
SAS/STAT® 9.2 User’s Guide
The MCMC Procedure
(Experimental)
(Book Excerpt)

This document is an individual chapter from SAS/STAT® 9.2 User’s Guide.

The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2008. SAS/STAT® 9.2
User’s Guide. Cary, NC: SAS Institute Inc.

Copyright © 2008, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor
at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation
by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19,
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, March 2008
2nd electronic book, February 2009
SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to
its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the
SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Chapter 52

The MCMC Procedure (Experimental)

Contents
Overview: MCMC Procedure . 3476

PROC MCMC Compared with Other SAS Procedures 3477
Getting Started: MCMC Procedure . 3477

Simple Linear Regression . 3478
The Behrens-Fisher Problem . 3486
Mixed-Effects Model . 3490

Syntax: MCMC Procedure . 3493
PROC MCMC Statement . 3494
ARRAY Statement . 3506
BEGINCNST/ENDCNST Statement . 3507
BEGINPRIOR/ENDPRIOR BEGINHYPER/ENDHYPER Statements . . . 3510
BY Statement . 3510
MODEL Statement . 3511
PARMS Statement . 3514
PRIOR/HYPERPRIOR Statement . 3515
Programming Statements . 3515
UDS Statement . 3517

Details: MCMC Procedure . 3521
How PROC MCMC Works . 3521
Blocking of Parameters . 3522
Samplers . 3523
Tuning the Proposal Distribution . 3524
Initial Values of the Markov Chains . 3527
Assignments of Parameters . 3527
Matrix Functions in PROC MCMC . 3529
Standard Distributions . 3529
Specifying a New Distribution . 3540
Using Density Functions in the Programming Statements 3540
Truncation and Censoring . 3542
Multivariate Density Functions . 3544
Some Useful SAS Functions . 3547
Modeling Dependent Data . 3549
Regenerating Diagnostics Plots . 3552
Posterior Predictive Distribution . 3554

3476 F Chapter 52: The MCMC Procedure (Experimental)

Handling of Missing Data . 3559
Floating Point Errors and Overflows . 3559
Handling Error Messages . 3562
Computational Resources . 3564
Displayed Output . 3565
ODS Table Names . 3569
ODS Graphics . 3571

Examples: MCMC Procedure . 3572
Example 52.1: Simulating Samples From a Known Density 3572
Example 52.2: Box-Cox Transformation 3577
Example 52.3: Generalized Linear Models 3586
Example 52.4: Nonlinear Poisson Regression Models 3599
Example 52.5: Random-Effects Models 3608
Example 52.6: Change Point Models . 3624
Example 52.7: Exponential and Weibull Survival Analysis 3628
Example 52.8: Cox Models . 3642
Example 52.9: Normal Regression with Interval Censoring 3658
Example 52.10: Constrained Analysis . 3660
Example 52.11: Implement a New Sampling Algorithm 3666
Example 52.12: Using a Transformation to Improve Mixing 3677
Example 52.13: Gelman-Rubin Diagnostics 3687

References . 3694

Overview: MCMC Procedure

The MCMC procedure is a general purpose Markov chain Monte Carlo (MCMC) simulation pro-
cedure that is designed to fit Bayesian models. Bayesian statistics is different from traditional
statistical methods such as frequentist or classical methods. For a short introduction to Bayesian
analysis and related basic concepts, see Chapter 7, “Introduction to Bayesian Analysis Procedures.”
Also see the section “A Bayesian Reading List” on page 173 for a guide to Bayesian textbooks of
varying degrees of difficulty.

In essence, Bayesian statistics treats parameters as unknown random variables, and it makes infer-
ences based on the posterior distributions of the parameters. There are several advantages associated
with this approach to statistical inference. Some of the advantages include its ability to use prior
information and to directly answer specific scientific questions that can be easily understood. For
further discussions of the relative advantages and disadvantages of Bayesian analysis, see the sec-
tion “Bayesian Analysis: Advantages and Disadvantages” on page 149.

It follows from Bayes’ theorem that a posterior distribution is the product of the likelihood function
and the prior distribution of the parameter. In all but the simplest cases, it is very difficult to obtain
the posterior distribution directly and analytically. Often, Bayesian methods rely on simulations to

PROC MCMC Compared with Other SAS Procedures F 3477

generate sample from the desired posterior distribution and use the simulated draws to approximate
the distribution and to make all of the inferences.

PROC MCMC is a flexible simulation-based procedure that is suitable for fitting a wide range of
Bayesian models. To use the procedure, you need to specify a likelihood function for the data and
a prior distribution for the parameters. You might also need to specify hyperprior distributions if
you are fitting hierarchical models. PROC MCMC then obtains samples from the corresponding
posterior distributions, produces summary and diagnostic statistics, and saves the posterior samples
in an output data set that can be used for further analysis. You can analyze data that have any
likelihood, prior, or hyperprior with PROC MCMC, as long as these functions are programmable
using the SAS DATA step functions. The parameters can enter the model linearly or in any nonlinear
functional form. The default algorithm that PROC MCMC uses is an adaptive blocked random walk
Metropolis algorithm that uses a normal proposal distribution.

PROC MCMC Compared with Other SAS Procedures

PROC MCMC is unlike most other SAS/STAT procedures in that the nature of the statistical infer-
ence is Bayesian. You specify prior distributions for the parameters with PRIOR statements and the
likelihood function for the data with MODEL statements. The procedure derives inferences from
simulation rather than through analytic or numerical methods. You should expect slightly different
answers from each run for the same problem, unless the same random number seed is used. The
model specification is similar to PROC NLIN, and PROC MCMC shares much of the syntax of
PROC NLMIXED.

Note that you can also carry out a Bayesian analysis with the GENMOD, PHREG, and LIFEREG
procedures for generalized linear models, accelerated life failure models, Cox regression models,
and piecewise constant baseline hazard models (also known as piecewise exponential models). See
Chapter 37, “The GENMOD Procedure,” Chapter 64, “The PHREG Procedure,” and Chapter 48,
“The LIFEREG Procedure.”

Getting Started: MCMC Procedure

There are three examples in this “Getting Started” section: a simple linear regression, the Behrens-
Fisher estimation problem, and a random effects model. The regression model is chosen for its
simplicity; the Behrens-Fisher problem illustrates some advantages of the Bayesian approach; and
the random effects model is one of the most prevalently used models.

Keep in mind that PARMS statements declare the parameters in the model, PRIOR statements
declare the prior distributions, and MODEL statements declare the likelihood for the data. In most
cases, you do not need to supply initial values. The procedure advises you if it is unable to generate
starting values for the Markov chain.

3478 F Chapter 52: The MCMC Procedure (Experimental)

Simple Linear Regression

This section illustrates some basic features of PROC MCMC by using a linear regression model.
The model is as follows:

Yi D ˇ0 C ˇ1Xi C �i

for the observations i D 1; 2; : : : ; n.

The following statements create a SAS data set with measurements of Height and Weight for a group
of children:

title ’Simple Linear Regression’;

data Class;
input Name $ Height Weight @@;
datalines;

Alfred 69.0 112.5 Alice 56.5 84.0 Barbara 65.3 98.0
Carol 62.8 102.5 Henry 63.5 102.5 James 57.3 83.0
Jane 59.8 84.5 Janet 62.5 112.5 Jeffrey 62.5 84.0
John 59.0 99.5 Joyce 51.3 50.5 Judy 64.3 90.0
Louise 56.3 77.0 Mary 66.5 112.0 Philip 72.0 150.0
Robert 64.8 128.0 Ronald 67.0 133.0 Thomas 57.5 85.0
William 66.5 112.0
;

The equation of interest is as follows:

Weighti D ˇ0 C ˇ1Heighti C �i

The observation errors, �i , are assumed to be independent and identically distributed with a normal
distribution with mean zero and variance �2.

Weighti � normal.ˇ0 C ˇ1Heighti ; �2/

The likelihood function for each of the Weight, which is specified in the MODEL statement, is as
follows:

p.Weightjˇ0; ˇ1; �2; Heighti / D �.ˇ0 C ˇ1Heighti ; �2/

where p.�j�/ denotes a conditional probability density and � is the normal density. There are three
parameters in the likelihood: ˇ0, ˇ1, and �2. You use the PARMS statement to indicate that these
are the parameters in the model.

Suppose that you want to use the following three prior distributions on each of the parameters:

�.ˇ0/ D �.0; var D 1e6/

�.ˇ1/ D �.0; var D 1e6/

�.�2/ D fi�.shape D 3=10; scale D 10=3/

Simple Linear Regression F 3479

where �.�/ indicates a prior distribution and fi� is the density function for the inverse-gamma dis-
tribution. The normal priors on ˇ0 and ˇ1 have large variances, expressing your lack of knowledge
about the regression coefficients. The priors correspond to an equal-tail 95% credible intervals of
approximately .�2000; 2000/ for ˇ0 and ˇ1. Priors of this type are often called vague or diffuse pri-
ors. See the section “Prior Distributions” on page 144 for more information. Typically diffuse prior
distributions have little influence on the posterior distribution and are appropriate when stronger
prior information about the parameters is not available.

A frequently used diffuse prior for the variance parameter �2 is the inverse-gamma distribution.
With a shape parameter of 3=10 and a scale parameter of 10=3, this prior corresponds to an equal-
tail 95% credible interval of .1:7; 1e6/, with the mode at 2:5641 for �2. Alternatively, you can use
any other positive prior, meaning that the density support is positive on this variance component.
For example, you can use the gamma prior.

According to Bayes’ theorem, the likelihood function and prior distributions determine the posterior
(joint) distribution of ˇ0, ˇ1, and �2 as follows:

�.ˇ0; ˇ1; �2
jWeight; Height/ / �.ˇ0/�.ˇ1/�.�2/p.Weightjˇ0; ˇ1; �2; Height/

You do not need to know the form of the posterior distribution when you use PROC MCMC. PROC
MCMC automatically obtains samples from the desired posterior distribution, which is determined
by the prior and likelihood you supply.

The following statements fit this linear regression model with diffuse prior information:

ods graphics on;
proc mcmc data=class outpost=classout nmc=50000 thin=5 seed=246810;

parms beta0 0 beta1 0;
parms sigma2 1;
prior beta0 beta1 ~ normal(mean = 0, var = 1e6);
prior sigma2 ~ igamma(shape = 3/10, scale = 10/3);
mu = beta0 + beta1*height;
model weight ~ n(mu, var = sigma2);

run;
ods graphics off;

The ods graphics on statement invokes the ODS Graphics environment and displays the diag-
nostic plots, such as the trace and autocorrelation function plots of the posterior samples. For more
information about ODS, see Chapter 21, “Statistical Graphics Using ODS.”

The PROC MCMC statement invokes the procedure and specifies the input data set class. The
output data set classout contains the posterior samples for all of the model parameters. The NMC=
option specifies the number of posterior simulation iterations. The THIN= option controls the thin-
ning of the Markov chain and specifies that one of every 5 samples is kept. Thinning is often used
to reduce the correlations among posterior sample draws. In this example, 10,000 simulated val-
ues are saved in the classout data set. The SEED= option specifies a seed for the random number
generator, which guarantees the reproducibility of the random stream. For more information about
Markov chain sample size, burn-in, and thinning, see the section “Burn-in, Thinning, and Markov
Chain Samples” on page 155.

3480 F Chapter 52: The MCMC Procedure (Experimental)

The PARMS statements identify the three parameters in the model: beta0, beta1, and sigma2. Each
statement also forms a block of parameters, where the parameters are updated simultaneously in
each iteration. In this example, beta0 and beta1 are sampled jointly, conditional on sigma2; and
sigma2 is sampled conditional on fixed values of beta0 and beta1. In simple regression models such
as this, you expect the parameters beta0 and beta1 to have high posterior correlations, and placing
them both in the same block improves the mixing of the chain—that is, the efficiency that the
posterior parameter space is explored by the Markov chain. For more information, see the section
“Blocking of Parameters” on page 3522. The PARMS statements also assign initial values to the
parameters (see the section “Initial Values of the Markov Chains” on page 3527). The regression
parameters are given 0 as their initial values, and the scale parameter sigma2 starts at value 1. If you
do not provide initial values, the procedure chooses starting values for every parameter.

The PRIOR statements specify prior distributions for the parameters. The parameters beta0 and
beta1 both share the same prior—a normal prior with mean 0 and variance 1e6. The parameter
sigma2 has an inverse-gamma distribution with a shape parameter of 3/10 and a scale parameter of
10/3. For a list of standard distributions that PROC MCMC supports, see the section “Standard
Distributions” on page 3529.

The mu assignment statement calculates the expected value of Weight as a linear function of Height.
The MODEL statement uses the shorthand notation, n, for the normal distribution to indicate that
the response variable, Weight, is normally distributed with parameters mu and sigma2. The functional
argument MEAN= in the normal distribution is optional, but you have to indicate whether sigma2
is a variance (VAR=), a standard deviation (SD=), or a precision (PRECISION=) parameter. See
Table 52.2 in the section “MODEL Statement” on page 3511 for distribution specifications.

The distribution parameters can contain expressions. For example, you can write the MODEL
statement as follows:

model weight ~ n(beta0 + beta1*height, var = sigma2);

Before you do any posterior inference, it is essential that you examine the convergence of the
Markov chain (see the section “Assessing Markov Chain Convergence” on page 156). You can-
not make valid inferences if the Markov chain has not converged. A very effective convergence
diagnostic tool is the trace plot. Although PROC MCMC produces graphs at the end of the proce-
dure output (see Figure 52.6), you should visually examine the convergence graph first.

The first table that PROC MCMC produces is the “Number of Observations” table, as shown in
Figure 52.1. This table lists the number of observations read from the DATA= data set and the
number of non-missing observations used in the analysis.

Figure 52.1 Observation Information

Simple Linear Regression

The MCMC Procedure

Number of Observations Read 19
Number of Observations Used 19

Simple Linear Regression F 3481

The “Parameters” table, shown in Figure 52.2, lists the names of the parameters, the blocking in-
formation (see the section “Blocking of Parameters” on page 3522), the sampling method used, the
starting values (the section “Initial Values of the Markov Chains” on page 3527), and the prior dis-
tributions. You should to check this table to ensure that you have specified the parameters correctly,
especially for complicated models.

Figure 52.2 Parameter Information

Parameters

Sampling Initial
Block Parameter Method Value Prior Distribution

1 beta0 N-Metropolis 0 normal(mean = 0, var = 1e6)
1 beta1 N-Metropolis 0 normal(mean = 0, var = 1e6)
2 sigma2 N-Metropolis 1.0000 igamma(shape = 3/10, scale =

10/3)

The “Tuning History” table, shown in Figure 52.3, shows how the tuning stage progresses for the
multivariate random walk Metropolis algorithm used by PROC MCMC to generate samples from
the posterior distribution. An important aspect of the algorithm is the calibration of the proposal
distribution. The tuning of the Markov chain is broken into a number of phases. In each phase,
PROC MCMC generates trial samples and automatically modifies the proposal distribution as a
result of the acceptance rate (see the section “Tuning the Proposal Distribution” on page 3524).
In this example, PROC MCMC found an acceptable proposal distribution after 7 phases, and this
distribution is used in both the burn-in and sampling stages of the simulation.

The “Burn-In History” table shows the burn-in phase, and the “Sampling History” table shows the
main phase sampling.

Figure 52.3 Tuning, Burn-In and Sampling History

Tuning History

Acceptance
Phase Block Scale Rate

1 1 2.3800 0.0420
2 2.3800 0.8860

2 1 1.0938 0.2180
2 15.5148 0.3720

3 1 0.8299 0.4860
2 15.5148 0.1260

4 1 1.1132 0.4840
2 9.4767 0.0880

5 1 1.4866 0.5420
2 5.1914 0.2000

6 1 2.2784 0.4600
2 3.7859 0.3900

7 1 2.8820 0.3360
2 3.7859 0.4020

3482 F Chapter 52: The MCMC Procedure (Experimental)

Figure 52.3 continued

Burn-In History

Acceptance
Block Scale Rate

1 2.8820 0.3400
2 3.7859 0.4150

Sampling History

Acceptance
Block Scale Rate

1 2.8820 0.3284
2 3.7859 0.4008

For each posterior distribution, PROC MCMC also reports summary statistics (posterior means,
standard deviations, and quantiles) and interval statistics (95% equal-tail and highest posterior den-
sity credible intervals), as shown in Figure 52.4. For more information about posterior statistics,
see the section “Summary Statistics” on page 170.

Figure 52.4 MCMC Summary and Interval Statistics

Simple Linear Regression

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

beta0 10000 -142.6 33.9390 -164.5 -142.4 -120.5
beta1 10000 3.8917 0.5427 3.5406 3.8906 4.2402
sigma2 10000 136.8 51.7417 101.8 126.0 159.9

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

beta0 0.050 -209.3 -76.1692 -209.7 -77.1624
beta1 0.050 2.8317 4.9610 2.8280 4.9468
sigma2 0.050 69.2208 265.5 58.2627 233.8

By default, PROC MCMC also computes a number of convergence diagnostics to help you deter-
mine whether the chain has converged. These are the Monte Carlo standard errors, the autocorre-
lations at selected lags, the Geweke diagnostics, and the effective sample sizes. These statistics are
shown in Figure 52.5. For details and interpretations of these diagnostics, see the section “Assessing
Markov Chain Convergence” on page 156.

Simple Linear Regression F 3483

The “Monte Carlo Standard Errors” table indicates that the standard errors of the mean estimates
for each of the parameters are relatively small, with respect to the posterior standard deviations.
The values in the “MCSE/SD” column (ratios of the standard errors and the standard deviations)
are small, around 0.01. This means that only a fraction of the posterior variability is due to the
simulation. The “Autocorrelations of the Posterior Samples” table shows that the autocorrelations
among posterior samples reduce quickly and become almost nonexistent after lag 5. The “Geweke
Diagnostics” table indicates that no parameter failed the test, and the “Effective Sample Sizes” table
reports the number of effective sample sizes of the Markov chain.

Figure 52.5 MCMC Convergence Diagnostics

Simple Linear Regression

The MCMC Procedure

Monte Carlo Standard Errors

Standard
Parameter MCSE Deviation MCSE/SD

beta0 0.4576 33.9390 0.0135
beta1 0.00731 0.5427 0.0135
sigma2 0.7151 51.7417 0.0138

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

beta0 0.2986 -0.0008 0.0162 0.0193
beta1 0.2971 0.0000 0.0135 0.0161
sigma2 0.2966 0.0062 0.0008 -0.0068

Geweke Diagnostics

Parameter z Pr > |z|

beta0 0.1105 0.9120
beta1 -0.1701 0.8649
sigma2 -0.2175 0.8278

Effective Sample Sizes

Correlation
Parameter ESS Time Efficiency

beta0 5501.1 1.8178 0.5501
beta1 5514.8 1.8133 0.5515
sigma2 5235.4 1.9101 0.5235

PROC MCMC produces a number of graphs, shown in Figure 52.6, which also aid convergence
diagnostic checks. With the trace plots, there are two important aspects to examine. First, you
want to check whether the mean of the Markov chain has stabilized and appears constant over the
graph. Second, you want to check whether the chain has good mixing and is “dense,” in the sense

3484 F Chapter 52: The MCMC Procedure (Experimental)

that it quickly traverses the support of the distribution to explore both the tails and the mode areas
efficiently. The plots show that the chains appear to have reached their stationary distributions.

Next, you should examine the autocorrelation plots, which indicate the degree of autocorrelation
for each of the posterior samples. High correlations usually imply slow mixing. Finally, the kernel
density plots estimate the posterior marginal distributions for each parameter.

Figure 52.6 Diagnostic Plots for ˇ0, ˇ1 and �2

Simple Linear Regression F 3485

Figure 52.6 continued

3486 F Chapter 52: The MCMC Procedure (Experimental)

In regression models such as this, you expect the posterior estimates to be very similar to the max-
imum likelihood estimators with noninformative priors on the parameters, The REG procedure
produces the following fitted model (code not shown):

Weight D �143:0C 3:9 � Height

These are very similar to the means show in Figure 52.4. With PROC MCMC, you can carry out
informative analysis that uses specifications to indicate prior knowledge on the parameters. Infor-
mative analysis is likely to produce different posterior estimates, which are the result of information
from both the likelihood and the prior distributions. Incorporating additional information in the
analysis is one major difference between the classical and Bayesian approaches to statistical infer-
ence.

The Behrens-Fisher Problem

One of the famous examples in the history of statistics is the Behrens-Fisher problem (Fisher 1935).
Consider the situation where there are two independent samples from two different normal distri-
butions:

y11; y12; � � � ; y1n1
� normal.�1; �2

1 /

y21; y22; � � � ; y2n2
� normal.�2; �2

2 /

Note that n1 ¤ n2. When you cannot assume that the variances are equal, testing the hypothesis
H0 W �1 D �2 is a difficult problem in the classical statistics framework, because the distribution
under H0 is not known. Within the Bayesian framework, this problem is straightforward because
you can estimate the posterior distribution of �1��2 while taking into account the uncertainties in
all of parameters by treating them as random variables.

Suppose that you have the following set of data:

title ’The Behrens-Fisher Problem’;

data behrens;
input y ind @@;
datalines;

121 1 94 1 119 1 122 1 142 1 168 1 116 1
172 1 155 1 107 1 180 1 119 1 157 1 101 1
145 1 148 1 120 1 147 1 125 1 126 2 125 2
130 2 130 2 122 2 118 2 118 2 111 2 123 2
126 2 127 2 111 2 112 2 121 2
;

The response variable is y, and the ind variable is the group indicator, which takes two values: 1 and
2. There are 19 observations that belong to group 1 and 14 that belong to group 2.

The Behrens-Fisher Problem F 3487

The likelihood functions for the two samples are as follows:

p.y1i j�1; �2
1 / D �.y1i I�1; �2

1 / for i D 1; � � � ; 19

p.y2j j�2; �2
2 / D �.y2j I�2; �2

2 / for j D 1; � � � ; 14

Berger (1985) showed that a uniform prior on the support of the location parameter is a noninfor-
mative prior. The distribution is invariant under location transformations—that is, � D �C c. You
can use this prior for the mean parameters in the model:

�.�1/ / 1

�.�2/ / 1

In addition, Berger (1985) showed that a prior of the form 1=�2 is noninformative for the scale
parameter, and it is invariant under scale transformations (that is � D c�2). You can use this prior
for the variance parameters in the model:

�.�2
1 / / 1=�2

1

�.�2
2 / / 1=�2

2

The log densities of the prior distributions on �2
1 and �2

2 are:

log.�.�2
1 // D � log.�2

1 /

log.�.�2
2 // D � log.�2

2 /

The following statements generate posterior samples of �1; �2; �2
1 ; �2

2 , and the difference in the
means: �1 � �2:

proc mcmc data=behrens outpost=postout seed=123
nmc=40000 thin=10 monitor=(_parms_ mudif)
statistics(alpha=0.01)=(summary interval);

ods select PostSummaries PostIntervals;
parm mu1 0 mu2 0;
parm sig21 1;
parm sig22 1;
prior mu: ~ general(0);
prior sig21 ~ general(-log(sig21));
prior sig22 ~ general(-log(sig22));
mudif = mu1 - mu2;
if ind = 1 then

llike = lpdfnorm(y, mu1, sqrt(sig21));
else

llike = lpdfnorm(y, mu2, sqrt(sig22));
model general(llike);

run;

The PROC MCMC statement specifies an input data set (behrens), an output data set containing
the posterior samples (postout), a random number seed, the simulation size, and the thinning rate.
The MONITOR= option specifies a list of symbols, which can be either parameters or functions of

3488 F Chapter 52: The MCMC Procedure (Experimental)

the parameters in the model, for which inference is to be done. The symbol _parms_ is a shorthand
for all model parameters—in this case, mu1, mu2, sig21, and sig22. The symbol mudif is defined in
the program as the difference between �1 and �2.

The ods select statement displays the summary statistics and interval statistics tables while ex-
cluding all other output. For a complete list of ODS tables that PROC MCMC can produce, see the
sections “Displayed Output” on page 3565 and “ODS Table Names” on page 3569.

The STATISTICS= option calculates summary and interval statistics. The global suboption AL-
PHA=0.01 specifies 99% equal-tail and highest posterior density (HPD) credible intervals for all
parameters.

The PARMS statements assign the parameters mu1 and mu2 to the same block, and sig21 and sig22
each to their own separate blocks. There are a total of three blocks. The PARMS statements also
assign an initial value to each parameter.

The PRIOR statements specify prior distributions for the parameters. Because the priors are all
nonstandard (uniform on the real axis for �1 and �2 and 1=�2 for �2

1 and �2
2), you must use the

GENERAL function here. The argument in the GENERAL function is an expression for the log
of the distribution, up to an additive constant. This distribution can have any functional form, as
long as it is programmable using SAS functions and expressions. Note that the function specifies
a distribution on the log scale, not the original scale. The log of the prior on mu1 and mu2 is
0, and the log of the priors on sig21 and sig22 are -log(sig21) and -log(sig22) respectively. See the
section “Specifying a New Distribution” on page 3540 for more information about how to specify
an arbitrary distribution.

The mudif assignment statement calculates the difference between mu1 and mu2. The
IF-ELSE statements enable different y’s to have different log-likelihood functions, de-
pending on their group indicator ind. The function LPDFNORM is a PROC MCMC
function that calculates the log density of a normal distribution. See the section
“Using Density Functions in the Programming Statements” on page 3540 for more details. The
MODEL statement specifies that llike is the log likelihood for each observation in the model.

Figure 52.7 displays the posterior summary and interval statistics.

Figure 52.7 Posterior Summary and Interval Statistics

The Behrens-Fisher Problem

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

mu1 4000 134.8 6.0065 130.9 134.7 138.7
mu2 4000 121.4 1.9150 120.2 121.4 122.7
sig21 4000 683.2 259.9 507.8 630.1 792.3
sig22 4000 51.3975 24.2881 35.0212 45.7449 61.2582
mudif 4000 13.3596 6.3335 9.1732 13.4078 17.6332

The Behrens-Fisher Problem F 3489

Figure 52.7 continued

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

mu1 0.010 118.7 150.6 119.3 151.0
mu2 0.010 115.9 126.6 116.2 126.7
sig21 0.010 292.0 1821.1 272.8 1643.7
sig22 0.010 18.5883 158.8 16.3730 140.5
mudif 0.010 -3.2537 29.9987 -3.1915 30.0558

The mean difference has a posterior mean value of 13:36, and the lower endpoints of the 99% credi-
ble intervals are negative. This suggests that the mean difference is positive with a high probability.
However, if you want to estimate the probability that �1 � �2 > 0, you can do so as follows.

The following statements produce Figure 52.8:

proc format;
value diffmt low-0 = ’mu1 - mu2 <= 0’ 0<-high = ’mu1 - mu2 > 0’;

run;

proc freq data = postout;
tables mudif /nocum;
format mudif diffmt.;

run;

The sample estimate of the posterior probability that �1 � �2 > 0 is 0.98. This example illustrates
an advantage of Bayesian analysis. You are not limited to making inferences based on model param-
eters only. You can accurately quantify uncertainties with respect to any function of the parameters,
and this allows for flexibility and easy interpretations in answering many scientific questions.

Figure 52.8 Estimated Probability of �1 � �2 > 0.

The Behrens-Fisher Problem

The FREQ Procedure

mudif Frequency Percent

mu1 - mu2 <= 0 77 1.93
mu1 - mu2 > 0 3923 98.08

3490 F Chapter 52: The MCMC Procedure (Experimental)

Mixed-Effects Model

This example illustrates how you can fit a mixed-effects model in PROC MCMC. PROC MCMC
offers you the ability to model beyond the normal likelihood (see “Example 52.5: Random-Effects
Models” on page 3608), and you can model as many levels of random effects as are needed with
this procedure.

Consider a scenario in which data are collected in groups and you wish to model group-specific
effects. You can use a mixed-effects model (sometimes also known as a random-effects model or a
variance-components model):

yij D ˇ0 C ˇ1xij C
i C eij ; eij � normal.0; �2/

where i D 1; 2; � � � ; I is the group index and j D 1; 2; � � � ; ni indexes the observations in the i th
group. In the regression model, the fixed effects ˇ0 and ˇ1 are the intercept and the coefficient for
variable xij , respectively. The random effects
i is the mean for the i th group, and eij are the error
term.

Consider the following SAS data set:

title ’Mixed-Effects Model’;

data heights;
input Family G$ Height @@;
datalines;

1 F 67 1 F 66 1 F 64 1 M 71 1 M 72 2 F 63
2 F 63 2 F 67 2 M 69 2 M 68 2 M 70 3 F 63
3 M 64 4 F 67 4 F 66 4 M 67 4 M 67 4 M 69
;

data input;
set heights;
if g eq ’F’ then gender = 1;
else gender = 0;
drop g;

run;

The response variable Height measures the heights (in inches) of 18 individuals. The individuals are
classified according to Family and Gender.

Height is assumed to be normally distributed:

yij � normal.�ij ; �2/; �ij D ˇ0 C ˇ1xij C
i

which corresponds to a normal likelihood as follows:

p.yij j�ij ; �2/ D �.�ij ; var D �2/

The priors on the parameters ˇ0, ˇ1,
i are assumed to be normal as well:

�.ˇ0/ D �.0; var D 1e5/

�.ˇ1/ D �.0; var D 1e5/

�.
i / D �.0; var D �2

 /

Mixed-Effects Model F 3491

Priors on the variance terms, �2 and �2

 , are inverse-gamma:

�.�2/ D fi�.shape D 0:001; scale D 1000/

�.�2

 / D fi�.shape D 0:001; scale D 1000/

where fi� denotes the density function of an inverse-gamma distribution.

The following statements fit a linear random-effects model to the data and produce the output shown
in Figure 52.9 and Figure 52.10:

ods graphics on;
proc mcmc data=input outpost=postout thin=10 nmc=50000 seed=7893

monitor=(b0 b1);
ods select PostSummaries PostIntervals tadpanel;
array gamma[4];

parms b0 0 b1 0 gamma: 0;
parms s2 1 ;
parms s2g 1;

prior b: ~ normal(0, var = 10000);
prior gamma: ~ normal(0, var = s2g);
prior s2: ~ igamma(0.001, scale = 1000);

mu = b0 + b1 * gender + gamma[family];
model height ~ normal(mu, var = s2);

run;
ods graphics off;

The statements are very similar to those shown in the previous two examples. The ods graphics

on statement requests ODS Graphics. The PROC MCMC statement specifies the input and output
data sets, the simulation size, the thinning rate, and a random number seed. The MONITOR=
option indicates that the model parameters b0 and b1 are the quantities of interest. The ods select

statement displays the summary statistics table, the interval statistics table, and the diagnostics plots.

The ARRAY statement defines a one-dimensional array, gamma, with 4 elements. You can refer to
the array elements with variable names (gamma1 to gamma4 by default) or with subscripts, such as
gamma[2]. To indicate subscripts, you must use either brackets Œ � or braces f g, but not parentheses
. /. Note that this is different from the way subscripts are indicated in the DATA step. See the
section “ARRAY Statement” on page 3506 for more information.

The PRIOR statements specify priors for all the parameters. The notation b: is a shorthand for all
symbols that start with the letter ‘b’. In this example, it includes b0 and b1. Similarly, gamma:
stands for all four gamma parameters, and s2: stands for both s2 and s2g. This shorthand notation
can save you some typing, and it keeps your statements tidy.

The mu assignment statement calculates the expected value of height in the random-effects model.
The symbol family is a data set variable that indexes family. Here gamma[family] is the random effect
for the value of family.

Finally, the MODEL statement specifies the likelihood function for height.

3492 F Chapter 52: The MCMC Procedure (Experimental)

The posterior summary and interval statistics for b0 and b1 are shown in Figure 52.9.

Figure 52.9 Posterior Summary and Interval Statistics

Mixed-Effects Model

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

b0 5000 66.2685 19.1176 56.0024 66.7260 77.2356
b1 5000 -3.3492 6.3886 -7.4268 -3.2799 0.6078

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

b0 0.050 26.2226 103.3 27.1749 103.6
b1 0.050 -16.2018 9.6267 -17.0757 8.5265

Trace plots, autocorrelation plots, and posterior density plots for b1 and logpost are shown in
Figure 52.10. The mixing of b1 looks good. The convergence plots for the other parameters also
look reasonable, and are not shown here.

Figure 52.10 Plots for b1 and Log of the Posterior Density

Syntax: MCMC Procedure F 3493

Figure 52.10 continued

From the interval statistics table, you see that both of the equal-tail and HPD intervals for ˇ0 are
positive, strongly indicating the positive effect of the parameter. On the other hand, both intervals
for ˇ1 cover the value zero, indicating that gender does not have a strong impact on predicting height
in this model.

Syntax: MCMC Procedure

The following statements can be used with PROC MCMC:

PROC MCMC options ;
ARRAY array specification ;
BEGINCNST/ENDCNST constant segment specification ;
BEGINHYPER/ENDHYPER hyperprior segment specification ;
BEGINPRIOR/ENDPRIOR prior segment specification ;
BY variables ;
MODEL statistical model specification ;
PARMS parameters and starting values ;
PRIOR/HYPERPRIOR prior or hyperprior specification ;
Program statements ;
UDS user defined sampler specification ;

3494 F Chapter 52: The MCMC Procedure (Experimental)

The PARMS statements declare parameters in the model and assign optional starting values for
the Markov chain. The PRIOR/HYPERPRIOR statements specify the prior distributions of the
parameters. The MODEL statements specify the log-likelihood functions for the response variables.
These statements form the basis of every Bayesian model.

In addition, you can use the ARRAY statement to define constant or parameter arrays, the
BEGINCNST/ENDCNST and similar statements to save unnecessary evaluation and reduce simu-
lation time, the program statements to specify more complicated models that you wish to fit, and
finally the UDS statements to define your own Gibbs samplers to sample any parameters in the
model.

The following sections provide a description of each of these statements.

PROC MCMC Statement

PROC MCMC options ;

This statement invokes PROC MCMC.

A number of options are available in the PROC MCMC statement; the following table categorizes
them according to function.

Table 52.1 PROC MCMC Statement Options

Option Description

Basic options
DATA= names the input data set
OUTPOST= names the output data set for posterior samples of parameters

Debugging output
LIST displays model program and variables
LISTCODE displays compiled model program
TRACE displays detailed model execution messages

Frequently used MCMC options
MAXTUNE= specifies the maximum number of tuning loops
MINTUNE= specifies the minimum number of tuning loops
NBI= specifies the number of burn-in iterations
NMC= specifies the number of MCMC iterations, excluding the burn-in iterations
NTU= specifies the number of tuning iterations
PROPCOV= controls options for constructing the initial proposal covariance matrix
SEED= specifies the random seed for simulation
THIN= specifies the thinning rate

Less frequently used MCMC options
ACCEPTTOL= specifies the acceptance rate tolerance
DISCRETE= controls sampling discrete parameters
INIT= controls generating initial values

PROC MCMC Statement F 3495

Table 52.1 (continued)

Option Description

PROPDIST= specifies the proposal distribution
SCALE= specifies the initial scale applied to the proposal distribution
TARGACCEPT= specifies the target acceptance rate for random walk sampler
TARGACCEPTI= specifies the target acceptance rate for independence sampler
TUNEWT= specifies the weight used in covariance updating

Summary, diagnostics, and plotting options
AUTOCORLAG= specifies the number of autocorrelation lags used to compute effective sam-

ple sizes and Monte Carlo errors
DIAGNOSTICS= controls the convergence diagnostics
DIC computes deviance information criterion (DIC)
MONITOR= monitors a list of parameters of interest
PLOTS= controls plotting
STATISTICS= controls posterior statistics

Other Options
INF= specifies the machine numerical limit for infinity
JOINTMODEL specifies joint log-likelihood function
MISSING= indicates how missing values are handled.
SIMREPORT= controls the frequency of report for expected run time
SINGDEN= specifies the singularity tolerance

These options are described in alphabetical order.

ACCEPTTOL=n
specifies a tolerance for acceptance probabilities. By default, ACCEPTTOL=0.075.

AUTOCORLAG=n

ACLAG=n
specifies the maximum number of autocorrelation lags used in computing the effective sample
size; see the section “Effective Sample Size” on page 169 for more details. The value is
used in the calculation of the Monte Carlo standard error; see the section “Standard Error
of the Mean Estimate” on page 170. By default, AUTOCORLAG=MIN(500, MCsample/4),
where MCsample is the Markov chain sample size kept after thinning—that is, MCsample
D

h
NMC

NTHIN

i
. If AUTOCORLAG= is set too low, you might observe significant lags, and the

effective sample size cannot be calculated accurately. A WARNING message appears, and
you can either increase AUTOCORLAG= or NMC=, accordingly.

DISCRETE=keyword
specifies the proposal distribution used in sampling discrete parameters. The default is DIS-
CRETE=BINNING.

The keyword values are as follows:

BINNING
uses continuous proposal distributions for all discrete parameter blocks. The proposed

3496 F Chapter 52: The MCMC Procedure (Experimental)

sample is then discretized (binned) before further calculations. This sampling method
approximates the correlation structure among the discrete parameters in the block and
could improve mixing in some cases.

