
θ j − θj/θj if θj ≠ 0, and ¯̂

θ j − θj if θj = 0.
f The empirical standard errors, defined by SE.empj =

100
i=1(θ̂ij −

¯̂
θ j)2/99.

g The average standard errors, defined by SE.avgj =
100

i=1 ŝij/100.
h Themean square error, defined byMSEj =

100
i=1 MSEij/100whereMSEij is themean square error for the jth parameter in the ith simulation replication,

MSEij = (Biasij)2 + (ŝij)2 .
i The lower, upper limits, and coverage of percentile confidence interval, defined by CI.lowj =

100
i=1 θ̂ l

ij/100, CI.upperj =
100

i=1 θ̂u
ij /100, and CI.coverj =

#(θ̂ l
ij ≤ θj and θj ≤ θ̂u

ij )/100.
j The lower, upper limits, and coverage of HPD interval.
k The fixed class probability for class 1.
l The probit intercept of the missing data probability at the 1th wave of data, defined in Eq. (9).

m The probit coefficient of the covariate at the 1th wave of data, defined in Eq. (9).
n The probit coefficient of the latent slope S at the 1th wave of data, defined in Eq. (9).
o The degrees of freedom of the multivariate-t of measurement errors for both classes.

5.2.2. Results from study 2

First, the 20 summary tables in study 2 (Tables 33–52) are shown on http://nd.psychstat.org/research/csda2013. Again,
for the true model the results are further summarized in Table 7, fromwhich one can tell that the true model performs well
in study 2. With the increase of the sample size or the distance of classes, both the point estimates and standard errors get
more accurately estimated, and the statistics across all parameters are improved.

Misspecified models cause biased estimates, part of which is shown in Fig. 3. The true value of the slope is 3, but when
models are incorrectly assumed as CXmissingness, our classification analysis shows the slopes of more than 50% individuals
are incorrectly estimate as less than 1.5 for class separation = 1.7 and less than 2 for class separation = 2.7. When the
missingness is misspecified, the slope coverages are very low, with the largest value 6% for class 2 in Table 50. Also, when
the distribution is not correctlymodeled, the coverages of var(e) are very low for both classes. Formostmisspecifiedmodels,
the convergence rates are low. As in study 1, the model TT-CXS performs almost identically to the true model.

http://nd.psychstat.org/research/csda2013
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Table 5
Summary results of true model in study 1.

|Bias.rel|a |SE.diff|b MSEc CI.coverd HPD.covere CVG.ratef

Average across all model parameters, except for df

N 1500 0.020 0.009 0.055 0.940 0.940 99(%)
1000 0.031 0.016 0.089 0.932 0.931 99(%)

a The average simple relative bias across all model parameters, defined by |Bias.rel| =
p

j=1 |Bias.relj|/p. The smaller, the better.
b The average absolute difference between the empirical SEs and the average Bayesian SEs across all model parameters, defined by |SE.diff| =p
j=1 |SE.empj − SE.avgj|/p. The smaller, the better.
c The Mean Square Errors (MSE) across all model parameters, defined by MSE =

p
j=1[(Biasj)

2
+ (ŝj)2]/p. The smaller, the better.

d The average percentile coverage probability across all model parameters, defined by CI.cover =
p

j=1 CI.coverj/p, with a theoretical value of 0.95.
e The average highest posterior density (HPD) coverage probability across all model parameters, defined by HPD.cover =

p
j=1 HPD.coverj/p, with a

theoretical value of 0.95.
f The convergence rate.

(a) Class separation = 2.7 (true
Int1 = 5, Int2 = 1, Slope = 3).

(b) Class separation = 1.7 (true
Int1 = 3.5, Int2 = 1, Slope = 3).

Fig. 3. Comparison of 5 models in study 2.

Second, the selection proportions for each criterion are listed in Table 8. Most criteria can correctly identify the true
model with high certainty.

5.2.3. Results from study 3
As all misspecified models with 4 classes do not converge well in study 3, we did not summarize the results. In addition

to the cases with 2 classes (Tables 1, 3, and 7), the remaining 6 summary tables (Tables 53–58) are uploaded to the website.
For the misspecified models with a single class, the intercept is estimated to be around the average of the true intercepts of
two classes, and the variance of intercept is estimated much bigger than the true value. Their convergence rates are high,
though, because the number of parameters are less than that of other GMMs with multi-class. For the misspecified GMMs
with 3 classes, intercepts are mistakenly estimated to be around 5, 4, and 1. And the convergence rates for are very low,
especially for TN-XS or TT-XS the rate is only 4%.

