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We propose the use of the latent change and latent acceleration frameworks

for modeling nonlinear growth in structural equation models. Moving to these

frameworks allows for the direct identification of rates of change and accelera-

tion in latent growth curves—information available indirectly through traditional

growth curve models when change patterns are nonlinear with respect to time. To

illustrate this approach, exponential growth models in the three frameworks are

fit to longitudinal response time data from the Math Skills Development Project

(Mazzocco & Meyers, 2002, 2003). We highlight the additional information gained

from fitting growth curves in these frameworks as well as limitations and extensions

of these approaches.
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118 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

Growth modeling is an analytic approach for understanding within-person change

and between-person differences in within-person change. The linear growth

model, commonly fit because of its simplicity and interpretability, decomposes

individual observed trajectories into an intercept, representing an individual’s

predicted performance (e.g., score) at a specific point in time (often the first

observation), and a time-invariant linear slope, representing an individual’s rate

of change over the observation period. Each individual’s rate of change or

velocity is constant across time, but this constant rate of change is allowed

to vary over individuals. Thus, the study of between-person differences in the

linear slope conforms to studying between-person differences in a constant rate

of change across all points in time, and studying between-person differences in

the rate of change is a primary interest to researchers studying longitudinal data.

When modeling change that is nonlinear with respect to time, between-person

differences in the rate of change are more difficult to study directly because the

rate of change is not constant across time and the rate of change is often a

combination of multiple latent variables (e.g., linear and quadratic slopes in a

quadratic growth curve). When discussing growth models of nonlinear change,

we represent the most basic to the most complex forms of nonlinearity. That is,

we represent (a) models that are only nonlinear with respect to time but linear

with respect to parameters and random coefficients, such as the quadratic .ynt D
b0n Cb1n � t Cb1n � t2/, log-time .ynt D b0n Cb1n � log.t//, and latent basis .ynt D
b0nCb1n �’t.t// models, where one or more functions or transformations of time

are included; (b) models that are nonlinear with respect to time and nonlinear

with respect to parameters but linear with respect to random coefficients, such

as the following exponential model: ynt D b0n C b1n � exp.’ � t/, where ’ is

an estimated parameter; and (c) models that are nonlinear with respect to time,

random coefficients, and/or parameters, such as the following exponential model:

ynt D b0n Cb1n �exp.b2n � t/. We note that, regardless of model complexity, when

there is a single between-person variable affecting time (e.g., ynt D b0n C b1n �
log.t/, ynt D b0n C b1n � exp.’ � t/, or ynt D b0n C t ^ .b1n//, the variability in

that single between-person variable (e.g., b1n) perfectly reflects between-person

differences in the rate of change even though the parameter itself does not

represent the rate of change and the rate of change varies with time. However,

any time there are two or more between-person variables affecting time (e.g.,

ynt D b0n C b1n � t C b2n � t2 or ynt D b0n C b1n � exp.b2n � t/, the rate of change

is a complex combination of these random coefficients and it is these models

where these issues are magnified.

The goals of this article are twofold. First, we introduce a method in which

the rate of change and between-person differences in the rate of change can be

studied directly in growth models that are nonlinear with respect to time using

latent change score models. Second, we extend this method to study acceleration

and between-person differences in acceleration. We continue with a discussion of
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VELOCITY AND ACCELERATION OF GROWTH 119

growth models with nonlinear trajectories highlighting how the rate of change is

not directly parameterized with an illustrative example involving the exponential

growth model. We then describe the latent change score framework, how growth

models with nonlinear trajectories can be fit in this framework, and how it can

be used to study between-person differences in the rate of change. We then

discuss the latent acceleration framework, how models can be estimated within

this framework, and how it can be used to study between-person differences

in the rate of change and acceleration. Finally, we illustrate these approaches

using longitudinal data from the Math Skills Development Project (Mazzocco &

Myers, 2002, 2003), a prospective longitudinal study of cognitive correlates of

mathematics ability, to study between-person differences in the rate of change

and acceleration in mathematics-related skills.

MODELING NONLINEAR CHANGE

Growth curve models with nonlinear trajectories have parameters that describe

specific features of the nonlinear curve. Certain models, such as those based

on the exponential, logistic, and Gompertz functions, have parameters that map

onto theoretically meaningful aspects of the curve, such as its rate of change at

a specific point in time, asymptotic level, and rate of approach to the asymptotic

level. Other models, such as those based on power functions and polynomials,

have parameters that are difficult to map onto theoretically meaningful aspects

of curve (Cudeck & du Toit, 2002). Often researchers attempt to find a balance

between having a model that fits the data well with a model that yields parame-

ters that are interpretable and of substantive interest. A primary example of this

issue comes from the modeling of human growth. Certain models (e.g., Preece

& Baines, 1978) were developed to adequately account for the data and do so

with parameters that map onto known between-person differences (e.g., timing

of pubertal growth) whereas other models were developed with a greater focus

on data-model fit (e.g., Jolicoeur, Pontier, Pernin, & Sempé, 1988).

To illustrate how nonlinear models, even those with interpretable and theo-

retically meaningful parameters, are unable to parameterize the rate of change

we discuss an exponential model that is relatively simple and commonly used

in applied research (e.g., Burchinal & Appelbaum, 1991). One version of the

exponential model can be written as

Ynt D ynt C unt

ynt D b0n C b1n � .1 � exp.�b2n � t//:
(1)

The first part of Equation 1 decomposes the observed score for person n at

time t .Ynt / into its true .ynt / and unique .unt / scores following core ideas
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120 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

from Classical Test Theory. The second part of Equation 1 is an exponential

trajectory equation for the true scores. In the trajectory equation b0n is the

intercept or predicted score when t D 0 for individual n, b1n is the total

change from the intercept to the asymptotic level for individual n, and b2n

is the rate of approach to the asymptote for individual n. The parameters of

the exponential model completely describe its shape and, at the same time,

highlight certain features of the nonlinear curve—an initial score at t D 0 .b0n/,

how much change is expected to occur because t D 0 .b1n/, and how quickly the

asymptote is approached .b2n/. Additionally, certain parameters can be combined

to understand other features of the curve. For example, the individual asymptotic

level is equal to b0n C b1n and the individual rate of change at t D 0 is b1n � b2n.