GEO
uses independent symmetric geometric proposal distributions for all discrete parameter
blocks. This proposal does not take parameter correlations into account. However, it
can work better than the BINNING option in cases where the range of the parameters
is relatively small and a normal approximation can perform poorly.

DIAGNOSTICS=NONE | (keyword-list)

DIAG=NONE | (keyword-list)
specifies options for MCMC convergence diagnostics. By default, PROC MCMC computes
the Geweke test, sample autocorrelations, effective sample sizes, and Monte Carlo errors. The
Raftery-Lewis and Heidelberger-Welch tests are also available. See the section “Assessing
Markov Chain Convergence” on page 156 for more details on convergence diagnostics. You
can request all of the diagnostic tests by specifying DIAGNOSTICS=ALL. You can suppress
all the tests by specifying DIAGNOSTICS=NONE.

The following options are available.

ALL
computes all diagnostic tests and statistics. You can combine the option ALL with any
other specific tests to modify test options. For example DIAGNOSTICS=(ALL AUTO-
CORR(LAGS=(1 5 35))) computes all tests with default settings and autocorrelations
at lags 1, 5, and 35.

AUTOCORR < (autocorr-options) >
computes default autocorrelations at lags 1, 5, 10, and 50 for each variable. You can
choose other lags by using the following autocorr-options:

LAGS | AC=numeric-list
specifies autocorrelation lags. The numeric-list must take positive integer values.

ESS
computes the effective sample sizes (Kass et al. (1998)) of the posterior samples of
each parameter. It also computes the correlation time and the efficiency of the chain
for each parameter. Small values of ESS might indicate a lack of convergence. See the
section “Effective Sample Size” on page 169 for more details.

GEWEKE < (Geweke-options) >
computes the Geweke spectral density diagnostics; this is a two-sample t -test between
the first f1 portion and the last f2 portion of the chain. See the section “Geweke
Diagnostics” on page 163 for more details. The default is FRAC1=0.1 and FRAC2=0.5,
but you can choose other fractions by using the following Geweke-options:

FRAC1 | F1=value

specifies the beginning FRAC1 proportion of the Markov chain. By default,
FRAC1=0.1.

PROC MCMC Statement F 3497

FRAC2 | F2=value

specifies the end FRAC2 proportion of the Markov chain. By default,
FRAC2=0.5.

HEIDELBERGER | HEIDEL < (Heidel-options) >
computes the Heidelberger and Welch diagnostic (which consists of a stationarity test
and a halfwidth test) for each variable. The stationary diagnostic test tests the null
hypothesis that the posterior samples are generated from a stationary process. If
the stationarity test is passed, a halfwidth test is then carried out. See the section
“Heidelberger and Welch Diagnostics” on page 165 for more details.

These diagnostics are not performed by default. You can specify the DIAGNOS-
TICS=HEIDELBERGER option to request these diagnostics, and you can also specify
suboptions, such as DIAGNOSTICS=HEIDELBERGER(EPS=0.05), as follows:

SALPHA=value

specifies the ˛ level .0 < ˛ < 1/ for the stationarity test. By default, SAL-
PHA=0.05.

HALPHA=value

specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test. By default, HAL-
PHA=0.05.

EPS=value

specifies a small positive number � such that if the halfwidth is less than � times
the sample mean of the retaining iterates, the halfwidth test is passed. By default,
EPS=0.1.

MCSE
MCERROR

computes the Monte Carlo standard error for the posterior samples of each parameter.

NONE
suppresses all of the diagnostic tests and statistics. This is not recommended.

RAFTERY | RL < (Raftery-options) >
computes the Raftery and Lewis diagnostics, which evaluate the accuracy of the esti-
mated quantile (O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of
accuracy when the chain is allowed to run for a long time. The algorithm stops when
the estimated probability OPQ D Pr.� � O�Q/ reaches within ˙R of the value Q with
probability S; that is, Pr.Q � R � OPQ � Q C R/ D S. See the section “Raftery and
Lewis Diagnostics” on page 166 for more details. The Raftery-options enable you to
specify Q, R, S, and a precision level � for a stationary test.

These diagnostics are not performed by default. You can specify the DIAGNOS-
TICS=RAFERTY option to request these diagnostics, and you can also specify sub-
options, such as DIAGNOSTICS=RAFERTY(QUANTILE=0.05), as follows:

3498 F Chapter 52: The MCMC Procedure (Experimental)

QUANTILE | Q=value

specifies the order (a value between 0 and 1) of the quantile of interest. By
default, QUANTILE=0.025.

ACCURACY | R=value

specifies a small positive number as the margin of error for measuring the accu-
racy of estimation of the quantile. By default, ACCURACY=0.005.

PROB | S=value

specifies the probability of attaining the accuracy of the estimation of the quan-
tile. By default, PROB=0.95.

EPS=value

specifies the tolerance level (a small positive number) for the stationary test. By
default, EPS=0.001.

DIC
computes the Deviance Information Criterion (DIC). DIC is calculated using the posterior
mean estimates of the parameters. See the section “Deviance Information Criterion (DIC)”
on page 172 for more details.

DATA=SAS-data-set
specifies the input data set. Observations in this data set are used to compute the log-
likelihood function that you specify with PROC MCMC statements.

INF=value
specifies the numerical definition of infinity in the procedure. The default is INF= 1E15. For
example, PROC MCMC considers 1E16 to be outside of the support of the normal distribution
and assigns a missing value to the log density evaluation. You can select a larger value with
the INF= option. The minimum value allowed is 1E10.

INIT=(keyword-list)
specifies options for generating the initial values for the parameters. These options apply only
to prior distributions that are recognized by PROC MCMC. See the section “Standard Distri-
butions” on page 3529 for a list of these distributions. If either of the functions GENERAL or
DGENERAL is used, you must supply explicit initial values for the parameters. By default,
INIT=MODE. The following keywords are used:

MODE
uses the mode of the prior density as the initial value of the parameter, if you did not
provide one. If the mode does not exist or if it is on the boundary of the support of the
density, the mean value is used. If the mean is outside of the support or on the boundary,
which can happen if the prior distribution is truncated, a random number drawn from
the prior is used as the initial value.

PROC MCMC Statement F 3499

PINIT
tabulates parameter values after the tuning phase. This option also tabulates the tuned
proposal parameters used by the Metropolis algorithm. These proposal parameters in-
clude covariance matrices for continuous parameters and probability vectors for dis-
crete parameters for each block. By default, PROC MCMC does not display the initial
values or the tuned proposal parameters after the tuning phase.

RANDOM
generates a random number from the prior density and uses it as the initial value of the
parameter, if you did not provide one.

REINIT
resets the parameters, after the tuning phase, with the initial values that you provided
explicitly or that were assigned by the procedure. By default, PROC MCMC does not
reset the parameters because the tuning phase usually moves the Markov chains to a
more favorable place in the posterior distribution.

LIST
displays the model program and variable lists. The LIST option is a debugging feature and is
not normally needed.

LISTCODE
displays the compiled program code. The LISTCODE option is a debugging feature and is
not normally needed.

JOINTMODEL

JOINTLLIKE
specifies how the likelihood function is calculated. By default, PROC MCMC assumes that
the observations in the data set are independent so that the joint log-likelihood function is
the sum of the individual log-likelihood functions for the observations, where the individual
log-likelihood function is specified in the MODEL statement. When your data are not inde-
pendent, you can specify the JOINTMODEL option to modify the way that PROC MCMC
computes the joint log-likelihood function. In this situation, PROC MCMC no longer steps
through the input data set to sum the individual log likelihood.

To use this option correctly, you need to do the following two things:

� create ARRAY symbols to store all data set variables that are used in the program. This
can be accomplished with the BEGINCNST and ENDCNST statements.

� program the joint log-likelihood function by using these ARRAY symbols only. The
MODEL statement specifies the joint log-likelihood function for the entire data set.
Typically, you use the function GENERAL in the MODEL statement.

See the sections “BEGINCNST/ENDCNST Statement” on page 3507 and “Modeling Depen-
dent Data” on page 3549 for details.

MAXTUNE=n
specifies an upper limit for the number of proposal tuning loops. By default, MAXTUNE=24.
See the section “Covariance Tuning” on page 3525 for more details.

3500 F Chapter 52: The MCMC Procedure (Experimental)

MINTUNE=n
specifies a lower limit for the number of proposal tuning loops. By default, MINTUNE=2.
See the section “Covariance Tuning” on page 3525 for more details.

MISSING=keyword

MISS=keyword
specifies how missing values are handled (see the section “Handling of Missing Data” on
page 3559 for more details). The default is MISSING=COMPLETECASE.

ALLCASE | AC
gives you the option to model the missing values in an all-case analysis. You can use
any techniques that you see fit, for example, fully Bayesian or multiple imputation.

COMPLETECASE | CC
assumes a complete case analysis, so all observations with missing variable values are
discarded prior to the simulation.

MONITOR= (symbol-list)
specifies a list of program symbols for which a posterior analysis is to be done. The symbols
can be any of the following: model parameters (symbols in the PARMS statement), secondary
parameters (assigned using the operator “=”), the log of the posterior density (LOGPOST),
the log of the prior density (LOGPRIOR), the log of the hyperprior density (LOGHYPER),
if the HYPER statement is used, or the log of the likelihood function (LOGLIKE). You can
use the keyword _PARMS_ as a shorthand for all of the model parameters. PROC MCMC
performs only posterior analyses, such as plotting, diagnostics and summaries, on the symbols
selected with the MONITOR= option. By default MONITOR=_PARMS_.

Posterior samples of any secondary parameters listed in the MONITOR= option are saved in
the OUTPOST= data set. Posterior samples of any model parameters are always saved to the
OUTPOST= data set, regardless whether they are listed in the MONITOR= option.

You can also choose to monitor an entire array by specifying the name of the array. For this
to work, at least one of the array elements must be referenced by its variable name in either
the programming statements or the PARMS statements. Otherwise, PROC MCMC treats the
array as a temporary array and does not keep track of any elements, meaning that you cannot
monitor an array by specifying the name only.

NBI=n
specifies the number of burn-in iterations to perform before beginning to save parameter esti-
mate chains. By default, NBI=1000. See the section “Burn-in, Thinning, and Markov Chain
Samples” on page 155 for more details.

NMC=n
specifies the number of iterations in the main simulation loop. This is the MCMC sample size
if THIN=1. By default, NMC=1000.

NTU=n
specifies the number of iterations to use in each proposal tuning phase. By default, NTU=500.

PROC MCMC Statement F 3501

OUTPOST=SAS-data-set
specifies an output data set that contains the posterior samples of all model parameters, the
iteration numbers (variable name ITERATION), the log of the posterior density (LOGPOST),
the log of the prior density (LOGPRIOR), the log of the hyperprior density (LOGHYPER), if
the HYPER statement is used, and the log likelihood (LOGLIKE). Any secondary parameters
(assigned using the operator “=”) listed in the MONITOR= option are saved to this data set.
By default, no OUTPOST= data set is created.

PLOTS< (global-plot-options) >= (plot-request < . . . plot-request >)

PLOT< (global-plot-options) >= (plot-request < . . . plot-request >)
controls the display of diagnostic plots. Three types of plots can be requested: trace plots,
autocorrelation function plots, and kernel density plots. By default, the plots are displayed
in panels unless the global plot option UNPACK is specified. Also when more than one
type of plot is specified, the plots are grouped by parameter unless the global plot option
GROUPBY=TYPE is specified. When you specify only one plot request, you can omit the
parentheses around the plot-request, as shown in the following example:

plots=none
plots(unpack)=trace
plots=(trace density)

You must enable ODS Graphics before requesting plots—for example, like this:

ods graphics on;

proc mcmc;
...;

run;

ods graphics off;

If you have enabled ODS Graphics but do not specify the PLOTS= option, then PROC MCMC
produces, for each parameter, a panel that contains the trace plot, the autocorrelation function
plot, and the density plot. This is equivalent to specifying PLOTS=(TRACE AUTOCORR
DENSITY).

The global-plot-options include the following:

FRINGE
adds a fringe plot to the horizontal axis of the density plot.

GROUPBY|GROUP=PARAMETER | TYPE
specifies how the plots are grouped when there is more than one type of plot.
GROUPBY=PARAMETER is the default. The choices are as follows:

TYPE
specifies that the plots are grouped by type.

PARAMETER
specifies that the plots are grouped by parameter.

3502 F Chapter 52: The MCMC Procedure (Experimental)

LAGS=n
specifies the number of autocorrelation lags used in plotting the ACF graph. By default,
LAGS=50.

SMOOTH
smoothes the trace plot with a fitted penalized B-spline curve (Eilers and Marx 1996).

UNPACKPANEL

UNPACK
specifies that all paneled plots are to be unpacked, so that each plot in a panel is dis-
played separately.

The plot-requests are as follows:

ALL
requests all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE
AUTOCORR DENSITY).

AUTOCORR | ACF
displays the autocorrelation function plots for the parameters.

DENSITY | D | KERNEL | K
displays the kernel density plots for the parameters.

NONE
suppresses the display of all plots.

TRACE | T
displays the trace plots for the parameters.

Consider a model with four parameters, X1–X4. Displays for various specifications are de-
picted as follows.

� PLOTS=(TRACE AUTOCORR) displays the trace and autocorrelation plots for each
parameter side by side with two parameters per panel:

Display 1 Trace(X1) Autocorr(X1)
Trace(X2) Autocorr(X2)

Display 2 Trace(X3) Autocorr(X3)
Trace(X4) Autocorr(X4)

� PLOTS(GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the paneled trace
plots, followed by panels of autocorrelation plots:

PROC MCMC Statement F 3503

Display 1 Trace(X1)
Trace(X2)

Display 2 Trace(X3)
Trace(X4)

Display 3 Autocorr(X1) Autocorr(X2)
Autocorr(X3) Autocorr(X4)

� PLOTS(UNPACK)=(TRACE AUTOCORR) displays a separate trace plot and a sepa-
rate correlation plot, parameter by parameter:

Display 1 Trace(X1)

Display 2 Autocorr(X1)

Display 3 Trace(X2)

Display 4 Autocorr(X2)

Display 5 Trace(X3)

Display 6 Autocorr(X3)

Display 7 Trace(X4)

Display 8 Autocorr(X4)

� PLOTS(UNPACK GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the sepa-
rate trace plots followed by the separate autocorrelation plots:

Display 1 Trace(X1)

Display 2 Trace(X2)

Display 3 Trace(X3)

Display 4 Trace(X4)

Display 5 Autocorr(X1)

Display 6 Autocorr(X2)

Display 7 Autocorr(X3)

Display 8 Autocorr(X4)

3504 F Chapter 52: The MCMC Procedure (Experimental)

PROPCOV=value
specifies the method used in constructing the initial covariance matrix for the Metropolis-
Hastings algorithm. The QUANEW and NMSIMP methods find numerically approximated
covariance matrices at the optimum of the posterior density function with respect to all con-
tinuous parameters. The optimization does not apply to discrete parameters. The tuning
phase starts at the optimized values; in some problems, this can greatly increase convergence
performance. If the approximated covariance matrix is not positive definite, then an identity
matrix is used instead. Valid values are as follows:

IND
uses the identity covariance matrix. This is the default. See the section “Tuning the
Proposal Distribution” on page 3524.

QUANEW< (optimize-options) >
performs a quasi-Newton optimization. See following for a description of the optimize-
options.

NMSIMP | SIMPLEX< (optimize-options) >
performs a Nelder-Mead simplex optimization. See following for a description of the
optimize-options.

The optimize-options are as follows:

ITPRINT

prints optimization iteration steps and results.

PROPDIST=value
specifies a proposal distribution for the Metropolis algorithm. See the section “Metropolis and
Metropolis-Hastings Algorithms” on page 152. You can also use PARMS statement option
(see the section “PARMS Statement” on page 3514) to change the proposal distribution for a
particular block of parameters. Valid values are as follows:

NORMAL

N
specifies a normal distribution as the proposal distribution. This is the default.

T< (df) >
specifies a t-distribution with the degrees of freedom df. By default, df =3. If df > 100,
the normal distribution is used since the two distributions are almost identical.

SCALE=value
controls the initial multiplicative scale to the covariance matrix of the proposal distribution.
By default, SCALE=2.38. See the section “Scale Tuning” on page 3525 for more details.

SEED=n
specifies the random number seed. By default, SEED=0, and PROC MCMC gets a random
number seed from the clock.

PROC MCMC Statement F 3505

SIMREPORT=n
controls the number of times that PROC MCMC reports the expected run time of the sim-
ulation. This can be useful for monitoring the progress of CPU-intensive programs. For
example, with SIMREPORT=2, PROC MCMC reports the simulation progress twice. By
default, SIMREPORT=0, and there is no reporting. The expected run times are displayed in
the log file.

SINGDEN=value
defines the singularity criterion in the procedure. By default, SINGDEN=1E-11. The value
indicates the exclusion of an endpoint in an interval. The mathematical notation “.0” is
equivalent to “Œvalue” in PROC MCMC—that is, x < 0 is treated as x � value in the
procedure. The maximum SINGDEN allowed is 1E � 6.

STATISTICS< (global-stats-options) > = NONE | ALL |stats-request

STATS< (global-stats-options) > = NONE | ALL |stats-request
specifies options for posterior statistics. By default, PROC MCMC computes the posterior
mean, standard deviation, quantiles, and two 95% credible intervals: equal-tail and highest
posterior density (HPD). Other available statistics include the posterior correlation and covari-
ance. See the section “Summary Statistics” on page 170 for more details. You can request all
of the posterior statistics by specifying STATS=ALL. You can suppress all the calculations
by specifying STATS=NONE.

The global-stats-options includes the following:

ALPHA=numeric-list
specifies the ˛ level for the equal-tail and HPD intervals. The value ˛ must be between
0 and 0:5. By default, ALPHA=0.05.

PERCENTAGE | PERCENT=numeric-list
calculates the posterior percentages. The numeric-list contains values between 0 and
100. By default, PERCENTAGE=(25 50 75).

The stats-requests include the following:

ALL
computes all posterior statistics. You can combine the option ALL with any other
options. For example STATS(ALPHA=(0.02 0.05 0.1))=ALL computes all statistics
with the default settings and intervals at ˛ levels of 0.02, 0.05, and 0.1.

CORR
computes the posterior correlation matrix.

COV
computes the posterior covariance matrix.

SUMMARY

SUM
computes the posterior means, standard deviations, and percentile points for each vari-
able. By default, the 25th, 50th, and 75th percentile points are produced, but you can
use the global PERCENT= option to request specific percentile points.

3506 F Chapter 52: The MCMC Procedure (Experimental)

INTERVAL

INT
computes the 100.1�˛/% equal-tail and HPD credible intervals for each variable. See
the sections “Equal-Tail Credible Interval” on page 171 and “Highest Posterior Density
(HPD) Interval” on page 171 for details. By default, ALPHA=0.05, but you can use the
global ALPHA= option to request other intervals of any probabilities.

NONE
suppresses all of the statistics.

TARGACCEPT=value
specifies the target acceptance rate for the random walk based Metropolis algorithm. See the
section “Metropolis and Metropolis-Hastings Algorithms” on page 152. The numeric value
must be between 0:01 and 0:99. By default, TARGACCEPT=0.45 for models with 1 parame-
ter; TARGACCEPT=0.35 for models with 2, 3, or 4 parameters; and TARGACCEPT=0.234
for models with more than 4 parameters (Roberts, Gelman, and Gilks 1997; Roberts and
Rosenthal 2001).

TARGACCEPTI=value
specifies the target acceptance rate for the independence sampler algorithm. The indepen-
dence sampler is used for blocks of binary parameters. See the section “Independence Sam-
pler” on page 153 for more details. The numeric value must be between 0 and 1. By default,
TARGACCEPTI=0.6.

THIN=n

NTHIN=n
controls the thinning rate of the simulation. PROC MCMC keeps every nth simulation sample
and discards the rest. All of the posterior statistics and diagnostics are calculated using the
thinned samples. By default, THIN=1. See the section “Burn-in, Thinning, and Markov
Chain Samples” on page 155 for more details.

TRACE
displays the result of each operation in each statement in the model program as it is executed.
This debugging option is very rarely needed, and it produces voluminous output. If you use
this option, also use small NMC=, NBI=, MAXTUNE=, and NTU= numbers.

TUNEWT=value
specifies the multiplicative weight used in updating the covariance matrix of the proposal
distribution. The numeric value must be between 0 and 1. By default, TUNEWT=0.75. See
the section “Covariance Tuning” on page 3525 for more details.

ARRAY Statement

ARRAY arrayname <{ dimensions }> <$> <variables and constants> ;

BEGINCNST/ENDCNST Statement F 3507

The ARRAY statement is used to associate a name (of no more than eight characters) with a list of
variables and constants. The ARRAY statement is similar to, but not the same as, the ARRAY state-
ment in the DATA step, and it is the same as the ARRAY statements in the NLIN, NLP, NLMIXED,
and MODEL procedures. The array name is used with subscripts in the program to refer to the array
elements, as illustrated in the following statements:

array r[8] r1-r8;

do i = 1 to 8;
r[i] = 0;

end;

The ARRAY statement does not support all the features of the ARRAY statement in the DATA step.
Implicit indexing of variables cannot be used; all array references must have explicit subscript ex-
pressions. Only exact array dimensions are allowed; lower-bound specifications are not supported.
A maximum of six dimensions is allowed.

Both variables and constants can be array elements. Constant array elements cannot have values
assigned to them while variables can. Both the dimension specification and the list of elements are
optional, but at least one must be specified. When the list of elements is not specified or fewer
elements than the size of the array are listed, array variables are created by appending element
numbers to the array name to complete the element list. You can index array elements by enclosing
a subscript in braces .fg/ or brackets .Œ�/, but not in parentheses ..//. The parentheses are reserved
for function calls only.

For example, the following statement names an array day:

array day[365];

By default, the variables names are day1 to day365. However, since day is a SAS function, any
subscript that uses parentheses gives you the wrong results. The expression day(4) returns the
value 5 and does not reference the array element day4.

BEGINCNST/ENDCNST Statement

BEGINCNST ;

ENDCNST ;

The BEGINCNST statement indicates that PROC MCMC processes the programming statements
that follow it once for every observation in the input data set before the first iteration. A subsequent
ENDCNST statement indicates a return to normal processing. These statements are used, for exam-
ple, to define constants and read data set variables into arrays. Reading data set variables into arrays
is particularly useful when you use the JOINTMODEL option (see the section “Modeling Depen-
dent Data” on page 3549) and the UDS statement (see the section “UDS Statement” on page 3517).
You can also use the BEGINCNST and ENDCNST statements to assign initial values to the param-
eters (see the section “Assignments of Parameters” on page 3527).

3508 F Chapter 52: The MCMC Procedure (Experimental)

Like the DATA step, PROC MCMC processes every programming statement for each observation
in the input data set. Statements that calculate constants do not need to be evaluated multiple
times throughout the Markov simulation. The BEGINCNST and ENDCNST statements can reduce
redundant processing. For example, you can set up an array of constants in this way:

array cnst[17];
begincnst;

do i = 1 to 17;
cnst[i] = i * i;

end;
endcnst;

Note that the DO-loop is evaluated once per observation in the data set before the first Markov chain
iteration. If you have many observations in the data set, this DO-loop is evaluated many times over.
A more efficient way is to create an observation index variable in the input data set. Call it ind
for example. And suppose that you have a total number of five observations. You can use the IF
statement to further reduce redundant processing:

array cnst[17];
begincnst;

if ind eq 5 then do;
do i = 1 to 17;

cnst[i] = i * i;
end;

end;
endcnst;

The DO-loop is executed only at the last observation of the input data set.

You can also use the BEGINCNST and ENDCNST statements to store data set variables in arrays,
which is useful when you model data that are not independent. See the section “Modeling Depen-
dent Data” on page 3549 for more details. To save a SAS data set variable in an array, you need
an array of the size of the variable and an observation index variable. The following statement is a
simple example that creates an artificial data set with 4 observations:

data a;
input y1 @@;
ind = _n_;
datalines;
2 2.7 8.7 -3.4

;

In the data set a, y1 is the variable that is saved in an array in PROC MCMC, and ind is the obser-
vation index. In PROC MCMC, you can use the BEGINCNST and ENDCNST statements in the
following way:

proc mcmc data=a;
array m[4];
begincnst;

m[ind] = y1;
endcnst;

...

BEGINCNST/ENDCNST Statement F 3509

The ARRAY statement in PROC MCMC names an array m of size 4, the same length as the variable
y1. When PROC MCMC steps through the data set, it copies y1 to elements of m, as indexed by ind.
After the BEGINCNST and ENDCNST statements are processed, the array m now stores all values
of the variable y1.

Note that you want to avoid naming the storage array y if there are variables named y1 in the
input data set. When no variable list is specified, the ARRAY statement creates variable names by
appending index numbers to the array name. For example,

array y[4];

assigns y1, y2, y3 and y4 to the elements of y. Statements like
begincnst;

y[ind] = y1;
endcnst;

produce incorrect results. Regardless of the value of ind, y[1] always takes the current value of y1.
To see this, consider the following program:

title ’Avoid Conflicting Data Set and ARRAY Variable Names.’;

data a;
input y1 @@;
ind = _n_;
datalines;
2 2.7 8.7 -3.4

;

proc mcmc data=a;
ods exclude all;
array y[4];
begincnst;

y[ind] = y1;
if ind eq 4 then

put y=;
endcnst;
parm b;
prior b ~ n(0, sd=1);
model general(0);

run;
ods exclude none;

You can ignore the PARMS, PRIOR, and MODEL statements. The assignment statement to y[ind] in
the BEGINCNST and ENDCNST statements saves the variable y1 to array y. At the last observation
of the data set, PROC MCMC displays the values of y in the log file. The output is as follows:

y[1]=-3.4 y[2]=2.7 y[3]=8.7 y[4]=-3.4

The first element has an incorrect value of �3:4 instead of 2. As the procedure steps through the
data set, y1 points to different observations, but whichever observation it points to is also assigned
to y[1]. At the end, y[1] takes on the value of �3:4 since it is the last observation in the data set.

3510 F Chapter 52: The MCMC Procedure (Experimental)

BEGINPRIOR/ENDPRIOR BEGINHYPER/ENDHYPER Statements

BEGINPRIOR ;

ENDPRIOR ;

BEGINHYPER ;

ENDHYPER ;

The BEGINPRIOR statement indicates that PROC MCMC processes the next statements twice at
every Markov chain simulation—that is, twice per pass through the data set. The programming
statements are called at the first and the last observation of the data set. A subsequent ENDPRIOR
statement indicates a return to normal processing. The BEGINPRIOR and ENDPRIOR statements
are best used to reduce unnecessary observation-level computations. Any computations that are
identical to every observation, such as transformation of parameters, should be enclosed in these
statements.

At the first observation, PROC MCMC executes the programming statements. This allows for a
quick update of all the symbols enclosed in the statements. At the last observation, PROC MCMC
executes the programming statements again and adds the log of the prior density to the log of the
posterior density.

The BEGINHYPER and ENDHYPER statements work in the same way as the BEGINPRIOR and
ENDPRIOR statements. The BEGINHYPER and ENDHYPER statements are aliases for the BE-
GINPRIOR and ENDPRIOR statements, and they are treated the same.

BY Statement

BY variables ;

You can specify a BY statement with PROC MCMC to obtain separate analyses on observations in
groups defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
PROC MCMC. The NOTSORTED option does not mean that the data are unsorted but rather
that the data are arranged in groups (according to values of the BY variables) and that these
groups are not necessarily in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

MODEL Statement F 3511

MODEL Statement

MODEL dependent-variable-list � distribution ;

The MODEL statement is used to specify the conditional distribution of the data given the param-
eters (the likelihood function). You must specify a single dependent variable or a list of dependent
variables, a tilde (�), and then a distribution with its arguments. The dependent variables can be
variables from the input data set or functions of the symbols in the program. The dependent vari-
ables must be specified unless the functions GENERAL or DGENERAL are used (see the section
“Specifying a New Distribution” on page 3540 for more details). Multiple MODEL statements are
allowed for defining models with multiple independent components. The log likelihood value is the
sum of the log likelihood values from each MODEL statement.

PROC MCMC is a programming language that is similar to the DATA step, and the order of state-
ment evaluation is important. For example, the MODEL statement must come after any SAS pro-
gramming statements that define or modify arguments used in the construction of the log likelihood.
In PROC MCMC, a symbol is allowed to be defined multiple times and used at different places. Us-
ing an expression out of order produces erroneous results that can also be hard to detect.

Standard distributions that the MODEL statement supports are listed in the Table 52.2 (see the sec-
tion “Standard Distributions” on page 3529 for density specification). These distributions can also
be used in the PRIOR and HYPERPRIOR statements. PROC MCMC allows some distributions to
be parameterized in multiple ways. For example, you can specify a normal distribution with vari-
ance (VAR=), standard deviation (SD=), or precision (PRECISION=) parameter. For distributions
that have different parameterizations, you must specify an option to clearly name the ambiguous
parameter. In the normal distribution, for example, you must indicate whether the second argument
is a variance, a standard deviation, or a precision.

All distributions, with the exception of binary and uniform, can have the optional arguments of
LOWER= and UPPER=, which specify a truncated density. See the section “Truncation and Cen-
soring” on page 3542 for more details.

Table 52.2 Valid Distributions

Distribution Name Definition

beta(< a= >˛, < b= >ˇ) beta distribution with shape parameters ˛ and ˇ

binary(< prob|p= > p) binary (Bernoulli) distribution with probability of
success p. You can use the alias bern for this
distribution.

binomial (< n= > n, < prob|p= > p) binomial distribution with count n and probability
of success p

cauchy (< location|loc|l= >� , < scale|s= >�) Cauchy distribution with location � and scale �

chisq(< df= > �) �2 distribution with � degrees of freedom

3512 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.2 (continued)

Distribution Name Definition

dgeneral(ll) general log-likelihood function that you construct
using SAS programming statements for single or
multiple discrete variables. Also see the function
general. The name dlogden is an alias for this
function.

expchisq(< df= > �) log transformation of a �2 distribution with � de-
grees of freedom: � � chisq.�/ , log.�/ �

expchisq.�/. You can use the alias echisq for
this distribution.

expexpon(scale|s= �)
expexpon(iscale|is= �)

log transformation of an exponential distribution
with scale or inverse-scale parameter �: � �

expon.�/ , log.�/ � expexpon.�/. You can
use the alias eexpon for this distribution.

expGamma(< shape|sp= > a, scale|s= �)
expGamma(< shape|sp= > a, iscale|is= �)

log transformation of a gamma distribution with
shape a and scale or inverse-scale �: � �

gamma.a; �/ , log.�/ � expgamma.a; �/.
You can use the alias egamma for this
distribution.

expichisq(< df= > �) log transformation of an inverse �2 distribution
with � degrees of freedom: � � ichisq.�/ ,

log.�/ � expichisq.�/. You can use the alias
eichisq for this distribution.

expiGamma(< shape|sp= > a, scale|s= �)
expiGamma(< shape|sp= > a, iscale|is= �)

log transformation of an inverse-gamma dis-
tribution with shape a and scale or inverse-
scale �: � � igamma.a; �/ , log.�/ �

expigamma.a; �/. You can use the alias
eigamma for this distribution.

expsichisq(< df= > �, < scale|s= > s) log transformation of a scaled inverse �2 dis-
tribution with � degrees of freedom and scale
parameter s: � � sichisq.�/ , log.�/ �

expsichisq.�/. You can use the alias esichisq
for this distribution.

expon(scale|s= �)
expon(iscale|is= �)

exponential distribution with scale or inverse-
scale parameter �

gamma(< shape|sp= > a, scale|s= �)
gamma(< shape|sp= > a, iscale|is= �)

gamma distribution with shape a and scale or
inverse-scale �

geo(< prob|p= > p) geometric distribution with probability p

MODEL Statement F 3513

Table 52.2 (continued)

Distribution Name Definition

general(ll) general log likelihood function that you construct
using SAS programming statements for a single
or multiple continuous variables. The argument ll
is an expression for the log of the distribution. If
there are multiple variables specified before the
tilde in a MODEL, PRIOR, or HYPERPRIOR
statement, ll is interpreted as the log of the joint
distribution for these variables. Note that in the
MODEL statement, the response variable speci-
fied before the tilde is just a place holder and is of
no consequence; the variable must have appeared
in the construction of ll in the programming state-
ments. general(constant) is equivalent to a uni-
form distribution on the real line. You can use the
alias logden for this distribution.

ichisq(< df= >�) inverse �2 distribution with � degrees of freedom

igamma(< shape|sp= > a, scale|s= �)
igamma(< shape|sp= > a, iscale|is= �)

inverse-gamma distribution with shape a and
scale or inverse-scale �

laplace(< location|loc|l= > � , scale|s= �)
laplace(< location|loc|l= > � , iscale|is= �)

Laplace distribution with location � and scale or
inverse-scale �. This is also known as the dou-
ble exponential distribution. You can use the alias
dexpon for this distribution.

logistic(< location|loc|l= > a, < scale|s= > b) logistic distribution with location a and scale b

lognormal(< mean|m= > �, sd= �)
lognormal(< mean|m= > �, var|v= �)
lognormal(< mean|m= > �, prec= �)

log-normal distribution with mean � and stan-
dard deviation or variance or precision �. You
can use the aliases lognormal or lnorm for this
distribution.

negbin(< n= > n, < prob|p= > p) negative binomial distribution with count n and
probability of success p. You can use the alias nb
for this distribution.

normal(< mean|m= > �, sd= �)
normal(< mean|m= > �, var|v= �)
normal(< mean|m= > �, prec= �)

normal (Gaussian) distribution with mean � and
standard deviation or variance or precision �. You
can use the aliases gaussian, norm, or n for this
distribution.

pareto(< shape|sp= > a, < scale|s= > b) Pareto distribution with shape a and scale b

poisson(< mean|m= > �) Poisson distribution with mean �

3514 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.2 (continued)

Distribution Name Definition

sichisq(< df= > �, < scale|s= > s) scaled inverse �2 distribution with � degrees of
freedom and scale parameter s

t(< mean|m= > �, sd= �, < df= > �)
t(< mean|m= > �, var|v= �, < df= > �)
t(< mean|m= > �, prec= �, < df= > �)

t distribution with mean �, standard deviation or
variance or precision �, and � degrees of freedom

uniform(< left|l= > a, < right|r= > b) uniform distribution with range a and b. You can
use the alias unif for this distribution.

wald(< mean|m= > �, < iscale|is= > �) Wald distribution with mean parameter � and in-
verse scale parameter �. This is also known as the
Inverse Gaussian distribution. You can use the
alias igaussian for this distribution.

weibull(�; c; �) Weibull distribution with location (threshold) pa-
rameter �, shape parameter c, and scale parame-
ter � .

PARMS Statement

PARMS name | (name-list) < = > number < name | (name-list) <= > number . . . >< / NORMAL
| T < (df) > | UDS > ;

The PARMS statement lists the names of the parameters in the model and specifies optional initial
values for these parameters. Multiple PARMS statements are allowed. Each PARMS statement
defines a block of parameters, and the blocked Metropolis algorithm updates the parameters in each
block simultaneously. See the section “Blocking of Parameters” on page 3522 for more details.
PROC MCMC generates missing initial values from the prior distributions whenever needed, as
long as they are the standard distributions and not the functions GENERAL or DGENERAL.

Every parameter in the PARMS statement must have a corresponding prior distribution in the
PRIOR statement. The program exits if the one-to-one requirement is not satisfied.

The optional arguments give you control over different samplers explicitly for that block of param-
eters. The normal proposal distribution in the random walk Metropolis is the default. You can also
choose a t-distribution with df degrees of freedom. If df > 100, the normal distribution is used
instead.

The user defined sampler (UDS, see the section “UDS Statement” on page 3517) option allows
you to implement a new sampler for any of the parameters in the block. PROC MCMC does not
use the Metropolis sampler on these parameters and incorporates your sampler to draw posterior
samples. This can sometimes greatly improve the convergence and mixing of the Markov chain.
This functionality is for advanced users, and you should proceed with caution.

PRIOR/HYPERPRIOR Statement F 3515

PRIOR/HYPERPRIOR Statement

PRIOR parameter-list � distribution ;

HYPERPRIOR parameter-list � distribution ;

HYPER parameter-list � distribution ;

The PRIOR statement is used to specify the prior distribution of the model parameters. You must
specify a single parameter or a list of parameters, a tilde (�), and then a distribution with its pa-
rameters. Multiple PRIOR statements are allowed for defining models with multiple independent
prior components. The log of the prior is the sum of the log prior values from each of the PRIOR
statements. See the section “MODEL Statement” on page 3511 for the names of the standard dis-
tributions and the section “Standard Distributions” on page 3529 for density specification.

The PRIOR statements are processed twice at every Markov chain simulation—that is, twice per
pass through the data set. The statements are called at the first and the last observation of the data
set. This is the same as how the BEGINPRIOR and ENDPRIOR statements are processed.