Next, the selection proportions of criteria to pick the best-fit model are listed as in Table 9. According to Table 9, the Dhat
group performs better than the Dbar group. Within the Dhat group, the order of correct selection proportions is, from high
to low, CAIC, BIC, ssBIC, AIC, and DIC.

5.3. Simulation conclusions

The following conclusions can be drawn from the simulation studies. First, the Bayesian method can recover model
parameters well as indicated by the small relative biases and the close to 95% average coverage probabilities. Second, with
the increase of the sample size or distance between classes, (1) the relative biases get smaller,whichmeans that estimates get
closer to their true values, and (2) the average Bayesian SEs get closer to the empirical SEs, whichmeans that standard errors
become more accurate. Third, the small difference between the empirical SE and the average Bayesian SE demonstrates the
Bayesian method used in the study can estimate the standard errors accurately. Fourth, the estimates of degrees of freedom
are inflated due to themis-classification in estimation. Fifth, incorrectly modeling the distribution will also lead to incorrect
conclusions. Sixth, with the correct number of classes, almost all the criteria can correctly identify the true model with
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Table 6
Model selection proportion in study 1.

Criteriona N = 1500 N = 1000
Non-ignorable Ignorable Non-ignorable Ignorable
XSb XY XI XS XY XI

Dbar.AIC TNb 0.621c 0.000 0.000 0.000 0.593 0.000 0.000 0.000
TT 0.357 0.000 0.000 0.000 0.314 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.021 0.000 0.000 0.000
NN 0.021 0.000 0.000 0.000 0.071 0.000 0.000 0.000

Dbar.BIC TN 0.864 0.000 0.000 0.000 0.843 0.000 0.000 0.000
TT 0.114 0.000 0.000 0.000 0.064 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000
NN 0.021 0.007 0.000 0.000 0.079 0.000 0.000 0.000

Dbar.CAIC TN 0.893 0.000 0.000 0.000 0.857 0.000 0.000 0.000
TT 0.079 0.000 0.000 0.000 0.043 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.007 0.007 0.000 0.000
NN 0.021 0.007 0.000 0.000 0.086 0.000 0.000 0.000

Dbar.ssBIC TN 0.729 0.000 0.000 0.000 0.750 0.000 0.000 0.000
TT 0.250 0.000 0.000 0.000 0.157 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000
NN 0.021 0.007 0.000 0.000 0.079 0.000 0.000 0.000

RDIC TN 0.071 0.000 0.000 0.000 0.143 0.000 0.000 0.000
TT 0.086 0.000 0.000 0.000 0.071 0.000 0.000 0.000
NT 0.450 0.000 0.000 0.000 0.393 0.007 0.000 0.000
NN 0.393 0.000 0.000 0.000 0.379 0.007 0.000 0.000

Dhat.AIC TN 0.586 0.000 0.000 0.000 0.621 0.000 0.000 0.000
TT 0.379 0.000 0.000 0.000 0.329 0.000 0.000 0.000
NT 0.014 0.000 0.000 0.000 0.014 0.007 0.000 0.000
NN 0.014 0.007 0.000 0.000 0.057 0.000 0.000 0.000

Dhat.BIC TN 0.757 0.000 0.000 0.000 0.793 0.000 0.000 0.000
TT 0.207 0.000 0.000 0.000 0.121 0.000 0.000 0.000
NT 0.007 0.000 0.000 0.000 0.007 0.007 0.000 0.000
NN 0.021 0.007 0.000 0.000 0.071 0.000 0.000 0.000

Dhat.CAIC TN 0.757 0.000 0.000 0.000 0.814 0.000 0.000 0.000
TT 0.207 0.000 0.000 0.000 0.100 0.000 0.000 0.000
NT 0.007 0.000 0.000 0.000 0.007 0.007 0.000 0.000
NN 0.021 0.007 0.000 0.000 0.071 0.000 0.000 0.000

Dhat.ssBIC TN 0.586 0.000 0.000 0.000 0.664 0.000 0.000 0.000
TT 0.379 0.000 0.000 0.000 0.250 0.000 0.000 0.000
NT 0.014 0.000 0.000 0.000 0.014 0.007 0.000 0.000
NN 0.014 0.007 0.000 0.000 0.064 0.000 0.000 0.000

DIC TN 0.507 0.000 0.000 0.000 0.364 0.007 0.000 0.000
TT 0.371 0.000 0.000 0.000 0.286 0.000 0.000 0.000
NT 0.043 0.036 0.000 0.000 0.129 0.029 0.007 0.000
NN 0.043 0.000 0.000 0.000 0.150 0.029 0.000 0.000

a The definition of each criterion is given in Table 2.
b The shaded model is the true model.
c The shaded cell has the largest proportion.

high certainty, with an order of correct selection proportion, CAIC, BIC, ssBIC, AIC, from high to low. When models having
different numbers of classes, Dhat.CAIC, Dhat.BIC, Dhat.ssBIC, and Dhat.AIC can be good model selection criteria. Seventh,
non-convergent Markov chains might be a sign of a misspecified model. The simulation studies also verify that ignoring
the non-ignorable missingness will cause severely misleading conclusions which has been illustrated by previous literature
(e.g., Little and Rubin, 2002; Zhang and Wang, 2012).