Finally, the exponential model can be reparameterized to highlight other aspects

of the curve (see Preacher & Hancock, 2012) based on a researcher’s substantive

interests. For example, if the asymptotic level is of particular interest, then the

following trajectory equation can be specified as

ynt D b0n C .b1n � b0n/ � .1 � exp.�b2n � t//; (2)

where b1n is now the asymptotic level as opposed to the change from t D 0 to

the asymptotic level.

The exponential model of Equation 1 is a nonlinear random coefficient model

(fully nonlinear mixed model) and cannot be directly estimated within the

structural equation modeling framework because b1n and b2n enter the model in

a nonlinear fashion. The nonlinear random coefficient model of Equation 1 can,

however, be approximated within the structural equation modeling framework

by linearizing the target (mean) function through a first-order Taylor series

expansion (see Beal & Sheiner, 1982; Browne, 1993; Browne & du Toit, 1991;

Grimm, Ram, & Hamagami, 2011). Briefly, the model of Equation 1 can be

reexpressed with latent variables mapping onto b0n, b1n, and b2n with factor

loadings equivalent to the partial derivatives of the target function with respect

to each mean. The factor loadings of latent variables are complex nonlinear

functions; however, they only vary with time making the model estimable using

general structural equation modeling software.

Following Browne & du Toit (1991), the target function of the exponential

model of Equation 1 is

�y D �0 C �1 � .1 � exp.��2 � t//: (3)

Taking the partial derivative of Equation 3 with respect to each parameter,

the exponential model at the individual level can be reexpressed as a linear

combination of latent variables, such as

ynt D x0n C x1n � .1 � exp.��2 � t// C x2n � .�1 � t � exp.��2 � t//; (4)
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VELOCITY AND ACCELERATION OF GROWTH 121

where x0n represents the value of ynt when t D 0, x1n represents change from

x0n to the asymptotic level, .1 � exp.��2 � t// is the partial derivative of the

target function with respect to �1, �2 is the mean of the rate parameter b2n, x2n

represents the rate of approach to the asymptotic level, .�1 �t �exp.��2 �t// is the

partial derivative of the target function with respect to �2, and �1 is the mean of

b1n and the latent variable x1n. The mean of x2n is fixed to 0 because this latent

variable affects only the covariance structure of the exponential model and does

not alter its mean structure. Note that xs, and not bs, are contained in Equation

4 because there is not a one-to-one mapping of xs and bs. For example, the

mean of b2n is �2 and the mean of x2n is 0. The model of Equation 4 can be

estimated within the structural equation modeling framework because the latent

variables (x0n, x1n, and x2n) enter the model in a linear (additive) fashion.

A path diagram of the model of Equation 4 is contained in Figure 1. In this

diagram, latent true scores are drawn separately from the observed scores to

highlight how the trajectory is for the latent true scores. The intercept, x0, has

FIGURE 1 Path diagram of an exponential growth model in the traditional latent growth

modeling framework.
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122 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

factor loadings equal to 1; x1 has factor loadings equal to 1 � exp.��2 � t/;

and x2 has factor loadings equal to �1 � t � exp.��2 � t/. The latent variables

x0 and x1 have means (one-headed arrows from the triangle) and all latent

variables have variances (two-headed arrows to and from the same variable)

and covariances (two-headed arrow between latent variables). The mean of b2n

from Equation 1 .�2/ is estimated through the factor loadings of x1 and x2. The

factor loadings for x1 and x2 are set equal to their respective partial derivatives

of the target function using nonlinear constraints, which are available in most

structural equation modeling programs (see Grimm & Ram, 2009).

We note that growth curves with nonlinear trajectories, such as the exponential

model described earlier, do not have parameters that directly reflect the rate of

change because the rate of change is constantly changing with time. A key

feature of many nonlinear models is that the rate of change is a combination

of multiple latent variables (random coefficients within the mixed-effects frame-

work). Thus, there is no single latent variable that maps onto the rate of change

(as the linear slope does in the linear growth model) and therefore, there is not

a latent variable that, by itself, captures the between-person differences in the

rate of change. An additional example of this can be seen with the quadratic

growth model, where between-person variations in the linear and quadratic

slopes combine to create between-person differences in the rate of change. A

limitation of this traditional approach to fitting nonlinear growth models is that

the rate of change is not parameterized in the model even though researchers

have a fundamental interest in the rate of change.

LATENT CHANGE SCORE MODELS

Latent change score modeling (LCS; McArdle, 2001, 2009; McArdle & Ham-

agami, 2001), sometimes referred to latent difference score modeling, is a

framework for studying longitudinal change. Often LCS models are used to

examine time-sequential dependency in multivariate longitudinal data because

these models combine the time-sequential features of autoregressive cross-lag

(e.g., Jöreskog, 1970, 1974) models and the change modeling features of latent

growth models (e.g., McArdle & Epstein, 1987; Meredith & Tisak, 1990) for

longitudinal panel data. In this section, we describe how the latent change score

framework can be used to study between-person differences in the rate of change

in nonlinear models.

In LCS models, as with traditional growth curve models, observed scores at

time t are decomposed into theoretical true scores and unique scores written as

Ynt D ynt C unt : (5)
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VELOCITY AND ACCELERATION OF GROWTH 123

Instead of a trajectory equation for the latent true scores (as in Equation 1), the

latent true scores have an autoregressive relationship such that the true score at

time t is equal to the true score at time t � 1 plus the change that has occurred

between the two. This can be written as

ynt D ynt�1 C �ynt ; (6)

where ynt�1 is the latent true score at time t � 1 and �ynt is the latent change

score.