The HYPERPRIOR statement is internally treated the same as the PRIOR statement. It provides a
notational convenience in case you wish to fit a multilevel hierarchical model. It is used to specify
the hyperprior distribution of the prior distribution parameters. The log of the hyperprior is the sum
of the log hyperprior values from each of the HYPERPRIOR statements.

If you want to specify a multilevel hierarchical model, you can use either a PRIOR or a
HYPERPRIOR statement as if it were a hyper-HYPERPRIOR statement. Your model can have
as many hierarchical levels as desired.

Programming Statements

This section lists the programming statements available in PROC MCMC to compute the priors
and log-likelihood functions. This section also documents the differences between programming
statements in PROC MCMC and programming statements in the DATA step. The syntax of pro-
gramming statements used in PROC MCMC is identical to that used in the NLMIXED procedure
(see Chapter 61, “The NLMIXED Procedure”) and the MODEL procedure (see Chapter 18, “The
MODEL Procedure” (SAS/ETS User’s Guide),). Most of the programming statements that can be
used in the DATA step can also be used in PROC MCMC. Refer to SAS Language Reference:
Dictionary for a description of SAS programming statements.

There are also a number of unique functions in PROC MCMC that calculate the log density of
various distributions in the procedure. You can find them at the section “Using Density Functions
in the Programming Statements” on page 3540.

For the list of matrix-based functions that is supported in PROC MCMC, see the section “Matrix
Functions in PROC MCMC” on page 3529.

3516 F Chapter 52: The MCMC Procedure (Experimental)

The following are valid statements:

ABORT;
CALL name [(expression [, expression . . .])];
DELETE;
DO [variable = expression

[TO expression] [BY expression]
[, expression [TO expression] [BY expression] . . .]
]
[WHILE expression] [UNTIL expression];

END;
GOTO statement_label;
IF expression;
IF expression THEN program_statement;

ELSE program_statement;
variable = expression;
variable + expression;
LINK statement_label;
PUT [variable] [=] [...];
RETURN;
SELECT[(expression)];
STOP;
SUBSTR(variable, index, length)= expression;
WHEN (expression) program_statement;

OTHERWISE program_statement;

For the most part, the SAS programming statements work the same as they do in the DATA step, as
documented in SAS Language Reference: Concepts. However, there are several differences:

� The ABORT statement does not allow any arguments.

� The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported; however, the following statement is not supported:

do i = ’A’,’B’,’C’;

� The PUT statement, used mostly for program debugging in PROC MCMC (see the section
“Handling Error Messages” on page 3562), supports only some of the features of the DATA
step PUT statement, and it has some features that are not available with the DATA step PUT
statement:

– The PROC MCMC PUT statement does not support line pointers, factored lists, iteration
factors, overprinting, _INFILE_, _OBS_, the colon (:) format modifier, or “$”.

– The PROC MCMC PUT statement does support expressions, but the expression must
be enclosed in parentheses. For example, the following statement displays the square
root of x:

UDS Statement F 3517

put (sqrt(x));

� The WHEN and OTHERWISE statements enable you to specify more than one target state-
ment. That is, DO/END groups are not necessary for multiple statement WHENs. For exam-
ple, the following syntax is valid:

select;
when (exp1) stmt1;

stmt2;
when (exp2) stmt3;

stmt4;
end;

You should avoid defining variables that begin with an underscore (_). They might conflict with
internal variables created by PROC MCMC. The MODEL statement must come after any SAS
programming statements that define or modify terms used in the construction of the log likelihood.

UDS Statement

UDS subroutine-name (subroutine-argument-list) ;

UDS stands for user defined sampler. The UDS statement allows you to use a separate algorithm,
other than the default random walk Metropolis, to update parameters in the model. The purpose of
the UDS statement is to give you a greater amount of flexibility and better control over the updating
schemes of the Markov chain. Multiple UDS statements are allowed.

For the UDS statement to work properly, you have to do the following:

� write a subroutine by using PROC FCMP (see the FCMP Procedure in the Base SAS Proce-
dures Guide) and save it to a SAS catalog (see the example in this section). The subroutine
must update some parameters in the model. These are the UDS parameters. The subroutine
is called the UDS subroutine.

� declare any UDS parameters in the PARMS statement with a sampling option, as in < / UDS >
(see the section “PARMS Statement” on page 3514).

� specify the prior distributions for all UDS parameters, using the PRIOR statements.

NOTE: All UDS parameters must appear in three places: the UDS statement, the PARMS statement,
and the PRIOR statement. Otherwise, PROC MCMC exits.

To obtain a valid Markov chain, a UDS subroutine must update a parameter from its full posterior
conditional distribution and not the posterior marginal distribution. The posterior conditional is
something that you need to provide. This conditional is implicitly based on a prior distribution.
PROC MCMC has no means to verify that the implied prior in the UDS subroutine is the same as
the prior that you specified in the PRIOR statement. You need to make sure that the two distributions
agree; otherwise, you will get misleading results.

3518 F Chapter 52: The MCMC Procedure (Experimental)

The priors in the PRIOR statements do not directly affect the sampling of the UDS parameters.
They could affect the sampling of the other parameters in the model, which, in turn, changes the
behavior of the Markov chain. You can see this by noting cases where the hyperparameters of
the UDS parameters are model parameters; the priors should be part of the posterior conditional
distributions of these hyperparameters, and they cannot be omitted.

Some additional information is listed to help you better understand the UDS statement:

� Most features of the SAS programming language can be used in subroutines processed by
PROC FCMP (see the FCMP Procedure in the Base SAS Procedures Guide).

� The UDS statement does not support FCMP functions—a FCMP function returns a value,
while a subroutine does not. A subroutine updates some of its subroutine arguments. These
arguments are called OUTARGS arguments.

� The UDS parameters cannot be in the same block as other parameters. The optional argument
< / UDS > in the PARMS statement prevents parameters that use the default Metropolis from
being mixed with those that are updated by the UDS subroutines.

� You can put all the UDS parameters in the same PARMS statement or have a separate UDS
statement for each of them.

� The same subroutine can be used in multiple UDS statements. This feature comes in handy
if you have a generic sampler that can be applied to different parameters.

� PROC MCMC updates the UDS parameters by calling the UDS subroutines directly. At every
iteration, PROC MCMC first samples parameters that use the Metropolis algorithm, then the
UDS parameters. Sampling of the UDS parameters proceeds in the order in which the UDS
statements are listed.

� A UDS subroutine accepts any symbols in the program as well as any input data set variables
as its arguments.

� Only the OUTARGS arguments in a UDS subroutine are updated in PROC MCMC. You can
modify other arguments in the subroutine, but the changes are not global in the procedure.

� If a UDS subroutine has an argument that is a SAS data set variable, PROC MCMC steps
through the data set while updating the UDS parameters. The subroutine is called once per
observation in the data set for every iteration.

� If a UDS subroutine does not have any arguments that are data set variables, PROC MCMC
does not access the data set while executing the subroutine. The subroutine is called once per
iteration.

� To reduce the overhead in calling the UDS subroutine and accessing the data set repeat-
edly, you might consider reading all the input data set variables into arrays and using the
arrays as the subroutine arguments. See the section “BEGINCNST/ENDCNST Statement”
on page 3507 about how to use the BEGINCNST and ENDCNST statements to store data set
variables.

UDS Statement F 3519

An Example that Uses the UDS Statement

Suppose that you are interested in modeling normal data with conjugate prior distributions. The
data are as follows:

title ’An Example that uses the UDS Statement’;

data a;
input y @@;
i = _n_;
datalines;

-0.651 17.435 -5.943 -2.543 -10.444
-5.754 -5.002 -2.545 -1.743 0.998
;

The likelihood for each observation is as follows:

f .yi j�; �/ D �.�; var D �2/

The prior distributions on � and �2 are as follows:

�.�j�0; �2
0 / D �.�0; var D �2

0 /

�.�2
j�0; �2

0 / D fsi�2.shape D �0; scale D �2
0 /

where fsi�2 is the density function for a scaled inverse chi-square distribution. To sample � and �2

without using any UDS statements, you can use the following program:

proc mcmc data=a seed=17;
parm mu;
parm s2;
begincnst;

mu0 = 0; t0 = 20;
nu0 = 10; s0 = 10;

endcnst;

prior mu ~ normal(mu0, var=t0);
prior s2 ~ sichisq(nu0, s0);
model y ~ normal(mu, var = s2);

run;

This is a case where the full posterior conditional distribution of � given �2 and y has a closed
form. It is also a normal distribution:

p.�j�2; y/ D �

0@ �0

�2
0

C
n Ny

�2

1

�2
0

C
n

�2

;
1

1
�0
C

n
�2

1A

3520 F Chapter 52: The MCMC Procedure (Experimental)

You can define a subroutine, muupdater, which generates a random normal sample from the pos-
terior conditional distribution described previously.

proc fcmp outlib=sasuser.funcs.uds;
subroutine muupdater(mu, s2, mu0, t0, n, sumy);
outargs mu;
sigma2 = 1 / (1/t0 + n/s2);
mean = (mu0/t0 + sumy/s2) * sigma2;
mu = rand("normal", mean, sqrt(sigma2));
endsub;

run;

The subroutine is saved in the OUTLIB= library. The declaration of any subroutine begins with
a SUBROUTINE statement and ends with an ENDSUB statement. The OUTARGS statement in
the subroutine indicates that mu is updated. Others, such as sigma2, mu0, and so on, are arguments
that are needed in the full conditional distribution. Here the rand and sqrt are two of the many SAS
functions that you can use.

You specify a CMPLIB option to let SAS search each of the catalogs that are specified in the option
for a package that contains muupdater.

options cmplib=sasuser.funcs;

To use the subroutine in the UDS statement, you can use the following statements:
proc mcmc data=a seed=17;

UDS muupdater(mu, s2, mu0, t0, n, sumy);
parm mu /uds;
parm s2;
begincnst;

mu0 = 0; t0 = 20;
nu0 = 10; s0 = 10;
n = 10;
if i eq 1 then sumy = 0;
sumy = sumy + y;
call streaminit(1);

endcnst;

prior mu ~ normal(mu0, var=t0);
prior s2 ~ sichisq(nu0, s0);
model y ~ normal(mu, var = s2);

run;

These statements are very similar to the previous program. The differences are the UDS statement,
the < / UDS > option in the PARMS statement, and a few lines that computes the values of sumy and
n.

The symbol sumy is the sum of y. The value is obtained by taking advantage of the BEGINCNST
and ENDCNST statements. See the example in the section “BEGINCNST/ENDCNST Statement”
on page 3507. The symbol n is the sample size in the data set.

The CALL STREAMINIT routine ensures that the RAND function in muupdater creates a repro-
ducible stream of random numbers. The SEED= option specifies a seed for the random number
generator in PROC MCMC, which does not control the random number generator in the RAND
function in the subroutine. You need to set both to reproduce the same stream of Markov chain

Details: MCMC Procedure F 3521

samples.

The two programs produce different but similar numbers (results not shown) for the posterior dis-
tributions of � and �2.

For a more realistic example that uses the UDS statement, see “Example 52.11: Implement a New
Sampling Algorithm” on page 3666.

Details: MCMC Procedure

How PROC MCMC Works

PROC MCMC uses a random walk Metropolis algorithm to obtain posterior samples. For details
on the Metropolis algorithm, see the section “Metropolis and Metropolis-Hastings Algorithms” on
page 152. For the actual implementation details of the Metropolis algorithm in PROC MCMC, such
as the blocking of the parameters and tuning of the covariance matrices, see the section “Tuning the
Proposal Distribution” on page 3524. By default, PROC MCMC assumes that all observations in
the data set are independent, and the logarithm of the posterior density is calculated as follows:

log.p.� jy// D log.�.�//C

nX
iD1

log.f .yi j�//

where � is a parameter or a vector of parameters. The term log.�.�// is the sum of the log of
the prior densities specified in the PRIOR and HYPERPRIOR statements. The term log.f .yi j�//

is the log likelihood specified in the MODEL statement. The MODEL statement specifies the log
likelihood for a single observation in the data set.

The statements in PROC MCMC are in many ways like DATA step statements; PROC MCMC
evaluates every statement in order for each observation. The procedure cumulatively adds the log
likelihood for each observation. Statements between the BEGINPRIOR and ENDPRIOR state-
ments are evaluated only at the first and the last observations. At the last observation, the log of the
prior and hyperprior distributions is added to the sum of the log likelihood to obtain the log of the
posterior distribution.

With multiple PARMS statements (multiple blocks of parameters), PROC MCMC updates each
block of parameters while holding the others constants. The procedure still steps through all of
the programming statements to calculate the log of the posterior distribution, given the current or
the proposed values of the updating block of parameters. In other words, the procedure does not
calculate the conditional distribution explicitly for each block of parameters, and it uses the full
joint distribution in the Metropolis step for every block update. If you wish to model dependent
data—that is, log.f .yj�// ¤

P
i log.f .yi j�//—you can use the PROC option JOINTMODEL.

See the section “Modeling Dependent Data” on page 3549 for more details.

3522 F Chapter 52: The MCMC Procedure (Experimental)

Blocking of Parameters

In a multivariate parameter model, if all k parameters are proposed with one joint distribution
q.�j�/, acceptance or rejection would occur for all of them. This can be rather inefficient, especially
when parameters have vastly different scales. A way to avoid this difficulty is to allocate the k

parameters into d blocks and update them separately. The PARMS statement is used to specify
model parameters. It also puts parameters in separate blocks, and each block of parameters is
updated sequentially in the procedure.

Suppose that you wish to sample from a multivariate distribution with probability density function
p.� jy/ where � D f�1; �2; : : : ; �kg: Now suppose that these k parameters are separated into d

blocks—for example, p.� jx/ D fd .z/ where z D fz1; z2; : : : ; zd g, where each zj contains a
nonempty subset of the f�ig, and where each �i is contained in one and only one zj . In the MCMC
context, the z’s are blocks of parameters. In the blocked algorithm, a proposal is composed of
several parts. Instead of proposing a simultaneous move for all the � ’s, a proposal is made for the
�i ’s in z1 only, then for the �i ’s in z2, and so on for d subproposals. Any accepted proposal can
involve any number of the blocks moving. Not necessarily all of the parameters move at once as in
the all-at-once Metropolis algorithm.

Formally, the blocked Metropolis algorithm is as follows. Let wj be the collection of �i that are in
block zj and let qj .�jwj / be a symmetric multivariate distribution centered at the current values of
wj .

1. Let t D 0. Choose points for all wt
j . This can be an arbitrary point as long as p.wt

j jy/ > 0.

2. For j D 1; � � � ; d :

a) Generate a new sample, wj;new , using the proposal distribution qj .�jwt
j /.

b) Calculate the following quantity:

r D min

(
p.wj;new jw

t
1; � � � ; wt

j �1; wt�1
j C1; � � � ; wt

d
; y/

p.wt
j jw

t
1; � � � ; wt

j �1; wtC1
j �1; � � � ; wt

d
; y/

; 1

)
:

c) Sample u from the uniform distribution U.0; 1/.

d) Set wtC1
j D wj;new if r < a; wtC1

j D wt
j otherwise.

3. Set t D t C 1. If t < T , the number of desired samples, go back to Step 2; otherwise, stop.

With PROC MCMC, you can sample all parameters simultaneously by putting them all in a single
PARMS statement, you can sample parameters individually by putting each parameter in its own
PARMS statement, or you can sample certain subsets of parameters together by grouping each
subset in its own PARMS statements. For example, if the model you are interested in has five
parameters, alpha, beta, gamma, phi, sigma, the all-at-once strategy is as follows:

parms alpha beta gamma phi sigma;

Samplers F 3523

The one-at-a-time strategy is as follows:
parms alpha;
parms beta;
parms gamma;
parms phi;
parms sigma;

A two-block strategy could be as follows:
parms alpha beta gamma;
parms phi sigma;

One of the greatest challenges in MCMC sampling is achieving good mixing of the chains—the
chains should quickly traverse the support of the stationary distribution. A number of factors deter-
mine the behavior of a Metropolis sampler; blocking is one of them, so you want to be extra careful
when it comes to choosing a good design. Generally speaking, forming blocks of parameters has its
advantages, but it is not true that the larger the block the faster the convergence.

When simultaneously sampling a large number of parameters, the algorithm might find it difficult
to achieve good mixing. As the number of parameters gets large, it is much more likely to have
(proposal) samples that fall well into the tails of the target distribution, producing too small a test
ratio. As a result, few proposed values are accepted and convergence is slow. On the other hand,
when sampling each parameter individually, the chain might mix far too slowly because the condi-
tional distributions (of �i given all other � ’s) might be very “narrow.” Hence, it takes a long time
for the chain to explore fully that dimension alone. There are no theoretical results that can help
determine an optimal “blocking” for an arbitrary parametric model. A rule followed in practice is
to form small groups of correlated parameters that belong to the same context in the formulation of
the model. The best mixing is usually obtained with a blocking strategy somewhere between the
all-at-once and one-at-a-time strategies.

Samplers

This section describes the sampling methods used in PROC MCMC. Each block of parameters is
classified by the nature of the prior distributions. “Continuous” means all priors of the parameters in
the same block are continuous distribution. “Discrete” means all priors are discrete. “Mixed” means
that some parameters are continuous and others are discrete. Parameters that have binary priors are
treated differently, as indicated in the table. MVN stands for the multivariate normal distribution,
and MVT is short for the multivariate t-distribution.

Blocks Default Method Alternative Method

continuous MVN MVT
discrete (other than binary) binned MVN binned MVT or symmetric geometric
mixed MVN MVT
binary (single dimensional) inverse CDF
binary (multi-dimensional) independence sampler

3524 F Chapter 52: The MCMC Procedure (Experimental)

For a block of continuous parameters, PROC MCMC uses a multivariate normal distribution as
the default proposal distribution. In the tuning phase, the procedure finds an optimal scale c and a
tuning covariance matrix †.

For a discrete block of parameters, PROC MCMC uses a discretized multivariate normal distribu-
tion as the default proposal distribution. The scale c and covariance matrix † are tuned. Alter-
natively, you can use an independent symmetric geometric proposal distribution. The density has
form p.1�p/j�j

2.1�p/
and has variance .2�p/.1�p/

p2 . In the tuning phase, the procedure finds an optimal
proposal probability p for every parameter in the block.

You can change the proposal distribution, from the normal to a t-distribution. You can either use
the PROC option PROPDIST=T(df) or PARMS statement option < / T(df) > to make the change.
The t-distributions have thicker tails, and they can propose to the tail areas more efficiently than the
normal distribution. It can help with the mixing of the Markov chain if some of the parameters have
a skewed tails. See “Example 52.4: Nonlinear Poisson Regression Models” on page 3599. The
independence sampler (see the section “Independence Sampler” on page 153) is used for a block
of binary parameters. The inverse CDF method is used for a block that consists of a single binary
parameter.

Tuning the Proposal Distribution

One key factor in achieving high efficiency of a Metropolis-based Markov chain is finding a good
proposal distribution for each block of parameters. This process is referred to as tuning. The tuning
phase consists of a number of loops. The minimum number of loops is controlled by the option
MINTUNE=, with a default value of 2. The option MAXTUNE= controls the maximum number
of tuning loops, with a default value of 24. Each loop lasts for NTU= iterations, where by default
NTU= 500. At the end of every loop, PROC MCMC examines the acceptance probability for each
block. The acceptance probability is the percentage of NTU= proposals that have been accepted.
If the probability falls within the acceptance tolerance range (see the section “Scale Tuning” on
page 3525), the current configuration of c/† or p is kept. Otherwise, these parameters are modified
before the next tuning loop.

Continuous Distribution: Normal or t-Distribution

A good proposal distribution should resemble the actual posterior distribution of the parameters.
Large sample theory states that the posterior distribution of the parameters approaches a multivariate
normal distribution (see Gelman et al. 2004, Appendix B, and Schervish 1995, Section 7.4). That is
why a normal proposal distribution often works well in practice. The default proposal distribution in
PROC MCMC is the normal distribution: qj .�newj� t / D MVN.�newj� t ; c2†/. As an alternative,
you can choose a multivariate t-distribution as the proposal distribution. It is a good distribution
to use if you think that the posterior distribution has thick tails and a t-distribution can improve
the mixing of the Markov chain. See “Example 52.4: Nonlinear Poisson Regression Models” on
page 3599.

Tuning the Proposal Distribution F 3525

Scale Tuning

The acceptance rate is closely related to the sampling efficiency of a Metropolis chain. For a random
walk Metropolis, high acceptance rate means that most new samples occur right around the current
data point. Their frequent acceptance means that the Markov chain is moving rather slowly and
not exploring the parameter space fully. On the other hand, a low acceptance rate means that the
proposed samples are often rejected; hence the chain is not moving much. An efficient Metropolis
sampler has an acceptance rate that is neither too high nor too low. The scale c in the proposal dis-
tribution q.�j�/ effectively controls this acceptance probability. Roberts, Gelman, and Gilks (1997)
showed that if both the target and proposal densities are normal, the optimal acceptance probability
for the Markov chain should be around 0.45 in a single dimensional problem, and asymptotically
approaches 0.234 in higher dimensions. The corresponding optimal scale is 2:38, which is the initial
scale set for each block.

Due to the nature of stochastic simulations, it is impossible to fine-tune a set of variables such that
the Metropolis chain has the exact desired acceptance rate. In addition, Roberts and Rosenthal
(2001) empirically demonstrated that an acceptance rate between 0.15 and 0.5 is at least 80% effi-
cient, so there is really no need to fine-tune the algorithms to reach acceptance probability that is
within small tolerance of the optimal values. PROC MCMC works with a probability range, deter-
mined by the PROC options TARGACCEPT˙ACCEPTTOL. The default value of TARGACCEPT
is a function of the number of parameters in the model, as outlined in Roberts, Gelman, and Gilks
(1997). The default value of ACCEPTTOL is 0:075. If the observed acceptance rate in a given tun-
ing loop is less than the lower bound of the range, the scale is reduced; if the observed acceptance
rate is greater than the upper bound of the range, the scale is increased. During the tuning phase, a
scale parameter in the normal distribution is adjusted as a function of the observed acceptance rate
and the target acceptance rate. The following updating scheme is used in PROC MCMC 1:

cnew D
ccur �ˆ�1.popt=2/

ˆ�1.pcur=2/

where ccur is the current scale, pcur is the current acceptance rate, popt is the optimal acceptance
probability.

Covariance Tuning

To tune a covariance matrix, PROC MCMC takes a weighted average of the old proposal covari-
ance matrix and the recent observed covariance matrix, based on NTU samples in the current loop.
The TUNEWT=w option determines how much weight is put on the recently observed covariance
matrix. The formula used to update the covariance matrix is as follows:

COVnew D w COVcur C .1 � w/COVold

There are two ways to initialize the covariance matrix:

1 Roberts, Gelman, and Gilks (1997) and Roberts and Rosenthal (2001) demonstrate that the relationship between
acceptance probability and scale in a random walk Metropolis is p D 2ˆ

�
�
p

Ic=2
�

, where c is the scale, p is the

acceptance rate, ˆ is the CDF of a standard normal, and I � Ef Œ.f 0.x/=f .x//2�, f .x/ is the density function of
samples. This relationship determines the updating scheme, with I being replaced by the identity matrix to simplify
calculation.

3526 F Chapter 52: The MCMC Procedure (Experimental)

� The default is an identity matrix multiplied by the initial scale of 2:38 (controlled by the
PROC option SCALE=) and divided by the square root of the number of estimated parameters
in the model. It can take a number of tuning phases before the proposal distribution is tuned
to its optimal stage, since the Markov chain needs to spend time learning about the posterior
covariance structure. If the posterior variances of your parameters vary by more than a few
orders of magnitude, if the variances of your parameters are much different from 1, or if the
posterior correlations are high, then the proposal tuning algorithm might have difficulty with
forming an acceptable proposal distribution.

� Alternatively, you can use a numerical optimization routine, such as the quasi-Newton
method, to find a starting covariance matrix. The optimization is performed on the joint
posterior distribution, and the covariance matrix is a quadratic approximation at the posterior
mode. In some cases this is a better and more efficient way of initializing the covariance
matrix. However, there are cases, such as when the number of parameters is large, where
the optimization could fail to find a matrix that is positive definite. In that case, the tuning
covariance matrix is reset to the identity matrix.

A side product of the optimization routine is that it also finds the maximum a posteriori (MAP)
estimates with respect to the posterior distribution. The MAP estimates are used as the initial
values of the Markov chain.

If any of the parameters are discrete, then the optimization is performed conditional on these dis-
crete parameters at their respective fixed initial values. On the other hand, if all parameters are
continuous, you can in some cases skip the tuning phase (by setting MAXTUNE=0) or the burn-in
phase (by setting NBI=0).

Discrete Distribution: Symmetric Geometric

By default, PROC MCMC uses the normal density as the proposal distribution in all Metropolis
random walks. For parameters that have discrete prior distributions, PROC MCMC discretizes
proposed samples. You can choose an alternative symmetric geometric proposal distribution by
specifying the option DISCRETE=GEO.

The density of the symmetric geometric proposal distribution is as follows:

pg.1 � pg/j� j

2.1 � pg/

where the symmetry centers at � . The distribution has a variance of

�2
D

.2 � pg/.1 � pg/

p2
g

Tuning for the proposal pg uses the following formula:

�new
�cur

D
ˆ�1.popt=2/

ˆ�1.pcur=2/

Initial Values of the Markov Chains F 3527

where �new is the standard deviation of the new proposal geometric distribution, �cur is the stan-
dard deviation of the current proposal distribution, popt is the target acceptance probability, and
pcur is the current acceptance probability for the discrete parameter block.

The updated pg is the solution to the following equation that is between 0 and 1 :s
.2 � pg/.1 � pg/

p2
g

D
�cur �ˆ�1.popt=2/

ˆ�1.pcur=2/

Binary Distribution: Independence Sampler

Blocks consisting of a single parameter with a binary prior do not require any tuning; the inverse-
CDF method applies. Blocks that consist of multiple parameters with binary prior are sampled by
using an independence sampler with binary proposal distributions. See the section “Independence
Sampler” on page 153. During the tuning phase, the success probability p of the proposal distri-
bution is taken to be the probability of acceptance in the current loop. Ideally, an independence
sampler works best if the acceptance rate is 100%, but that is rarely achieved. The algorithm stops
when the probability of success exceeds the TARGACCEPTI=value, which has a default value of
0:6.

Initial Values of the Markov Chains

You can assign initial values to any parameters. To assign initial values, you can either use the
PARMS statements or use programming statements within the BEGINCNST and ENDCNST state-
ments. For the latter approach, see the section “BEGINCNST/ENDCNST Statement” on page 3507.

When parameters have missing initial values, PROC MCMC tries to generate them from the respec-
tive prior distributions, as long as the distributions are listed in the section “Standard Distributions”
on page 3529. PROC MCMC either uses the mode from the prior distribution or draws a random
number from it. For distributions that do not have modes, such as the uniform distribution, PROC
MCMC uses the mean instead. In general, PROC MCMC avoids using starting values that are close
to the boundary of support of the prior distribution. For example, the exponential prior has a mode
at 0, and PROC MCMC starts an initial value at the mean. This avoids some potential numerical
problems. If you use the GENERAL or DGENERAL functions in the PRIOR statements, you must
provide initial values for those parameters.

If you use the optimization option PROPCOV, PROC MCMC starts the tuning at the optimized
values. The procedure overwrites the initial values that you provided unless you use the option
INIT=REINIT.

Assignments of Parameters

In PROC MCMC, the values of any model parameters cannot be altered outside of the BEGINCNST
and ENDCNST statements. The following statements produce an error:

3528 F Chapter 52: The MCMC Procedure (Experimental)

parms alpha;
alpha = 27;

All programming statements within the BEGINCNST and ENDCNST statements are executed be-
fore the first Markov chain iteration, so they can be used to give parameters initial values. The
following syntax is allowed:

parms alpha;
begincnst;

alpha = 27;
endcnst;

The value 27 is alpha’s initial value. This overrides any value that you give to alpha in the PARMS
statement. For example, with the following statements,

parms alpha 23;
begincnst;

alpha = 27;
endcnst;

the Markov chain starts at alpha=27, not 23.

This feature gives you a way to systematically assign initial values. Suppose that z is an array
parameter of the same length as the number of observations in the input data set. You want to
start the Markov chain with each zi having a different value depending on the data set variable y.
Suppose that you want set zi D jyj for the first half of the observations and zi D 2:3 for the rest.
This is what you can do:

/* a rather artificial input data set. */
data inputdata;

do ind = 1 to 10;
y = rand(’normal’);
output;

end;
run;

proc mcmc data=inputdata;
array z[10];
begincnst;

if ind <= 5 then z[ind] = abs(y);
else z[ind] = 2.3;

endcnst;
parms z:;
prior z: ~ normal(0, sd=1);
model general(0);

run;

Elements of z are modified as PROC MCMC executes the programming statements within the
BEGINCNST and ENDCNST. This feature is use most when you construct a prior on z using the
GENERAL function and find that the PARMS statements are too cumbersome for assigning starting
values. Other symbols, including the input data set variables, can be altered in the program.

Standard Distributions F 3529

Matrix Functions in PROC MCMC

Table 52.4 displays the matrix functions that PROC MCMC supports. For detailed descriptions of
these functions, see the FCMP Procedure in the Base SAS Procedures Guide.

Table 52.4 Matrix Functions in PROC MCMC

Function Call Description
call addmatrix(m1, m2, outm); performs element-wise addition of m1 and m2 and

saves the result to outm
call chol(m, outm); calculates the Cholesky decomposition of m and

saves the result to outm
call det(m,d); calculates the determinant of m and saves the re-

sult to d
call elemmult(m1, m2, outm); performs element-wise multiplication of m1 and

m2 and saves the result to outm
call identity(m); converts m to an identity matrix of the same order
call inv(m,im); calculates the inverse of m and saves the result to

im
call mult(m1,m2,outm); performs matrix multiplication of m1 and m2 and

saves the result to outm
call subtractmatrix(m1,m2,outm); performs element-wise subtraction of m1 and m2

and saves the result to outm
call transpose(m,tm); transposes m and saves it to tm
call zeromatrix(m); replaces all the element values of m with 0 m

Standard Distributions

Table 52.5 to Table 52.32 show all densities that PROC MCMC recognizes. These densities can
be used in the MODEL, PRIOR, and HYPERPRIOR statements. See the section “Using Density
Functions in the Programming Statements” on page 3540 for information about how to use distribu-
tions in the programming statements. To specify an arbitrary distribution, you can use the functions
GENERAL and DGENERAL. See the section “Specifying a New Distribution” on page 3540 for
more details. See the section “Truncation and Censoring” on page 3542 for tips on how to work
with truncated distributions and censoring data.

3530 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.5 Beta Distribution

PROC specification beta(a, b)

density �.aCb/
�.a/�.b/

�a�1.1 � �/b�1

parameter restriction a > 0, b > 0

range

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Œ0; 1� when a D 1; b D 1

Œ0; 1/ when a D 1; b ¤ 1

.0; 1� when a ¤ 1; b D 1

.0; 1/ otherwise

mean a
aCb

variance ab
.aCb/2.aCbC1/

mode

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

a�1
aCb�2

a > 1; b > 1

0 and 1 a < 1; b < 1

0

(
a < 1; b � 1

a D 1; b > 1

1

(
a � 1; b < 1

a > 1; b D 1

does not exist uniquely a D b D 1

random number if min.a; b/ > 1, see (Cheng 1978); if max.a; b/ < 1,
see (Atkinson and Whittaker 1976) and (Atkinson 1979); if
min.a; b/ < 1 and max.a; b/ > 1, see (Cheng 1978); if a D 1

or b D 1, inversion method; if a D b D 1, uniform random vari-
able

Table 52.6 Binary Distribution

PROC specification binary(p)

density p� .1 � p/1��

parameter restriction 0 � p � 1

range

8̂̂<̂
:̂
f0g when p D 0

f1g when p D 1

f0; 1g otherwise

mean round.p/

variance p.1 � p/

mode

(
f1g when p D 1

f0g otherwise

random number generate u � uniform.0; 1/. If u � p, � D 1; else, � D 0

Standard Distributions F 3531

Table 52.7 Binomial Distribution

PROC specification binomial(n, p)

density

n

�

!
p� .1 � p/n��

parameter restriction n D 0; 1; 2; � � � 0 � p � 1

range � 2 f0; � � � ; ng

mean bnpc

variance np.1 � p/

mode b.nC 1/pc

Table 52.8 Cauchy Distribution

PROC specification cauchy(a, b)

density 1
�

�
b

b2C.��a/2

�
parameter restriction b > 0

range � 2 .�1;1/

mean does not exist

variance does not exist

mode a

random number generate u1; u2 � uniform.0; 1/, let v D 2u2 � 1. Repeat the
procedure until u2

1 C v2 < 1. y D v=u1 is a draw from the
standard Cauchy, and � D aC by (Ripley 1987)

Table 52.9 �2 Distribution

PROC specification chisq(�)

density 1
�.�=2/2�=2 � .�=2/�1e��=2

parameter restriction � > 0

range � 2 Œ0;1/ if � D 2; .0;1/ otherwise

mean �

variance 2�

mode � � 2 if � � 2; does not exist otherwise

random number �2 is a special case of the gamma distribution: � �

gamma.�=2; scale=2/ is a draw from the �2 distribution

3532 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.10 Exponential �2 Distribution

PROC specification expchisq(�)

density 1
�.�=2/2�=2 exp.�/�=2 exp.� exp.�/=2/

parameter restriction � > 0

range � 2 .�1;1/

mode log.�/

random number generate x1 � �2.�/, and � D log.x1/ is a draw from the expo-
nential �2 distribution

relationship to the �2

distribution
� � �2.�/, log.�/ � exp �2.�/

Table 52.11 Exponential Exponential Distribution

PROC specification expexpon(scale = b) expexpon(iscale = ˇ)

density 1
b

exp.�/ exp.� exp.�/=b/ ˇ exp.�/ exp.� exp.�/ � ˇ/

parameter restriction b > 0 ˇ > 0

range � 2 .�1;1/ same

mode log.b/ log.1=ˇ/

random number generate x1 � expon.scale=b/, and � D log.x1/ is a draw from
the exponential exponential distribution. Note that an exponential
exponential distribution is not the same as the double exponential
distribution.

relationship to the
Expon distribution

� � expon.b/, log.�/ � expExpon.b/

Table 52.12 Exponential Gamma Distribution

PROC specification expgamma(a, scale = b) expgamma(a, iscale = ˇ)

density 1
ba�.a/

ea� exp.�e�=b/ ˇa

�.a/
ea� exp.�e� � ˇ/

parameter restriction a > 0; b > 0 a > 0; ˇ > 0

range � 2 .�1;1/ same

mode log.ab/ log.a=ˇ/

random number generate x1 � gamma.a; scale D b/, and � D log.x1/ is a draw
from the exponential gamma distribution

relationship to the �

distribution
� � gamma.a; b/, log.�/ � expGamma.a; b/

Standard Distributions F 3533

Table 52.13 Exponential Inverse �2 Distribution

PROC specification expichisq(�)

density 1
�. �

2
/2�=2 exp.���=2/ exp.�1=.2 exp.�///

parameter restriction � > 0

range � 2 .�1;1/

mode � log.�/

random number generate x1 � i�2.�/, and � D log.x1/ is a draw from the expo-
nential inverse �2 distribution

relationship to the i�2

distribution
� � i�2.�/, log.�/ � exp i�2.�/

Table 52.14 Exponential Inverse-Gamma Distribution

PROC specification expigamma(a, scale = b) expigamma(a, iscale = ˇ)

density ba

�.a/
exp.�˛�/ exp.�b= exp.�// 1

ˇ˛�.a/
exp.�˛�/ exp.� 1

ˇ exp.�/
/

parameter restriction a > 0; b > 0 a > 0; ˇ > 0

range � 2 .�1;1/ same

mode � log.a=b/ � log.aˇ/

random number generate x1 � igamma.a; scale D b/, and � D log.x1/ is a draw
from the exponential inverse-gamma distribution

relationship to the i�

distribution
� � igamma.a; b/, log.�/ � eigamma.a; b/

Table 52.15 Exponential Scaled Inverse chi2 Distribution

PROC specification expsichisq(�, s)

density . �
2

/�=2

�. �
2

/
s� exp.���=2/ exp.��s2=.2 exp.�///

parameter restriction � > 0; s > 0

range � 2 .�1;1/

mode log.s2/

random number generate x1 � si�2.�/, and � D log.x1/ is a draw from the expo-
nential scaled inverse �2 distribution

relationship to the si�2

distribution
� � si�2.�/, log.�/ � exp si�2.�/

3534 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.16 Exponential Distribution

PROC specification expon(scale = b) expon(iscale = ˇ)

density 1
b

e��=b ˇe�ˇ�

parameter restriction b > 0 ˇ > 0

range � 2 Œ0;1/ same

mean b 1=ˇ

variance b2 1=ˇ2

mode 0 0

random number the exponential distribution is a special case of the gamma distri-
bution: � � gamma.1; scale D b/ is a draw from the exponential
distribution

Table 52.17 Gamma Distribution

PROC specification gamma(a, scale = b) gamma(a, iscale = ˇ)

density 1
ba�.a/

�a�1e��=b ˇa

�.a/
�a�1e�ˇ�

parameter restriction a > 0; b > 0 a > 0; ˇ > 0

range � 2 Œ0;1/ if a D 1I .0;1/ oth-
erwise

same

mean ab a=ˇ

variance ab2 a=ˇ2

mode .a � 1/b if a � 1 .a � 1/=ˇ if a � 1

random number see (McGrath and Irving 1973)

Table 52.18 Geometric Distribution

PROC specification geo(p)

density 2 p.1 � p/�

parameter restriction 0 < p � 1

range � 2

(
f0; 1; 2; : : :g 0 < p < 1

f0g p D 1

mean round(1�p
p

)

variance 1�p

p2

mode 0

random number based on samples obtained from a Bernoulli distribution with prob-
ability p until the first success

2The random variable � is the total number of failures in an experiment before the first success. This density function
is not to be confused with another popular formulation, p.1 � p/��1, which counts the total number of trials until the
first success.