6. Real data analysis

In this section, we illustrate the application of the Bayesian robust GMMs with missing data through real data analysis.
The same sample that has been analyzed in Lu et al. (2011) is used here. It is a mathematical ability growth sample from
the NLSY97 survey (Bureau of Labor Statistics, US Department of Labor, 1997), including data collected from N = 1510
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Table 7
Summary results of TN-CXS EGMM (true model) in study 2.

|Bias.rel| |SE.diff| MSE CI.cover HPD.cover CVG.rate

Average across all parameters, except for df

Class separation = 2.7 (medium)

N 1500 0.045 0.012 0.069 0.922 0.919 98(%)
1000 0.043 0.016 0.106 0.931 0.934 96.2(%)

Class separation = 1.7 (small)

N 1500 0.122 0.055 0.177 0.892 0.894 76(%)
1000 0.242 0.137 0.504 0.873 0.873 69(%)

Notes: Abbreviations are as given in Table 5.

Table 8
Model selection proportion in study 2.

TN-CXS TT-CXS NN-CXS TN-CX NN-CX TN-CXS TT-CXS NN-CXS TN-CX NN-CX

Class separation = 2.7,N = 1500 Class separation = 2.7,N = 1000
Dbar.AIC 0.567 0.425 0.000 0.008 0.000 0.558 0.375 0.000 0.067 0.000

Dbar.BIC 0.808 0.158 0.000 0.033 0.000 0.750 0.125 0.000 0.125 0.000

Dbar.CAIC 0.850 0.108 0.000 0.0042 0.000 0.767 0.100 0.008 0.125 0.000

Dbar.ssBIC 0.667 0.300 0.000 0.033 0.000 0.633 0.292 0.000 0.075 0.000

RDIC 0.042 0.042 0.908 0.000 0.008 0.092 0.075 0.808 0.000 0.025

Dhat.AIC 0.475 0.392 0.000 0.133 0.000 0.350 0.358 0.000 0.292 0.000

Dhat.BIC 0.550 0.233 0.000 0.217 0.000 0.450 0.175 0.000 0.375 0.000

Dhat.CAIC 0.525 0.233 0.000 0.242 0.000 0.442 0.150 0.000 0.4 0.008

Dhat.ssBIC 0.467 0.367 0.000 0.167 0.000 0.392 0.300 0.000 0.308 0.000

DIC 0.467 0.500 0.033 0.000 0.000 0.417 0.450 0.108 0.008 0.017

Class separation = 1.7,N = 1500 Class separation = 1.7,N = 1000
Dbar.AIC 0.512 0.444 0.044 0.000 0.00 0.550 0.400 0.050 0.000 0.000

Dbar.BIC 0.744 0.212 0.044 0.000 0.00 0.719 0.194 0.081 0.006 0.000

Dbar.CAIC 0.781 0.175 0.044 0.000 0.00 0.750 0.162 0.081 0.006 0.000

Dbar.ssBIC 0.612 0.344 0.044 0.000 0.00 0.638 0.300 0.062 0.000 0.000

RDIC 0.306 0.238 0.350 0.006 0.10 0.244 0.256 0.362 0.000 0.138

Dhat.AIC 0.475 0.475 0.031 0.019 0.00 0.694 0.231 0.012 0.062 0.000

Dhat.BIC 0.712 0.238 0.031 0.019 0.00 0.644 0.294 0.012 0.050 0.000

Dhat.CAIC 0.712 0.238 0.031 0.019 0.00 0.694 0.231 0.012 0.062 0.000

Dhat.ssBIC 0.475 0.475 0.031 0.019 0.00 0.575 0.388 0.012 0.025 0.000

DIC 0.381 0.450 0.169 0.000 0.00 0.344 0.331 0.319 0.000 0.006

Note: Abbreviations are as given in Table 6.

Table 9
Model selection proportion in study 3.