A trajectory equation is then written for the latent change scores .�ynt /

as opposed to the latent true scores .ynt /. When specifying models for latent

change scores, the derivative of the latent growth model with respect to time

is needed because the latent change scores are the discrete analog of the first

derivative of ynt . Thus, to fit the exponential growth model in Equation 1 using

the latent change score approach, we write

�ynt D b1n � b2n � exp.�b2n � t/; (7)

where b2n is the rate of approach to the asymptote as defined in Equation 1 and

b1n is a rotated version of the change from t D 0 to the upper asymptote (see

Zhang, McArdle, & Nesselroade, 2012).

The model of Equations 5–7 can be fit within the structural equation mod-

eling framework through the same process of linearization with Taylor Series

Expansion. The model for latent difference scores of Equation 7 can be expanded

as

�ynt D x1n � .�2 � exp.��2 � t// C x2n � .�.�2 � �1 � t � �1/ � exp.��2 � t//: (8)

The factor loadings for x1n and x2n are partial derivatives of the first derivative

of the target function as well as the derivatives of the factor loadings in Equation

4 with respect to t . A path diagram of the exponential model based on latent

change scores is contained in Figure 2. In this diagram, the latent true scores

.y0 �y3/ have a fixed unit autoregressive relationship to create the latent change

scores .�y1 ��y3/. The latent intercept, x0, feeds into the first latent true score

and x1 and x2 are indicated by the latent change scores with factor loadings

described in Equation 8. Thus, the factor loadings for x1 equal �2 � exp.��2 � t/
and the factor loadings for x2 equal �.�1 � �2 � t � �1/ � exp.��2 � t/. As in

Figure 1, x0 and x1 have means and x0, x1, and x2 have variances and covari-

ances. Fitting the exponential model of Equation 1 using the traditional growth

modeling approach or Equation 7 using the latent change score approach will

result in the same model expectations and fit. That is, this way of approaching

the estimation of the exponential model does not change the model-implied

trajectory or individual differences in the trajectory. However, the latent change
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124 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

FIGURE 2 Path diagram of an exponential growth model in the latent change score

framework.

approach provides direct information regarding the rate of change because the

latent change scores are the outcome and represent the rate of change at each

measurement occasion, instead of the latent true scores, which are the outcome

with traditionally specified growth models and represent status or position at

each measurement occasion. Sample level information regarding the rate of

change can be found by calculating mean and variance expectations of the latent

change scores.

LATENT ACCELERATION SCORE MODELS

Latent acceleration score (LAS; Hamagami & McArdle, 2007) models take the

LCS models one step further by examining changes in the rate of change or

acceleration, that is,

�ynt D �ynt�1 C ��ynt ; (9)
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VELOCITY AND ACCELERATION OF GROWTH 125

where �ynt is the latent change score at time t, �ynt�1 is the latent change score

at time t � 1, and ��ynt is the change in the rate of change between adjacent

times t � 1 and t or the acceleration. Specifying growth models in the LAS

framework involves specifying a trajectory equation for the latent acceleration

scores .��ynt /. The trajectory equation for the latent acceleration scores is

specified using the second derivative of the latent growth model with respect to

time. Thus, to fit the exponential growth model in Equation 1 using the latent

acceleration approach, we specify

��ynt D b1n � .�b2
2n/ � exp.�b2n � t/; (10)

where b2n is the individual rate of approach to the asymptote as defined in

Equation 1 and b1n is a rotated version of the change from t D 0 to the upper

asymptote.

The model of Equations 9 and 10 can be fit within the structural equation

modeling framework through the same process of linearization with Taylor Series

Expansion. The model for latent acceleration scores of Equation 10 can be

expanded as

��ynt D x1n�.��2
2 �exp.��2 �t//Cx2n �..�2

2 ��1 �t�2��2��1/�exp.��2 �t//: (11)

The factor loadings for x1n and x2n are partial derivatives of the second derivative

of the target function as well as the second derivatives of the factor loadings in

Equation 4 with respect to t . A path diagram of the exponential model based

on latent acceleration scores (Equation 11) is contained in Figure 3. The latent

true scores .y0 � y3/ have a fixed unit autoregressive relationship to create the

latent change scores .�y1 � �y3/, which also have a fixed unit autoregressive

relationship to create the latent acceleration scores .��y2 � ��y3/. The latent

intercept, x0, feeds into the first latent true score and x1 and x2 are indicated by

the latent acceleration scores with factor loadings equal to ��2
2 � exp.��2 � t/

and .�2
2 � �1 � t � 2 � �2 � �1/ � exp.��2 � t/, respectively. Additionally, x1 and

x2 are indicated by the latent change score at Time 2. The constraints for these

factor loadings can be determined by comparing model expectations for the LAS

and LCS models.1 For the exponential model, the factor loadings for x1 and x2

equal
�2

2 �exp.��2�2/

1�exp.��2/
and �.�1 ��2.2��2 �exp.�2/�2�exp.�2/C2��2/

exp.�2/�.exp.�2/�1/2 /, respectively. As in the

previous models, x0 and x1 have means and x0, x1, and x2 have variances and

covariances.

Fitting the exponential growth model defined in Equation 1, Equation 7 using

the latent change score approach, or Equation 10 using the latent acceleration

1This material can be found on the first author’s website as well as information on how commonly

fit growth models (e.g., linear, quadratic, cubic, latent basis) can be fit in the latent change and latent

acceleration frameworks.
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126 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

FIGURE 3 Path diagram of an exponential growth model in the latent acceleration score

framework.

approach will result in the same model expectations and fit. However, a benefit of

moving to the latent acceleration approach is the availability of direct information

regarding both the rate of change and the acceleration, which can be directly

examined and evaluated.