Standard Distributions F 3535

Table 52.19 Inverse �2 Distribution

PROC specification ichisq(�)

density 1
�.�=2/2�=2 ��.�=2C1/e�1=.2�/

parameter restriction � > 0

range � 2 .0;1/

mean 1
��2

if � > 2

variance 2
.��2/2.��4/

if � > 4

mode 1
�C2

random number inverse �2 is a special case of the inverse-gamma distribution: � �

igamma.�=2; scale D 2/ is a draw from the inverse �2 distribution

Table 52.20 Inverse-Gamma Distribution

PROC specification igamma(a, scale = b) igamma(a, iscale = ˇ)

density ba

�.a/
��.aC1/e�b=� 1

ˇa�.a/
��.aC1/e�1=ˇ�

parameter restriction a > 0; b > 0 a > 0; ˇ > 0

range � 2 .0;1/ same

mean b
a�1

if a > 1 1
ˇ.a�1/

if a > 1

variance b2

.a�1/2.a�2/
1

ˇ2.a�1/2.a�2/

mode b
aC1

1
ˇ.aC1/

random number generate x1 � gamma.a; scale D b/, and � D 1=x1 is a draw
from the igamma.a; iscale D b/ distribution

relationship to the
gamma distribution

� � gamma.a; scale D b/, 1=� � igamma.a; iscale D b/

Table 52.21 Laplace (Double Exponential) Distribution

PROC specification laplace(a, scale = b) laplace(a, iscale = ˇ)

density 1
2b

e�j��aj=b ˇ
2

e�ˇ j��aj

parameter restriction b > 0 ˇ > 0

range � 2 .�1;1/ same

mean a a

variance 2b2 2=ˇ2

mode a a

random number inverse CDF. F.�/ D

8<:
1
2

exp
�
�

a��
b

�
� < a

1 � 1
2

exp
�
�

��a
b

�
� � a

: Generate

u1; u2 � uniform.0; 1/. If u1 < 0:5; � D a C b log.u2/I else
� D a � b log.u2/. � is a draw from the Laplace distribution

3536 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.22 Logistic Distribution

PROC specification logistic(a, b)

density exp.� ��a
b /

b.1Cexp.� ��a
b //

2

parameter restriction b > 0

range � 2 .�1;1/

mean a

variance �2b2

3

mode a

random number inverse CDF method with F.�/ D
�
1C exp.���a

b
/
��1

. Gener-
ate u � uniform.0; 1/, and � D a� b log.1=u� 1/ is a draw from
the logistic distribution

Table 52.23 LogNormal Distribution

PROC speci-
fication

lognormal(�, sd = s) lognormal(�, var = v) lognormal(�, prec = �)

density 1

�s
p

2�
exp

�
�

.log ���/2

2s2

�
1

�
p

2�v
exp

�
�

.log ���/2

2v

�
1
�

q
�

2�
exp

�
�

�.log ���/2

2

�
parameter
restriction

s > 0 v > 0 � > 0

range � 2 .0;1/ same same

mean exp.�C s2=2/ exp.�C v=2/ exp.�C 1=.2�//

variance
exp .2.�C s2//

� exp .2�C s2/

exp .2.�C v//

� exp .2�C v/

exp .2.�C 1=�//

� exp .2�C 1=�/

mode exp.� � s2/ exp.� � v/ exp.� � 1=�/

random
number

generate x1 � normal.0; 1/, and � D exp.� C sx1/ is a draw from the
lognormal distribution

Table 52.24 Negative Binomial Distribution

PROC specification negbin(n, p)

density

� C n � 1

�

!
pn.1 � p/�

parameter restriction n D 1; 2; � � � 0 < p � 1

range � 2

(
f0; 1; 2; : : :g 0 < p < 1

f0g p D 1

Standard Distributions F 3537

mean round
�

n.1�p/
p

�
variance n.1�p/

p2

mode

8<: 0 n D 1

round
�

.n�1/.1�p/
p

�
n > 1

random number generate x1 � gamma.n; 1/, and � � Poisson.x1 � .1 � p/=p/

(Fishman 1996).

Table 52.25 Normal Distribution

PROC speci-
fication

normal(�, sd = s) normal(�, var = v) normal(�, prec = �)

density 1

s
p

2�
exp

�
�

.���/2

2s2

�
1p
2�v

exp
�
�

.���/2

2v

� q
�

2�
exp

�
�

�.���/2

2

�
parameter
restriction

s > 0 v > 0 � > 0

range � 2 .�1;1/ same same

mean � same same

variance s2 v 1=�

mode � same same

Table 52.26 Pareto Distribution

PROC specification pareto(a, b)

density a
b

�
b
�

�aC1

parameter restriction a > 0; b > 0

range � 2 Œb;1/

mean ab
a�1

if a > 1

variance b2a
.a�1/2.a�2/

if a > 2

mode b

random number inverse CDF method with F.�/ D 1 � .b=�/a . Generate u �

uniform.0; 1/, and � D b
u1=a is a draw from the Pareto distribution.

useful transformation x D 1=� is Beta(a, 1)I{x < 1=b}.

3538 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.27 Poisson Distribution

PROC specification poisson(�)

density ��

�Š
exp.��/

parameter restriction � � 0

range � 2

(
f0; 1; : : :g if � > 0

f0g if � D 0

mean �

variance �, if � > 0

mode round.�/

Table 52.28 Scaled Inverse �2 Distribution

PROC specification sichisq(�; s2)

density .�=2/�=2

�.�=2/
s���.�=2C1/e��s2=.2�/

parameter restriction � > 0; s > 0

range � 2 .0;1/

mean �
��2

s2 if � > 2

variance 2�2

.��2/2.��4/
s4 if � > 4

mode �
�C2

s2

random number scaled inverse �2 is a special case of the inverse-gamma distri-
bution: � � igamma.�=2; scale D .�s2/=2/ is a draw from the
scaled inverse �2 distribution.

Table 52.29 T Distribution

PROC
specifica-
tion

t(�, sd = s, �) t(�, var = v, �) t(�, prec = � , �)

density �. �C1
2

/

�. �
2

/s
p

��
.1C .���/2

�s2 /�
�C1

2
�. �C1

2
/

�. �
2

/
p

��v
.1C .���/2

�v
/�

�C1
2

�. �C1
2

/
p

�

�. �
2

/
p

��
.1C �.���/2

�
/�

�C1
2

parm re-
striction

s > 0, � > 0 v > 0, � > 0 � > 0, � > 0

range � 2 .�1;1/ same same

mean � if � > 1 same same

variance �
��2

s2 if � > 2 �
��2

v if � > 2 �
��2

1
�

if � > 2

mode � same same

random
number

x1 � normal.0; 1/; x2 � �2.d/; and � D m C �x1

p
d=x2 is a draw from the

t-distribution.

Standard Distributions F 3539

Table 52.30 Uniform Distribution

PROC specification uniform(a, b)

density

8̂̂<̂
:̂

1
a�b

if a > b

1
b�a

if b > a

1 if a D b

parameter restriction none

range � 2 Œa; b�

mean aCb
2

variance jb�aj2

12

mode does not exist

random number Mersenne Twister (Matsumoto and Kurita 1992, 1994; Matsumoto
and Nishimura 1998)

Table 52.31 Wald Distribution

PROC specification wald(�, �)

density
q

�
2��3 exp

�
��.���/2

2�2�

�
parameter restriction � > 0; � > 0

range � 2 .0;1/

mean �

variance �3=�

mode �

��
1C 9�2

4�2

�1=2
�

3�
2�

�
random number generate �0 � �2

.1/
. Let x1 D �C�2�0

2�
�

�
2�

q
4���0 C �2�2

0 and

x2 D �2=x1. Perform a Bernoulli trial, w � Bernoulli. �
�Cx1

/. If
w D 1, choose � D x1; otherwise, choose � D x2 (Michael,
Schucany, and Haas 1976).

Table 52.32 Weibull Distribution

PROC specification weibull(�, c, �)

density exp
�
�

�
���

�

�c�
c
�

�
���

�

�c�1

parameter restriction c > 0; � > 0

range � 2 Œ�;1/ if c D 1I .�;1/ otherwise

mean �C ��.1C 1=c/

variance �2Œ�.1C 2=c/ � �2.1C 1=c/�

mode �C �.1 � 1=c/1=c if c > 1

random number inverse CDF method with F.�/ D 1�exp
�
�

�
�

���
�

�c�
. Gener-

ate u � uniform.0; 1/, and � D �C � � .� ln u/1=c is a draw from
the Weibull distribution.

3540 F Chapter 52: The MCMC Procedure (Experimental)

Specifying a New Distribution

To work with a new density that is not listed in the section “Standard Distributions” on page 3529,
you can use the GENERAL and DGENERAL functions. The letter “D” stands for discrete. The
new distributions have to be specified on the logarithm scale.

Suppose that you want to use the inverse-beta distribution:

p.˛ja; b/ D
�.aC b/

�.a/C �.b/
� ˛.a�1/

� .1C ˛/�.aCb/

The following statements in PROC MCMC define the density on its log scale:
a = 3; b = 5;
const = lgamma(a + b) - lgamma(a) - lgamma(b);
lp = const + (a - 1) * log(alpha) - (a + b) * log(1 + alpha);
prior alpha ~ general(lp);

The symbol lp is the expression for the log of an inverse-beta (a = 3, b = 5). The function
general(lp) assigns that distribution to alpha. Note that the constant term, const, can be omit-
ted as the Markov simulation requires only the log of the density kernel.

When you use the GENERAL function in the MODEL statement, you do not need to specify the
dependent variable on the left of the tilde (�). The log-likelihood function takes the dependent
variable into account; hence there is no need to explicitly state the dependent variable in the MODEL
statement. However, in the PRIOR statements, you need to explicitly state the parameter names and
a tilde with the GENERAL and DGENERAL functions.

You can specify any distribution function by using the GENERAL and DGENERAL functions
as long as they are programmable with SAS statements. When the function is used in the
PRIOR statements, you must supply initial values. This can be done in either the PARMS state-
ment (“PARMS Statement” on page 3514) or within the BEGINCNST and ENDCNST statements
(“BEGINCNST/ENDCNST Statement” on page 3507).

It is important to remember that PROC MCMC does not verify that the GENERAL function you
specify is a valid distribution—that is, an integrable density. You must use the function with caution.

Using Density Functions in the Programming Statements

Density Functions in PROC MCMC

PROC MCMC also has a number of internally defined log-density functions. The functions have
the basic form of lpdfdist(x, parm-list, < lower >, < upper >), where dist is the name of the distribu-
tion (see Table 52.33). The argument x is the random variable, parm-list is the list of parameters,
and lower and upper are boundary arguments. The lower and upper arguments are optional but
positional. With the exception of the Bernoulli and uniform distribution, you can specify limits on
all distributions.

Using Density Functions in the Programming Statements F 3541

To set a lower bound on the normal density:

lpdfnorm(x, 0, 1, -2);

To set just an upper bound, specify a missing value for the lower bound argument:

lpdfnorm(x, 0, 1, ., 2);

Leaving both limits out gives you the unbounded density, and you can also specify both bounds:

lpdfnorm(x, 0, 1);
lpdfnorm(x, 0, 1, -3, 4);

See the following table for a list of distributions and their corresponding lpdf functions.

Table 52.33 Logarithm of Density Functions in PROC MCMC

Distribution Name Function Call

beta lpdfbeta(x, a, b, < lower>, < upper>);
binary lpdfbern(x, p);
binomial lpdfbin(x, n, p, < lower>, < upper>);
Cauchy lpdfcau(x, loc, scale, < lower>, < upper>);
�2 lpdfchisq(x, df, < lower>, < upper>);
exponential �2 lpdfechisq(x, df, < lower>, < upper>);
exponential gamma lpdfegamma(x, sp, scale, < lower>, < upper>);
exponential expo-
nential

lpdfeexpon(x, scale, < lower>, < upper>);

exponential inverse
�2

lpdfeichisq(x, df, < lower>, < upper>);

exponential
inverse-gamma

lpdfeigamma(x, sp, scale, < lower>,
< upper>);

exponential scaled
inverse �2

lpdfesichisq(x, df, scale, < lower>,
< upper>);

exponential lpdfexpon(x, scale, < lower>, < upper>);
gamma lpdfgamma(x, sp, scale, < lower>, < upper>);
geometric lpdfgeo(x, p, < lower>, < upper>);
inverse �2 lpdfichisq(x, df, < lower>, < upper>);
inverse-gamma lpdfigamma(x, sp, scale, < lower>, < upper>);
Laplace lpdfdexp(x, loc, scale, < lower>, < upper>);
logistic lpdflogis(x, loc, scale, < lower>, < upper>);
lognormal lpdflnorm(x, loc, sd, < lower>, < upper>);
negative binomial lpdfnegbin(x, n, p, < lower>, < upper>);
normal lpdfnorm(x, mu, sd, < lower>, < upper>);
Pareto lpdfpareto(x, sp, scale, < lower>, < upper>);
Poisson lpdfpoi(x, mean, < lower>, < upper>);
scaled inverse �2 lpdfsichisq(x, df, scale, < lower>,

< upper>);
T lpdft(x, mu, sd, df, < lower>, < upper>);
uniform lpdfunif(x, a, b);

3542 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.33 (continued)

Distribution Name Function Call

Wald lpdfwald(x, mean, scale, < lower>,
< upper>);

Weibull lpdfwei(x, loc, sp, scale, < lower>,
< upper>);

Standard Distributions, the logpdf Functions, and the lpdfdist Functions

Standard distributions listed in the section “Standard Distributions” on page 3529 are names only,
and they can only be used in the MODEL, PRIOR, and HYPERPRIOR statements to specify either
a prior distribution or a conditional distribution of the data given parameters. They do not return
any values, and you cannot use them in the programming statements.

The LOGPDF functions are DATA step functions that compute the logarithm of various probability
density (mass) functions. For example, logpdf("beta", x, 2, 15) returns the log of a beta
density with parameters a = 2 and b = 15, evaluated at x. All the LOGPDF functions are supported
in PROC MCMC.

The lpdfdist functions are unique to PROC MCMC. They compute the logarithm of various prob-
ability density (mass) functions. The functions are the same as the LOGPDF functions when it
comes to calculating the log density. For example, lpdfbeta(x, 2, 15) returns the same value
as logpdf("beta", x, 2, 15). The lpdfdist functions cover a greater class of probability density
functions, and they take the optional but positional boundary arguments. There are no corresponding
lcdfdist or lsdfdist functions in PROC MCMC. To work with the cumulative probability function
or the survival functions, you need to use the LOGCDF and the LOGSDF DATA step functions.

Truncation and Censoring

Truncated Distributions

To specify a truncated distribution, you can use the LOWER= and/or UPPER= options. Almost
all of the standard distributions, including the GENERAL and DGENERALfunctions, take these
optional truncation arguments. The exceptions are the binary and uniform distributions.

For example, you can specify the following:

prior alpha ~ normal(mean = 0, sd = 1, lower = 3, upper = 45);

or

parms beta;
a = 3; b = 7;
ll = (a + 1) * log(b / beta);
prior beta ~ general(ll, upper = b + 17);

Truncation and Censoring F 3543

The preceding statements state that if beta is less than b+17, the log of the prior density is ll, as
calculated by the equation; otherwise, the log of the prior density is missing—the log of zero.

When the same distribution is applied to multiple parameters in a PRIOR statement, the LOWER=
and UPPER= truncations apply to all parameters in that statement. For example, the following
statements define a Poisson density for theta and gamma:

parms theta gamma;
lambda = 7;
l1 = theta * log(lambda) - lgamma(1 + theta);
l2 = gamma * log(lambda) - lgamma(1 + gamma);
ll = l1 + l2;
prior theta gamma ~ dgeneral(ll, lower = 1);

The LOWER=1 condition is applied to both theta and gamma, meaning that for the assignment to ll
to be meaningful, both theta and gamma have to be greater than 1. If either of the parameters is less
than 1, the log of the joint prior density becomes a missing value.

With the exceptions of the normal distribution and the GENERAL and DGENERAL functions, the
LOWER= and UPPER= options cannot be parameters or functions of parameters. The reason is
that most of the truncated distributions are not normalized. Unnormalized densities do not lead to
wrong MCMC answers as long as the bounds are constants. However if the bounds involve model
parameters, then the normalizing constant, which is a function of these parameters, has to be taken
into account in the posterior. Without specifying the normalizing constant, inferences on these
boundary parameters are incorrect.

It is not difficult to construct a truncated distribution with a normalizing constant. Any truncated
distribution has the probability distribution:

p.� ja < � < b/ D
p.�/

F.a/ � F.b/

where p.�/ is the density function and F.�/ is the cumulative distribution function. In SAS functions,
p.�/ is probability density function and F.�/ is cumulative distribution function. The following
example shows how to construct a truncated gamma prior on theta, with SHAPE = 3, SCALE = 2,
LOWER = a, and UPPER = b:

lp = logpdf(’gamma’, theta, 3, 2)
- log(cdf(’gamma’, a, 3, 2) - cdf(’gamma’, b, 3, 2));

prior theta ~ general(lp);

Note the difference from a naive definition of the density, without taking into account of the nor-
malizing constant:

lp = logpdf(’gamma’, theta, 3, 2);
prior theta ~ general(lp, lower=a, upper=b);

If a or b are parameters, you get very different results from the two formulations.

Censoring

There is no built-in mechanism in PROC MCMC that models censoring automatically. You need
to construct the density function (using a combination of the LOGPDF, LOGCDF, and LOGSDF

3544 F Chapter 52: The MCMC Procedure (Experimental)

functions and IF-ELSE statements) for the censored data.

Suppose that you partition the data into four categories: uncensored (with observation x), left cen-
sored (with observation xl), right censored (with observation xr), and interval censored (with ob-
servations xl and xr). The likelihood is the normal with mean mu and standard deviation s. The
following statements construct the corresponding log likelihood for the observed data:

if uncensored then
ll = logpdf(’normal’, x, mu, s);

else if leftcensored then
ll = logcdf(’normal’, xl, mu, s);

else if rightcensored then
ll = logsdf(’normal’, xr, mu, s);

else /* this is the case of interval censored. */
ll = log(cdf(’normal’, xr, mu, s) - cdf(’normal’, xl, mu, s));

model general(ll);

See “Example 52.9: Normal Regression with Interval Censoring” on page 3658.

Multivariate Density Functions

The DATA step has functions that compute the logarithm of the density of some multivariate distri-
butions. You can use them in PROC MCMC. For a complete listing of multivariate functions, see
SAS Language Reference: Dictionary.

Some commonly used multivariate functions in Bayesian analysis are as follows:

� LOGMPDFNORMAL, the logarithm of the multivariate normal

� LOGMPDFWISHART, the logarithm of the Wishart

� LOGMPDFIWISHART, the logarithm of the inverted-Wishart

� LOGMPDFDIR1, the logarithm of the Dirichlet distribution of Type I

� LOGMPDFDIR2, the logarithm of the Dirichlet distribution of Type II

� LOGMPDFMULTINOM, the logarithm of the multinomial

Other multivariate density functions include: LOGMPDFT (t-distribution), LOGMPDFGAMMA
(gamma distribution), LOGMPDFBETA1 (beta of type I), and LOGMPDFBETA2 (beta of type II).

Density Function Definition

LOGMPDFNORMAL

Let x be an n-dimensional random vector with mean vector � and covariance matrix †. The density
is

pdf .xI�; †/ D
exp.�1

2
.x � �/T †�1.x � �//p

.2�/n j†j

Multivariate Density Functions F 3545

where j†j is the determinant of the covariance matrix †.

The function has syntax:

y D LOGPDFMNORM.x_list; �_list; cov_name/I

WARNING: you must set up the cov_name covariance matrix before using the LOGPDFMNORM
function and free the memory after PROC MCMC exits. See the section “Set Up the Covariance
Matrices and Free Memory” on page 3546.

LOGMPDFWISHART and LOGMPDFIWISHART

The density function from the Wishart distribution is:

pdf .xI�; †/ D
1

Cn.�/
j†j�

�
2 jxj

��n�1
2 exp

�
�

1

2
tr.†�1x/

�
with � > n, and the trace of a square matrix A is given by:

t r.A/ D
X

i

ai i Cn.�/ D 2
�n
2 �n

��

2

�
�n.z/ D �

n.n�1/
4

nY
iD1

�

�
z �

i � 1

2

�
The density function from the inverse-Wishart distribution is:

pdf .xI�; †/ D
1

Dn.�/
j†j

��n�1
2 jxj�

�
2 exp

�
�

1

2
tr.†x�1/

�
for � > 2n, and

Dn.�/ D 2
.��n�1/n

2 �n

�
� � n � 1

2

�
If V � IWn.�; †/ then V �1 � Wn.� � n � 1; †�1/

The functions have syntax:

y D LOGMPDFWISHART.’name’V ; �; ’name’†/I

and for the inverted Wishart:

y D LOGMPDFIWISHART.’name’V ; �; ’name’†/I

The three arguments are the multivariate matrix ’name’V , the degrees of freedom �, and the co-
variance matrix ’name’†k

WARNING: you must set up the cov_name covariance matrix before using these functions and free
the memory after PROC MCMC exits. See the section “Set Up the Covariance Matrices and Free
Memory” on page 3546.

3546 F Chapter 52: The MCMC Procedure (Experimental)

LOGMPDFDIR1 and LOGMPDFDIR2

The random variables u1:::uk , with ui > 0 and
Pk

iD1 ui < 1, are said to have a Dirichlet Type I
distribution with parameters a1:::akC1 if their joint pdf is given by:

pdf1.u1; u2; :::; uk; a1; a2; :::; akC1/ D
�.
PkC1

iD1 ai /QrC1
iD1 �.ai /

0@ kY
iD1

u
ai �1
i

1A0@1 �

kX
iD1

ui

1AakC1�1

The variables are said to have a Dirichlet type II distribution with parameters a1:::akC1 if their joint
pdf is given by the following:

pdf2.u1; u2; :::; uk; a1; a2; :::; akC1/ D
�.
PkC1

iD1 ai /QrC1
iD1 �.ai /

0@ kY
iD1

u
ai �1
i

1A0@1C

kX
iD1

ui

1A�
PkC1

iD1
ai

The functions have syntax:

y D LOGMPDFDIR1.u_list; a_list/I

and

y D LOGMPDFDIR2.u_list; a_list/I

LOGMPDFMULTINOM

Let n1:::nk be random variables that denote the number of occurring of the events E1; ::::Ek re-
spectively occurring with probabilities p1:::pk . Let

Pk
iD1 pi D 1 and let n D

Pk
iD1 ni . Then the

joint distribution of n1; ::::::nk is the following:

pdf .n1; n2; :::nk; p1; p2; :::; pk/ D nŠ

kY
iD1

p

ni

i

ni Š

!

The function has syntax:

y D LOGMPDFMULTINOM.n_list; p_list/I

Set Up the Covariance Matrices and Free Memory

For distributions that require symmetric positive definite matrices, such as the LOGMPDFNOR-
MAL, LOGPDFMWISHART and LOGMPDFIWISHART functions, you need to set up these ma-
trices by using the following functions:

� Use LOGMPDFSETSQ to set up a symmetric positive definite matrix from all its elements:

rc D LOGMPDFSETSQ.name; num1; num2; ::::::::/I

rc is set to 0 when the numeric arguments describe a symmetric positive definite matrix,
otherwise it is set to a nonzero value.

Some Useful SAS Functions F 3547

� Use LOGMPDFSET to set up a symmetric positive definite matrix from its lower triangular
elements:

rc D LOGMPDFSET.name; num1; num2; ::::::::/I

When the numeric arguments describe a symmetric positive definite matrix, the returned value
rc is set to 0. Otherwise, a nonzero value for rc is returned.

� Use LOGMPFFREE to free the workspace previously allocated with either LOGMPDFSET
or LOGMPDFSETSQ:

rc D LOGMPDFFREE.< ::: < ’name’ >; ’name2’ > :::/I

When called without arguments, the LOGMPDFFREE frees all the symbols previously allo-
cated by LOGMPDFSETSQ or LOGMPDFSET. Each freed symbol is reported back in the
SAS log.

The parameters used in these functions are defined as follows:

name is a string containing the name of the work space that stores the matrix by the numeric pa-
rameters num1; :::.

num1; ::: are numeric arguments that represent the elements of a symmetric positive definite matrix.

You would set up this matrix under the DATA step by using the following syntax:

rc D LOGMPDFSETSQ.name; �11; �12; �21; �22/I

or the syntax:

rc D LOGMPDFSET.name; �11; �21; �22/I

If the matrix is positive definite, the returned value rc is zero.

Some Useful SAS Functions

Table 52.34 Some Useful SAS Functions

SAS Function Definition

abs(x) jxj

airy(x) returns the value of the AIRY function.
beta(x1, x2)

R 1
0 zx1�1.1 � z/x2�1dz

call logistic(x) ln.x=.1 � x//

call softmax(x1,...,xn) each element is replaced by exp.xj /=
P

exp.xj /

call stdize(x1,...,xn) standardize values

3548 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.34 (continued)

SAS Function Definition

cdf cumulative distribution function
cdf(’normal’, x, 0, 1) standard normal cumulative distribution function
comb(x1, x2) x1Š

x2Š.x1�x2/Š

constant(’.’) calculate commonly used constants
cos(x) cosine(x)
css(x1, ..., xn)

P
i .xi � Nx/2

cv(x1, ..., xn) std(x) / mean(x) * 100
dairy(x) derivative of the AIRY function
dimN(m) returns the numbers of elements in the Nth dim of array m

(x1 eq x2) returns 1 if x1 = x2; 0 otherwise
x1**x2 x1x2

geomean(x1, ..., xn) exp
�

log.x1/C���Clog.xn/
n

�
difN(x) returns differences between the argument and its Nth lag
digamma(x1) � 0.x1/

�.x1/

erf(x) 2p
�

R x
0 exp.�z2/dz

erfc(x) 1 - erf(x)
fact(x) xŠ

floor(x) greatest integer � x

gamma(x)
R1

0 zx�1 exp.�1/dz

harmean(x1, ..., xn) n
1=x1C���1=xn

ibessel(nu, x, kode) modified Bessel function of order nu evaluated at x

jbessel(nu, x) Bessel function of order nu evaluated at x

lagN(x) returns values from a queue
largest(k, x1, ..., xn) the kth largest element
lgamma(x) ln.�.x//

lgamma(x+1) ln.xŠ/

log(x), logN(x) ln.x/

logbeta(x1, x2) lgamma(x1) + lgamma(x2) - lgamma(x1 C x2)
logcdf log of a left cumulative distribution function
logpdf log of a probability density (mass) function
logsdf log of a survival function
max(x1, x2) returns x1 if x1 > x2; x2 otherwise
mean(of x1-xn)

P
i xi=n

median(of x1-xn) returns the median of nonmissing values
min(x1, x2) returns x1 if x1 < x2; x2 otherwise
missing(x) returns 1 if x is missing; 0 otherwise
mod(x1, x2) returns the remainder from x1=x2

n(x1, ..., xn) returns number of nonmissing values
nmiss(of y1-yn) number of missing values
quantile computes the quantile from a specific distribution
pdf probability density (mass) functions
perm(n, r) nŠ

.n�r/Š

put returns a value that uses a specified format

Modeling Dependent Data F 3549

Table 52.34 (continued)

SAS Function Definition

round(x) rounds x

rms(of x1-xn)

q
x2

1C���x2
n

n

sdf survival function
sign(x) returns �1 if x < 0; 0 if x D 0; 1 if x > 0

sin(x) sine(x)
smallest(s, x1, ..., en) the sth smallest component of x1; � � � ; xn

sortn(of x1-xn) sorts the values of the variables
sqrt(x)

p
x

std(x1, ..., xn) standard deviation of x1; � � � ; xn (n-1 in denominator)
sum(of x:)

P
i xi

trigamma(x) derivative of the DIGAMMA(x) function
uss(of x1-xn) uncorrected sum of squares

Here are examples of some commonly used transformations:

� logit

mu = beta0 + beta1 * z1;
call logistic(mu);

� log

w = beta0 + beta1 * z1;
mu = exp(w);

� probit

w = beta0 + beta1 * z1;
mu = cdf(‘normal’, w, 0, 1);

� cloglog

w = beta0 + beta1 * z1;
mu = 1 - exp(-exp(w));

Modeling Dependent Data

PROC MCMC assumes that the input observations are independent and that the joint log likelihood
is the sum of individual log-likelihood functions. You specify the log likelihood of one observation
in the MODEL statement. PROC MCMC evaluates that function for each observation in the data set
and cumulatively sums them up. If observations are not independent of each other, this summation
produces the incorrect log likelihood.

There are two ways to model dependent data. You can either use the DATA step function LAG or use
the PROC option JOINTMODEL. The LAG function returns values of a variable from a queue. As

3550 F Chapter 52: The MCMC Procedure (Experimental)

PROC MCMC steps through the data set, the LAG function queues each data set variable, and you
have access to the current value as well as all previous values of any variable. If the log likelihood
for observation xi depends only on observations 1 to i in the data set, you can use this SAS function
to construct the log-likelihood function for each observation. Note that the LAG function allows you
to access observations from different rows, but the log-likelihood function in the MODEL statement
has to be generic enough that it applies to all observations. See “Example 52.8: Cox Models” on
page 3642 for how to use this LAG function.

A second option is to create arrays, store all relevant variables in the arrays, and construct the joint
log likelihood for the entire data set instead of for each observation. Here is a simple example that
uses a normal independent likelihood:

/* allocate the sample size. */
%let n = 100;
data exi;

call streaminit(17);
do ind = 1 to &n;

y = rand("normal", 2.3, 1);
output;

end;
run;

The log-likelihood function for each observation is as follows:

log.f .yi j�; �// D log.�.yi I�; var D �2//

The joint log-likelihood function is as follows:

log.f .yj�; �// D
X

i

log.�.yi I�; var D �2//

The following statements fit a simple normal model with an unknown mean (mu) in PROC MCMC,
with the variance in the likelihood assumed known. The MODEL statement indicates a normal
likelihood for each observation y.

proc mcmc data=exi seed=7 outpost=p1;
parm mu;
prior mu ~ normal(0, sd=10);
model y ~ normal(mu, sd=1);

run;

The following statements show how you can specify the log-likelihood function for the entire data
set:

proc mcmc data=exi seed=7 outpost=p2 jointmodel;
array data[&n];
begincnst;

data[ind] = y;
endcnst;

parm mu;
prior mu ~ normal(0, sd=10);
ll = 0;

Modeling Dependent Data F 3551

do i = 1 to &n;
ll = ll + lpdfnorm(data[i], mu, 1);

end;
model general(ll);

run;

The option JOINTMODEL indicates that the function used in the MODEL statement calculates the
log likelihood for the entire data set, and not just for one observation. Given this option, PROC
MCMC interprets the MODEL statement as the log-likelihood function for the data set, and the
procedure no longer steps through the input data set to calculate the joint log-likelihood function.
Hence, every term in the log-likelihood function must be presented in the program independently
of any data set variables.

You need to allocate arrays and store the full data set in the arrays. The ARRAY statement allocates
an array (data) of the same size as the input data set (&n). The single statement in the BEGINCNST
and ENDCNST statements fills in array data with y. See the section “BEGINCNST/ENDCNST
Statement” on page 3507 for an explanation on this line of statement. PROC MCMC executes this
line of code prior to the simulation by using the entire data set. As the variable ind progresses,
data[ind] takes on the corresponding value of y.

In the programming statements for the model, you construct ll by using a do-loop. The expression ll
in the GENERAL function is now the joint log-likelihood function for all of y.

You can run the following statements to see that two PROC MCMC runs produce identical result.
proc compare data=p1 compare=p2;

var mu;
run;

For a more realistic example that models dependent data, see “Example 52.8: Cox Models” on
page 3642.

It is important to remember that, with the JOINTMODEL specified, PROC MCMC does not ac-
cess the data set in the simulation. The procedure only steps through the data set during the setup
stage, where all observations are read and saved in the allocated arrays in the BEGINCNST and
ENDCNST statements. After the simulation begins, PROC MCMC uses the arrays to do its poste-
rior density calculations. Any data set variable symbol outside of the BEGINCNST and ENDCNST
statements no longer has meaning and is not allowed. The following program produces an error:

proc mcmc data=exi seed=7 outpost=p2 jointmodel;
array data[&n];
begincnst;

data[ind] = y;
endcnst;

parm mu;
prior mu ~ normal(0, sd=10);
ll = 0;
do i = 1 to &n;

ll = ll + lpdfnorm(data[i], mu, 1);
end;
v = mu * y; /* an extra line, where the variable y appears */
model general(ll);

run;

3552 F Chapter 52: The MCMC Procedure (Experimental)

This program is identical to the previous PROC MCMC run, except for the extra line that contains
the data set variable y. PROC MCMC procedure exits with the following error message:

ERROR: When the option JOINTMODEL is specified, PROC MCMC calculates the
log-likelihood function without accessing the data set. Data set
variables, such as y in your program, cannot appear outside of the
BEGINCNST/ENDCNST statements. See documentation for instructions and
examples.

Regenerating Diagnostics Plots

By default, PROC MCMC generates three plots: the trace plot, the autocorrelation plot and the ker-
nel density plot. Unless you had requested the display of ODS Graphics (ods graphics on) be-
fore calling the procedure, it is hard to generate the same graph afterwards. Directly using the tem-
plate (Stat.MCMC.Graphics.TraceAutocorrDensity) is not feasible. To regenerate the same graph
with a Markov chain, you need to define a template and use PROC SGRENDER (see the SGREN-
DER Procedure in the SAS/GRAPH: Statistical Graphics Procedures Guide) to create the graph.
The following PROC TEMPLATE (see Chapter 21, “Statistical Graphics Using ODS”) statements
define a new graph template mygraphs.mcmc:

proc template;
define statgraph mygraphs.mcmc;
dynamic _sim _parm;
BeginGraph;

layout gridded /rows=2 columns=1 rowgutter=5;
seriesplot x=_sim y=_parm;
layout gridded /rows=1 columns=2 columngutter=15;

layout overlay /
yaxisopts=(linearopts=(viewmin=-1 viewmax=1

tickvaluelist=(-1 -0.5 0 0.5 1))
label="Autocorrelation")

xaxisopts=(linearopts=(integer=true)
label="Lag" offsetmin=.015);

needleplot x=eval(lags(_parm,Max=50))
y=eval(acf(_parm, NLags=50));

endlayout;

layout overlay / xaxisopts=(label=_parm)
yaxisopts=(label="Density");

densityplot _parm /kernel();
endlayout;

endlayout;
endlayout;

EndGraph;
end;

The define statgraph statement tells PROC TEMPLATE that you are defining a new graph
template (instead of a table or style template). The template is named mygraphs.mcmc. There
are two dynamic variables: _sim and _parm. The variable _sim is the iteration number and the

Regenerating Diagnostics Plots F 3553

variable _parm is the variable in the data set that stores the posterior sample. All STATGRAPH
template definitions must start with a BEGINGRAPH statement and conclude with a ENDGRAPH
statement. The first LAYOUT GRIDDED statement assembles the results of nested statgraph

statements into a grid, with two rows and 1 column. The trace plot (SERIESPLOT) is shown in the
first row of the graph. The second LAYOUT GRIDDED statement divides the second row of the
graph into two graphs: one an autocorrelation plot (NEEDLEPLOT) and the other a kernel density
plot (DENSITYPLOT). For details of other controls, such as the labels, line types, see Chapter 21,
“Statistical Graphics Using ODS.”