Criterion 2 classes 1 class 3 classes
TN-XS TT-XS NN-XS TN-XS TT-XS NN-XS TN-XS TT-XS NN-XS

Dbar.AIC 0.000 0.000 0.057 0.393 0.129 0.000 0.021 0.007 0.393

Dbar.BIC 0.000 0.000 0.036 0.821 0.064 0.000 0.000 0.000 0.079

Dbar.CAIC 0.000 0.000 0.036 0.864 0.043 0.000 0.000 0.000 0.057

Dbar.ssBIC 0.000 0.000 0.057 0.593 0.100 0.000 0.000 0.000 0.25

RDIC 0.036 0.014 0.2 0.014 0.014 0.679 0.014 0.014 0.014

Dhat.AIC 0.621 0.343 0.064 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.BIC 0.793 0.136 0.071 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.CAIC 0.814 0.114 0.071 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.ssBIC 0.664 0.264 0.071 0.000 0.000 0.000 0.000 0.000 0.000

DIC 0.000 0.000 0.000 0.164 0.193 0.121 0.000 0.000 0.521

Note: Abbreviations are as given in Table 6.
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Table 10
Summary statistics for PIAT math dataset.

Grade 7 Grade 8 Grade 9 Grade 10 Grade 11

Mean 6.799 7.272 7.555 7.877 8.023
S.D. 1.665 1.712 1.695 1.604 1.659
Missing data (count) 83 69 120 115 143
Missing data (%) 5.497 4.570 7.947 7.616 9.470

Male N = 763 Female N = 747

Note: The summary statistics are different from those reported in Lu et al. (2011), which conducted a power transformation to normalize the sample.

Fig. 4. Histograms of PIAT math scores for 5 grades.

adolescents yearly from 1997 to 2001 when each adolescent was administered the Peabody Individual Achievement Test
(PIAT) Mathematics Assessment to measure their mathematical ability. Table 10 shows the summary statistics for the data.
Overall, the means of mathematical ability increased over time with a roughly linear trend. The missing data rates range
from 4.57% to 9.47%, and the raw data show the missing pattern is intermittent. About half of the sample is female.

Lu et al. (2011) assumed the data are normally distributed without any outliers. But the histograms drawn in Fig. 4
indicate that there are outliers (marked by red circles) at all five grades. So robust methods are used in this study. Also,
different non-ignorable missingness mechanisms are considered.

The analysis is conducted following the steps in Table 11. In step 1, a tentativemodel (the TT-ignorablemodel) is fitted to
the data. Gender is a covariate. The estimates of degrees of freedomof t for both classes are 2.342 and 3.263 formeasurement
errors and 75.65 and 50.96 for random effects, which indicates that measurement errors are t distributed while random
effects are approximately normally distributed (i.e., a TNmodel). And then in step 2, 8 TNmodels with differentmissingness
are fitted to the data. During estimation we use uninformative priors which carry little information for model parameters.
A burn-in period is run first to make sure all the Markov chains are converged. For testing convergence, the history plot
is examined and the Geweke’s z statistic (Geweke, 1992) is checked for each parameter. Two selected history plots are
presented in Fig. 5. The Geweke’s z statistics for all the parameters are smaller than 1.96, which indicates convergedMarkov
chains. Tomake sure all the parameters are estimated accurately, the next 50,000 iterations are then saved for data analysis.
The ratio of Monte Carlo error (MCerror) to standard deviation (S.D.) for each parameter is smaller than or close to 0.05,
which indicates parameter estimates are accurate (Spiegelhalter et al., 2003). The results are given in Tables 59–66 on the
web site. Step 3, to compare models with different number of classes, two more models are fitted to the data, 3-class NN-X
and 4-class NN-X. The results are shown in Tables 67 and 68 on the web site. Step 4, model selection criterion are used
to compare the ten models. The indices are listed in Table 12. Suggested by Dhat.CAIC, Dhat.ssBIC, Dhat.BIC, and Dhat.AIC,
without further substantive information, the TN-CXY model can be a good candidate of the best-fit model.

Table 13 provides the results of TN-CXYGMMmodel. It can be interpreted that (1) class 1 has a higher average initial level
but a smaller average slope; (2) class 2 has larger variations for initial levels and slope; (3) the residual variance of class 2
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Table 11
Steps and fitting models in real data analysis.