Covariates

The benefits of the latent change and latent acceleration approaches to modeling

and understanding change are amplified when time-invariant covariates are added

as predictors of b0n, b1n, and b2n (similarly for x0n, x1n, and x2n). In traditional

growth curve modeling, the focus is often placed on whether a time-invariant

covariate is predictive of certain aspects of the growth model (e.g., intercept,

change to upper asymptote, rate of approach). For example, and building from

the exponential growth model from Equation 1 (similar equations can be written
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VELOCITY AND ACCELERATION OF GROWTH 127

for the exponential model based on latent changes and latent acceleration scores;

Equation 7 and 10, respectively), if a time-invariant covariate Zn (coded 0/1 for

simplicity) is included as a predictor of b0n, b1n, and b2n, we can write the

following equations:

b0n D ”00 C ”10 � Zn C d0n

b1n D ”01 C ”11 � Zn C d1n

b2n D ”02 C ”12 � Zn C d2n:

(10)

In these equations, ”00 is the predicted score at time t D 0 when Zn D 0, ”10

is the difference in the predicted score at time t D 0 for Zn D 1, d0n is the

individual residual deviation for b0n; ”01 is the predicted total change to the

upper asymptote when Zn D 0, ”11 is the difference in the total change to the

upper asymptote for Zn D 1, and d1n is the individual residual deviation for

b1n; and ”02 is the predicted rate of approach to the asymptote when Zn D 0,

”12 is the difference in the rate for Zn D 1, and d2n is the individual residual

deviation for b2n. Often the significance of ”10, ”11, and ”12 is the primary

interest because these coefficients represent differences in specific aspects of the

curve (e.g., intercept, change to the upper asymptote, and rate of approach to

the asymptote) for the two groups.

An alternative approach to studying the effect of Zn on the growth trajectory

is through indirect effects. In traditional growth modeling, the indirect effect

from Zn to the true scores .ynt / indicates the difference in status between the

two groups at each measurement occasion. That is, the variable Zn could be

included in Figure 1 with directional effects to x0n, x1n, and x2n. The indirect

from Zn to y0, y1, y2, and y3 go through x0n, x1n, and x2n and these indirect

effects indicate the degree to which the covariate, Zn, affects status of the true

score at each measurement occasion. In the latent change framework, these

indirect effects can be examined as well as the indirect effects from Zn to

the latent change scores .�ynt /, which would provide information on how the

covariate is associated with changes in the rate of change of the trajectory over

time. In the latent acceleration framework, the indirect effects from Zn to the

latent acceleration scores .��ynt / can also be studied providing information on

how the covariate is associated with changes in the acceleration of the trajectory

over time. These associations are often of interests to researchers but overlooked

because the effects of Zn on the status, rate of change, and acceleration of the

growth trajectory vary across time in growth models that are nonlinear with

respect to time. Additionally, the significance of these associations can vary

over time.
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128 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

ILLUSTRATIVE EXAMPLE

Data

Illustrative data come from the Math Skills Development Project (Mazzocco &

Myers, 2002, 2003), a longitudinal study of cognitive correlates of mathematics

achievement. Participants were recruited from 1 of 7 participating schools within

the Baltimore County Public School Districts, a diverse district that included

100 elementary schools in the initial year of the study. Seven schools that were

targeted for participation had a low mobility index (to decrease attrition) and a

low rate of free/reduced lunch eligibility (used to screen for poverty) relative to

the district average.

In addition, schools were selected to represent different geographical regions

of this district. The participating schools represented a heterogeneous sample

of neighborhoods, excluding those with the very highest and lowest levels of

socioeconomic status. This deliberate omission served to reduce the presence of

known influences on mathematics outcomes tied to socioeconomic status given

the study’s focus on cognitive correlates of mathematics achievement. In all,

57% of eligible participants enrolled (249 students; 120 boys), of which 88%

were White and 7% were African American (Mazzocco & Myers, 2002).

Measures

Rapid Automatized Naming. The Rapid Automatized Naming task (RAN;

Denckla & Rudel, 1974) is a lexical retrieval task that was administered each

year from kindergarten through eighth grade. The RAN includes three subtests:

Colors, Letters, and Numbers. For each subtest, a brief practice trial was followed

by a timed test trial. A total of 50 stimuli were presented on one page, and the

child was asked to name the stimuli (colored squares, letters, or one-digit num-

bers) as quickly as possible without error. The examiner recorded response times

with a handheld stopwatch. Total response time (RT) for the Numbers subtest

was used as the dependent variable in this illustration. A plot of the RT scores

for the RAN Numbers subtest is contained in Figure 4. The RT scores show

sharp decreases indicating the anticipated improvement in performance in early

elementary school. Improvement slows during late primary school and through

middle school as individuals approach their optimal level of performance.

Mathematical learning disability. Children were categorized into two

groups based on whether they met criteria for mathematical learning disability

(MLD) reported by Mazzocco and colleagues (Mazzocco & Myers, 2003; Mur-

phy, Mazzocco, Hanich, & Early, 2007). Specifically, children were classified as

having a deficient mathematical ability if they consistently scored at or below
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VELOCITY AND ACCELERATION OF GROWTH 129

FIGURE 4 Longitudinal Rapid Automatized Naming Numbers response time scores from

the Math Skills Development Project.

the 10th percentile (or within the 95th percentile confidence interval) relative

to the study sample on either the Test of Early Mathematics–Third Edition or

Woodcock-Johnson Revised Calculations subtest for the majority of the years

during which they participated in the study. A total of 25 participants met these

criteria, consistent with prevalence reports of MLD at �6–10% of school-age

children (e.g., Shalev, 2007). The remaining 224 children were classified as not

having MLD.

Analytic Techniques

Various growth models were fit to the longitudinal RAN Numbers RT data

using the approaches described earlier. Given the longitudinal trajectories several

models may be appropriate including the latent basis (shape, free curve, unstruc-

tured) growth model, a power model .ynt D b0n C b1n � tb2n/, and an exponential

model. We present results from the exponential growth model discussed because

of its common use, it is an inherently nonlinear model with two coefficients

(latent variables) that affect the rate of change, and model fits were comparable.