A simple regression example, with three parameters, is used here. For an explanation of the regres-
sion model and the data involved, see “Simple Linear Regression” on page 3478. The following
statements generate a SAS data set and fit a regression model:

title ’Simple Linear Regression’;

data Class;
input Name $ Height Weight @@;
datalines;

Alfred 69.0 112.5 Alice 56.5 84.0 Barbara 65.3 98.0
Carol 62.8 102.5 Henry 63.5 102.5 James 57.3 83.0
Jane 59.8 84.5 Janet 62.5 112.5 Jeffrey 62.5 84.0
John 59.0 99.5 Joyce 51.3 50.5 Judy 64.3 90.0
Louise 56.3 77.0 Mary 66.5 112.0 Philip 72.0 150.0
Robert 64.8 128.0 Ronald 67.0 133.0 Thomas 57.5 85.0
William 66.5 112.0
;

proc mcmc data=class nmc=50000 thin=5 outpost=classout seed=246810;
ods select none;
parms beta0 0 beta1 0;
parms sigma2 1;
prior beta0 beta1 ~ normal(0, var = 1e6);
prior sigma2 ~ igamma(3/10, scale = 10/3);
mu = beta0 + beta1*height;
model weight ~ normal(mu, var = sigma2);

run;
ods select all;

The output data set classout contains iteration number (Iteration) and posterior draws for beta0,
beta1, and sigma2. It also stores the log of the prior density (LogPrior), log of the likelihood (LogLike),
and the log of the posterior density (LogPost). If you want to examine the LogPost variable, you can
use the following statements to generate the graphs:

proc sgrender data=classout template=mygraphs.mcmc;
dynamic _sim=’iteration’ _parm=’logpost’;

run;

The SGRENDER procedure takes the classout data set and applies the template MY-
GRAPHS.MCMC that was defined previously. The DYNAMIC statement needs two arguments,
iteration and logpost. The resulting graph is shown in Output 52.11.

3554 F Chapter 52: The MCMC Procedure (Experimental)

Figure 52.11 Regenerate Diagnostics Plots for Log of the Posterior Density

Posterior Predictive Distribution

The posterior predictive distribution is the distribution of unobserved observations (prediction) con-
ditional on the observed data. Let y be the observed data, � be the parameter, and ypred be the
unobserved data; the posterior predictive distribution is defined to be the following:

p.ypredjy/ D

Z
p.ypred; � jy/d�

D

Z
p.ypredj�; y/p.� jy/d�

Given the assumption that the observed and unobserved data are conditional independent given � ,
the posterior predictive distribution can be further simplified as the following:

p.ypredjy/ D

Z
p.ypredj�/p.� jy/d�

The posterior predictive distribution is an integral of the likelihood function p.ypredj�/ with respect
to the posterior distribution p.� jy/. You can use PROC MCMC to generate samples from a posterior
predictive distribution based on draws from the posterior distribution of � .

Note that the posterior predictive distribution is not the same as the prior predictive distribution.
The prior predictive distribution is p.y/, which is also known as the marginal distribution of the

Posterior Predictive Distribution F 3555

data. The prior predictive distribution is an integral of the likelihood function with respect to the
prior distribution:

p.ypred/ D

Z
p.ypredj�/p.�/d�

and the distribution is not conditional on observed data.

You can use the posterior predictive distribution to check whether the model is consistent with data.
For more information about using predictive distribution as a model checking tool, see Gelman
et al. 2004, Chapter 6 and the bibliography in that chapter. The idea is to generate replicate data
from p.ypredjy/—call them yi

pred, for i D 1; � � � ; M , where M is the total number of replicates—
compare them to the observed data, and see if there are any large and systematic differences. Large
discrepancies suggest possible model misfit. One way to compare the replicate data to the observed
data is to first summarize the data to some test quantities, such as the mean, standard deviation,
order statistics, and so on. Then compute the tail-area probabilities of the test statistics (based
on the observed data) with respect to the estimated posterior predictive distribution using the M

replicate ypred samples.

Let T .�/ denote the function of the test quantity, T .y/ the test quantity using the observed data, and
T .yi

pred/ the test quantity using the i th replicate data from the posterior predictive distribution. You
calculate the tail-area probability using the following formula:

Pr.T .ypred/ > T .y/j�/

The following example shows how you can estimate this probability using PROC MCMC.

An Example for Posterior Predictive Distribution

This example uses a normal mixed model to analyze the effects of coaching programs for the
scholastic aptitude test (SAT) in eight high schools. For the original analysis of the data, see Rubin
(1981). The presentation here follows the analysis and posterior predictive check presented in
Gelman et al. (2004). The data are as follows:

title ’An Example for Posterior Predictive Distribution’;

data SAT;
input effect sd @@;
ind=_n_;
datalines;

28.39 14.9 7.94 10.2 -2.75 16.3
6.82 11.0 -0.64 9.4 0.63 11.4

18.01 10.4 12.16 17.6
;

The variable effect is the reported test score difference between coached and uncoached students in
eight schools. The variable sd is the corresponding estimated standard error for that school. In a
normal mixed effect model, the variable effect is assumed to be normally distributed:

effecti � normal.�i ; sd2/ for i D 1; � � � ; 8

3556 F Chapter 52: The MCMC Procedure (Experimental)

The parameter �i has a normal prior with hyperparameters .m; v/:

�i � normal.m; var = v/

The hyperprior distribution on m is a uniform prior on the real axis, and the hyperprior distribution
on v is a uniform prior from 0 to infinity.

The following statements fit a normal mixed model, general draws from the posterior predictive
distribution, and calculate relevant test quantities.

ods listing close;
proc mcmc data=SAT outpost=pred nmc=50000 thin=10 seed=17

monitor=(yrep mean sd max min);

array theta[8];
array yrep[8];
begincnst;
call streaminit(1);
endcnst;

parms theta: 0;
parms m 0;
parms v 1;

hyper m ~ general(1);
hyper v ~ general(1,lower=0);
prior theta: ~ normal(m,var=v);
mu = theta[ind];
model effect ~ normal(mu,sd=sd);

/* generate predictive data and calculate test statistics. */
yrep[ind] = rand(’normal’, mu, sd);
if (ind eq 8) then do;

mean = mean(of yrep1-yrep8);
sd = std(of yrep1-yrep8);
max = max(of yrep1-yrep8);
min = min(of yrep1-yrep8);
end;

run;
ods listing;

Four test quantities constructed are: the average (mean), the sample standard deviation (sd), the
maximum effect (max), and the minimum effect (min). The MONITOR= option selects yrep (repli-
cate samples) and the four test quantities and saves them to the OUTPOST= data set. The CALL
STREAMINIT routine ensures that the RAND function, used here to generate posterior predictive
samples, creates a reproducible stream of random numbers. The ods listing close statement
disables listing output because you are primarily interested only in the samples of the monitored
quantities. The HYPER, PRIOR, and MODEL statements specify the Bayesian model of interest.

The yrep[ind] assignment statement generates a random normal sample for each predictive obser-
vation, indexed by ind, with ind D 1; � � � ; 8. Note that this normal distribution is the same as the
likelihood function specified in the MODEL statement, with the same mean and standard deviation.

Posterior Predictive Distribution F 3557

To calculate the test quantities, you want to wait until all yi
pred is generated—that is at the last

observation of the data set.

The following statements compute the corresponding test statistics, the mean, standard deviation,
and the minimum and maximum statistics on the real data and store them in macro variables. You
then calculate the tail-area probabilities by counting the number of samples in the data set pred that
are greater than the observed test statistics based on the real data.

proc means data=SAT noprint;
var effect;
output out=stat mean=mean max=max min=min stddev=sd;
run;

data _null_;
set stat;
call symputx(’mean’,mean);
call symputx(’sd’,sd);
call symputx(’min’,min);
call symputx(’max’,max);
run;

data _null_;
set pred end=eof nobs=nobs;
ctmean + (mean>&mean);
ctmin + (min>&min);
ctmax + (max>&max);
ctsd + (sd>&sd);
if eof then do;

pmean = ctmean/nobs; call symputx(’pmean’,pmean);
pmin = ctmin/nobs; call symputx(’pmin’,pmin);
pmax = ctmax/nobs; call symputx(’pmax’,pmax);
psd = ctsd/nobs; call symputx(’psd’,psd);
end;

run;

You can plot histograms of each test quantity to visualize the posterior predictive distributions. In
addition, you can see where the estimated p-values fall on these densities. Figure 52.12 shows the
histograms. To put all four histograms on the same panel, you need to use PROC TEMPLATE (see
Chapter 21, “Statistical Graphics Using ODS”) and define a new graph template. The following
statements defines the template twobytwo:

proc template;
define statgraph twobytwo;

begingraph;
layout lattice / rows=2 columns=2;

layout overlay / yaxisopts=(display=none)
xaxisopts=(label="mean");

layout gridded / columns=2 border=false
autoalign=(topleft topright);

entry halign=right "p-value =";
entry halign=left eval(strip(put(&pmean, 12.2)));

endlayout;

3558 F Chapter 52: The MCMC Procedure (Experimental)

histogram mean / binaxis=false;
lineparm x=&mean y=0 slope=. /

lineattrs=(color=red thickness=5);
endlayout;
layout overlay / yaxisopts=(display=none)

xaxisopts=(label="sd");
layout gridded / columns=2 border=false

autoalign=(topleft topright);
entry halign=right "p-value =";
entry halign=left eval(strip(put(&psd, 12.2)));

endlayout;
histogram sd / binaxis=false;
lineparm x=&sd y=0 slope=. /

lineattrs=(color=red thickness=5);
endlayout;
layout overlay / yaxisopts=(display=none)

xaxisopts=(label="max");
layout gridded / columns=2 border=false

autoalign=(topleft topright);
entry halign=right "p-value =";
entry halign=left eval(strip(put(&pmax, 12.2)));

endlayout;
histogram max / binaxis=false;
lineparm x=&max y=0 slope=. /

lineattrs=(color=red thickness=5);
endlayout;
layout overlay / yaxisopts=(display=none)

xaxisopts=(label="min");
layout gridded / columns=2 border=false

autoalign=(topleft topright);
entry halign=right "p-value =";
entry halign=left eval(strip(put(&pmin, 12.2)));

endlayout;
histogram min / binaxis=false;
lineparm x=&min y=0 slope=. /

lineattrs=(color=red thickness=5);
endlayout;

endlayout;
endgraph;

end;
run;

You call PROC SGRENDER (see the SGRENDER procedure in the SAS/GRAPH: Statistical
Graphics Procedures Guide) to create the graph, which is shown in Figure 52.12. There are no
extreme p-values observed; this supports the notion that the predicted results are similar to the
actual observations and that the model fits the data.

proc sgrender data=pred template=twobytwo;
run;

Handling of Missing Data F 3559

Figure 52.12 Posterior Predictive Distribution Check for the SAT example

Handling of Missing Data

By default, PROC MCMC discards all observations that have missing values before carrying out the
posterior sampling. This corresponds to the option MISSING=CC, where CC stands for complete
cases. PROC MCMC does not automatically augment missing data. However, you can choose
to model the missing values by using MISSING=AC. Given this option, PROC MCMC does not
discard any missing values. It is up to you to specify how the missing values are handled in the
program. You can choose to model the missing values as parameters (a fully Bayesian approach) or
assign specific values to them (multiple imputation). In general, however, the handling of missing
values largely depends on the assumptions you have about the missing mechanism, which is beyond
the score of this chapter.

Floating Point Errors and Overflows

When performing a Markov chain Monte Carlo simulation, you must calculate a proposed jump
and an objective function (usually a posterior density). These calculations might lead to arithmetic
exceptions and overflows. A typical cause of these problems is parameters with widely varying
scales. If the posterior variances of your parameters vary by more than a few orders of magni-

3560 F Chapter 52: The MCMC Procedure (Experimental)

tude, the numerical stability of the optimization problem can be severely reduced and can result in
computational difficulties. A simple remedy is to rescale all the parameters so that their posterior
variances are all approximately equal. Changing the SCALE= option might help if the scale of your
parameters is much different than one. Another source of numerical instability is highly correlated
parameters. Often a model can be reparameterized to reduce the posterior correlations between
parameters.

If parameter rescaling does not help, consider the following actions:

� provide different initial values or try a different seed value

� use boundary constraints to avoid the region where overflows might happen

� change the algorithm (specified in programming statements) that computes the objective func-
tion

Problems Evaluating Code for Objective Function

The initial values must define a point for which the programming statements can be evaluated.
However, during simulation, the algorithm might iterate to a point where the objective function
cannot be evaluated. If you program your own likelihood, priors, and hyperpriors by using SAS
statements and the GENERAL function in the MODEL, PRIOR, AND HYPERPRIOR statements,
you can specify that an expression cannot be evaluated by setting the value you pass back through
the GENERAL function to missing. This tells the PROC MCMC that the proposed set of parameters
is invalid, and the proposal will not be accepted. If you use the shorthand notation that the MODEL,
PRIOR, AND HYPERPRIOR statements provide, this error checking is done for you automatically.

Long Run Times

PROC MCMC can take a long time to run for problems with complex models, many parameters,
or large input data sets. Although the techniques used by PROC MCMC are some of the best
available, they are not guaranteed to converge or proceed quickly for all problems. Ill-posed or
misspecified models can cause the algorithms to use more extensive calculations designed to achieve
convergence, and this can result in longer run times. You should make sure that your model is
specified correctly, that your parameters are scaled to the same order of magnitude, and that your
data reasonably match the model that you are specifying.

To speed general computations, you should check over your programming statements to minimize
the number of unnecessary operations. For example, you can use the proportional kernel in the pri-
ors or the likelihood and not add constants in the densities. You can also use the BEGINCNST
and ENDCNST to reduce unnecessary computations on constants, and the BEGINPRIOR and
ENDPRIOR statements to reduce observation-level calculations.

Reducing the number of blocks (the number of the PARMS statements) can speed up the sampling
process. A single-block program is approximately three times faster than a three-block program for
the same number of iterations. On the other hand, you do not want to put too many parameters in a
single block, because blocks with large size tend not to produce well-mixed Markov chains.

Floating Point Errors and Overflows F 3561

Slow or No Convergence

There are a number of things to consider if the simulator is slow or fails to converge:

� Change the number of Monte Carlo iterations (NMC=), or the number of burn-in iterations
(NBI=), or both. Perhaps the chain just needs to run a little longer. Note that after the sim-
ulation, you can always use the DATA step or the FIRSTOBS data set option to throw away
initial observations where the algorithm has not yet burned in, so it is not always necessary to
set NBI= to a large value.

� Increase the number of tuning. The proposal tuning can often work better in large models
(models that have more parameters) with larger values of NTU=. The idea of tuning is to find
a proposal distribution that is a good approximation to the posterior distribution. Sometimes
500 iterations per tuning phase (the default) is not sufficient to find a good approximating
covariance.

� Change the initial values to more feasible starting values. Sometimes the proposal tuning
starts badly if the initial values are too far away from the main mass of the posterior density,
and it might not be able to recover.

� Use the PROPCOV= option to start the Markov chain at better starting values. With the
PROPCOV=QUANEW option, PROC MCMC optimizes the object function and uses the
posterior mode as the starting value of the Markov chain. In addition, a quadrature approx-
imation to the posterior mode is used as the proposal covariance matrix. This option works
well in many cases and can improve the mixing of the chain and shorten the tuning and
burn-in time.

� Change the blocking by using the PARMS statements. Sometimes poor mixing and slow
convergence can be attributed to highly correlated parameters being in different parameter
blocks.

� Modify the target acceptance rate. A target acceptance rate of about 25% works well for many
multi-parameter problems, but if the mixing is slow, a lower target acceptance rate might be
better.

� Change the initial scaling or the TUNEWT= option to possibly help the proposal tuning.

� Consider using a different proposal distribution. If from a trace plot you see that a chain
traverses to the tail area and sometimes takes quite a few simulations before it comes back,
you can consider using a t-proposal distribution. You can do this by either using the PROC
option PROPDIST=T or using a PARMS statement option T.

� Transform parameters and sample on a different scale. For example, if a parameter has a
gamma distribution, sample on the logarithm scale instead. A parameter a that has a gamma
distribution is equivalent to log.a/ that has an egamma distribution, with the same distribution
specification. For example, the following two formulations are equivalent:

parm a;
prior a ~ gamma(shape = 0.001, iscale = 0.001);

3562 F Chapter 52: The MCMC Procedure (Experimental)

and
parm la;
prior la ~ egamma(shape = 0.001, iscale = 0.001);
a = exp(la);

See “Example 52.4: Nonlinear Poisson Regression Models” on page 3599 and
“Example 52.12: Using a Transformation to Improve Mixing” on page 3677. You can
also use the logit transformation on parameters that have uniform.0; 1/ priors. This prior is
often used on probability parameters. The logit transformation is as follows: q D log. p

1�p
/.

The distribution on q is the Jacobian of the transformation: exp.�q/.1Cexp.�q//�2. Again,
the following two formulations are equivalent:

parm p;
prior p ~ uniform(0, 1);

and
parm q;
lp = -q - 2 * log(1 + exp(-q));
prior q ~ general(lp);
p = 1/(1+exp(-q));

Precision of Solution

In some applications, PROC MCMC might produce parameter values that are not precise enough.
Usually, this means that there were not enough iterations in the simulation. At best, the precision
of MCMC estimates increases with the square of the simulation sample size. Autocorrelation in the
parameter values deflate the precision of the estimates. For more information about autocorrelations
in Markov chains, see the section “Autocorrelations” on page 169.

Handling Error Messages

PROC MCMC does not have a debugger. This section covers a few ways to debug and resolve error
messages.

Using the PUT Statement

Adding the put statement often helps to find errors in a program. The following program produces
an error:

data a;
run;

proc mcmc data=a seed=1;
parms sigma lt w;

Handling Error Messages F 3563

beginprior;
prior sigma ~ unif(0.001,100);
s2 = sigma*sigma;
prior lt ~ gamma(shape=1, iscale=0.001);
t = exp(lt);
c = t/s2;
d = 1/(s2);
prior w ~ gamma(shape=c, iscale=d);
endprior;

model general(0);
run;

ERROR: PROC MCMC is unable to generate an initial value for the
parameter w. The first parameter in the prior distribution is
missing.

To find out why the shape parameter c is missing, you can add the put statement and examine all the
calculations that lead up to the assignment of c:

proc mcmc data=a seed=1;
parms sigma lt w;

beginprior;
prior sigma ~ unif(0.001,100);
s2 = sigma*sigma;
prior lt ~ gamma(shape=1, iscale=0.001);
t = exp(lt);
c = t/s2;
d = 1/(s2);
put c= t= s2= lt=; /* display the values of these symbols. */
prior w ~ gamma(shape=c, iscale=d);
endprior;

model general(0);
run;

In the log file, you see the following:

c=. t=. s2=. lt=.
c=. t=. s2=2500.0500003 lt=1000
c=. t=. s2=2500.0500003 lt=1000
ERROR: PROC MCMC is unable to generate an initial value for the parameter w.

The first parameter in the prior distribution is missing.

You can ignore the first few lines. They are the results of initial set up by PROC MCMC. The last
line is important. The variable c is missing because t is the exponential of a very large number,
1000, in lt. The value 1000 is assigned to lt by PROC MCMC because none was given. The
gamma prior with shape of 1 and inverse scale of 0.001 has mode 0 (see “Standard Distributions”
on page 3529 for more details). PROC MCMC avoids starting the Markov chain at the boundary

3564 F Chapter 52: The MCMC Procedure (Experimental)

of the support of the distribution, and it uses the mean value here instead. The mean of the gamma
prior is 1000, hence the problem. You can change how the initial value is generated by using the
PROC statement INIT=RANDOM. Do not forget to take out the put statement once you identify the
problem. Otherwise, you will see a voluminous output in the log file.

Using the HYPER Statement

You can use the HYPER statement to narrow down possible errors in the prior distribution specifi-
cation. With multiple PRIOR statements in a program, you might see the following error message
if one of the prior distributions is not specified correctly:

ERROR: The initial prior parameter specifications must yield log
of positive prior density values.

This message is displayed when PROC MCMC detects an error in the prior distribution calculation
but cannot pinpoint the specific parameter at fault. It is frequently, although not necessarily, associ-
ated with parameters that have GENERAL or DGENERAL distributions. If you have a complicated
model with many PRIOR statements, finding the parameter at fault can be time consuming. One
way is to change a subset of the PRIOR statements to HYPER statements. The two statements are
treated the same in PROC MCMC and the simulation is not affected, but you get a different message
if the hyperprior distributions are calculated incorrectly:

ERROR: The initial hyperprior parameter specifications must yield
log of positive hyperprior density values.

This message can help you identify more easily which distributions are producing the error, and you
can then use the put statement to further investigate.

Computational Resources

It is not possible to estimate how long it will take for a general Markov chain to converge to its
stationary distribution. It takes a skilled and thoughtful analysis of the chain to decide if it has
converged to the target distribution and if the chain is mixing rapidly enough. It is easier, however,
to estimate how long a particular simulation might take. The running time of a program is roughly
linear to the following factors: the number of samples in the input data set (nsamples), the number of
simulations (nsim), the number of blocks in the program (nblocks), and the speed of your computer.
For an analysis that uses a data set of size nsamples, a simulation length of nsim, and a block design
of nblocks, PROC MCMC evaluates the log-likelihood function the following number of times,
excluding the tuning phase:

nsamples � nsim � nblocks

The faster your computer evaluates a single log-likelihood function, the faster this program runs.
Suppose that you have nsamples equal to 200, nsim equal to 55,000, and nblocks equal to 3. PROC

Displayed Output F 3565

MCMC evaluates the log-likelihood function roughly a total number of 3:3 � 107 times. If your
computer can evaluate the log likelihood, for one observation, 106 times per second, this program
will take approximately a half a minute to run. If you want to increase the number of simulations
five-fold, the run time will approximately increase five-fold as well.

Of course, larger problems take longer than shorter ones, and if your model is amenable to fre-
quentist treatment, then one of the other SAS procedures might be more suitable. With “regular”
likelihoods and a lot of data, the results of standard frequentist analysis are often asymptotically
equivalent to a Bayesian approach. If PROC MCMC requires too much CPU time, then perhaps
another tool in SAS/STAT would be suitable.

Displayed Output

This section describes the displayed output from PROC MCMC. For a quick reference of all ODS
table names, see the section “ODS Table Names” on page 3569. ODS tables are arranged under four
groups, listed in the following sections: “Sampling Related ODS Tables” on page 3565, “Posterior
Statistics Related ODS Tables” on page 3566, “Convergence Diagnostics Related ODS Tables” on
page 3567, and “Optimization Related ODS Tables” on page 3568.

Sampling Related ODS Tables

Burn-In History

The “Burn-In History” table (ODS table name BurnInHistory) shows the scales and acceptance rates
for each parameter block in the burn-in phase. The table is displayed by default.

Number of Observation Table

The “NObs” table (ODS table name NOBS) shows the number of observations that is in the data set
and the number of observations that is used in the analysis. By default, observations with missing
values are not used (see the section “Handling of Missing Data” on page 3559 for more details).
This table is displayed by default.

Parameters

The “Parameters” table (ODS table name Parameters) shows the name of each parameter, the block
number of each parameter, the sampling method used for the block, the initial values, and the prior
or hyperprior distributions. This table is displayed by default.

Parameters Initial Value Table

The “Parameters Initial” table (ODS table name ParametersInit) shows the value of each parameter
after the tuning phase. This table is not displayed by default and can be requested by specifying the
option INIT=PINIT.

3566 F Chapter 52: The MCMC Procedure (Experimental)

Posterior Samples

The “Posterior Samples” table (ODS table name PosteriorSample) stores posterior draws of all pa-
rameters. It is not printed by PROC MCMC. You can create an ODS output data set of the chain by
specifying the following:

ODS OUTPUT PosteriorSample = SAS-data-set;

Sampling History

The “Sampling History” table (ODS table name SamplingHistory) shows the scales and acceptance
rates for each parameter block in the main sampling phase. The table is displayed by default.

Tuning Covariance

The “Tuning Covariance” table (ODS table name TuneCov) shows the proposal covariance matrices
for each parameter block after the tuning phase. The table is not displayed by default and can be
requested by specifying the option INIT=PINIT. For more details about proposal tuning, see the
section “Tuning the Proposal Distribution” on page 3524.

Tuning History

The “Tuning History” table (ODS table name TuningHistory) shows the number of tuning phases
used in establishing the proposal distribution. The table also displays the scales and acceptance
rates for each parameter block at each of the tuning phases. For more information about the self-
adapting proposal tuning algorithm used by PROC MCMC, see the section “Tuning the Proposal
Distribution” on page 3524. The table is displayed by default.

Tuning Probability Vector

The “Tuning Probability” table (ODS table name TuneP) shows the proposal probability vector for
each discrete parameter block (when the option DISCRETE=GEO is specified and the geometric pro-
posal distribution is used for discrete parameters) after the tuning phase. The table is not displayed
by default and can be requested by specifying the option INIT=PINIT. For more information about
proposal tuning, see the section “Tuning the Proposal Distribution” on page 3524.

Posterior Statistics Related ODS Tables

PROC MCMC calculates some essential posterior statistics and outputs them to a number of ODS
tables that you can request and save individually. For details of the calculations, see the section
“Summary Statistics” on page 170.

Displayed Output F 3567

Summary Statistics

The “Posterior Summaries” table (ODS table name PostSummaries) contains basic statistics for
each parameter. The table lists the number of posterior samples, the posterior mean and standard
deviation estimates, and the percentile estimates. This table is displayed by default.

Correlation Matrix

The “Posterior Correlation Matrix” table (ODS table name Corr) contains the posterior correlation
of model parameters. The table is not displayed by default and can be requested by specifying the
option STATS=CORR.

Covariance Matrix

The “Posterior Covariance Matrix” table (ODS table name Cov) contains the posterior covariance
of model parameters. The table is not displayed by default and can be requested by specifying the
option STATISTICS=COV.

Deviance Information Criterion

The “Deviance Information Criterion” table (ODS table name DIC) contains the DIC of the model.
The table is not displayed by default and can be requested by specifying the option DIC. For details
of the calculations, see the section “Deviance Information Criterion (DIC)” on page 172.

Interval Statistics

The “Posterior Intervals” table (ODS table name PostIntervals) contains two the equal-tail and high-
est posterior density (HPD) interval estimates for each parameter. The default ˛ value is 0:05, and
you can change it to other levels by using the STATISTICS option. This table is displayed by
default.

Convergence Diagnostics Related ODS Tables

PROC MCMC has convergence diagnostic tests that check for Markov chain convergence. The
procedure produces a number of ODS tables that you can request and save individually. For details
in calculation, see the section “Statistical Diagnostic Tests” on page 160.

Autocorrelation

The “Autocorrelations” table (ODS table name AUTOCORR) contains the first order autocorrela-
tions of the posterior samples for each parameter. The “Parameter” column states the name of the
parameter. By default, PROC MCMC displays lag 1, 5, 10, and 50 estimates of the autocorrelations.
You can request different autocorrelations by using the DIAGNOSTICS = AUTOCORR(LAGS=) option.
This table is displayed by default.

3568 F Chapter 52: The MCMC Procedure (Experimental)

Effective Sample Size

The “Effective Sample Sizes” table (ODS table name ESS) calculates the effective sample size of
each parameter. See the section “Effective Sample Size” on page 169 for more details. The table is
displayed by default.

Monte Carlo Standard Errors

The “Monte Carlo Standard Errors” table (ODS table name MCSE) calculates the standard errors of
the posterior mean estimate. See the section “Standard Error of the Mean Estimate” on page 170
for more details. The table is displayed by default.

Geweke Diagnostics

The “Geweke Diagnostics” table (ODS table name Geweke) lists the result of the Geweke diagnostic
test. See the section “Geweke Diagnostics” on page 163 for more details. The table is displayed by
default.

Heidelberger-Welch Diagnostics

The “Heidelberger-Welch Diagnostics” table (ODS table name Heidelberger) lists the result of the
Heidelberger-Welch diagnostic test. The test is consisted of two parts: a stationary test and a half-
width test. See the section “Heidelberger and Welch Diagnostics” on page 165 for more details. The
table is not displayed by default and can be requested by specifying DIAGNOSTICS = HEIDEL.

Raftery-Lewis Diagnostics

The “Raftery-Lewis Diagnostics” table (ODS table name Raftery) lists the result of the Raftery-
Lewis diagnostic test. See the section “Raftery and Lewis Diagnostics” on page 166 for more
details. The table is not displayed by default and can be requested by specifying DIAGNOSTICS =
RAFTERY.

Optimization Related ODS Tables

PROC MCMC can perform optimization on the joint posterior distribution. This is requested by the
PROPCOV= option. The most commonly used optimization method is the quasi-Newton method:
PROPCOV=QUANEW(ITPRINT). The ITPRINT option displays the ODS tables, listed as follows:

Input Options

The “Input Options” table (ODS table name InputOptions) lists optimization options used in the
procedure.

ODS Table Names F 3569

Optimization Start

The “Optimization Start” table (ODS table name ProblemDescription) shows the initial state of the
optimization.

Iteration History

The “Iteration History” table (ODS table name IterHist) shows iteration history of the optimization.

Optimization Results

The “Optimization Results” table (ODS table name IterStop) shows the results of the optimiza-
tion, includes information about the number of function calls, and the optimized objective function,
which is the joint log posterior density.

Convergence Status

The “Convergence Status” table (ODS table name ConvergenceStatus) shows whether the conver-
gence criterion is satisfied.

Parameters Value After Optimization Table

The “Parameter Values After Optimization” table (ODS table name OptiEstimates) lists the parame-
ter values that maximize the joint log posterior. These are the maximum a posteriori point estimates,
and they are used to start the Markov chain.

Covariance Matrix After Optimization Table

The “Proposal Covariance” table (ODS table name OptiCov) lists covariance matrices for each block
parameter by using quadrature approximation at the posterior mode. These covariance matrices are
used in the proposal distribution.

ODS Table Names

PROC MCMC assigns a name to each table it creates. You can use these names to reference the
table when using the Output Delivery System (ODS) to select tables and create output data sets.
These names are listed in the following table. For more information about ODS, see Chapter 21,
“Statistical Graphics Using ODS.”

3570 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.35 ODS Tables Produced in PROC MCMC

ODS Table Name Description Statement or Option

AutoCorr autocorrelation statistics for each
parameter

default

PostSummaries basic statistics for each pa-
rameter, including sample size,
mean, standard deviation, and
percentiles

default

ConvergenceStatus optimization convergence status PROPCOV=method(ITPRINT)
Corr correlation matrix of the poste-

rior samples
STATS=CORR

Cov covariance matrix of the poste-
rior samples

STATS=COV

DIC deviance information criterion DIC
ESS effective sample size for each pa-

rameter
default

MCSE Monte Carlo standard error for
each parameter

default

Geweke Geweke diagnostics for each pa-
rameter

default

Heidelberger Heidelberger-Welch diagnostics
for each parameter

DIAGNOSTICS=HEIDEL

InputOptions optimization input table PROPCOV=method(ITPRINT)
PostIntervals equal-tail and HPD intervals for

each parameter
default

IterHist optimization iteration history PROPCOV=method(ITPRINT)
IterStop optimization results table PROPCOV=method(ITPRINT)
NObs number of observations default
OptiEstimates parameter values after either op-

timization
PROPCOV=method(ITPRINT)

OptiCov covariance used in proposal dis-
tribution after optimization

PROPCOV=method(ITPRINT)

Parameters summary of the PARMS,
BLOCKING, PRIOR, sam-
pling method, and initial value
specification

default

ParametersInit parameter values after the tuning
phase

INIT=PINIT

PosteriorSample posterior samples for each pa-
rameter

(for ODS output data set only)

ProblemDescription optimization table PROPCOV=method(ITPRINT)
Raftery Raftery-Lewis diagnostics for

each parameter
DIAGNOSTICS=RAFTERY

SamplingHistory history of burn-in and main
phase sampling

default

ODS Graphics F 3571

Table 52.35 (continued)

ODS Table Name Description Statement or Option

TuneCov proposal covariance matrix (for
continuous parameters) after the
tuning phase

INIT=PINIT

TuneP proposal probability vector (for
discrete parameters) after the
tuning phase

INIT=PINIT and DIS-
CRETE=GEO

TuningHistory history of proposal distribution
tuning

default

ODS Graphics

To request graphics with PROC MCMC, you must first enable ODS Graphics by specifying the ods
graphics on statement. See Chapter 21, “Statistical Graphics Using ODS,” for more information.
You can reference every graph produced through ODS Graphics with a name. The names of the
graphs that PROC MCMC generates are listed in Table 52.36.

Table 52.36 ODS Graphics Produced by PROC MCMC

ODS Graph Name Plot Description Statement & Option

ADPanel autocorrelation function
and density panel

PLOTS=(AUTOCORR DENSITY)

AutocorrPanel autocorrelation function
panel

PLOTS=AUTOCORR

AutocorrPlot autocorrelation function
plot

PLOTS(UNPACK)=AUTOCORR

DensityPanel density panel PLOTS=DENSITY
DensityPlot density plot PLOTS(UNPACK)=DENSITY
TAPanel trace and autocorrelation

function panel
PLOTS=(TRACE AUTOCORR)

TADPanel trace, density, and auto-
correlation function panel

PLOTS=(TRACE AUTOCORR DENSITY)

TDPanel trace and density panel PLOTS=(TRACE DENSITY)
TracePanel trace panel PLOTS=TRACE
TracePlot trace plot PLOTS(UNPACK)=TRACE

3572 F Chapter 52: The MCMC Procedure (Experimental)

Examples: MCMC Procedure

Example 52.1: Simulating Samples From a Known Density

This example illustrates how you can obtain random samples from a known function. The target
distributions are the normal distribution and a mixture of the normal distributions. You do not need
any input data set to generate samples from a known density. You can set the likelihood function to
a constant. The posterior distribution becomes identical to the prior distributions that you specify.

Sampling from a Normal Density

With a constant likelihood, there is no need to input a response variable since no data are relevant to
a flat likelihood. However, PROC MCMC requires an input data set, so you can use an empty data
set as the input data set. The following statements generate 10000 samples from a standard normal
distribution:

data x;
run;

ods graphics on;
proc mcmc data=x outpost=simout seed=23 nmc=10000 maxtune=0

nbi=0 statistics=(summary interval) diagnostics=none;
ods exclude nobs parameters samplinghistory;
parm alpha 0;
prior alpha ~ normal(0, sd=1);
model general(0);

run;
ods graphics off;

The ods graphics on statement requests ODS Graphics. The PROC MCMC statement specifies
the input and output data sets, a random number seed, and the size of the simulation sample. There is
no need for tuning (MAXTUNE=0) because the default scale and the proposal variance are optimal
for a standard normal target distribution. For the same reason, no burn-in is needed (NBI=0). The
STATISTICS= option is used to display only the summary and interval statistics. The ods exclude

statement excludes the display of the NObs, Parameters and SamplingHistory tables. The summary
statistics (Output 52.1.1) are what you would expect from a standard normal distribution.

Example 52.1: Simulating Samples From a Known Density F 3573

Output 52.1.1 MCMC Summary and Interval Statistics from a Normal Target Distribution

An Example for Posterior Predictive Distribution

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

alpha 10000 -0.0392 1.0194 -0.7198 -0.0403 0.6351

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

alpha 0.050 -2.0746 1.9594 -2.2197 1.7869

The trace plot (Output 52.1.2) shows good mixing of the Markov chain, and there is no significant
autocorrelation in the lag plot.

Output 52.1.2 Diagnostics Plots for ˛

You can also overlay the estimated kernel density with the true density to get a visual comparison,
as displayed in Output 52.1.3.

3574 F Chapter 52: The MCMC Procedure (Experimental)

To create Output 52.1.3, you first use PROC KDE (see Chapter 45, “The KDE Procedure”) to obtain
a kernel density estimate of the posterior density on alpha, and then you evaluate a grid of alpha
values by using PROC KDE output data set sample on a normal density. The following statements
evaluate kernel density and compute corresponding normal density.

proc kde data=simout;
ods exclude inputs controls;
univar alpha /out=sample;

run;

data den;
set sample;
alpha = value;
true = pdf(’normal’, alpha, 0, 1);
keep alpha density true;

run;

Finally, you plot the two curves on top of each other by using PROC SGPLOT (see Chapter 21,
“Statistical Graphics Using ODS”); the resulting figure is in Output 52.1.3. You can see that the
kernel estimate and the true density are very similar to one another. The following statements
produce Output 52.1.3:

proc sgplot data=den;
yaxis label="Density";
series y=density x=alpha / legendlabel = "MCMC Kernel";
series y=true x=alpha / legendlabel = "True Density";
discretelegend;

run;

Output 52.1.3 Estimated Density versus the True Density

Example 52.1: Simulating Samples From a Known Density F 3575

Sampling from a Mixture of Normal Densities

Suppose that you are interested in generating samples from a three-component mixture of normal
distributions, with the density specified as follows:

p.˛/ D 0:3 � �.�3; � D 2/C 0:4 � �.2; � D 1/C 0:3 � �.10; � D 4/

The following statements generate random samples from this mixture density:

data x;
run;

ods graphics on;
proc mcmc data=x outpost=simout seed=1234 nmc=30000;

ods select TADpanel;
parm alpha 0.3;
lp = logpdf(’normalmix’, alpha, 3, 0.3, 0.4, 0.3, -3, 2, 10, 2, 1, 4);
prior alpha ~ general(lp);
model general(0);

run;
ods graphics off;

The ods select statement displays the diagnostic plots. All other tables, such as the NObs tables,
are excluded. The PROC MCMC statement uses the input data set x, saves output to the simout data
set, sets a random number seed, and simulates 30,000 samples.