Model ei ηi Missingness
N T N T C X I S Y

Step 1: Fit a tentative 2 classes model
TT-ignorable ✓ ✓

Step 2: Fix TN and try different missingness
2 classes GMMs
TN-X ✓ ✓ ✓

TN-XI ✓ ✓ ✓ ✓

TN-XS ✓ ✓ ✓ ✓

TN-XY ✓ ✓ ✓ ✓

2 classes EGMMs
TN-CX ✓ ✓ ✓ ✓

TN-CXI ✓ ✓ ✓ ✓ ✓

TN-CXS ✓ ✓ ✓ ✓ ✓

TN-CXY ✓ ✓ ✓ ✓ ✓

Step 3: Fit other models with different number of classes
3 classes GMMs
NN-X ✓ ✓ ✓

4 classes GMMs
NN-X ✓ ✓ ✓

Step 4: Compare selection criteria
Step 5: Interpret the results of the selected model

Note: Abbreviations are as given in Table 3.
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Fig. 5. The history plots for parameters slope[2] and gamma[5].

Table 12
Model selection in real data analysis.

Criteriona 2 classes 3 classes 4 classes
TN-CXS TN-CXY TN-CXI TN-CX TN-XS TN-XY TN-XI TN-X NN-X NN-X

Dbar.AIC 17392 17472 17502 17502 17392 17482 17502 17512 17372 17126

Dbar.BIC 17583.52 17663.52 17693.52 17666.92 17556.92 17646.92 17666.92 17650.32 17536.92 17328.15

Dbar.CAIC 17619.52 17699.52 17729.52 17697.92 17587.92 17677.92 17697.92 17676.32 17567.92 17366.15

Dbar.ssBIC 17469.15 17549.15 17579.15 17568.44 17458.44 17548.44 17568.44 17567.72 17438.44 17207.44

RDIC 22759.24 22704.5 22378.14 22601.28 22562.65 22755.44 22973.52 22520.18 22843.52 23333.2

Dhat.AIC 15192 14942b 17482 19822 21922 23622 25722 27352 15872 15716

Dhat.BIC 15383.52 15133.52 17673.52 19986.92 22086.92 23786.92 25886.92 27490.32 16036.92 15918.15

Dhat.CAIC 15419.52 15169.52 17709.52 20017.92 22117.92 23817.92 25917.92 27516.32 16067.92 15956.15

Dhat.ssBIC 15269.15 15019.15 17559.15 19888.44 21988.44 23688.44 25788.44 27407.72 15938.44 15797.44

DIC 19520 19930 17450 15120 12800 11280 9220 7620 18810 18460
a The definition of each criterion is given in Table 2.
b The shaded cell has the smallest value.
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Table 13
Estimates of TN-CXY GMM in real data analysis.

Parameter Mean S.D. MCs.e.
S.D.

a lowerb upperc Geweke
td

Growth curve parameters

Class 1

Intercept 8.647 0.037 0.026 8.572 8.717 0.007
Slope 0.229 0.009 0.023 0.211 0.247 0.014
Var(I) 0.234 0.028 0.024 0.183 0.293 −0.009
Var(S) 0.014 0.002 0.018 0.011 0.017 0.004
Cov(I, S) −0.036 0.006 0.022 −0.049 −0.026 −0.005
Var(e) 0.044 0.004 0.031 0.037 0.053 0.024
dfye 2.386 0.205 0.043 2.118 2.9 0.05

Class 2

Intercept 6.196 0.047 0.02 6.103 6.287 0.054
Slope 0.315 0.011 0.022 0.295 0.336 0.036
Var(I) 1.326 0.084 0.017 1.167 1.497 0.02
Var(S) 0.034 0.004 0.022 0.027 0.042 0.01
Cov(I, S) 0.01 0.014 0.021 −0.018 0.037 −0.023
Var(e) 0.372 0.02 0.033 0.336 0.412 −0.061
dfy 3.2 0.195 0.04 2.85 3.6 −0.042

Probit parameters

Class ϕ10
f

−0.214 0.119 0.051 −0.438 0.018 −0.039
ϕ11 −0.223 0.077 0.051 −0.372 −0.076 0.026

Grade 7

γ ∗

01
g

−0.711 0.532 0.066 −1.843 0.204 −0.255
γ ∗

11
h

−0.132 0.216 0.058 −0.527 0.31 0.231
γx1

i
−0.154 0.108 0.046 −0.368 0.058 0.008

γY1
j

−0.087 0.059 0.065 −0.19 0.038 0.251

Grade 8

γ ∗

02 −1.157 0.446 0.064 −2.097 −0.447 −0.373
γ ∗

12 0.046 0.217 0.055 −0.345 0.489 0.347
γx2 0.113 0.114 0.046 −0.109 0.334 0.032
γY2 −0.108 0.045 0.062 −0.188 −0.021 0.33