Thus, the traditional exponential growth model (Equation 1), the exponential

growth model based on latent change scores (Equation 7), and the exponential
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130 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

growth model based on latent acceleration scores (Equation 10) were fit to the

longitudinal RAN Numbers data in the structural equation modeling framework

by linearization through Taylor Series Expansion (Equations 4, 8, and 11). One

modification was made: the residual variance was forced to follow an exponential

trend following notions from Browne and du Toit (1991; see also Grimm &

Widaman, 2010). That is, the residual variance was expected to show sharp

declines as response time performance improved and stabilized and the between-

person differences in reaction time decreased. Forcing the residual variance to be

equal across time led to a significant decrease in model fit; allowing the residual

variance to be separately estimated at each grade led to a good fitting model but

was less parsimonious. The goal of this first set of models was to illustrate how

model fit is identical and how additional information can be gained from using

the latent change and acceleration approaches.

Next, the same three models were fit with MLD (dummy coded 0/1 and

then mean centered) as a time-invariant covariate and predictor of x0n, x1n, and

x2n. The predictor variable was mean centered because this is required to have

proper estimation of covariate effects when using the Taylor Series Approxima-

tion (Grimm et al., 2011). The goal of this series of models was to illustrate

how indirect effects from the time-invariant covariate to the latent true scores,

latent change scores, and latent acceleration scores can aid in understanding the

effects of such variables on predicted scores, rates of change, and acceleration.

Mplus (v. 6.11) was used for all analyses with the full information maximum

likelihood estimator to account for data incompleteness. All programming scripts

are available on the first author’s website.

RESULTS

The results section is presented in two parts. First, results from fitting the

exponential model using the traditional growth modeling framework, the latent

change framework, and the latent acceleration framework are presented. In this

first section, we examine model fit statistics and parameter estimates and discuss

the additional information gained through the latent change and acceleration

frameworks. In the second section, we describe the results of using the three

different frameworks to understand individual differences in the change pattern

for the RAN RTs between normative children and children identified as having

an MLD. Again we highlight the additional information gained through the use

of the latent change and acceleration frameworks.

Exponential Growth Models

Fit statistics and parameter estimates from the exponential model fit in the

three different frameworks are contained in Table 1. The fit of the exponential
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VELOCITY AND ACCELERATION OF GROWTH 131

TABLE 1

Parameter Estimates and Fit Statistics for Traditional Exponential Growth Model,

Exponential Growth Model Based on Latent Change Scores, and Exponential Growth

Model Based on Latent Acceleration Scores

Parameter

Traditional

Exponential

Latent Change

Exponential

Latent Acceleration

Exponential

Mean estimates
�0 56.395 (1.172) 56.395 (1.172) 56.395 (1.172)
�1 �36.696 (1.010) �45.839 (1.504) �57.261 (2.251)
�2 .430 (.016) .430 (.016) .430 (.016)

Factor loadings for x1n

y1 D .000 — —
y2; �y2; �y2 .349 (.011) .280 (.006) .224 (.003)

y3; �y3; ��y3 .576 (.014) .182 (.001) �.078 (.003)
y4; �y4; ��y4 .724 (.013) .118 (.001) �.051 (.001)
y5; �y5; ��y5 .821 (.012) .077 (.002) �.033 (.000)
y6; �y6; ��y6 .883 (.009) .050 (.002) �.022 (.000)

y7; �y7; ��y7 .924 (.007) .033 (.002) �.014 (.000)
y8; �y8; ��y8 .951 (.006) .021 (.002) �.009 (.000)
y9; �y9; ��y9 .968 (.004) .014 (.001) �.006 (.000)

Factor loadings for x2n

y1 D .000
y2; �y2; �y2 �23.881 (.566) �17.016 (.545) �10.151 (.730)
y3; �y3; ��y3 �31.082 (.926) �2.734 (.656) 11.885 (.298)

y4; �y4; ��y4 �30.342 (1.264) 3.648 (.526) 4.822 (.256)
y5; �y5; ��y5 �26.327 (1.467) 5.906 (.317) 1.243 (.281)
y6; �y6; ��y6 �21.417 (1.514) 6.142 (.164) �.425 (.227)

y7; �y7; ��y7 �16.725 (1.440) 5.493 (.147) �1.079 (.153)
y8; �y8; ��y8 �12.698 (1.291) 4.548 (.188) �1.225 (.088)
y9; �y9; ��y9 �9.444 (1.109) 3.593 (.210) �1.137 (.043)

Variance/Covariance estimates

¢2

0
192.073 (29.365) 192.073 (29.365) 192.073 (29.365)

¢2

1
138.217 (22.336) 268.945 (49.917) 538.809 (112.863)

¢2

2
.019 (.005) .019 (.005) .019 (.005)

¢10 �158.513 (25.185) �218.507 (37.600) �298.557 (55.588)

¢20 .835 (.317) .835 (.317) .835 (.317)
¢21 �.680 (.261) �1.320 (.422) �2.236 (.666)

¢2

u1
151.002 (21.780) 151.002 (21.780) 151.002 (21.780)

¢2

u2
51.250 (3.980) 51.250 (3.980) 51.250 (3.980)

¢2

u3
19.331 (1.644) 19.331 (1.644) 19.331 (1.644)

¢2

u4
9.118 (.817) 9.118 (.817) 9.118 (.817)

¢2

u5
5.850 (.358) 5.850 (.358) 5.850 (.358)

¢2

u6
4.804 (.288) 4.804 (.288) 4.804 (.288)

¢2

u7
4.470 (.333) 4.470 (.333) 4.470 (.333)

¢2

u8
4.363 (.362) 4.363 (.362) 4.363 (.362)

¢2

u9
4.328 (.375) 4.328 (.375) 4.328 (.375)

Fit statistics

¦2 (df) 165 (42) 165 (42) 165 (42)