The lp assignment statement evaluates the log density of alpha at the mixture density, using the SAS
function LOGPDF. The number 3 after alpha in the LOGPDF function indicates that the density is
a three-component normal mixture. The following three numbers, 0:3, 0:4, and 0:3, are the weights
in the mixture; �3, 2, and 10 are the means; 2, 1, and 4 are the standard deviations. The PRIOR
statement assigns this log density function to alpha as its prior. Note that the GENERAL function
interprets the density on the log scale, and not the original scale. Hence, you must use the LOGPDF
function, not the PDF function. Output 52.1.4 displays the results. The kernel density clearly shows
three modes.

3576 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.1.4 Plots of Posterior Samples from a Mixture Normal Distribution

Using the following set of statements similar to the previous example, you can overlay the estimated
kernel density with the true density. The comparison is shown in Output 52.1.5.

proc kde data=simout;
ods exclude inputs controls;
univar alpha /out=sample;

run;

data den;
set sample;
alpha = value;
true = pdf(’normalmix’, alpha, 3, 0.3, 0.4, 0.3, -3, 2, 10, 2, 1, 4);
keep alpha density true;

run;

proc sgplot data=den;
yaxis label="Density";
series y=density x=alpha / legendlabel = "MCMC Kernel";
series y=true x=alpha / legendlabel = "True Density";
discretelegend;

run;

Example 52.2: Box-Cox Transformation F 3577

Output 52.1.5 Estimated Density versus the True Density

Example 52.2: Box-Cox Transformation

Box-Cox transformations (Box and Cox 1964) are often used to find a power transformation of a
dependent variable to ensure the normality assumption in a linear regression model. This example
illustrates how you can use PROC MCMC to estimate a Box-Cox transformation for a linear regres-
sion model. Two different priors on the transformation parameter � are considered: a continuous
prior and a discrete prior. You can estimate the probability of � being 0 with a discrete prior but not
with a continuous prior. The IF-ELSE statements are demonstrated in the example.

Using a Continuous Prior on �

The following statements create a SAS data set with measurements of y (the response variable) and
x (a single dependent variable):

title ’Box-Cox Transformation, with a Continuous Prior on Lambda’;
data boxcox;

input y x @@;
datalines;

10.0 3.0 72.6 8.3 59.7 8.1 20.1 4.8 90.1 9.8 1.1 0.9
78.2 8.5 87.4 9.0 9.5 3.4 0.1 1.4 0.1 1.1 42.5 5.1

3578 F Chapter 52: The MCMC Procedure (Experimental)

... more lines ...

2.6 1.8 58.6 7.9 81.2 8.1 37.2 6.9
;

The Box-Cox transformation of y takes on the form of:

y.�/ D

(
y��1

�
if � ¤ 0I

log.y/ if � D 0:

The transformed response y.�/ is assumed to be normally distributed:

yi .�/ � normal.ˇ0 C ˇ1xi ; �2/

The likelihood with respect to the original response yi is as follows:

f .yi j�; ˇ; �2; xi / / �.yi jˇ0 C ˇ1xi ; �2/ � J.�; yi /

where J.�; yi / is the Jacobian:

J.�; y/ D

�
y��1

i if � ¤ 0I

1=yi if � D 0:

And on the log-scale, the Jacobian becomes:

log.J.�; y// D

�
.� � 1/ � log.yi / if � ¤ 0I

� log.yi / if � D 0:

There are four model parameters: �; ˇ D fˇ0; ˇ1g; and �2. You can considering using a flat prior
on ˇ and a gamma prior on �2.

To consider only power transformations (� ¤ 0), you can use a continuous prior (for example,
a uniform prior from �2 to 2) on �. One issue with using a continuous prior is that you cannot
estimate the probability of � D 0. To do so, you need to consider a discrete prior that places
positive probability mass on the point 0. See “Modeling � D 0” on page 3582.

Example 52.2: Box-Cox Transformation F 3579

The following statements fit a Box-Cox transformation model:

ods graphics on;
proc mcmc data=boxcox nmc=50000 thin=10 propcov=quanew seed=12567

monitor=(lda);
ods select PostSummaries PostIntervals TADpanel;

parms beta0 0 beta1 0 lda 1 s2 1;

beginprior;
prior beta: ~ general(0);
prior s2 ~ gamma(shape=3, scale=2);
prior lda ~ unif(-2,2);
sd = sqrt(s2);
endprior;

ys = (y**lda-1)/lda;
mu = beta0+beta1*x;
ll = (lda-1)*log(y)+lpdfnorm(ys, mu, sd);
model general(ll);

run;

The PROPCOV option initializes the Markov chain at the posterior mode and uses the estimated
inverse Hessian matrix as the initial proposal covariance matrix. The MONITOR= option selects
� as the variable to report. The ods select statement displays the summary statistics table, the
interval statistics table, and the diagnostic plots.

The PARMS statement puts all four parameters, ˇ0, ˇ1, �, and �2, in a single block and assigns
initial values to each of them. Three PRIOR statements specify previously stated prior distributions
for these parameters. The assignment to sd transforms a variance to a standard deviation. It is
better to place the transformation inside the BEGINPRIOR and ENDPRIOR statements to save
computational time.

The assignment to the symbol ys evaluates the Box-Cox transformation of y, where mu is the re-
gression mean and ll is the log likelihood of the transformed variable ys. Note that the log of the
Jacobian term is included in the calculation of ll.

Summary statistics and interval statistics for lda are listed in Output 52.2.1.

Output 52.2.1 Box-Cox Transformation

Box-Cox Transformation, with a Continuous Prior on Lambda

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

lda 5000 0.4702 0.0284 0.4515 0.4703 0.4884

3580 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.2.1 continued

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

lda 0.050 0.4162 0.5269 0.4197 0.5298

The posterior mean of � is 0:47, with a 95% equal-tail interval of Œ0:42; 0:53� and a similar HPD
interval. The prefered power transformation would be 0:5 (rounding � up to the square root trans-
formation).

Output 52.2.2 shows diagnostics plots for lda. The chain appears to converge, and you can proceed
to make inferences. The density plot shows that the posterior density is relatively symmetric around
its mean estimate.

Output 52.2.2 Diagnostic Plots for �

To verify the results, you can use PROC TRANSREG (see Chapter 90, “The TRANSREG Proce-
dure”) to find the estimate of �.

proc transreg data=boxcox details pbo;
ods output boxcox = bc;
model boxcox(y / convenient lambda=-2 to 2 by 0.01) = identity(x);
output out=trans;

run;
ods graphics off;

Example 52.2: Box-Cox Transformation F 3581

Output from PROC TRANSREG is shown in Output 52.2.5 and Output 52.2.4. PROC TRAN-
SREG produces a similar point estimate of � D 0:46, and the 95% confidence interval is shown in
Output 52.2.5.

Output 52.2.3 Box-Cox Transformation Using PROC TRANSREG

Output 52.2.4 Estimates Reported by PROC TRANSREG

Box-Cox Transformation, with a Continuous Prior on Lambda

The TRANSREG Procedure

Model Statement Specification Details

Type DF Variable Description Value

Dep 1 BoxCox(y) Lambda Used 0.5
Lambda 0.46
Log Likelihood -167.0
Conv. Lambda 0.5
Conv. Lambda LL -168.3
CI Limit -169.0
Alpha 0.05
Options Convenient Lambda Used

Ind 1 Identity(x) DF 1

3582 F Chapter 52: The MCMC Procedure (Experimental)

The ODS data set bc contains the 95% confidence interval estimates produced by PROC TRAN-
SREG. This ODS table is rather large, and you want to see only the relevant portion. The following
statements generate the part of the table that is important and display Output 52.2.5:

proc print noobs label data=bc(drop=rmse);
title2 ’Confidence Interval’;
where ci ne ’ ’ or abs(lambda - round(lambda, 0.5)) < 1e-6;
label convenient = ’00’x ci = ’00’x;

run;

The estimated 90% confidence interval is Œ0:41; 0:51�, which is very close to the reported Bayesian
credible intervals. The resemblance of the intervals is probably due to the noninformative prior that
you used in this analysis.

Output 52.2.5 Estimated Confidence Interval on �

Box-Cox Transformation, with a Continuous Prior on Lambda
Confidence Interval

Log
Dependent Lambda R-Square Likelihood

BoxCox(y) -2.00 0.14 -1030.56
BoxCox(y) -1.50 0.17 -810.50
BoxCox(y) -1.00 0.22 -602.53
BoxCox(y) -0.50 0.39 -415.56
BoxCox(y) 0.00 0.78 -257.92
BoxCox(y) 0.41 0.95 -168.40 *
BoxCox(y) 0.42 0.95 -167.86 *
BoxCox(y) 0.43 0.95 -167.46 *
BoxCox(y) 0.44 0.95 -167.19 *
BoxCox(y) 0.45 0.95 -167.05 *
BoxCox(y) 0.46 0.95 -167.04 <
BoxCox(y) 0.47 0.95 -167.16 *
BoxCox(y) 0.48 0.95 -167.41 *
BoxCox(y) 0.49 0.95 -167.79 *
BoxCox(y) 0.50 + 0.95 -168.28 *
BoxCox(y) 0.51 0.95 -168.89 *
BoxCox(y) 1.00 0.89 -253.09
BoxCox(y) 1.50 0.79 -345.35
BoxCox(y) 2.00 0.70 -435.01

Modeling � D 0

With a continuous prior on �, you can get only a continuous posterior distribution, and this makes
the probability of Pr.� D 0jdata/ equal to 0 by definition. To consider � D 0 as a viable solution to
the Box-Cox transformation, you need to use a discrete prior that places some probability mass on
the point 0 and allows for a meaningful posterior estimate of Pr.� D 0jdata/.

This example uses a simulation study where the data are generated from an exponential likelihood.
The simulation implies that the correct transformation should be the logarithm and � should be 0.

Example 52.2: Box-Cox Transformation F 3583

Consider the following exponential model:

y D exp.x C �/;

where � � normal.0; 1/. The transformed data can be fitted with a linear model:

log.y/ D x C �

The following statements generate a SAS data set with a gridded x and corresponding y:

title ’Box-Cox Transformation, Modeling Lambda = 0’;
data boxcox;

do x = 1 to 8 by 0.025;
ly = x + normal(7);
y = exp(ly);
output;

end;
run;

The log-likelihood function, after taking the Jacobian into consideration, is as follows:

log p.yi j�; xi / D

8̂<̂
: .� � 1/ log.yi / �

1
2

�
log �2 C

..y�
i

�1/=��xi/
2

�2

�
C C1 if � ¤ 0I

� log.yi / �
1
2

�
log �2 C

.log.yi /�xi /2

�2

�
C C2 if � D 0:

where C1 and C2 are two constants.

You can use the function DGENERAL to place a discrete prior on �. The function is similar to the
function GENERAL, except that it indicates a discrete distribution. For example, you can specify a
discrete uniform prior from �2 to 2 using

prior lda ~ dgeneral(1, lower=-2, upper=2);

This places equal probability mass on five points, �2, �1, 0, 1, and 2. This prior might not work
well here because the grid is too coarse. To consider smaller values of �, you can sample a parameter
that takes a wider range of integer values and transform it back to the � space. For example, set
alpha as your model parameter and give it a discrete uniform prior from �200 to 200. Then define
� as alpha/100 so � can take values between �2 and 2 but on a finer grid.

The following statements fit a Box-Cox transformation by using a discrete prior on �:

proc mcmc data=boxcox outpost=simout nmc=50000 thin=10 seed=12567
monitor=(lda);

ods select PostSummaries PostIntervals;
parms s2 1 alpha 10;

beginprior;
prior s2 ~ gamma(shape=3, scale=2);
if alpha=0 then lp = log(2);

else lp = log(1);
prior alpha ~ dgeneral(lp, lower=-200, upper=200);

3584 F Chapter 52: The MCMC Procedure (Experimental)

lda = alpha * 0.01;
sd = sqrt(s2);
endprior;

if alpha=0 then
ll = -ly+lpdfnorm(ly, x, sd);

else do;
ys = (y**lda - 1)/lda;
ll = (lda-1)*ly+lpdfnorm(ys, x, sd);

end;
model general(ll);

run;

There are two parameters, s2 and alpha, in the model. They are placed in a single PARMS statement
so that they are sampled in the same block.

The parameter s2 takes a gamma distribution, and alpha takes a discrete prior. The IF-ELSE state-
ments state that alpha takes twice as much prior density when it is 0 than otherwise. Note that on
the original scale, Pr.alpha D 0/ D 2 �Pr.alpha ¤ 0/. Translating that to the log scale, the densities
become log.2/ and log.1/, respectively. The lda assignment statement transforms alpha to the pa-
rameter of interest: lda takes values between�2 and 2. You can model lda on a even smaller scale by
dividing alpha by a larger constant. However, an increment of 0.01 in the Box-Cox transformation
is usually sufficient. The sd assignment statement calculates the square root of the variance term.

The log-likelihood function uses another set of IF-ELSE statements, separating the case of � D

0 from the others. The formulas are stated previously. The output of the program is shown in
Output 52.2.6.

Output 52.2.6 Box-Cox Transformation

Box-Cox Transformation, Modeling Lambda = 0

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

lda 5000 -0.00002 0.00201 0 0 0

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

lda 0.050 0 0 0 0

From the summary statistics table, you see that the point estimate for � is 0 and both of the 95%
equal-tail and HPD credible intervals are 0. This strongly suggests that � D 0 is the best estimate
for this problem. In addition, you can also count the frequency of � among posterior samples to get
a more precise estimate on the posterior probability of � being 0.

Example 52.2: Box-Cox Transformation F 3585

The following statements use PROC FREQ to produce Output 52.2.7 and Output 52.2.8:

ods graphics on;
proc freq data=simout;

ods select onewayfreqs freqplot;
tables lda /nocum plot=freqplot(scale=percent);

run;
ods graphics off;

Output 52.2.7 shows the frequency count table. An estimate of Pr.� D 0jdata/ is 96%. The
conclusion is that the log transformation should be the appropriate transformation used here, which
agrees with the simulation setup. Output 52.2.8 shows the histogram of �.

Output 52.2.7 Frequency Counts of �

Box-Cox Transformation, Modeling Lambda = 0

The FREQ Procedure

lda Frequency Percent

-0.0100 106 2.12

0 4798 95.96
0.0100 96 1.92

Output 52.2.8 Histogram of �

3586 F Chapter 52: The MCMC Procedure (Experimental)

Example 52.3: Generalized Linear Models

This example discusses two examples of fitting generalized linear models (GLM) with PROC
MCMC. One uses a logistic regression model and one uses a Poisson regression model. The lo-
gistic examples use both a diffuse prior and a Jeffreys’ prior on the regression coefficients. You can
also use the BAYES statement in PROC GENMOD. See Chapter 37, “The GENMOD Procedure.”

Logistic Regression Model with a Diffuse Prior

The following statements create a SAS data set with measurements of the number of deaths, y,
among n beetles that have been exposed to an environmental contaminant x:

title ’Logistic Regression Model with a Diffuse Prior’;
data beetles;

input n y x @@;
datalines;

6 0 25.7 8 2 35.9 5 2 32.9 7 7 50.4 6 0 28.3
7 2 32.3 5 1 33.2 8 3 40.9 6 0 36.5 6 1 36.5
6 6 49.6 6 3 39.8 6 4 43.6 6 1 34.1 7 1 37.4
8 2 35.2 6 6 51.3 5 3 42.5 7 0 31.3 3 2 40.6
;

You can model the data points yi with a binomial distribution:

yi jpi � binomial.ni ; pi /

where pi is the success probability and links to the regression covariate xi through a logit transfor-
mation:

logit.pi / D log
�

pi

1 � pi

�
D ˛ C ˇxi

The priors on ˛ and ˇ are both diffuse normal:

�.˛/ D �.0; var D 10000/

�.ˇ/ D �.0; var D 10000/

These statements fit a logistic regression with PROC MCMC:

ods graphics on;
proc mcmc data=beetles ntu=1000 nmc=20000 nthin=2 propcov=quanew

diag=(mcse ess) outpost=beetleout seed=246810;
ods select PostSummaries PostIntervals mcse ess TADpanel;
parms (alpha beta) 0;
prior alpha beta ~ normal(0, var = 10000);
p = logistic(alpha + beta*x);
model y ~ binomial(n,p);

run;

Example 52.3: Generalized Linear Models F 3587

The key statement in the program is the assignment to p that calculates the probability of death. The
SAS function LOGISTIC does the proper transformation. The MODEL statement specifies that the
response variable, y, is binomially distributed with parameters n (from the input data set) and p.
The summary statistics table, interval statistics table, the Monte Carlos standard error table, and the
effective sample sizes table are shown in Output 52.3.1.

Output 52.3.1 MCMC Results

Logistic Regression Model with a Diffuse Prior

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

alpha 10000 -11.7707 2.0997 -13.1243 -11.6683 -10.3003
beta 10000 0.2920 0.0542 0.2537 0.2889 0.3268

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

alpha 0.050 -16.3332 -7.9675 -15.8822 -7.6673
beta 0.050 0.1951 0.4087 0.1901 0.4027

Logistic Regression Model with a Diffuse Prior

The MCMC Procedure

Monte Carlo Standard Errors

Standard
Parameter MCSE Deviation MCSE/SD

alpha 0.0422 2.0997 0.0201
beta 0.00110 0.0542 0.0203

Effective Sample Sizes

Correlation
Parameter ESS Time Efficiency

alpha 2470.1 4.0484 0.2470
beta 2435.4 4.1060 0.2435

The summary statistics table shows that the sample mean of the output chain for the parameter
alpha is �11:7707. This is an estimate of the mean of the marginal posterior distribution for the
intercept parameter alpha. The estimated posterior standard deviation for alpha is 2.0997. The two
95% credible intervals for alpha are both negative, which indicates with very high probability that
the intercept term is negative. On the other hand, you observe a positive effect on the regression
coefficient beta. Exposure to the environment contaminant increases the probability of death.

3588 F Chapter 52: The MCMC Procedure (Experimental)

The Monte Carlo standard errors of each parameter are significantly small relative to the posterior
standard deviations. A small MCSE/SD ratio indicates that the Markov chain has stabilized and
the mean estimates do not vary much over time. Note that the precision in the parameter estimates
increases with the square of the MCMC sample size, so if you want to double the precision, you
must quadruple the MCMC sample size.

MCMC chains do not produce independent samples. Each sample point depends on the point before
it. In this case, the correlation time estimate, read from the effective sample sizes table, is roughly 4.
This means that it takes four observations from the MCMC output to make inferences about alpha
with the same precision that you would get from using an independent sample. The effective sample
size of 2470 reflects this loss of efficiency. The coefficient beta has similar efficiency. You can often
observe that some parameters have significantly better mixing (better efficiency) than others, even
in a single Markov chain run.

Output 52.3.2 Plots for Parameters in the Logistic Regression Example

Example 52.3: Generalized Linear Models F 3589

Output 52.3.2 continued

Trace plots and autocorrelation plots of the posterior samples are shown in Output 52.3.2. Conver-
gence looks good in both parameters; there is good mixing in the trace plot and quick drop-off in
the ACF plot.

One advantage of Bayesian methods is the ability to directly answer scientific questions. In this
example, you might want to find out the posterior probability that the environmental contaminant
increases the probability of death—that is, P r.ˇ > 0jy/. This can be estimated using the following
steps:

proc format;
value betafmt low-0 = ’beta <= 0’ 0<-high = ’beta > 0’;

run;

proc freq data=beetleout;
tables beta /nocum;
format beta betafmt.;

run;

3590 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.3.3 Frequency Counts

Logistic Regression Model with a Diffuse Prior

The FREQ Procedure

beta Frequency Percent

beta > 0 10000 100.00

All of the simulated values for ˇ are greater than zero, so the sample estimate of the posterior prob-
ability that ˇ > 0 is 100%. The evidence overwhelmingly supports the hypothesis that increased
levels of the environmental contaminant increase the probability of death.

If you are interested in making inference based on any quantities that are transformations of the
random variables, you can either do it directly in PROC MCMC or by using the DATA step after
you run the simulation. Transformations sometimes can make parameter inference quite formidable
using direct analytical methods, but with simulated chains, it is easy to compute chains for any set
of parameters. Suppose that you are interested in the lethal dose and want to estimate the level of
the covariate x that corresponds to a probability of death, p. Abbreviate this quantity as ldp. In other
words, you want to solve the logit transformation with a fixed value p. The lethal dose is as follows:

ldp D
log

�
p

1�p

�
� ˛

ˇ

You can obtain an estimate of any ldp by using the posterior mean estimates for ˛ and ˇ. For
example, lp95, which corresponds to p D 0:95, is calculated as follows:

lp95 D
log

�
0:95

1�0:95

�
C 11:77

0:29
D 50:79

where �11:77 and 0:29 are the posterior mean estimates of ˛ and ˇ, respectively, and 50:79 is the
estimated lethal dose that leads to a 95% death rate.

While it is easy to obtain the point estimates, it is harder to estimate other posterior quantities, such
as the standard deviation directly. However, with PROC MCMC, you can trivially get estimates of
any posterior quantities of lp95. Consider the following program in PROC MCMC:

proc mcmc data=beetles ntu=1000 nmc=20000 nthin=2 propcov=quanew
outpost=beetleout seed=246810 plot=density
monitor=(pi30 ld05 ld50 ld95);

ods select PostSummaries PostIntervals densitypanel;
parms (alpha beta) 0;
begincnst;

c1 = log(0.05 / 0.95);
c2 = -c1;

endcnst;

beginprior;
prior alpha beta ~ normal(0, var = 10000);
pi30 = logistic(alpha + beta*30);
ld05 = (c1 - alpha) / beta;

Example 52.3: Generalized Linear Models F 3591

ld50 = - alpha / beta;
ld95 = (c2 - alpha) / beta;
endprior;
pi = logistic(alpha + beta*x);
model y ~ binomial(n,pi);

run;
ods graphics off;

The program estimates four additional posterior quantities. The three lpd quantities, ld05, ld50, and
ld95, are the three levels of the covariate that kills 5%, 50%, and 95% of the population, respectively.
The predicted probability when the covariate x takes the value of 30 is pi30. The MONITOR= option
selects the quantities of interest. The PLOTS= option selects kernel density plots as the only ODS
graphical output, excluding the trace plot and autocorrelation plot.

Programming statements between the BEGINCNST and ENDCNST statements define two con-
stants. These statements are executed once at the beginning of the simulation. The programming
statements between the BEGINPRIOR and ENDPRIOR statements evaluate the quantities of in-
terest. The symbols, pi30, ld05, ld50, and ld95, are functions of the parameters alpha and beta
only. Hence, they should not be processed at the observation level and should be included in
the BEGINPRIOR and ENDPRIOR statements. Output 52.3.4 lists the posterior summary and
Output 52.3.5 shows the density plots of these posterior quantities.

Output 52.3.4 PROC MCMC Results

Logistic Regression Model with a Diffuse Prior

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

pi30 10000 0.0524 0.0253 0.0340 0.0477 0.0662
ld05 10000 29.9281 1.8814 28.8430 30.1727 31.2563
ld50 10000 40.3745 0.9377 39.7271 40.3165 40.9612
ld95 10000 50.8210 2.5353 49.0372 50.5157 52.3100

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

pi30 0.050 0.0161 0.1133 0.0109 0.1008
ld05 0.050 25.6409 32.9660 26.2193 33.2774
ld50 0.050 38.6706 42.3718 38.6194 42.2811
ld95 0.050 46.7180 56.7667 46.3221 55.8774

The posterior mean estimate of lp95 is 50:82, which is close to the estimate of 50:79 by using the
posterior mean estimates of the parameters. With PROC MCMC, in addition to the mean estimate,
you can get the standard deviation, quantiles, and interval estimates at any level of significance.

3592 F Chapter 52: The MCMC Procedure (Experimental)

From the density plots, you can see, for example, that the sample distribution for �30 is skewed
to the right, and almost all of your posterior belief concerning �30 is concentrated in the region
between zero and 0.15.

Output 52.3.5 Density Plots of Quantities of Interest in the Logistic Regression Example

It is easy to use the DATA step to calculate these quantities of interest. The following DATA step
uses the simulated values of ˛ and ˇ to create simulated values from the posterior distributions of
ld05, ld50, ld95, and �30:

data transout;
set beetleout;
pi30 = logistic(alpha + beta*30);
ld05 = (log(0.05 / 0.95) - alpha) / beta;
ld50 = (log(0.50 / 0.50) - alpha) / beta;
ld95 = (log(0.95 / 0.05) - alpha) / beta;

run;

Subsequently, you can use SAS/INSIGHT, or the UNIVARIATE, CAPABILITY, or KDE proce-
dures to analyze the posterior sample. If you want to regenerate the default ODS graphs from
PROC MCMC, see “Regenerating Diagnostics Plots” on page 3552.

Logistic Regression Model with Jeffreys’ Prior

A controlled experiment was run to study the effect of the rate and volume of air inspired on a tran-
sient reflex vasoconstriction in the skin of the fingers. Thirty-nine tests under various combinations

Example 52.3: Generalized Linear Models F 3593

of rate and volume of air inspired were obtained (Finney 1947). The result of each test is whether
or not vasoconstriction occurred. Pregibon (1981) uses this set of data to illustrate the diagnostic
measures he proposes for detecting influential observations and to quantify their effects on various
aspects of the maximum likelihood fit. The following statements create the data set vaso:

title ’Logistic Regression Model with Jeffreys Prior’;
data vaso;

input vol rate resp @@;
lvol = log(vol);
lrate = log(rate);
ind = _n_;
datalines;

3.7 0.825 1 3.5 1.09 1 1.25 2.5 1 0.75 1.5 1
0.8 3.2 1 0.7 3.5 1 0.6 0.75 0 1.1 1.7 0
0.9 0.75 0 0.9 0.45 0 0.8 0.57 0 0.55 2.75 0
0.6 3.0 0 1.4 2.33 1 0.75 3.75 1 2.3 1.64 1
3.2 1.6 1 0.85 1.415 1 1.7 1.06 0 1.8 1.8 1
0.4 2.0 0 0.95 1.36 0 1.35 1.35 0 1.5 1.36 0
1.6 1.78 1 0.6 1.5 0 1.8 1.5 1 0.95 1.9 0
1.9 0.95 1 1.6 0.4 0 2.7 0.75 1 2.35 0.03 0
1.1 1.83 0 1.1 2.2 1 1.2 2.0 1 0.8 3.33 1
0.95 1.9 0 0.75 1.9 0 1.3 1.625 1
;

The variable resp represents the outcome of a test. The variable lvol represents the log of the volume
of air intake, and the variable lrate represents the log of the rate of air intake. You can model the
data by using logistic regression. You can model the response with a binary likelihood:

respi � binary.pi /

with

pi D
1

1C exp.�.ˇ0 C ˇ1lvoli C ˇ2lratei //

Let X be the design matrix in the regression. Jeffreys’ prior for this model is

p.ˇ/ / jX>MX j1=2

where M is a 39 by 39 matrix with off-diagonal elements being 0 and diagonal elements being
pi .1 � pi /. For details on Jeffreys’ prior, see “Jeffreys’ Prior” on page 146. You can use a number
of matrix functions, such as the determinant function, in PROC MCMC to construct Jeffreys’ prior.
The following statements illustrate how to fit a logistic regression with Jeffreys’ prior:

/* fitting a logistic regression with Jeffreys’ prior */
%let n = 39;
proc mcmc data=vaso nmc=10000 outpost=mcmcout seed=17;

ods select PostSummaries PostIntervals;

array beta[3] beta0 beta1 beta2;
array m[&n, &n];
array x[&n, 3];
array xt[3, &n];

3594 F Chapter 52: The MCMC Procedure (Experimental)

array xtm[3, &n];
array xmx[3, 3];
array p[&n];

parms beta0 1 beta1 1 beta2 1;

begincnst;
x[ind, 1] = 1;
x[ind, 2] = lvol;
x[ind, 3] = lrate;
if (ind eq &n) then do;

call transpose(x, xt);
call zeromatrix(m);

end;
endcnst;

beginprior;
call mult(x, beta, p); /* p = x * beta */
do i = 1 to &n;

p[i] = 1 / (1 + exp(-p[i])); /* p[i] = 1/(1+exp(-x*beta)) */
m[i,i] = p[i] * (1-p[i]);

end;
call mult (xt, m, xtm); /* xtm = xt * m */
call mult (xtm, x, xmx); /* xmx = xtm * x */
call det (xmx, lp); /* lp = det(xmx) */
lp = 0.5 * log(lp); /* lp = -0.5 * log(lp) */
prior beta: ~ general(lp);
endprior;

model resp ~ bern(p[ind]);
run;

The first ARRAY statement defines an array beta with three elements: beta0, beta1, and beta2.
The subsequent statements define arrays that are used in the construction of Jeffreys’ prior. These
include m (the M matrix), x (the design matrix), xt (the transpose of x), and some additional work
spaces.

The explanatory variables lvol and lrate are saved in the array x in the BEGINCNST and ENDCNST
statements. See “BEGINCNST/ENDCNST Statement” on page 3507 for details. After all the
variables are read into x, you transpose the x matrix and store it to xt. The ZEROMATRIX function
call assigns all elements in matrix m the value zero. To avoid redundant calculation, it is best to
perform these calculations as the last observation of the data set is processed—that is, when ind is
39.

You calculate Jeffreys’ prior in the BEGINPRIOR and ENDPRIOR statements. The probability
vector p is the product of the design matrix x and parameter vector beta. The diagonal elements
in the matrix m are pi .1 � pi /. The expression lp is the logarithm of Jeffreys’ prior. The PRIOR
statement assigns lp as the prior for the ˇ regression coefficients. The MODEL statement assigns a
binary likelihood to resp, with probability p[ind]. The p array is calculated earlier using the matrix
function MULT. You use the ind variable to pick out the right probability value for each resp.

Posterior summary statistics are displayed in Output 52.3.6.

Example 52.3: Generalized Linear Models F 3595

Output 52.3.6 PROC MCMC Results, Jeffreys’ prior

Logistic Regression Model with Jeffreys Prior

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

beta0 10000 -2.9587 1.3258 -3.8117 -2.7938 -2.0007
beta1 10000 5.2905 1.8193 3.9861 5.1155 6.4145
beta2 10000 4.6889 1.8189 3.3570 4.4914 5.8547

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

beta0 0.050 -5.8247 -0.7435 -5.5936 -0.6027
beta1 0.050 2.3001 9.3789 1.8590 8.7222
beta2 0.050 1.6788 8.6643 1.3611 8.2490

You can also use PROC GENMOD to fit the same model by using the following statements:
proc genmod data=vaso descending;

ods select PostSummaries PostIntervals;
model resp = lvol lrate / d=bin link=logit;
bayes seed=17 coeffprior=jeffreys nmc=20000 thin=2;

run;

The MODEL statement indicates that resp is the response variable and lvol and lrate are the covari-
ates. The options in the MODEL statement specify a binary likelihood and a logit link function. The
BAYES statement requests Bayesian capability. The SEED=, NMC=, and THIN= arguments work
in the same way as in PROC MCMC. The COEFFPRIOR=JEFFREYS option requests Jeffreys’
prior in this analysis.

The PROC GENMOD statements produce Output 52.3.7, with estimates very similar to those re-
ported in Output 52.3.6. Note that you should not expect to see identical output from PROC GEN-
MOD and PROC MCMC, even with the simulation setup and identical random number seed. The
two procedures use different sampling algorithms. PROC GENMOD uses the adaptive rejection
metropolis algorithm (ARMS) (Gilks and Wild 1992; Gilks 2003) while PROC MCMC uses a ran-
dom walk Metropolis algorithm. The asymptotic answers, which means that you let both procedures
run an very long time, would be the same as they both generate samples from the same posterior
distribution.

3596 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.3.7 PROC GENMOD Results

Logistic Regression Model with Jeffreys Prior

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

Intercept 10000 -2.8731 1.3088 -3.6754 -2.7248 -1.9253
lvol 10000 5.1639 1.8087 3.8451 4.9475 6.2613
lrate 10000 4.5501 1.8071 3.2250 4.3564 5.6810

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

Intercept 0.050 -5.8246 -0.7271 -5.5774 -0.6060
lvol 0.050 2.1844 9.2297 2.0112 8.9149
lrate 0.050 1.5666 8.6145 1.3155 8.1922

Poisson Regression

You can use the Poisson distribution to model the distribution of cell counts in a multiway contin-
gency table. Aitkin et al. (1989) have used this method to model insurance claims data. Suppose
the following hypothetical insurance claims data are classified by two factors: age group (with two
levels) and car type (with three levels). The following statements create the data set:

title ’Poisson Regression’;
data insure;

input n c car $ age;
ln = log(n);
if car = ’large’ then

do car_dummy1=1;
car_dummy2=0;

end;
else if car = ’medium’ then

do car_dummy1=0;
car_dummy2=1;

end;
else

do car_dummy1=0;
car_dummy2=0;

end;

datalines;
500 42 small 0
1200 37 medium 0

Example 52.3: Generalized Linear Models F 3597

100 1 large 0
400 101 small 1
500 73 medium 1
300 14 large 1
;

The variable n represents the number of insurance policy holders and the variable c represents
the number of insurance claims. The variable car is the type of car involved (classified into three
groups), and it is coded into two levels. The variable age is the age group of a policy holder
(classified into two groups).

Assume that the number of claims c has a Poisson probability distribution and that its mean, �i , is
related to the factors car and age for observation i by

log.�i / D log.ni /C x0ˇ

D log.ni /C ˇ0 C

cari .1/ˇ1 C cari .2/ˇ2 C cari .3/ˇ3 C

agei .1/ˇ4 C agei .2/ˇ5

The indicator variables cari .j / is associated with the j th level of the variable car for observation i

in the following way:

cari .j / D

�
1 if car D j

0 if car ¤ j

A similar coding applies to age. The ˇ’s are parameters. The logarithm of the variable n is used as
an offset—that is, a regression variable with a constant coefficient of 1 for each observation. Having
the offset constant in the model is equivalent to fitting an expanded data set with 3000 observations,
each with response variable y observed on an individual level. The log link is used to relate the
mean and the factors car and age.

The following statements run PROC MCMC:
proc mcmc data=insure outpost=insureout nmc=5000 propcov=quanew

maxtune=0 seed=7;
ods select PostSummaries PostIntervals;
parms alpha 0 beta_car1 0 beta_car2 0 beta_age 0;
prior alpha beta: ~ normal(0, prec = 1e-6);

mu = ln + alpha + beta_car1 * car_dummy1
+ beta_car2 * car_dummy2 + beta_age * age;

model c ~ poisson(exp(mu));
run;

The analysis uses a relatively flat prior on all the regression coefficients, with mean at 0 and pre-
cision at 10�6. The option MAXTUNE=0 skips the tuning phase because the optimization routine
(PROPCOV=QUANEW) provides good initial values and proposal covariance matrix.

There are four parameters in the model: alpha is the intercept; beta_car1 and beta_car2 are coeffi-
cients for the class variable car, which has three levels; and beta_age is the coefficient for age. The
symbol mu connects the regression model and the Poisson mean by using the log link. The MODEL
statement specifies a Poisson likelihood for the response variable c.

3598 F Chapter 52: The MCMC Procedure (Experimental)

Posterior summary and interval statistics are shown in Output 52.3.8.

Output 52.3.8 MCMC Results

Poisson Regression

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

alpha 5000 -2.6403 0.1344 -2.7261 -2.6387 -2.5531
beta_car1 5000 -1.8335 0.2917 -2.0243 -1.8179 -1.6302
beta_car2 5000 -0.6931 0.1255 -0.7775 -0.6867 -0.6118
beta_age 5000 1.3151 0.1386 1.2153 1.3146 1.4094

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

alpha 0.050 -2.9201 -2.3837 -2.9133 -2.3831
beta_car1 0.050 -2.4579 -1.3036 -2.4692 -1.3336
beta_car2 0.050 -0.9462 -0.4498 -0.9485 -0.4589
beta_age 0.050 1.0442 1.5898 1.0387 1.5812

To fit the same model by using PROC GENMOD, you can do the following. Note that the default
normal prior on the coefficients ˇ is N.0; prec D 1e � 6/, the same as used in the PROC MCMC.
The following statements run PROC GENMOD and create Output 52.3.9:

proc genmod data=insure;
ods select PostSummaries PostIntervals;
class car age(descending);
model c = car age / dist=poisson link=log offset=ln;
bayes seed=17 nmc=5000 coeffprior=normal;

run;

To compare, posterior summary and interval statistics from PROC GENMOD are reported in
Output 52.3.9, and they are very similar to PROC MCMC results in Output 52.3.8.