Grade 9

γ ∗

03 −0.613 0.454 0.065 −1.519 0.163 −0.462
γ ∗

13 −0.057 0.181 0.056 −0.403 0.292 0.381
γx3 −0.147 0.094 0.046 −0.332 0.038 0.045
γY3 −0.074 0.045 0.064 −0.155 0.022 0.459

Grade 10

γ ∗

04 −0.032 0.512 0.066 −0.861 0.985 −0.426
γ ∗

14 −0.324 0.204 0.059 −0.732 0.029 0.362
γx4 0.059 0.101 0.047 −0.142 0.251 0.128
γY4 −0.166 0.05 0.065 −0.266 −0.084 0.378

Grade 11

γ ∗

05 −1.298 0.421 0.065 −2.13 −0.442 −0.192
γ ∗

15 0.341 0.176 0.055 0.015 0.708 0.159
γx5 −0.087 0.091 0.045 −0.263 0.083 0.001
γY5 −0.019 0.04 0.064 −0.092 0.062 0.189

a Ratio of MC error to standard deviation. A value around or less than 0.05 indicates that the corresponding estimate is accurate (Spiegelhalter et al.,
2003).

b 2.5 percentile.
c 97.5 percentile.
d Geweke test t value. An absolute value less than 1.96 indicates that the corresponding chain has passed the convergence test.
e The degrees of freedom of the multivariate-t .
f The probit coefficient of the class probability for class 1, defined in Eq. (3).
g The probit coefficient of the class membership 1 at Grade 7, defined in Eq. (10).
h The probit coefficient of the class membership 2 at Grade 7, defined in Eq. (10).
i The probit coefficient of the covariate at Grade 7, defined in Eq. (10).
j The probit coefficient of the potential output Y at Grade 7, defined in Eq. (10).

is much larger than that of class 1; (4) in class 1 the initial level and the slope are significantly negatively correlated at the
confidence level of 95%; (5) themissingness is not related to gender because none of the coefficients of gender are significant
at the α level of 0.05; (6) at grade 11 adolescents in class 2 are more likely to miss tests than those in class 1 because the
probit coefficient of class membership for grade 11 is significantly positive; and (7) at grades 8 and 10 students with higher
potential scores are more likely to miss tests than the students having lower scores because the probit coefficients of the
potential outcomes y at the two grades are significantly negative.

7. Conclusion

In this article, the proposed robust growth mixture models with missing data, the Bayesian estimation method, and
the model selection criteria were demonstrated using both simulation studies and real data analysis. Simulation studies
showed (1) themodels can accurately recover parameters using the proposedBayesianmethod, and (2) almost all the criteria
can correctly identify the true model with high certainty. The real data analysis demonstrated the feasibility of the model,
the method, and the criteria in typical longitudinal growth studies such as medical, psychological, educational, and social
research.
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Appendix A. Complete-data likelihood functions

For NT robust GMMs, as in case (13), the likelihood function for the whole sample is

L(n,t)(y, η,m, z) ∝

N
i=1

K
k=1

πik(xi) × |φk|
−T/2 exp


−

1
2φk

(yi − 3kηi)
′(yi − 3kηi)


Γ

 uk+qk
2


(ukπ)

qk
2 Γ

 uk
2

 |9k|
−

1
2

×


1 +

1
uk

(ηi − βk)
′9−1

k (ηi − βk)

−
uk+qk

2 T
t=1


τ
mit
ikt (1 − τikt)

1−mit


zik

,

N
i=1

K
k=1

(vik)
zik , (A.1)

where ‘‘,’’ means ‘‘is defined as’’, πik(xi) is defined by Eq. (3), τikt is defined by Eq. (5) for the LCD missingness, by Eq. (6) for
the LCID missingness, by Eq. (8) for the LCSD missingness, and by Eq. (10) for the LCOD missingness.

For TN robust GMMs, as in case (12), the likelihood function for the whole sample is

L(t,n)(y, η,m, z) ∝

N
i=1

K
k=1


πik(xi) × |9k|

−1/2 exp

−

1
2
(ηi − βk)

′9−1
k (ηi − βk)



×

Γ


νk+T

2


(νkπ)

T
2 Γ
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2
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T
2
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1
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−
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×

T
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τ
mit
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,

N
i=1

K
k=1

(vik)
zik , (A.2)

with the same notations as in Eq. (A.1).
For TT robust GMMs, as in case (14), the likelihood function for the whole sample is

L(t,t)(y, η,m, z) ∝

N
i=1

K
k=1

πik(xi) ×

Γ


νk+T

2


(νkπ)

T
2 Γ


νk
2

 |φk|
−

T
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1 +
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1 +
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′9−1

k (ηi − βk)

−
uk+qk

2

×

T
t=1


τ
mit
ikt (1 − τikt)

1−mit


zik

,

N
i=1

K
k=1

(vik)
zik , (A.3)

with the same notations as in Eq. (A.1).