RMSEA (CI) .109 (.092–.127) .109 (.092–.127) .109 (.092–.127)
CFI .915 .915 .915
TLI .927 .927 .927

Note. Standard errors contained within parentheses unless otherwise noted. Em dashes signify that
parameter is not estimated. RMSEA D root mean square error of approximation; CFI D comparative fit

index; TLI D Tucker-Lewis index.
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132 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

model was identical across the different approaches indicating the model-implied

trajectories did not vary as a function of using the latent change or latent

acceleration approaches. Additionally, several parameter estimates were identical

including the intercept mean .�0/ and variance .¢2
0 /, mean and variance of the

rate of approach (�2 and ¢2
2 ), covariance between the intercept and rate of

approach .¢20/, and the residual variances .¢2
u1 � ¢2

u9/. The factor loadings for

x1n and its associated parameters, such as its mean .�1/ variance .¢2
1 / and

covariances with the intercept .¢10/ and rate of approach .¢21/, were altered

due to its rotation (see Zhang et al., 2012). Parameter estimates from the latent

change and acceleration models can be rotated back to the traditional exponential

growth model to aid interpretation. That is, x1n in the exponential model has a

clear interpretation—change from time t D 0 to the asymptotic level; however,

x1n in the latent change and acceleration model loses that clear interpretation.2

Focusing on the traditional approach to fitting the exponential model, the

mean of the intercept was 56.395 s representing the predicted reaction time for

kindergarten children in this sample. On average, reaction time was predicted

to improve 36.696 s to an asymptotic level of 19.699 s. The average rate of

approach to the asymptotic level was .430 and is indicative of the shape of

the exponential curve. The factor loadings for x1n are very informative in this

framework because they are indicative of the rate of approach because the mean

of the rate of approach .�2/ is the only parameter controlling how the factor

loadings for x1n change. For example, the factor loading for y2 (first grade)

was .349 and indicates that 35% of the total change to the asymptotic level

was gained from kindergarten through first grade, on average. Furthermore, the

factor loading for y9 (eighth grade) was .968 indicating that approximately 97%

of the total change to the asymptotic level was gained by eighth grade. Thus,

on average, the participants were close to their predicted idealized performance

by eighth grade.

There were significant between-child differences in the intercept .¢2
0 D

192:073/, total change to the lower asymptotic level .¢2
1 D 138:217/, and rate

of approach .¢2
2 D 0:019/. Thus, children differed in their RT in kindergarten,

showed different amounts of improvement in RT, and approached their asymp-

2The rotation of x1n from the latent change model to the traditional model in the exponential

model is

�1.lcm/ D �1.lcs/ �
�2 � exp.��2/

1 � exp.��2/
;

where �1.lcm/ is the mean of x1n in the traditional exponential model, �1.lcs/ is the mean of x1n

in the latent change exponential model, �2 � exp.��2/ is the factor loadings from x1n to the latent

change scores at the second occasion in the latent change score model, and 1 � exp.��2/ is the

factor loading from x1n to the true score at the second occasion in the traditional specification.

Additionally, we note that the correlations involving x1n are invariant across frameworks.
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VELOCITY AND ACCELERATION OF GROWTH 133

totic level at significantly different rates. Furthermore, children who had slower

reaction times in kindergarten tended to show greater improvements in their

reaction time (correlation between x0n and x1n was ¡10 D �:97). Children who

had slower RT in kindergarten tended to approach their asymptotic levels more

quickly (correlation between x0n and x2n was ¡20 D :44). Finally, children who

showed more total improvement tended to approach their asymptotic level more

quickly (correlation between x1n and x2n was ¡21 D �:42/. Figure 5A is a plot

of the mean predicted trajectory with 95% confidence bound on the between-

person differences in the trajectory.

In the latent change and acceleration frameworks the information just pre-

sented can be obtained, although some of this information is gained indirectly

through transformations. Specifically, the mean of x1n, �1, is not the total amount

of change to the asymptotic level in the latent change and acceleration frame-

works. That is, the scale of x1n in these frameworks prevents direct interpretation

of its associated parameter estimates. Thus, parameter estimates associated with

x1n should be rotated before interpreted when fitting models within the latent

change and acceleration frameworks.

The latent change and acceleration frameworks do provide additional infor-

mation regarding rates of change, variability in rates of change, acceleration,

and variability in acceleration across time and participants that the traditional

growth modeling framework does not. Model implied means and variances

of the latent change and acceleration scores were requested from the latent

acceleration model. From this information we calculated the mean rate of change

and acceleration across time as well as a 95% confidence bound on the between-

person differences in each. This information is plotted in Figures 5B and 5C.3

From Figure 5B, we see that the rate of change gradually approaches 0 as

children progress through school and approach their asymptotic RT on the RAN

Numbers. Additionally, we note large individual differences in the rate of change

in primary school and the magnitude of the individual differences in the rate

of change diminishes as children progress through late elementary and middle

school. A reference line at a rate of change equal to 0 is included in the plot

and from this reference line we can see that some children are not predicted to

show changes in their RT after sixth grade. From Figure 5C, we see that the

average acceleration, or how quickly the rate of change is changing, gradually

diminishes over time as well as the magnitude of the between-person differences

3Estimates of the rate of change at the first occasion and estimates of acceleration at the first

and second occasion were generated by including latent variables before the first measurement

occasion in kindergarten. Including latent variables before the first measurement occasion enabled

the inclusion of a latent change score for the kindergarten occasions and latent acceleration scores

for the kindergarten and first-grade occasions. The inclusion of these latent variables does not change

model fit or the model implied trajectories but provides information regarding rate of change and

acceleration at the first two occasions.
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134 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

(a)

(b)

FIGURE 5 (A) Predicted mean trajectory with 95% interval on the between-person

differences, (B) Predicted rate of change with 95% interval on between-person differences,

and (C) Predicted acceleration with 95% interval on between-person differences based on

exponential growth curve. Note. RAN D rapid automatized naming; RT D response time.

(continued )
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VELOCITY AND ACCELERATION OF GROWTH 135

(c)

FIGURE 5 (Continued).

in acceleration. By eighth grade, acceleration is near 0 as children approach their

asymptotic level on this particular measure of lexical retrieval.