Example 52.4: Nonlinear Poisson Regression Models F 3599

Output 52.3.9 PROC GENMOD Results

Poisson Regression

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

Intercept 5000 -2.6353 0.1299 -2.7243 -2.6312 -2.5455
carlarge 5000 -1.7996 0.2752 -1.9824 -1.7865 -1.6139
carmedium 5000 -0.6977 0.1269 -0.7845 -0.6970 -0.6141
age1 5000 1.3148 0.1348 1.2237 1.3138 1.4067

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

Intercept 0.050 -2.8952 -2.3867 -2.8755 -2.3730
carlarge 0.050 -2.3538 -1.2789 -2.3424 -1.2691
carmedium 0.050 -0.9494 -0.4487 -0.9317 -0.4337
age1 0.050 1.0521 1.5794 1.0624 1.5863

Note that the descending option in the CLASS statement reverses the sorting order of the class
variable age so that the results agree with PROC MCMC. If this option is not used, the estimate for
age has a reversed sign as compared to Output 52.3.9.

Example 52.4: Nonlinear Poisson Regression Models

This example illustrates how to fit a nonlinear Poisson regression with PROC MCMC. In addition,
it shows how you can improve the mixing of the Markov chain by selecting a different proposal
distribution or by sampling on the transformed scale of a parameter. This example shows how to
analyze count data for calls to a technical support help line in the weeks immediately following a
product release. This information could be used to decide upon the allocation of technical support
resources for new products. You can model the number of daily calls as a Poisson random variable,
with the average number of calls modeled as a nonlinear function of the number of weeks that have
elapsed since the product’s release. The data are input into a SAS data set as follows:

title ’Nonlinear Poisson Regression’;
data calls;

input weeks calls @@;
datalines;

1 0 1 2 2 2 2 1 3 1 3 3
4 5 4 8 5 5 5 9 6 17 6 9
7 24 7 16 8 23 8 27
;

3600 F Chapter 52: The MCMC Procedure (Experimental)

During the first several weeks after a new product is released, the number of questions that tech-
nical support receives concerning the product increases in a sigmoidal fashion. The expression for
the mean value in the classic Poisson regression involves the log link. There is some theoretical
justification for this link, but with MCMC methodologies, you are not constrained to exploring only
models that are computationally convenient. The number of calls to technical support tapers off
after the initial release, so in this example you can use a logistic-type function to model the mean
number of calls received weekly for the time period immediately following the initial release. The
mean function �.t/ is modeled as follows:

�i D

1C exp Œ�.˛ C ˇti /�

The likelihood for every observation callsi is

callsi � Poisson .�i /

Past experience with technical support data for similar products suggests using a gamma distribution
with shape and scale parameters 3.5 and 12 as the prior distribution for
 , a normal distribution with
mean�5 and variance 0.25 as the prior for ˛, and a normal distribution with mean 0.75 and variance
0.5 as the prior for ˇ.

The following PROC MCMC statements fit this model:

ods graphics on;
proc mcmc data=calls outpost=callout seed=53197 ntu=1000 nmc=20000

propcov=quanew;
ods select TADpanel;
parms alpha -4 beta 1 gamma 2;
prior alpha ~ normal(-5, sd=0.25);
prior beta ~ normal(0.75, sd=0.5);
prior gamma ~ gamma(3.5, scale=12);
lambda = gamma*logistic(alpha+beta*weeks);
model calls ~ poisson(lambda);

run;

The one PARMS statement defines a block of all parameters and sets their initial values individually.
The PRIOR statements specify the informative prior distributions for the three parameters. The
assignment statement defines �, the mean number of calls. Instead of using the SAS function
LOGISTIC, you can use the following statement to calculate � and get the same result:

lambda = gamma / (1 + exp(-(alpha+beta*weeks)));

Mixing is not particularly good with this run of PROC MCMC. The ods select statement displays
only the diagnostic graphs while excluding all other output. The graphical output is shown in
Output 52.4.1.

Example 52.4: Nonlinear Poisson Regression Models F 3601

Output 52.4.1 Plots for Parameters

3602 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.4.1 continued

By examining the trace plot of the gamma parameter, you see that the Markov chain sometimes
gets stuck in the far right tail and does not travel back to the high density area quickly. This effect
can be seen around the simulations number 8000 and 18000. One possible explanation for this
is that the random walk Metropolis is taking too small of steps in its proposal; therefore it takes
more iterations for the Markov chain to explore the parameter space effectively. The step size in
the random walk is controlled by the normal proposal distribution (with a multiplicative scale). A
(good) proposal distribution is roughly an approximation to the joint posterior distribution at the
mode. The curvature of the normal proposal distribution (the variance) does not take into account
the thickness of the tail areas. As a result, a random walk Metropolis with normal proposal can
have a hard time exploring distributions that have thick tails. This appears to be the case with the
posterior distribution of the parameter gamma. You can improve the mixing by using a thicker-tailed
proposal distribution, the t-distribution. The option PROPDIST controls the proposal distribution.
PROPDIST=T(3) changes the proposal from a normal distribution to a t-distribution with three
degrees of freedom.

The following statements run PROC MCMC and produce Output 52.4.2:

proc mcmc data=calls outpost=callout seed=53197 ntu=1000 nmc=20000
propcov=quanew stats=none propdist=t(3);

ods select TADpanel;
parms alpha -4 beta 1 gamma 2;
prior alpha ~ normal(-5, sd=0.25);
prior beta ~ normal(0.75, sd=0.5);
prior gamma ~ gamma(3.5, scale=12);
lambda = gamma*logistic(alpha+beta*weeks);
model calls ~ poisson(lambda);

run;

Example 52.4: Nonlinear Poisson Regression Models F 3603

Output 52.4.2 displays the graphical output.

Output 52.4.2 Plots for Parameters, Using a t(3) Proposal Distribution

3604 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.4.2 continued

The trace plots are more dense and the ACF plots have faster drop-offs, and you see improved
mixing by using a thicker-tailed proposal distribution. If you want to further improve the Markov
chain, you can choose to sample the log transformation of the parameter gamma:

lg � egamma.3:5; scale D 12/ is equivalent to gamma D exp.lg/ � gamma.3:5; scale D 12/

The parameter gamma has a positive support. Often in this case, it has right-skewed posterior. By
taking the log transformation, you can sample on a parameter space that does not have a lower
boundary and is more symmetric. This can lead to better mixing.

The following statements produce Output 52.4.4 and Output 52.4.3:

proc mcmc data=calls outpost=callout seed=53197 ntu=1000 nmc=20000
propcov=quanew propdist=t(3)
monitor=(alpha beta lgamma gamma);

ods select PostSummaries PostIntervals TADpanel;
parms alpha -4 beta 1 lgamma 2;
prior alpha ~ normal(-5, sd=0.25);
prior beta ~ normal(0.75, sd=0.5);
prior lgamma ~ egamma(3.5, scale=12);
gamma = exp(lgamma);
lambda = gamma*logistic(alpha+beta*weeks);
model calls ~ poisson(lambda);

run;
ods graphics off;

Example 52.4: Nonlinear Poisson Regression Models F 3605

In the PARMS statement, instead of gamma, you have lgamma. Its prior distribution is egamma, as
opposed to the gamma distribution. Note that the following two priors are equivalent to each other:

prior lgamma ~ egamma(3.5, scale=12);
prior gamma ~ gamma(3.5, scale=12);

The gamma assignment statement transforms lgamma to gamma. The lambda assignment statement
calculates the mean for the Poisson by using the gamma parameter. The MODEL statement specifies
a Poisson likelihood for the calls response.

The trace plots and ACF plots in Output 52.4.3 show the best mixing seen so far in this example.

Output 52.4.3 Plots for Parameters, Sampling on the Log Scale of Gamma

3606 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.4.3 continued

Example 52.4: Nonlinear Poisson Regression Models F 3607

Output 52.4.3 continued

Output 52.4.4 shows the posterior summary statistics of the nonlinear Poisson regression. Note
that the lgamma parameter has a more symmetric density than the skewed gamma parameter. The
Metropolis algorithm always works better if the target distribution is approximately normal.

Output 52.4.4 MCMC Results, Sampling on the Log Scale of Gamma

Nonlinear Poisson Regression

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

alpha 20000 -4.8907 0.2160 -5.0435 -4.8872 -4.7461
beta 20000 0.6957 0.1089 0.6163 0.6881 0.7698
lgamma 20000 3.7391 0.3487 3.4728 3.7023 3.9696
gamma 20000 44.8136 17.0430 32.2263 40.5415 52.9647

3608 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.4.4 continued

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

alpha 0.050 -5.3138 -4.4667 -5.3276 -4.4953
beta 0.050 0.5066 0.9253 0.4868 0.8996
lgamma 0.050 3.1580 4.4705 3.1222 4.4127
gamma 0.050 23.5225 87.3972 20.9005 79.4712

This example illustrates that PROC MCMC can fit Bayesian nonlinear models just as easily as
Bayesian linear models. More importantly, transformations can sometimes improve the efficiency
of the Markov chain, and that is something to always keep in mind. Also see “Example 52.12: Using
a Transformation to Improve Mixing” on page 3677 for another example of how transformations
can improve mixing of the Markov chains.

Example 52.5: Random-Effects Models

This example illustrates how you can use PROC MCMC to fit random effects models. In the exam-
ple “Mixed-Effects Model” on page 3490 in “Getting Started: MCMC Procedure” on page 3477,
you already saw PROC MCMC fit a linear random effects model. There are two more examples
in this section. One is a logistic random effects model, and the second one is a nonlinear Poisson
regression random effects model. In addition, this section illustrates how to construct prior distribu-
tions that depend on input data set variables. Such prior distributions appear frequently in random
effects model, especially in cases of hierarchical centering. Although you can use PROC MCMC
to analyze random effects models, you might want to first consider some other SAS procedures.
For example, you can use PROC MIXED (see Chapter 56, “The MIXED Procedure”) to analyze
linear mixed effects models, PROC NLMIXED (see Chapter 61, “The NLMIXED Procedure”) for
nonlinear mixed effects models, and PROC GLIMMIX (see Chapter 38, “The GLIMMIX Proce-
dure”) for generalized linear mixed effects models. In addition, a sampling-based Bayesian analysis
is available in the MIXED procedure through the PRIOR statement (see “PRIOR Statement” on
page 3939).

Logistic Regression Random-Effects Model

This example shows how to fit a logistic random-effects model in PROC MCMC. The data are
taken from Crowder (1978). The seeds data set is a 2 � 2 factorial layout, with two types of
seeds, O. aegyptiaca 75 and O. aegyptiaca 73, and two root extracts, bean and cucumber. You
observe r, which is the number of germinated seeds, and n, which is the total number of seeds. The
independent variables are seed and extract.

Example 52.5: Random-Effects Models F 3609

The following statements create the data set:
title ’Logistic Regression Random-Effects Model’;
data seeds;

input r n seed extract @@;
ind = _N_;
datalines;

10 39 0 0 23 62 0 0 23 81 0 0 26 51 0 0
17 39 0 0 5 6 0 1 53 74 0 1 55 72 0 1
32 51 0 1 46 79 0 1 10 13 0 1 8 16 1 0
10 30 1 0 8 28 1 0 23 45 1 0 0 4 1 0
3 12 1 1 22 41 1 1 15 30 1 1 32 51 1 1
3 7 1 1

;

You can model each observation ri as having its own probability of success pi , and the likelihood
is as follows:

ri � binomial.ni ; pi /

You can use the logit link function to link the covariates of each observation, seed and extract, to the
probability of success:

�i D ˇ0 C ˇ1 � seedi C ˇ2 � extracti C ˇ3 � seedi � extracti
pi D logistic.�i C �i /

where �i is assumed to be as i.i.d. random effect with a normal prior:

�i � normal.0; var D �2/

The four ˇ regression coefficients and the standard deviation �2 in the random effects are model
parameters; they are given noninformative priors as follows:

�.ˇ0; ˇ1; ˇ2; ˇ3/ / 1

�.�2/ / 1=�2

Another way of expressing the same model is as follows:

pi D logistic.ıi /

where

ıi � normal.ˇ0 C ˇ1 � seedi C ˇ2 � extracti C ˇ3 � seedi � extracti ; �2/

The two models are equivalent. In the first model, the random effects �i centers at 0 in the normal
distribution, and in the second model, ıi centers at the regression mean. This hierarchical centering
can sometimes improve mixing.

From a programming point of view, the second parameterization of the model is more difficult
because the prior distribution on ıi involves the data set variables seed and extract. Each prior
distribution depends on a different set of observations in the input data set. Intuitively, you might
think that the following statements would specify such a prior:

3610 F Chapter 52: The MCMC Procedure (Experimental)

mu = beta0 + beta1*seed + beta2*extract + beta3*seed*extract;
prior delta ~ normal(mu, var = v);

However, this will not work. This is because the procedure is not able to match the observational
level calculation (mu) with elements of a parameter array (there are 21 random effects in delta).
Thus, the procedure cannot calculate the log of the prior density correctly. The solution is to cumu-
latively calculate the joint prior distribution for all ıi ; i D 1 � � � 21, and assign the prior distribution
to all ı by using the GENERAL function.

The following statements generate Output 52.5.1:

proc mcmc data=seeds outpost=postout seed=332786 nmc=100000 thin=10
ntu=3000 monitor=(beta0-beta3 v);

ods select PostSummaries ess;
array delta[21];

parms delta: 0;
parms beta0 0 beta1 0 beta2 0 beta3 0 ;
parms v 1;

beginprior;
sigma = sqrt(v);
endprior;
w = beta0 + beta1*seed + beta2*extract + beta3*seed*extract;
if ind eq 1 then

lp = lpdfnorm(delta[ind], w, sigma);
else

lp = lp + lpdfnorm(delta[ind], w, sigma);

prior v ~ general(-log(v));
prior beta: ~ general(1);
prior delta: ~ general(lp);

pi = logistic(delta[ind]);
model r ~ binomial(n = n, p = pi);

run;

PROC MCMC statement specifies the input and output data sets, sets a seed for the random number
generator, requests a very large simulation number, thins the Markov chain by 10, and specifies a
tuning sample size of 3000. The MONITOR= option selects the parameters of interest. The ods

select statement displays the summary statistics and effective sample size tables.

The ARRAY statement allocates an array of size 21 for the random effects parameter ı. There are
three PARMS statements that place ı, ˇ and �2 into three sampling blocks. Calculation of sigma
does not involve any observations; hence, it is enclosed in the BEGINPRIOR and ENDPRIOR
statements.

The next few lines of statements construct a joint prior distribution for all the ı parameters. The
symbol w is the regression mean, whose value changes for every observation. The IF-ELSE state-
ments add the log of the normal density to the symbol lp as PROC MCMC steps through the data
set. When ind is 1, lp is the log of the normal density for delta[1] evaluated at the first regression

Example 52.5: Random-Effects Models F 3611

mean w. As ind gradually increases to 21, lp becomesX
i

log.�.ıi jˇXi ; �//

which is the joint prior distribution for all ı.

The PRIOR statements assign three priors to these parameters, with noninformative priors on �2

and ˇ. All of the delta parameters share a joint prior, which is defined by lp. Recall that PROC
MCMC adds the log of the prior density to the log of the posterior density at the last observation at
every simulation, so the expression lp will have the correct value.

CAUTION: You must define the expression lp before the PRIOR statement for the delta parameters.
Switching the order of the PRIOR statement and the programming statements that define lp leads to
an incorrect prior distribution for delta. The following statements are wrong because the expression
lp has not completed its calculation when lp is added to the log of the posterior density at the last
observation of the input data set.

prior delta: ~ general(lp);
w = beta0 + beta1*seed + beta2*extract + beta3*seed*extract;
if ind eq 1 then

lp = lpdfnorm(delta[ind], w, sigma);
else

lp = lp + lpdfnorm(delta[ind], w, sigma);

The prior you specify in this case is:

n�1X
iD1

log.�.ıi jˇXi ; �//

The correct log density is the following:

nX
iD1

log.�.ıi jˇXi ; �//

The symbol pi is the logit transformation. The MODEL specifies the response variable r as a bino-
mial distribution with parameters n and pi.

The mixing is poor in this example. You can see from the effective sample size table (Output 52.5.1)
that the efficiency for all parameters is relatively low, even after a substantial amount of thinning.
One possible solution is to break the random effects block of parameters (b) into multiple blocks
with a smaller number of parameters.

3612 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.5.1 Logistic Regression Random-Effects Model

Logistic Regression Random-Effects Model

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

beta0 10000 -0.5503 0.2025 -0.6784 -0.5522 -0.4193
beta1 10000 0.0626 0.3292 -0.1512 0.0653 0.2760
beta2 10000 1.3546 0.2876 1.1732 1.3391 1.5349
beta3 10000 -0.8257 0.4498 -1.1044 -0.8255 -0.5344
v 10000 0.1145 0.1019 0.0472 0.0875 0.1503

Logistic Regression Random-Effects Model

The MCMC Procedure

Effective Sample Sizes

Correlation
Parameter ESS Time Efficiency

beta0 885.3 11.2952 0.0885
beta1 603.2 16.5771 0.0603
beta2 854.9 11.6970 0.0855
beta3 591.6 16.9021 0.0592
v 273.1 36.6182 0.0273

To fit the same model in PROC GLIMMIX, you can use the following statements, which produce
Output 52.5.2:

proc glimmix data=seeds method=quad;
ods select covparms parameterestimates;
ods output covparms=cp parameterestimates=ps;

class ind;
model r/n = seed extract seed*extract/ dist=binomial link=logit solution;
random intercept / subject=ind;

run;

Example 52.5: Random-Effects Models F 3613

Output 52.5.2 Estimates by PROC GLMMIX

Logistic Regression Random-Effects Model

The GLIMMIX Procedure

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Intercept ind 0.05577 0.05196

Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.5484 0.1666 17 -3.29 0.0043
seed 0.09701 0.2780 0 0.35 .
extract 1.3370 0.2369 0 5.64 .
seed*extract -0.8104 0.3851 0 -2.10 .

It is hard to compare point estimates from these two procedures. However, you can visually compare
the results by plotting a kernel density plot (by using the posterior sample from PROC MCMC
output) on top of a normal approximation plot (by using the mean and standard error estimates from
PROC GLIMMIX, for each parameter). This kernel comparison plot is shown in Output 52.5.3.

However, it takes some work to produce the kernel comparison plot. First, you must use PROC
KDE to estimate the kernel density for each parameter from MCMC. Next, you want to get the
point estimates from the PROC GLIMMIX output. Then, you generate a SAS data set that contains
both the kernel density estimates and the gridded estimates based on normal approximations. Fi-
nally, you use PROC TEMPLATE (see Chapter 21, “Statistical Graphics Using ODS”) to define an
appropriate graphical template and produce the comparison plot by using PROC SGRENDER (see
the SGRENDER Procedure in the SAS/GRAPH: Statistical Graphics Procedures Guide).

The following statements use PROC KDE on the posterior sample data set postout and estimate a
kernel density for each parameter, saving the estimates to a SAS data set m1:

proc kde data=postout;
univar beta0 beta1 beta2 beta3 v / out=m1 (drop=count);

run;

The following SAS statements take the estimates of all the parameters from the PROC GLIMMIX
output, data sets ps and cp, and assign them to macro variables:

data gmxest(keep = parm mean sd);
set ps cp;
mean = estimate;
sd = stderr;
i = _n_-1;
if(_n_ ne 5) then

parm = "beta" || put(i, z1.);

3614 F Chapter 52: The MCMC Procedure (Experimental)

else
parm = "var";

run;

data msd (keep=mean sd);
set gmxest;
do j = 1 to 401;

output;
end;

run;

data _null_;
set ps;
call symputx(compress(effect,’*’), estimate);
call symputx(compress(’s’ || effect,’*’), stderr);

run;

data _null_;
set cp;
call symputx("var", estimate);
call symputx("var_sd", stderr);

run;

%put &intercept &seed &extract &seedextract &var;
%put &sintercept &sseed &sextract &sseedextract &var_sd;

Specifically, the mean estimate of ˇ0 is assigned to intercept, and the standard error of ˇ0 is assigned
to sintercept. The macro variables seed, extract, seedextract are the mean estimates for ˇ1, ˇ2 and
ˇ3, respectively.

To create a SAS data set that contains both the kernel density estimates and the corresponding nor-
mal approximation, you can use the %REN and %RESHAPE macros. The %REN macro renames
the variables of a SAS data set by appending the suffix name to each variable name, to avoid re-
dundant variable names. The %RESHAPE macro takes an output data set from a PROC KDE run,
and transposes it to the right format so that PROC SGRENDER can generate the right graph. The
following statements define the %REN and %RESHAPE macros:

/* define macros */
%macro ren(in=, out=, suffix=);

%local s;

proc contents data=&in noprint out=__temp__(keep=name);
run;

data _null_;
length s $ 32000;
retain s;
set __temp__ end=eof;
s = trim(s)||’ ’||trim(name)||’=’||compress(name||"&suffix");
if eof then call symput(’s’, trim(s));

run;

proc datasets nolist;

Example 52.5: Random-Effects Models F 3615

delete __temp__;
run; quit;

data &out;
set &in(rename=(&s));

run;
%mend;

%macro reshape(input, output, suffix1=, suffix2=);
proc sort data=&input;

by var;
run;

data tmp&input;
set &input;
by var;
_n + 1;
if first.var then _n = 0;

run;

proc sort;
by _n var;

run;

proc transpose data=tmp&input out=_by_value_(drop=_n _name_ _label_);
var value;
by _n;
id var;

run;

%ren(in=_by_value_, out=_by_value_, suffix=&suffix1)

proc transpose data=tmp&input out=_by_den_(drop=_n _name_ _label_);
var density;
by _n;
id var;

run;

%ren(in=_by_den_, out=_by_den_, suffix=&suffix2)

data &output;
merge _by_value_ _by_den_;

run;

proc datasets library=work;
ods exclude all;
delete tmp&input _by_value_ _by_den_;

run;
ods exclude none;

%mend;

When you apply the %RESHAPE macro to the data set m1, you create a SAS data set mcmc that
has grid values of the ˇ parameters and their corresponding kernel density estimates. Next, you
evaluate these parameter grid values in a normal density with the macro variables taken from the

3616 F Chapter 52: The MCMC Procedure (Experimental)

PROC GLIMMIX output:

/* create data set mcmc */
%reshape(m1, mcmc, suffix1=, suffix2=_kde);
data all;

set mcmc;
beta0_gmx = pdf(’normal’, beta0, &intercept, &sintercept);
beta1_gmx = pdf(’normal’, beta1, &seed, &sseed);
beta2_gmx = pdf(’normal’, beta2, &extract, &sextract);
beta3_gmx = pdf(’normal’, beta3, &seedextract, &sseedextract);
v_gmx = pdf(’normal’, v, &var, &var_sd);

run;

In the data set all, you have grid values on ˇ and �2, their kernel density estimates from PROC
MCMC, and the normal density evaluated by using estimates from PROC GLIMMIX. To create an
overlaid plot, you first use PROC TEMPLATE to create a 2 � 3 template as demonstrated by the
following statements:

proc template;
define statgraph twobythree;

%macro plot;
begingraph;

layout lattice / rows=2 columns=3;
%do i = 0 %to 3;

layout overlay /yaxisopts=(label=" ");
seriesplot y=beta&i._kde x=beta&i

/ connectorder=xaxis
lineattrs=(pattern=mediumdash color=blue)

legendlabel = "MCMC Kernel" name="MCMC";
seriesplot y=beta&i._gmx x=beta&i

/ connectorder=xaxis lineattrs=(color=red)
legendlabel="GLIMMIX Approximation" name="GLIMMIX";

endlayout;
%end;
layout overlay /yaxisopts=(label=" ")

xaxisopts=(linearopts=(viewmin=0 viewmax=0.6));
seriesplot y=v_kde x=v

/ connectorder=xaxis
lineattrs=(pattern=mediumdash color=blue)

legendlabel = "MCMC Kernel" name="MCMC";
seriesplot y=v_gmx x=v

/ connectorder=xaxis lineattrs=(color=red)
legendlabel="GLIMMIX Approximation" name="GLIMMIX";

endlayout;
Sidebar / align = bottom;

discretelegend "MCMC" "GLIMMIX";
endsidebar;

endlayout;
endgraph;

%mend; %plot;
end;

run;

The kernel density comparison plot is produced by calling PROC SGRENDER (see the SGREN-

Example 52.5: Random-Effects Models F 3617

DER Procedure in the SAS/GRAPH: Statistical Graphics Procedures Guide):

proc sgrender data=all template=twobythree;
run;

Output 52.5.3 Comparing Estimates from PROC MCMC and PROC GLIMMIX.

The kernel densities are very similar to each other. Kernel densities from PROC MCMC are not as
smooth, possibly due to bad mixing of the Markov chains.

Nonlinear Poisson Regression Random-Effects Model

This example uses the pump failure data of Gaver and O’Muircheartaigh (1987). The number of
failures and the time of operation are recorded for 10 pumps. Each of the pumps is classified into
one of two groups corresponding to either continuous or intermittent operation. The following
statements generate the data set:

title ’Nonlinear Poisson Regression Random Effects Model’;
data pump;

input y t group @@;
pump = _n_;
logtstd = log(t) - 2.4564900;
datalines;

5 94.320 1 1 15.720 2 5 62.880 1
14 125.760 1 3 5.240 2 19 31.440 1
1 1.048 2 1 1.048 2 4 2.096 2

22 10.480 2
;

3618 F Chapter 52: The MCMC Procedure (Experimental)

Each row denotes data for a single pump, and the variable logtstd contains the centered operation
times. Letting yij denote the number of failures for the j th pump in the i th group, Draper (1996)
considers the following hierarchical model for these data:

yij j�ij � Poisson.�ij /

log �ij D ˛i C ˇi .log tij � log t /C eij

eij j�
2
� normal.0; �2/

The model specifies different intercepts and slopes for each group, and the random effect is a mech-
anism for accounting for over-dispersion. You can use noninformative priors on the parameters ˛i ,
ˇi , and �2.

�.˛1; ˛2; ˇ1; ˇ2/ / 1

�.�2/ / 1=�2

The following statements fit this nonlinear hierarchical model and produce Output 52.5.4:

proc mcmc data=pump outpost=postout seed=248601 nmc=100000
ntu=2000 thin=10
monitor=(logsig beta1 beta2 alpha1 alpha2 s2 adif bdif);

ods select PostSummaries;
array alpha[2];
array beta[2];
array llambda[10];

parms (alpha: beta:) 1;
parms llambda: 1;
parms s2 1;

beginprior;
sd = sqrt(s2);
logsig = log(s2)/2;
adif = alpha1 - alpha2;
bdif = beta1 - beta2;
endprior;
w = alpha[group] + beta[group] * logtstd;
if pump eq 1 then

lp = lpdfnorm(llambda[pump], w, sd);
else

lp = lp + lpdfnorm(llambda[pump], w, sd);
prior alpha: beta: ~ general(1);
prior s2 ~ general(-log(s2));
prior llambda: ~ general(lp);

lambda = exp(llambda[pump]);
model y ~ poisson(lambda);

run;

The PROC MCMC statement specifies the input data set (pump), the output data set (postout), a
seed for the random number generator, and an MCMC sample of 100000. It also requests a tuning

Example 52.5: Random-Effects Models F 3619

sample size of 2000 and a thinning rate of 10. The MONITOR= option keeps track of a number of
parameters and symbols in the model. The five parameters are beta1, beta2, alpha1, alpha2, and s2.
The symbol logsig is the log of the standard deviation, adif measures the difference between alpha1
and alpha2, and bdif measures the difference between beta1 and beta2. The ods select statement
displays the summary statistics table.

Modeling the random effects eij with a normal distribution with mean 0 and variance �2 is equiva-
lent to modeling log �ij with a normal distribution with mean ˛i C ˇi .log tij � log t / and variance
�2. Here again, the prior distribution on log �ij depends on the data set variable logstd; hence, the
construction of the prior has to take place before the PRIOR statement for log �ij . The symbol lp
keeps track of the cumulative log prior density for log �ij .

The symbol lambda is the exponential of the corresponding log �ij , and the MODEL statement gives
the response variable y a Poisson likelihood with a mean parameter lambda.

The posterior summary statistics table is shown in Output 52.5.4.

Output 52.5.4 Summary Statistics for the Nonlinear Poisson Regression

Nonlinear Poisson Regression Random Effects Model

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

logsig 10000 0.1045 0.3862 -0.1563 0.0883 0.3496
beta1 10000 -0.4467 1.2818 -1.1641 -0.4421 0.2832
beta2 10000 0.5858 0.5808 0.2376 0.5796 0.9385
alpha1 10000 2.9719 2.3658 1.6225 2.9612 4.3137
alpha2 10000 1.6406 0.8674 1.1429 1.6782 2.1673
s2 10000 1.7004 1.7995 0.7316 1.1931 2.0121
adif 10000 1.3313 2.4934 -0.1670 1.2669 2.8032
bdif 10000 -1.0325 1.4186 -1.8379 -1.0284 -0.2189

Draper (1996) reports a posterior mean and standard deviation as follows: log � D .0:28; 0:42/,
ˇ1 D .�0:45; 1:5/, ˇ2 D .0:63; 0:68/, and ˛1�˛2 D .1:3; 3:0/. Most estimates from Output 52.5.4
agree with Draper’s estimates, with the exception of log � . The difference might be attributed to the
different set of prior distributions on ˛i , ˇi , and � that are used in this analysis.

3620 F Chapter 52: The MCMC Procedure (Experimental)

You can also use PROC NLMIXED to fit the same model. The following statements run PROC
NLMIXED and produce Output 52.5.5:

proc nlmixed data=pump;
ods select parameterestimates additionalestimates;
ods output additionalestimates=cp parameterestimates=ps;
parms logsig 0 beta1 1 beta2 1 alpha1 1 alpha2 1;
if (group = 1) then eta = alpha1 + beta1*logtstd + e;
else eta = alpha2 + beta2*logtstd + e;
lambda = exp(eta);
model y ~ poisson(lambda);
random e ~ normal(0,exp(2*logsig)) subject=pump;
estimate ’adif’ alpha1-alpha2;
estimate ’bdif’ beta1-beta2;
estimate ’s2’ exp(2*logsig);

run;

Output 52.5.5 Estimates by PROC NLMIXED

Nonlinear Poisson Regression Random Effects Model

The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

logsig -0.3161 0.3213 9 -0.98 0.3508 0.05 -1.0429
beta1 -0.4256 0.7473 9 -0.57 0.5829 0.05 -2.1162
beta2 0.6097 0.3814 9 1.60 0.1443 0.05 -0.2530
alpha1 2.9644 1.3826 9 2.14 0.0606 0.05 -0.1632
alpha2 1.7992 0.5492 9 3.28 0.0096 0.05 0.5568

Parameter Estimates

Parameter Upper Gradient

logsig 0.4107 -0.00002
beta1 1.2649 -0.00002
beta2 1.4724 -1.61E-6
alpha1 6.0921 -5.25E-6
alpha2 3.0415 -5.73E-6

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

adif 1.1653 1.4855 9 0.78 0.4529 0.05 -2.1952 4.5257
bdif -1.0354 0.8389 9 -1.23 0.2484 0.05 -2.9331 0.8623
s2 0.5314 0.3415 9 1.56 0.1541 0.05 -0.2410 1.3038

Again, the point estimates from PROC NLMIXED for the mean parameters agree relatively closely
with the Bayesian posterior means. You can note that there are differences in the likelihood-based

Example 52.5: Random-Effects Models F 3621

standard errors. This is most likely due to the fact that the Bayesian standard deviations account for
the uncertainty in estimating �2, whereas the likelihood approach plugs in its estimated value.

You can do a similar kernel density plot that compares the PROC MCMC results, the PROC
NLMIXED results and those reported by Draper. The following statements generate Output 52.5.6:

data nlmest(keep = parm mean sd);
set ps cp;
mean = estimate;
sd = standarderror;
if _n_ <= 5 then

parm = parameter;
else

parm = label;
run;

data msd (keep=mean sd);
set nlmest;
do j = 1 to 401;

output;
end;

run;

data _null_;
set ps;
call symputx(compress(’m’ || parameter,’*’), estimate);
call symputx(compress(’s’ || parameter,’*’), standarderror);

run;

data _null_;
set cp;
call symputx(compress(’m’ || label,’*’), estimate);
call symputx(compress(’s’ || label,’*’), standarderror);

run;

%put &mlogsig &mbeta1 &mbeta2 &malpha1 &malpha2 &madif &mbdif &ms2;
%put &slogsig &sbeta1 &sbeta2 &salpha1 &salpha2 &sadif &sbdif &ss2;

proc kde data=postout;
univar logsig beta1 beta2 alpha1 alpha2 adif bdif s2 / out=m1 (drop=count);

run;

%reshape(m1, mcmc, suffix1=, suffix2=_kde);

data all;
set mcmc;
logsig_nlm = pdf(’normal’, logsig, &mlogsig, &slogsig);
alpha1_nlm = pdf(’normal’, alpha1, &malpha1, &salpha1);
alpha2_nlm = pdf(’normal’, alpha2, &malpha2, &salpha2);
beta1_nlm = pdf(’normal’, beta1, &mbeta1, &sbeta1);
beta2_nlm = pdf(’normal’, beta2, &mbeta2, &sbeta2);
adif_nlm = pdf(’normal’, adif, &madif, &sadif);
bdif_nlm = pdf(’normal’, bdif, &mbdif, &sbdif);

3622 F Chapter 52: The MCMC Procedure (Experimental)

s2_nlm = pdf(’normal’, s2, &ms2, &ss2);
logsig_draper = pdf(’normal’, logsig, 0.28, 0.42);
beta1_draper = pdf(’normal’, beta1, -0.45, 1.5);
beta2_draper = pdf(’normal’, beta2, 0.63, 0.68);
adif_draper = pdf(’normal’, adif, 1.3, 3.0);

run;

proc template;
define statgraph threebythree;

%macro plot;
begingraph;

layout lattice / rows=3 columns=3;
layout overlay /yaxisopts=(label=" ");

seriesplot y=logsig_kde x=logsig
/ connectorder=xaxis
lineattrs=(pattern=mediumdash color=blue)

legendlabel = "MCMC Kernel" name="MCMC";
seriesplot y=logsig_nlm x=logsig

/ connectorder=xaxis lineattrs=(color=red)
legendlabel = "NLMIXED Approximation" name="NLMIXED";

seriesplot y=logsig_draper x=logsig
/ connectorder=xaxis
lineattrs=(pattern=shortdash color=green)

legendlabel = "Draper (1996) Approximation" name="Draper";
endlayout;
%do i = 1 %to 2;

layout overlay /yaxisopts=(label=" ");
seriesplot y=alpha&i._kde x=alpha&i

/ connectorder=xaxis
lineattrs=(pattern=mediumdash color=blue)

legendlabel = "MCMC Kernel" name="MCMC";
seriesplot y=alpha&i._nlm x=alpha&i

/ connectorder=xaxis lineattrs=(color=red)
legendlabel = "NLMIXED Approximation" name="NLMIXED";

endlayout;
%end;
%do i = 1 %to 2;

layout overlay /yaxisopts=(label=" ");
seriesplot y=beta&i._kde x=beta&i

/ connectorder=xaxis
lineattrs=(pattern=mediumdash color=blue)

legendlabel = "MCMC Kernel" name="MCMC";
seriesplot y=beta&i._nlm x=beta&i

/ connectorder=xaxis lineattrs=(color=red)
legendlabel = "NLMIXED Approximation" name="NLMIXED";

seriesplot y=beta&i._draper x=beta&i
/ connectorder=xaxis
lineattrs=(pattern=shortdash color=green)

legendlabel = "Draper (1996) Approximation" name="Draper";
endlayout;

%end;
layout overlay /yaxisopts=(label=" ");

seriesplot y=adif_kde x=adif
/ connectorder=xaxis

Example 52.5: Random-Effects Models F 3623

lineattrs=(pattern=mediumdash color=blue)
legendlabel = "MCMC Kernel" name="MCMC";

seriesplot y=adif_nlm x=adif
/ connectorder=xaxis lineattrs=(color=red)
legendlabel = "NLMIXED Approximation" name="NLMIXED";

seriesplot y=adif_draper x=adif
/ connectorder=xaxis

lineattrs=(pattern=shortdash color=green)
legendlabel = "Draper (1996) Approximation" name="Draper";

endlayout;
layout overlay /yaxisopts=(label=" ");

seriesplot y=bdif_kde x=bdif
/ connectorder=xaxis

lineattrs=(pattern=mediumdash color=blue)
legendlabel = "MCMC Kernel" name="MCMC";

seriesplot y=bdif_nlm x=bdif
/ connectorder=xaxis lineattrs=(color=red)
legendlabel = "NLMIXED Approximation" name="NLMIXED";

endlayout;
layout overlay /yaxisopts=(label=" ")

xaxisopts=(linearopts=(viewmin=0 viewmax=5));
seriesplot y=s2_kde x=s2

/ connectorder=xaxis
lineattrs=(pattern=mediumdash color=blue)

legendlabel = "MCMC Kernel" name="MCMC";
seriesplot y=s2_nlm x=s2

/ connectorder=xaxis lineattrs=(color=red)
legendlabel = "NLMIXED Approximation" name="NLMIXED";

endlayout;
Sidebar / align = bottom;

discretelegend "MCMC" "NLMIXED" "Draper";
endsidebar;

endlayout;
endgraph;

%mend; %plot;
end;

run;

proc sgrender data=all template=threebythree;
run;

The macro %RESHAPE is defined in the example “Logistic Regression Random-Effects Model”
on page 3608.