Appendix B. Posterior distributions

B.1. For robust GMMs with t-distributed measurement errors

Let nk =
N

i=1 zik be the number of individuals who are in the kth class, and notate the set (η1, η2, . . . , ηN ) as η.
The conditional posterior distribution for φk (k = 1, 2, . . . , K) is

p(φk|3k, η, y, z, νk) ∝ φ
−

v0k+nkT
2 −1

k exp


−
s0k
2φk

 N
i=1


1 +

1
νkφk

(yi − 3kηi)
′(yi − 3kηi)

−
νk+T

2 zik
.

The conditional posterior distribution for νk (k = 1, 2, . . . , K) is

p(νk|y, η, 3, z, φk) ∝

 Γ


νk+T

2


(νk)

T
2 Γ


νk
2


nk

N
i=1


1 +

1
νkφk

(yi − 3kηi)
′(yi − 3kηi)

−
νk+T

2 zik
I[a,b],

where a > 2 and I[a,b] is an indicator function with a value of 1 inside the compact set [a, b] and 0 outside [a, b].
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The conditional posterior distribution for 9k (k = 1, 2, . . . , K) is an inverse Wishart distribution,

9k|βk, η, z ∼ IW (mk1,Vk1) ,

where mk1 = mk0 + nk and Vk1 = Vk0 +
N

i=1 zik(ηi − βk)(ηi − βk)
′.

The conditional posterior distribution for βk (k = 1, 2, . . . , K) is a multivariate normal distribution,

βk|9k, η, z ∼ MN(βk1, 6k1),

where βk1 =

nk9

−1
k + 6−1
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−1

9−1

k
N
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k0 βk0


and 6k1 =
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k0

−1
.

For ϕk, when k = 1 the conditional posterior distribution for ϕ1 is

p(ϕ1|ϕ2, z, X) ∝ |6ϕ1|
−1/2 exp
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1
2
(ϕ1 − µϕ1

)′6−1
ϕ1 (ϕ1 − µϕ1
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i ϕ1)] + zi2 log[Φ(X ′

iϕ2) − Φ(X ′

i ϕ1)]


;

when 2 ≤ k ≤ K − 2, the conditional posterior distribution of ϕk is

p(ϕk|ϕk−1, ϕk+1, z, X) ∝ |6ϕk|
−1/2 exp


−

1
2
(ϕk − µϕk

)′6−1
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;

and when k = K − 1, the conditional posterior distribution of ϕK−1 is

p(ϕK−1|ϕK−2, z, X) ∝ |6ϕK−1 |
−1/2 exp
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.

The conditional posterior distribution for γ t (t = 1, 2, . . . , T ) is

p(γ t |ω, x, z,m) ∝ exp
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,

where Φ(ω′

iγ t) is defined by Eq. (5).
The conditional posterior distribution for zi (i = 1, 2, . . . ,N) is a multinomial distribution,

zi|φ, 9, β, z, y, ϕ, x,m, η ∼ M nomial(1, π∗

i1, π
∗

i2, . . . , π
∗

iK ),

where π∗

ik = vik/
K

i=1 vik with vik defined in Eq. (A.2).
The conditional posterior distribution for ηi (i = 1, 2, . . . ,N) is a multivariate normal distribution,

ηi|φ, 9, β, zi, yi ∼ MN(µηi, 6ηi),

where µηi =
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The conditional posterior distribution for the missing data ymis
i (i = 1, 2, . . . ,N) is a normal distribution,

ymis
i |zi, ηi, φ ∼ MN


K

k=1

zik(3kηi),

K
k=1

zik(ITφk)


,

and its dimension and location depend on the correspondingmi value.
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B.2. For robust GMMs with t-distributed random effects

The conditional posterior distribution for φk (k = 1, 2, . . . , K) is an inverse gamma distribution,

φk|3k, η, y, z ∼ IG (ak1/2, bk1/2) ,

where ak1 = v0k + nk T and bk1 = s0k +
N

i=1 zik(yi − 3kηi)
′(yi − 3kηi).

The conditional posterior distribution for 9k (k = 1, 2, . . . , K) is an inverse Wishart distribution,

9k|βk, η, z ∝ |9k|
−

nk
2

N
i=1


1 +

1
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(ηi − βk)
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k (ηi − βk)

−
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.