Inclusion of Time-Invariant Covariates

Children’s MLD was dummy coded (0 D normative, 1 D MLD), mean centered,

and included as a predictor of x0n, x1n, and x2n to evaluate mean differences

in these individual parameters between children categorized as normative versus

children categorized with an MLD. Mean centering makes the Level 2 intercepts

(”00, ”01, and ”02) equal the expected sample level values and the Level 2

regression coefficients (”10, ”11, and ”12) remain the expected difference between

children with versus without an MLD.

Parameter estimates for these effects are presented in Table 2 for the three

different frameworks. The predicted differences in x0n were identical across

the three frameworks because the intercept of the exponential model has the

same interpretation in each framework—predicted performance when t D 0

(kindergarten). Results suggest children with MLD had slower reaction times

(by 22.82 s) compared with normative children at kindergarten indicating their

fluency with number naming to be delayed, consistent with evidence of deficits in
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136 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

TABLE 2

Parameter Estimates for the Traditional Exponential Growth Model, Exponential Growth

Model Based on Latent Change Scores, and Exponential Growth Model Based on

Latent Acceleration Scores With Time-Invariant Covariates

Parameter Traditional

Latent Change

Exponential

Latent Acceleration

Exponential

Regression coefficients

”00 56.535 (1.111) 56.535 (1.111) 56.535 (1.111)

”10 22.823 (3.664) 22.823 (3.664) 22.823 (3.664)

”01 �36.818 (.955) �46.054 (1.437) �57.607 (2.173)

”11 �20.090 (3.204) �28.418 (4.802) �39.662 (7.237)

”02 D 0.000 D 0.000 D 0.000

”12 .133 (.052) .133 (.052) .133 (.052)

Variance/Covariance parameters

¢2
0 150.436 (26.078) 150.436 (26.078) 150.436 (26.078)

¢2
1 106.206 (19.640) 204.613 (44.793) 412.566 (103.077)

¢2
2 .017 (.005) .017 (.005) .017 (.005)

¢10 �122.036 (22.203) �166.741 (33.536) �226.196 (50.035)

¢20 .571 (.298) .571 (.298) .571 (.298)

¢21 �.456 (.245) �.988 (.400) �1.758 (.637)

mapping number names to quantities among children with MLD (e.g., Mazzocco,

Feigenson, & Halberda, 2011). The estimated effects of having an MLD on x1n

varied over frameworks due to its rotation in the latent change and acceleration

models. However, standardized coefficients were invariant across the frameworks

indicating the MLD status accounted for the same proportion of variance in

x1n. Estimates indicated children with MLD showed greater improvements in

reaction time (by 20.09 s) compared with normative children—likely associ-

ated with their slower reaction time during kindergarten. Finally, differences

in x2n, the rate of approach to the asymptotic level, were identical across

the three frameworks and indicated that children with MLD approached their

asymptotic level more quickly than normative children. The rate of approach

was .133 greater for children with MLD. Thus, it appears that children with

MLD reach their optimal performance earlier than normative children. Overall,

the effects of the time-invariant predictor were identical over framework even

though the information is conveyed with different estimates due to the rotation

of x1n.

Indirect effects from the time-invariant covariate were then calculated in each

framework. In the traditional growth modeling framework, the total indirect

effects from the time-invariant covariate to the true scores translate into the

expected differences in RAN Number RT at each occasion. Figure 6A is a

plot of this indirect effect along with 95% confidence bound. As seen in this
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VELOCITY AND ACCELERATION OF GROWTH 137

(a)

(b)

FIGURE 6 Differences in RAN Numbers for normative children versus children with a

mathematical learning disability in (A) predicted scores, (B) rate of change, (C) acceleration.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 0
9:

05
 0

8 
A

pr
il 

20
13

 



138 GRIMM, ZHANG, HAMAGAMI, MAZZOCCO

(b)

FIGURE 6 (Continued ).

figure, the difference between normative children and children with MLD in

RAN Numbers RT diminish over time; however, they remained statistically

significant over the entire observation period (kindergarten through eighth grade).

Thus, normative children were predicted to outperform children with MLD in

every grade; however, these differences were largest during the early grades

and smallest toward the end of the observation period. Thus, examining indirect

effects in the traditional latent growth model allows for the examination of

expected differences in status or position (RT) at each measurement occasion

and does not examine differences in the rate of change or the acceleration of

the growth trajectory.

Indirect effects were then modeled in the latent change and latent acceleration

frameworks. Indirect effects to the true scores can be studied in these frameworks

in the same manner and the same conclusions are reached. However, additional

indirect effects can be studied. That is, indirect effects from the time-invariant

covariate to the latent change scores in the latent change framework and to

the latent change and acceleration scores in the latent acceleration framework.

Plots of the indirect effects to the latent change scores are contained in Figure

6B. In this figure the difference in the rate of change between the normative

children and children with MLD is plotted along with 95% confidence bounds.
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VELOCITY AND ACCELERATION OF GROWTH 139

Differences in the rate of change between the groups gradually diminished over

time and became nonsignificant by sixth grade. Thus, the normative children and

children with MLD do differ in the rate of change through elementary school

but do not differ in the rate of change of this trajectory in junior high school.

Utilizing the latent acceleration framework we additionally examined the

effect of the time-invariant covariate on acceleration by examining the total

indirect effect from the time-invariant covariate to the latent acceleration scores.

The difference in acceleration, along with 95% confidence interval, between the

normative children and children with MLD is plotted in Figure 6C. Differences

in acceleration diminished over time. However, differences in acceleration were

significant across the entire observation period. That is, children with MLD had

greater acceleration of their reaction time trajectories from kindergarten through

eighth grade compared with normative children. Thus, utilizing the latent change

and acceleration frameworks can aid in the interpretation of the effects that time-

invariant covariates have on the rate of change and acceleration of the growth

trajectories.

DISCUSSION

In this article, we presented how the latent change and acceleration frameworks

can be used to study individual differences in the rate of change and acceleration

in latent growth models. The approach does not change the model-implied

trajectories or model fit but is able to provide additional information regarding

(a) how the rate of change and acceleration of the growth curve changes over

time, (b) individual differences in these aspects of growth, and (c) how time-

invariant covariates affect these aspects of the growth. The proposed approach

shares similarities with work by Zhang et al. (2012) on growth rate models,

where they showed how growth models could be reparameterized to focus on the

instantaneous rate of change. The current approach involving the latent change

framework can be seen as a discrete analog. However, the current approach

allows for the examination of individual differences in acceleration in addition

to the rate of change.

The proposed approach is especially useful when modeling change that is

nonlinear with respect to time and when multiple parameters simultaneously

affect the rate of change (and acceleration). Growth models with nonlinear

trajectories are a valuable tool for longitudinal data analysis and have several

benefits over the linear growth model as periods of acceleration and deceleration,

and asymptotic levels can be studied (Burchinal & Appelbaum, 1991; Grimm

et al., 2011). However, nonlinear growth models are not without their limitations.

In addition to the lack of focus on the rate of change, a limitation of certain

models with nonlinear trajectories, such as the quadratic model, is that model
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parameters are difficult to interpret (Cudeck & du Toit, 2002). However, by

focusing on the rate of change and acceleration and between-person differences

therein makes the structure of change and the potential lack of interpretability

of model parameters a nonissue.

A third limitation of growth models with nonlinear trajectories is that certain

models have parameters that lie outside of the observation period. For example,

the logistic growth model has lower and upper asymptotic levels, which lie

outside the observation period, and trying to understand individual differences in

these parameters may be meaningless because they are never realized. Similarly,

b1n in the exponential model (Equation 1) is the predicted individual change from

t D 0 to the individual’s asymptotic level, which lies outside of the observation

period. In our illustrative example, participants’ changed �97% of the way to

their asymptotic level (loading of x1n at Grade 8), but evaluating total change

to the asymptotic level extends beyond the eighth-grade assessment. Thus, ex-

amining between-person differences in individual change to their asymptotic

level or the asymptotic level itself is less informative than examining between-

person differences in change to the final timepoint (eighth grade). Examining the

indirect effects from time-invariant covariates to observed scores in nonlinear

growth models can provide this information along with the appropriate standard

error to evaluate its significance.

A fourth limitation involves varying parameterizations of the same model.

As described in the introduction, nonlinear models are often reparameterized

to highlight certain aspects of the curve over others. These reparameterizations

can make comparisons across studies difficult. Utilizing the latent change and

acceleration frameworks make reparameterizations unimportant because the fo-

cus is placed on the rate of change and acceleration, which are invariant to

reparameterizations.

Limitations of the Proposed Approaches

Fitting nonlinear growth models within the latent change and acceleration frame-

works provides additional information about the growth trajectories; however,

these approaches are not without their shortcomings. The main limitation is

the discrete nature of time. That is, these models cannot be fit to longitudinal

data with individually varying timepoints without some adjustment—a limitation

shared with growth models fit within the basic structural equation modeling

framework. The second limitation is on determining the functional constraint

for the factor loading(s) to the first latent change score in the latent acceleration

framework. In simple additive models, the factor loading is equal to
œ2;las �œ1;lcs

œ2;lcs �œ1;lcs
,

where œ2;las is the factor loading to the second latent change score in the latent

acceleration score model, œ1;lcs is the factor loading to the first latent change
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score in the latent change score model, and œ2;lcs is the factor loading to the

second latent change score in the latent change score model. However, in more

complex models, such as the exponential model fit to the RAN Numbers RT

data, this is not the case. In these cases, the constraint must be determined for

each model. The third limitation is the rotation of the growth parameters in the

latent change and acceleration frameworks as these growth parameters lose their

inherent meaning. The fourth limitation is that certain models have first and/or

second derivatives that are undefined at certain values of t and this appears to be

problematic when fitting these models within the latent change and acceleration

models (e.g., ynt D b0n C b1n �
p

t) as model fits are not identical.

Other Considerations

The exponential growth model was discussed throughout the article for illus-

trative purposes, especially because of the benefits of the proposed approaches

when two or more between-person differences affect the rate of change. How-

ever, we note that the exponential model is not the only model that may be

appropriate for these data. When approaching longitudinal data that are obviously

nonlinear with respect to time, there are various approaches to understanding

which models are reasonable representations of the individual change trajecto-

ries and between-person differences therein. A confirmatory model comparison

approach can be taken where various models are tested against the data. An

alternative approach is more exploratory and follows the initial approach taken

by Meredith and Tisak (1990), whereby the latent basis model is fit and the basis

coefficients are examined as well as the residuals to determine an appropriate

functional form as well as to determine the number of growth factors needed

(see also Grimm, Steele, Ram, & Nesselroade, in press).

The proposed approach is a model-driven approach, where the functional form

of change is specified and factor loadings for the latent change and acceleration

scores are specified based upon the first and second derivative of the chosen

functional form. Other approaches to understanding rates of change and acceler-

ation can be found in Boker (2001), Boker and Nesselroade (2002), and Deboeck

(2010), where the first and second derivatives of a time series are first estimated

and then a model, often a dynamical systems model, is estimated to understand

the relations among the location (displacement), first, and second derivative.

These approaches are often applied to intensive longitudinal data at the individual

level; however, similar approaches can be applied to shorter multiperson time

series and it would be interesting to determine whether these approaches can be

married. Additionally, dynamic models similar to those considered by Boker and

based upon latent acceleration score models have been proposed by Hamagami

and McArdle (2007).
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Concluding Remarks

In closing, the proposed approach to studying change highlights two aspects of

longitudinal change that are of high interest to researchers—the rate of change

and acceleration and between-person differences in these important aspects of

change. These aspects of change are not captured in the traditional approach to

latent growth curve modeling with nonlinear trajectories. In addition to aiding

the understanding of longitudinal change, the proposed approach can aid in

the analysis of multivariate longitudinal data. Latent change score models are

often used to understand time-dependent sequences in longitudinal research and

the current approach can be adapted to capture changes in the rate of change

and acceleration due to time-varying covariates. Focusing on the rate of change

and acceleration is essential to understanding developmental processes and the

proposed approaches are a step in this direction.
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