The conditional posterior distribution for βk (k = 1, 2, . . . , K) is a multivariate normal distribution,

βk|9k, η, z ∝

N
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.

The conditional posterior distribution for uk (k = 1, 2, . . . , K) is
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where c > 2 and I[c,d] is an indicator function with a value of 1 inside the compact set [c, d] and 0 outside [c, d].
For ϕk, when k = 1 the conditional posterior distribution for ϕ1 is

p(ϕ1|ϕ2, z, X) ∝ |6ϕ1|
−1/2 exp


−
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;

when 2 ≤ k ≤ K − 2, the conditional posterior distribution of ϕk is

p(ϕk|ϕk−1, ϕk+1, z, X) ∝ |6ϕk|
−1/2 exp


−

1
2
(ϕk − µϕk

)′6−1
ϕk (ϕk − µϕk

)

+

N
i=1


zik log[Φ(X ′

iϕk) − Φ(X ′

iϕk−1)] + zi,k+1 log[Φ(X ′

i ϕk+1) − Φ(X ′

iϕk)]


;

and when k = K − 1, the conditional posterior distribution of ϕK−1 is
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The conditional posterior distribution for γ t (t = 1, 2, . . . , T ) is

p(γ t |ω, x, z,m) ∝ exp
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,

where Φ(ω′

iγ t) is defined by Eq. (5).
The conditional posterior distribution for zi (i = 1, 2, . . . ,N) is a multinomial distribution,

zi|φ, 9, β, z, y, ϕ, x,m, η ∼ M nomial(1, π∗

i1, π
∗

i2, . . . , π
∗

iK ),

where π∗

ik = vik/
K

i=1 vik with vik defined in Eq. (A.1).
The conditional posterior distribution for ηi (i = 1, 2, . . . ,N) is a multivariate normal distribution,

ηi|φ, 9, β, zi, yi ∼ MN(µηi, 6ηi),

where µηi =
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The conditional posterior distribution for the missing data ymis
i (i = 1, 2, . . . ,N) is a normal distribution,

ymis
i |zi, ηi, φ ∼ MN


K

k=1

zik(3kηi),

K
k=1

zik(ITφk)


,

and its dimension and location depend on the correspondingmi value.

B.3. For robust GMMs with t-distributed measurement errors and random effects

Let nk =
N

i=1 zik be the number of individuals who are in the kth class, and notate the set (η1, η2, . . . , ηN ) as η.
The conditional posterior distribution for φk (k = 1, 2, . . . , K) is

p(φk|3k, η, y, z, νk) ∝ φ
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The conditional posterior distribution for νk (k = 1, 2, . . . , K) is

p(νk|y, η, 3, z, φk) ∝
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where a > 2 and I[a,b] is an indicator function with a value of 1 inside the set [a, b] and 0 outside [a, b].
The conditional posterior distribution for 9k (k = 1, 2, . . . , K) is an inverse Wishart distribution,

9k|βk, η, z ∝ |9k|
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2
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1
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′9−1

k (ηi − βk)
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.

The conditional posterior distribution for βk (k = 1, 2, . . . , K) is a multivariate normal distribution,

βk|9k, η, z ∝

N
i=1
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.

The conditional posterior distribution for uk (k = 1, 2, . . . , K) is

p(uk|η, 9k, βk, z) ∝
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where c > 2 and I[c,d] is an indicator function with a value of 1 inside the compact set [c, d] and 0 outside [c, d].
For ϕk, when k = 1 the conditional posterior distribution for ϕ1 is
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The conditional posterior distribution for γ t (t = 1, 2, . . . , T ) is

p(γ t |ω, x, z,m) ∝ exp
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,

where Φ(ω′

iγ t) is defined by Eq. (5).
The conditional posterior distribution for zi (i = 1, 2, . . . ,N) is a multinomial distribution,

zi|φ, 9, β, z, y, ϕ, x,m, η ∼ M nomial(1, π∗
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iK ),

where π∗

ik = vik/
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i=1 vik with vik defined in Eq. (A.2).
The conditional posterior distribution for ηi (i = 1, 2, . . . ,N) is a multivariate normal distribution,

ηi|φ, 9, β, zi, yi ∼ MN(µηi, 6ηi),

where µηi =
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The conditional posterior distribution for the missing data ymis
i (i = 1, 2, . . . ,N) is a normal distribution,

ymis
i |zi, ηi, φ ∼ MN


K

k=1

zik(3kηi),

K
k=1

zik(ITφk)


,

and its dimension and location depend on the correspondingmi value.
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