3624 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.5.6 Comparing Estimates from PROC MCMC (dashed blue), PROC NLMIXED (solid
red) and Draper (dotted green)

Example 52.6: Change Point Models

Consider the data set from Bacon and Watts (1971), where yi is the logarithm of the height of the
stagnant surface layer and the covariate xi is the logarithm of the flow rate of water. The following
statements create the data set:

title ’Change Point Model’;
data stagnant;

input y x @@;
ind = _n_;
datalines;

1.12 -1.39 1.12 -1.39 0.99 -1.08 1.03 -1.08
0.92 -0.94 0.90 -0.80 0.81 -0.63 0.83 -0.63
0.65 -0.25 0.67 -0.25 0.60 -0.12 0.59 -0.12
0.51 0.01 0.44 0.11 0.43 0.11 0.43 0.11
0.33 0.25 0.30 0.25 0.25 0.34 0.24 0.34
0.13 0.44 -0.01 0.59 -0.13 0.70 -0.14 0.70
-0.30 0.85 -0.33 0.85 -0.46 0.99 -0.43 0.99
-0.65 1.19
;

A scatter plot (Output 52.6.1) shows the presence of a nonconstant slope in the data. This suggests
a change point regression model (Carlin, Gelfand, and Smith 1992). The following statements

Example 52.6: Change Point Models F 3625

generate the scatter plot in Output 52.6.1:
proc sgplot data=stagnant;

scatter x=x y=y;
run;

Output 52.6.1 Scatter Plot of the Stagnant Data Set

Let the change point be cp. Following formulation by Spiegelhalter et al. (1996), the regression
model is as follows:

yi �

�
normal.˛ C ˇ1.xi � cp/; �2/ if xi < cp
normal.˛ C ˇ2.xi � cp/; �2/ if xi >D cp

You might consider the following diffuse prior distributions:

�.cp/ � uniform.�1:3; 1:1/

�.˛; ˇ1; ˇ2/ � normal.0; var D 1e6/

�.�2/ � uniform.0; 5/

The following statements generate Output 52.6.2:
proc mcmc data=stagnant outpost=postout seed=24860 ntu=1000

nmc=20000;
ods select PostSummaries;
ods output PostSummaries=ds;

array beta[2];

3626 F Chapter 52: The MCMC Procedure (Experimental)

parms alpha cp beta1 beta2;
parms s2;

prior cp ~ unif(-1.3, 1.1);
prior s2 ~ uniform(0, 5);
prior alpha beta: ~ normal(0, v = 1e6);

j = 1 + (x >= cp);
mu = alpha + beta[j] * (x - cp);
model y ~ normal(mu, var=s2);

run;

The PROC MCMC statement specifies the input data set (stagnant), the output data set (postout), a
random number seed, a tuning sample of 1000, and an MCMC sample of 20000. The ods select

statement displays only the summary statistics table. The ods output statement saves the summary
statistics table to the data set ds.

The ARRAY statement allocates an array of size 2 for the beta parameters. You can use beta1
and beta2 as parameter names without allocating an array, but having the array makes it easier to
construct the likelihood function. The two PARMS statements put the five model parameters in two
blocks. The three PRIOR statements specify the prior distributions for these parameters.

The symbol j indicates the segment component of the regression. When x is less than the change
point, (x >= cp) returns 0 and j is assigned the value 1; if x is greater than or equal to the change point,
(x >= cp) returns 1 and j is 2. The symbol mu is the mean for the jth segment, and beta[j] changes
between the two regression coefficients depending on the segment component. The MODEL state-
ment assigns the normal model to the response variable y.

Posterior summary statistics are shown in Output 52.6.2.

Output 52.6.2 MCMC Estimates of the Change Point Regression Model

Change Point Model

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

alpha 20000 0.5349 0.0249 0.5188 0.5341 0.5509
cp 20000 0.0283 0.0314 0.00728 0.0303 0.0493
beta1 20000 -0.4200 0.0146 -0.4293 -0.4198 -0.4111
beta2 20000 -1.0136 0.0167 -1.0248 -1.0136 -1.0023
s2 20000 0.000451 0.000145 0.000348 0.000425 0.000522

You can use PROC SGPLOT to visualize the model fit. Output 52.6.3 shows the fitted regression
lines over the original data. In addition, on the bottom of the plot is the kernel density of the
posterior marginal distribution of cp, the change point. The kernel density plot shows the relative
variability of the posterior distribution on the data plot. You can use the following statements to
create the plot:

Example 52.6: Change Point Models F 3627

data _null_;
set ds;
call symputx(parameter, mean);

run;

data b;
missing A;
input x1 @@;
if x1 eq .A then x1 = &cp;
if _n_ <= 2 then y1 = &alpha + &beta1 * (x1 - &cp);
else y1 = &alpha + &beta2 * (x1 - &cp);
datalines;
-1.5 A 1.2
;

proc kde data=postout;
univar cp / out=m1 (drop=count);

run;

data m1;
set m1;
density = (density / 25) - 0.653;

run;

data all;
set stagnant b m1;

run;

proc sgplot data=all noautolegend;
scatter x=x y=y;
series x=x1 y=y1 / lineattrs = graphdata2;
series x=value y=density / lineattrs = graphdata1;

run;

The macro variables &alpha, &beta1, &beta2, and &cp store the posterior mean estimates from the
data set ds. The data set predicted contains three predicted values, at the minimum and maximum
values of x and the estimated change point &cp. These input values give you fitted values from
the regression model. Data set m1 contains the kernel density estimates of the parameter cp. The
density is scaled down so the curve would fit in the plot. Finally, you use PROC SGPLOT to overlay
the scatter plot, regression line and kernel density plots in the same graph.

3628 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.6.3 Estimated Fit to the Stagnant Data Set

Example 52.7: Exponential and Weibull Survival Analysis

This example covers two commonly used survival analysis models: the exponential model and the
Weibull model. The deviance information criterion (DIC) is used to do model selections, and you
can also find programs that visualize posterior quantities. Exponential and Weibull models are
widely used for survival analysis. This example shows you how to use PROC MCMC to analyze
the treatment effect for the E1684 melanoma clinical trial data. These data were collected to assess
the effectiveness of using interferon alpha-2b in chemotherapeutic treatment of melanoma. The
following statements create the data set:

data e1684;
input t t_cen treatment @@;
if t = . then do;
t = t_cen;
v = 0;

end;
else
v = 1;

ifn = treatment - 1;
et = exp(t);
lt = log(t);
drop t_cen;
datalines;

Example 52.7: Exponential and Weibull Survival Analysis F 3629

1.57808 0.00000 2 1.48219 0.00000 2 . 7.33425 1
2.23288 0.00000 1 . 9.38356 2 3.27671 0.00000 1
. 9.64384 1 1.66575 0.00000 2 0.94247 0.00000 1

... more lines ...

3.39178 0.00000 1 . 4.36164 2 . 4.81918 2
;

The data set e1684 contains the following variables: t is the failure time that equals the censoring
time whether the observation was censored, v indicates whether the observation is an actual failure
time or a censoring time, treatment indicates two levels of treatments, and ifn indicates the use of
interferon as a treatment. The variables et and lt are the exponential and logarithm transformation
of the time t. The published data contains other potential covariates that are not listed here. This
example concentrates on the effectiveness of the interferon treatment.

Exponential Survival Model

The density function for exponentially distributed survival times is as follows:

p.ti j�i / D �i exp .��i ti /

Note that this formulation of the exponential distribution is different from what is used in the SAS
probability function PDF. The definition used in PDF for the exponential distributions is as follows:

p.ti j�i / D
1

�i
exp.�

ti

�i
/

The relationship between � and � is as follows:

�i D
1

�i

The corresponding survival function, using the �i formulation, is as follows:

S.ti j�i / D exp .��i ti /

If you have a sample ftig of n independent exponential survival times, each with mean �i , then the
likelihood function in terms of � is as follows:

L.�jt / D …n
iD1p.ti j�i /

�i S.ti j�i /
1��i

D …n
iD1.�i exp.��i ti //

�i .exp.��i ti //
1��i

D …n
iD1�

�i

i exp.��i ti /

If you link the covariates to � with �i D exp x0
iˇ, where xi is the vector of covariates corresponding

to the i th observation and ˇ is a vector of regression coefficients, then the log-likelihood function
is as follows:

l.ˇjt; x/ D

nX
iD1

�ix
0
iˇ � ti exp.x0

iˇ/

3630 F Chapter 52: The MCMC Procedure (Experimental)

In the absence of prior information about the parameters in this model, you can choose diffuse
normal priors for the ˇ:

ˇ � normal.0; sd =10000/

There are two ways to program the log-likelihood function in PROC MCMC. You can use the SAS
functions LOGPDF and LOGSDF. Alternatively, you can use the simplified log-likelihood function,
which is more computationally efficient. You get identical results by using either approaches.

The following PROC MCMC statements fit an exponential model with simplified log-likelihood
function:

title ’Exponential Survival Model’;
ods graphics on;
proc mcmc data=e1684 outpost=expsurvout nmc=10000 seed=4861;

ods select PostSummaries PostIntervals TADpanel
ess mcse;

parms (beta0 beta1) 0;
prior beta: ~ normal(0, sd = 10000);
/***/
/* (1) the logpdf and logsdf functions are not used */
/***/
/* nu = 1/exp(beta0 + beta1*ifn);

llike = v*logpdf("exponential", t, nu) +
(1-v)*logsdf("exponential", t, nu);

*/
/**/
/* (2) the simplified likelihood formula is used */
/**/
l_h = beta0 + beta1*ifn;
llike = v*(l_h) - t*exp(l_h);
model general(llike);

run;
ods graphics off;

The two assignment statements that are commented out calculate the log-likelihood function by
using the SAS functions LOGPDF and LOGSDF for the exponential distribution. The next two as-
signment statements calculate the log likelihood by using the simplified formula. The first approach
is slower because of the redundant calculation involved in calling both LOGPDF and LOGSDF.

An examination of the trace plots for ˇ0 and ˇ1 (see Output 52.7.1) reveals that the sampling has
gone well with no particular concerns about the convergence or mixing of the chains.

Example 52.7: Exponential and Weibull Survival Analysis F 3631

Output 52.7.1 Posterior Plots for ˇ0 and ˇ1 in the Exponential Survival Analysis

The MCMC results are shown in Output 52.7.2.

3632 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.7.2 Posterior Summary and Interval Statistics

Exponential Survival Model

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

beta0 10000 -1.6715 0.1091 -1.7426 -1.6684 -1.5964
beta1 10000 -0.2879 0.1615 -0.4001 -0.2892 -0.1803

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

beta0 0.050 -1.8907 -1.4639 -1.8930 -1.4673
beta1 0.050 -0.5985 0.0300 -0.6104 0.0169

The Monte Carlo standard errors and effective sample sizes are shown in Output 52.7.3. The poste-
rior means for ˇ0 and ˇ1 are estimated with high precision, with small standard errors with respect
to the standard deviation. This indicates that the mean estimates have stabilized and do not vary
greatly in the course of the simulation. The effective sample sizes are roughly the same for both
parameters.

Output 52.7.3 MCSE and ESS

Exponential Survival Model

The MCMC Procedure

Monte Carlo Standard Errors

Standard
Parameter MCSE Deviation MCSE/SD

beta0 0.00302 0.1091 0.0277
beta1 0.00485 0.1615 0.0301

Effective Sample Sizes

Correlation
Parameter ESS Time Efficiency

beta0 1304.1 7.6682 0.1304
beta1 1107.2 9.0319 0.1107

The next part of this example shows fitting a Weibull regression to the data and then comparing the
two models with DIC to see which one provides a better fit to the data.

Example 52.7: Exponential and Weibull Survival Analysis F 3633

Weibull Survival Model

The density function for Weibull distributed survival times is as follows:

p.ti j˛; �i / D ˛t˛�1
i exp.�i � exp.�i /t

˛
i /

Note that this formulation of the Weibull distribution is different from what is used in the SAS
probability function PDF. The definition used in PDF is as follows:

p.ti j˛;
i / D exp
�
�

�
ti

i

�˛� ˛

i

�
ti

i

�˛�1

The relationship between � and
 in these two parameterizations is as follows:

�i D �˛ log
i

The corresponding survival function, using the �i formulation, is as follows:

S.ti j˛; �i / D exp.� exp.�i /t
˛
i /

If you have a sample ftig of n independent Weibull survival times, with parameters ˛, and �i , then
the likelihood function in terms of ˛ and � is as follows:

L.˛; �jt / D …n
iD1p.ti j˛; �i /

�i S.ti j˛; �i /
1��i

D …n
iD1.˛t˛�1

i exp.�i � exp.�i /t
˛
i //�i .exp.� exp.�i /t

˛
i //1��i

D …n
iD1.˛t˛�1

i exp.�i //
�i .exp.� exp.�i /t

˛
i //

If you link the covariates to � with �i D x0
iˇ, where xi is the vector of covariates corresponding to

the i th observation and ˇ is a vector of regression coefficients, the log-likelihood function becomes
this:

l.˛; ˇjt; x/ D

nX
iD1

�i .log.˛/C .˛ � 1/ log.ti /C x0
iˇ/ � exp.x0

iˇ/t˛
i /

As with the exponential model, in the absence of prior information about the parameters in this
model, you can use diffuse normal priors on ˇ: You might wish to choose a diffuse gamma dis-
tribution for ˛: Note that when ˛ D 1, the Weibull survival likelihood reduces to the exponential
survival likelihood. Equivalently, by looking at the posterior distribution of ˛, you can conclude
whether fitting an exponential survival model would be more appropriate than the Weibull model.

PROC MCMC also allows you to make inference on any functions of the parameters. Quantities of
interest in survival analysis include the value of the survival function at specific times for specific
treatments and the relationship between the survival curves for different treatments. With PROC
MCMC, you can compute a sample from the posterior distribution of the interested survival func-
tions at any number of points. The data in this example range from about 0 to 10 years, and the
treatment of interest is the use of interferon.

Like in the previous exponential model example, there are two ways to fit this model: using the SAS
functions LOGPDF and LOGSDF, or using the simplified log likelihood functions. The example
uses the latter method. The following statements run PROC MCMC and produce Output 52.7.4:

3634 F Chapter 52: The MCMC Procedure (Experimental)

title ’Weibull Survival Model’;
proc mcmc data=e1684 outpost=weisurvout nmc=10000 seed=1234

monitor=(_parms_ surv_ifn surv_noifn);
ods select PostSummaries;
ods output PostSummaries=ds PostIntervals=is;
array surv_ifn[10];
array surv_noifn[10];
parms alpha 1 (beta0 beta1) 0;
prior beta: ~ normal(0, var=10000);
prior alpha ~ gamma(0.001,is=0.001);

begincnst;
surv_ifn1 = 1;
surv_noifn1 = 1;

endcnst;

beginprior;
do t = 1 to 10;
surv_ifn[t] = exp(-exp(beta0+beta1)*t**alpha);
surv_noifn[t] = exp(-exp(beta0)*t**alpha);

end;
endprior;

lambda = beta0 + beta1*ifn;
/***/
/* (1) the logpdf and logsdf functions are not used */
/***/
/* gamma = exp(-lambda /alpha);

llike = v*logpdf(’weibull’, t, alpha, gamma) +
(1-v)*logsdf(’weibull’, t, alpha, gamma);

*/
/**/
/* (2) the simplified likelihood formula is used */
/**/
llike = v*(log(alpha) + (alpha-1)*log(t) + lambda) -

exp(lambda)*(t**alpha);
model general(llike);

run;

The MONITOR= option indicates the parameters and quantities of interest that PROC MCMC
tracks. The symbol _PARMS_ specifies all model parameters. The array surv_ifn stores the ex-
pected survival probabilities for patients who received interferon over a period of 10 years. Similarly,
surv_noifn stores the expected survival probabilities for patients who did not received interferon.

In the BEGINCNST and ENDCNST statements, two elements, one each from the allocated arrays
of surv_inf and surv_noifn, are referenced once. This is needed for PROC MCMC to monitor the
desired array elements correctly. If none of the array elements are referenced in the program, these
arrays become temporary arrays with the variable name information stripped. As a result, PROC
MCMC is no longer able to monitor the indicated symbols.

The BEGINPRIOR and ENDPRIOR statements enclose the calculations for the survival probabil-
ities. The assignment statements proceeding the MODEL statement calculate the log likelihood
for the Weibull survival model. The MODEL statement specifies the log likelihood that you pro-

Example 52.7: Exponential and Weibull Survival Analysis F 3635

grammed.

An examination of the trace plots for ˛, ˇ0, and ˇ1 (not displayed here) reveals that the sampling
has gone well, with no particular concerns about the convergence or mixing of the chains.

Output 52.7.4 displays the posterior summary statistics.

Output 52.7.4 Posterior Summary Statistics

Weibull Survival Model

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

alpha 10000 0.7856 0.0533 0.7488 0.7849 0.8225
beta0 10000 -1.3414 0.1389 -1.4321 -1.3424 -1.2463
beta1 10000 -0.2918 0.1683 -0.4050 -0.2919 -0.1711
surv_ifn1 10000 0.8212 0.0237 0.8054 0.8228 0.8374
surv_ifn2 10000 0.7128 0.0308 0.6919 0.7138 0.7337
surv_ifn3 10000 0.6283 0.0352 0.6039 0.6282 0.6522
surv_ifn4 10000 0.5588 0.0383 0.5326 0.5589 0.5852
surv_ifn5 10000 0.5001 0.0405 0.4728 0.4997 0.5276
surv_ifn6 10000 0.4497 0.0420 0.4204 0.4489 0.4786
surv_ifn7 10000 0.4060 0.0431 0.3760 0.4051 0.4350
surv_ifn8 10000 0.3677 0.0437 0.3375 0.3664 0.3972
surv_ifn9 10000 0.3340 0.0440 0.3035 0.3325 0.3638
surv_ifn10 10000 0.3041 0.0440 0.2736 0.3024 0.3337
surv_noifn1 10000 0.7685 0.0280 0.7501 0.7701 0.7876
surv_noifn2 10000 0.6360 0.0349 0.6131 0.6376 0.6598
surv_noifn3 10000 0.5372 0.0386 0.5119 0.5384 0.5637
surv_noifn4 10000 0.4593 0.0407 0.4330 0.4599 0.4878
surv_noifn5 10000 0.3960 0.0417 0.3686 0.3959 0.4256
surv_noifn6 10000 0.3437 0.0421 0.3159 0.3432 0.3727
surv_noifn7 10000 0.2999 0.0419 0.2715 0.2993 0.3282
surv_noifn8 10000 0.2629 0.0412 0.2349 0.2624 0.2909
surv_noifn9 10000 0.2313 0.0403 0.2037 0.2302 0.2581
surv_noifn10 10000 0.2041 0.0392 0.1767 0.2033 0.2302

An examination of the ˛ parameter reveals that the exponential model might not be inappropriate
here. The estimated posterior mean of ˛ is 0.7856 with a posterior standard deviation of 0.0533.
As noted previously, if ˛ D 1, then the Weibull survival distribution is the exponential survival
distribution. With these data, you can see that the evidence is in favor of ˛ < 1. The value 1 is
almost 4 posterior standard deviations away from the posterior mean. The following statements
compute the posterior probability of the hypothesis that ˛ < 1::

3636 F Chapter 52: The MCMC Procedure (Experimental)

proc format;
value alphafmt low-<1 = ’alpha < 1’ 1-high = ’alpha >= 1’;

run;

proc freq data=weisurvout;
tables alpha /nocum;
format alpha alphafmt.;

run;

The PROC FREQ results are shown in Output 52.7.5.

Output 52.7.5 Frequency Analysis of ˛

Weibull Survival Model

The FREQ Procedure

alpha Frequency Percent

alpha < 1 10000 100.00

The output from PROC FREQ shows that 100% of the 10000 simulated values for ˛ are less than
1. This is a very strong indication that the exponential model is too restrictive to model these data
well.

You can examine the estimated survival probabilities over time individually, either through the
posterior summary statistics or by looking at the kernel density plots. Alternatively, you might
find it more informative to examine these quantities in relation with each other. For example, you
can use a side-by-side box plot to display these posterior distributions by using PROC SGPLOT
(“Statistical Graphics Using ODS” on page 497). First you need to take the posterior output data
set weisurvout and stack variables that you want to plot. For example, to plot all the survival times
for patients who received interferon, you want to stack surv_inf1–surv_inf10. The macro %Stackdata
takes an input data set dataset, stacks the wanted variables vars, and outputs them into the output
data set.

The following statements define the macro stackdata:

/* define macro stackdata */
%macro StackData(dataset,output,vars);

data &output;
length var $ 32;
if 0 then set &dataset nobs=nnn;
array lll[*] &vars;
do jjj=1 to dim(lll);

do iii=1 to nnn;
set &dataset point=iii;
value = lll[jjj];
call vname(lll[jjj],var);
output;

end;
end;

Example 52.7: Exponential and Weibull Survival Analysis F 3637

stop;
keep var value;

run;
%mend;

/* stack the surv_ifn variables and saved them to survifn. */
%StackData(weisurvout, survifn, surv_ifn1-surv_ifn10);

Once you stack the data, use PROC SGPLOT to create the side-by-side box plots. The following
statements generate Output 52.7.6:

proc sgplot data=survifn;
yaxis label=’Survival Probability’ values=(0 to 1 by 0.2);
xaxis label=’Time’ discreteorder=data;
vbox value / category=var;

run;

Output 52.7.6 Side-by-Side Box Plots of Estimated Survival Probabilities

There is a clear decreasing trend over time of the survival probabilities for patients who receive the
treatment. You might ask how does this group compare to those who did not receive the treatment?
In this case, you want to overlay the two predicted curves for the two groups of patients and add
the corresponding credible interval. See Output 52.7.7. To generate the graph, you first take the
posterior mean estimates from the ODS output table ds and the lower and upper HPD interval
estimates is, store them in the data set surv, and draw the figure by using PROC SGPLOT.

3638 F Chapter 52: The MCMC Procedure (Experimental)

The following statements generate data set surv:

data surv;
set ds;
if _n_ >= 4 then do;

set is point=_n_;
group = ’with interferon ’;
time = _n_ - 3;
if time > 10 then do;

time = time - 10;
group = ’without interferon’;

end;
output;

end;
keep time group mean hpdlower hpdupper;

run;

The following SGPLOT statements generate Output 52.7.7:

proc sgplot data=surv;
yaxis label="Survival Probability" values=(0 to 1 by 0.2);
series x=time y=mean / group = group name=’i’;
band x=time lower=hpdlower upper=hpdupper / group = group transparency=0.7;
keylegend ’i’;

run;

In Output 52.7.7, the solid line is the survival curve for patients who received interferon; the shaded
region centers at the solid line is the 95% HPD intervals; the medium-dashed line is the survival
curve for patients who did not receive interferon; and the shaded region around the dashed line is the
corresponding 95% HPD intervals.

Example 52.7: Exponential and Weibull Survival Analysis F 3639

Output 52.7.7 Predicted Survival Probability Curves with 95% HPD Intervals

The plot suggests that there is an effect of using interferon because patients who received interferon
have sustained better survival probabilities than those who did not. However, the effect might not
be very significant, as the 95% credible intervals of the two groups do overlap. For more on these
interferon studies, refer to Ibrahim, Chen, and Sinha (2001).

Weibull or Exponential?

Although the evidence from the Weibull model fit shows that the posterior distribution of ˛ has
a significant amount of density mass less than 1, suggesting that the Weibull model is a better fit
to the data than the exponential model, you might still be interested in comparing the two models
more formally. You can use the Bayesian model selection criterion (see the section “Deviance
Information Criterion (DIC)” on page 172) to determine which model fits the data better.

The PROC MCMC DIC option requests the calculation of DIC, and the procedure displays the
ODS output table DIC. The table includes the posterior mean of the deviation, D.�/, deviation
at the estimate, D.�/, effective number of parameters, pD , and DIC. It is important to remember
that the standardizing term, p.y/, which is a function of the data alone, is not taken into account
in calculating the DIC. This term is irrelevant only if you compare two models that have the same
likelihood function. If you do not have identical likelihood functions, using DIC for model selec-
tion purposes without taking this standardizing term into account can produce incorrect results. In
addition, you want to be careful in interpreting the DIC whenever you use the GENERAL function
to construct the log-likelihood, as the case in this example. Using the GENERAL function, you can

3640 F Chapter 52: The MCMC Procedure (Experimental)

obtain identical posterior samples with two log-likelihood functions that differ only by a constant.
This difference translates to a difference in the DIC calculation, which could be very misleading.

If ˛ D 1, the Weibull likelihood is identical to the exponential likelihood. It is safe in this case
to directly compare DICs from these two models. However, if you do not want to work out the
mathematical detail or you are uncertain of the equivalence, a better way of comparing the DICs is
to run the Weibull model twice: once with ˛ being a parameter and once with ˛ D 1. This ensures
that the likelihood functions are the same, and the DIC comparison is meaningful.

The following statements fit a Weibull model:

title ’Model Comparison between Weibull and Exponential’;
proc mcmc data=e1684 outpost=weisurvout nmc=10000 seed=4861 dic;

ods select dic;
parms alpha 1 (beta0 beta1) 0;
prior beta: ~ normal(0, var=10000);
prior alpha ~ gamma(0.001,is=0.001);

lambda = beta0 + beta1*ifn;
llike = v*(log(alpha) + (alpha-1)*log(t) + lambda) -

exp(lambda)*(t**alpha);
model general(llike);

run;

The DIC option requests the calculation of DIC, and the table is displayed is displayed in
Output 52.7.8:

Output 52.7.8 DIC Table from the Weibull Model

Model Comparison between Weibull and Exponential

The MCMC Procedure

Deviance Information Criterion

Dbar (posterior mean of deviance) 858.623
Dmean (deviance evaluated at posterior mean) 855.633
pD (effective number of parameters) 2.990
DIC (smaller is better) 861.614

The [D]GENERAL function is used in this program. To make
meaningful comparisons, you must ensure that all
[D]GENERAL functions include appropriate normalizing
constants. Otherwise, DIC comparisons can be misleading.

The note in Output 52.7.8 reminds you of the importance of ensuring identical likelihood functions
when you use the GENERAL function. The DIC value is 861:6.

Example 52.7: Exponential and Weibull Survival Analysis F 3641

Based on the same set of code, the following statements fit an exponential model by setting ˛ D 1:

proc mcmc data=e1684 outpost=expsurvout nmc=10000 seed=4861 dic;
ods select dic;
parms beta0 beta1 0;
prior beta: ~ normal(0, var=10000);
begincnst;

alpha = 1;
endcnst;

lambda = beta0 + beta1*ifn;
llike = v*(log(alpha) + (alpha-1)*log(t) + lambda) -

exp(lambda)*(t**alpha);
model general(llike);

run;

Output 52.7.9 displays the DIC table.

Output 52.7.9 DIC Table from the Exponential Model

Model Comparison between Weibull and Exponential

The MCMC Procedure

Deviance Information Criterion

Dbar (posterior mean of deviance) 870.133
Dmean (deviance evaluated at posterior mean) 868.190
pD (effective number of parameters) 1.943
DIC (smaller is better) 872.075

The [D]GENERAL function is used in this program. To make
meaningful comparisons, you must ensure that all
[D]GENERAL functions include appropriate normalizing
constants. Otherwise, DIC comparisons can be misleading.

The DIC value of 872:075 is greater than 861. A smaller DIC indicates a better fit to the data;
hence, you can conclude that the Weibull model is more appropriate for this data set. You can see
the equivalencing of the exponential model you fitted in “Exponential Survival Model” on page 3629
by running the following comparison.

3642 F Chapter 52: The MCMC Procedure (Experimental)

The following statements are taken from the section “Exponential Survival Model” on page 3629,
and they fit the same exponential model:

proc mcmc data=e1684 outpost=expsurvout1 nmc=10000 seed=4861 dic;
ods select none;
parms (beta0 beta1) 0;
prior beta: ~ normal(0, sd = 10000);
l_h = beta0 + beta1*ifn;
llike = v*(l_h) - t*exp(l_h);
model general(llike);

run;

proc compare data=expsurvout compare=expsurvout1;
var beta0 beta1;

run;

The posterior samples of beta0 and beta1 in the data set expsurvout1 are identical to those in the
data set expsurvout. The comparison results are not shown here.

Example 52.8: Cox Models

This example has two purposes. One is to illustrate how to use PROC MCMC to fit a Cox propor-
tional hazard model. Specifically, two models are considered: time independent and time dependent
models. However, note that it is much easier to fit a Bayesian Cox model by specifying the BAYES
statement in PROC PHREG (see Chapter 64, “The PHREG Procedure”). If you are interested only
in fitting a Cox regression survival model, you should use PROC PHREG.

The main purpose of this example is to demonstrate how to model data that are not independent.
That is the case where the likelihood for observation i depends on other observations in the data
set. In other words, if you work with a likelihood function that cannot be broken down simply as
L.y/ D

Qn
i L.yi /, you can use this example for illustrative purposes. By default, PROC MCMC

assumes that the programming statements and model specification is intended for a single row of
observations in the data set. The Cox model is chosen because the complexity in the data structure
requires more elaborate coding.

The Cox proportional hazard model is widely used in the analysis of survival time, failure time, or
other duration data to explain the effect of exogenous explanatory variables. The data set used in
this example is taken from Krall, Uthoff, and Harley (1975), who analyzed data from a study on
myeloma in which researchers treated 65 patients with alkylating agents. Of those patients, 48 died
during the study and 17 survived. The following statements generate the data set that is used in this
example:

data Myeloma;
input Time Vstatus LogBUN HGB Platelet Age LogWBC Frac

LogPBM Protein SCalc;
label Time=’survival time’

VStatus=’0=alive 1=dead’;
datalines;

1.25 1 2.2175 9.4 1 67 3.6628 1 1.9542 12 10

Example 52.8: Cox Models F 3643

1.25 1 1.9395 12.0 1 38 3.9868 1 1.9542 20 18
2.00 1 1.5185 9.8 1 81 3.8751 1 2.0000 2 15

... more lines ...

77.00 0 1.0792 14.0 1 60 3.6812 0 0.9542 0 12
;

proc sort data = Myeloma;
by descending time;

run;

data _null_;
set Myeloma nobs=_n;
call symputx(’N’, _n);
stop;

run;

The variable Time represents the survival time in months from diagnosis. The variable VStatus con-
sists of two values, 0 and 1, indicating whether the patient was alive or dead, respectively, at the
end of the study. If the value of VStatus is 0, the corresponding value of Time is censored. The
variables thought to be related to survival are LogBUN (log.BUN/ at diagnosis), HGB (hemoglobin at
diagnosis), Platelet (platelets at diagnosis: 0=abnormal, 1=normal), Age (age at diagnosis in years),
LogWBC (log(WBC) at diagnosis), Frac (fractures at diagnosis: 0=none, 1=present), LogPBM (log
percentage of plasma cells in bone marrow), Protein (proteinuria at diagnosis), and SCalc (serum
calcium at diagnosis). Interest lies in identifying important prognostic factors from these explana-
tory variables. In addition, there are 65 (&n) observations in the data set Myeloma. The likelihood
used in these examples is the Brewslow likelihood:

L.ˇ/ D

nY
iD1

24 diY
j D1

exp.ˇ0Zj .ti //P
l2Ri

exp.ˇ0Zl.ti //

35vi

where

� ˇ is the vector parameters

� n is the total number of observations in the data set

� ti is the i th time, which can be either event time or censored time

� Zl.t/ is the vector explanatory variables for the l th individual at time t

� di is the multiplicity of failures at ti . If there are no ties in time, di is 1 for all i .

� Ri is the risk set for the i th time ti , which includes all observations that have survival time
greater than or equal to ti

� vi indicates whether the patient is censored. The value 0 corresponds to censoring. Note that
the censored time ti enters the likelihood function only through the formation of the risk set
Ri .

Priors on the coefficients are independent normal priors with very large variance (1e6). Throughout
this example, the symbol bZ represents the regression term ˇ0Zj .ti / in the likelihood, and the
symbol S represents the term

P
l2Ri

exp.ˇ0Zl.ti //.

3644 F Chapter 52: The MCMC Procedure (Experimental)

Time Independent Model

The regression model considered in this example uses the following formula:

ˇ0Zj D ˇ1logbunC ˇ2hgbC ˇ3plateletC ˇ4ageC

ˇ5logwbcC ˇ6fracC ˇ7logpbmC ˇ8proteinC ˇ9scalc

The hard part of coding this in PROC MCMC is the construction of the risk setRi . Ri contains all
observations that have survival time greater than or equal to ti . First suppose that there are no ties
in time. Sorting the data set by the variable time into descending order gives you Ri that is in the
right order. Observation i ’s risk set consists of all data points j such that j <D i in the data set.
You can cumulatively increment S in the SAS statements.

With potential ties in time, at observation i , you need to know whether any subsequent observations,
i C 1 and so on, have the same survival time as ti . Suppose that the i th, the i C 1th, and the i C 2th
observations all have the same survival time; all three of them need to be included in the risk set
calculation. This means that to calculate the likelihood for some observations, you need to access
both the previous and subsequent observations in the data set. There are two ways to do this. One
is to use the LAG function; the other is to use the option JOINTMODEL.

The LAG function returns values from a queue (see SAS Language Reference: Dictionary). So for
the i th observation, you can use LAG1 to access variables from the previous row in the data set.
You want to compare the lag1 value of time with the current time value. Depending on whether the
two time values are equal, you can add correction terms in the calculation for the risk set S.

The following statements sort the data set by time into descending order, with the largest survival
time on top:

title ’Cox Model with Time Independent Covariates’;
proc freq data=myeloma;

ods select none;
tables time / out=freqs;

run;

proc sort data = freqs;
by descending time;

run;

data myelomaM;
set myeloma;
ind = _N_;

run;

The following statements run PROC MCMC and produce Output 52.8.1:

proc mcmc data=myelomaM outpost=outi nmc=50000 ntu=3000 seed=1;
ods select PostSummaries PostIntervals;
array beta[9];
parms beta: 0;
prior beta: ~ normal(0, var=1e6);

Example 52.8: Cox Models F 3645

bZ = beta1 * LogBUN + beta2 * HGB + beta3 * Platelet
+ beta4 * Age + beta5 * LogWBC + beta6 * Frac +
beta7 * LogPBM + beta8 * Protein + beta9 * SCalc;

if ind = 1 then do; /* first observation */
S = exp(bZ);
l = vstatus * bZ;
v = vstatus;

end;
else if (1 < ind < &N) then do;

if (lag1(time) ne time) then do;
l = vstatus * bZ;
l = l - v * log(S); /* correct the loglike value */
v = vstatus; /* reset v count value */
S = S + exp(bZ);

end;
else do; /* still a tie */

l = vstatus * bZ;
S = S + exp(bZ);
v = v + vstatus; /* add # of nonsensored values */

end;
end;
else do; /* last observation */

if (lag1(time) ne time) then do;
l = - v * log(S); /* correct the loglike value */
S = S + exp(bZ);
l = l + vstatus * (bZ - log(S));

end;
else do;

S = S + exp(bZ);
l = vstatus * bZ - (v + vstatus) * log(S);

end;
end;
model general(l);

run;

The symbol bZ is the regression term, which is independent of the time variable. The symbol ind
indexes observation numbers in the data set. The symbol S keeps track of the risk set term for every
observation. The symbol l calculates the log likelihood for each observation. Note that the value of l
for observation ind is not necessarily the correct log likelihood value for that observation, especially
in cases where the observation ind is in the tied times. Correction terms are added to subsequent
values of l when the time variable becomes different in order to make up the difference. The total
sum of l calculated over the entire data set is correct. The symbol v keeps track of the sum of vstatus,
as censored data do not enter the likelihood and need to be taken out.

You use the function LAG1 to detect if two adjacent time values are different. If they are, you
know that the current observation is in a different risk set than the last one. You then need to add a
correction term to the log likelihood value of l. The IF-ELSE statements break the observations into
three parts: the first observation, the last observation and everything in the middle.

3646 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.8.1 Summary Statistics on Cox Model with Time Independent Explanatory Variables
and Ties in the Survival Time, Using PROC MCMC

Cox Model with Time Independent Covariates

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

beta1 50000 1.7600 0.6441 1.3275 1.7651 2.1947
beta2 50000 -0.1308 0.0720 -0.1799 -0.1304 -0.0817
beta3 50000 -0.2017 0.5148 -0.5505 -0.1965 0.1351
beta4 50000 -0.0126 0.0194 -0.0257 -0.0128 0.000641
beta5 50000 0.3373 0.7256 -0.1318 0.3505 0.8236
beta6 50000 0.3992 0.4337 0.0973 0.3864 0.6804
beta7 50000 0.3749 0.4861 0.0464 0.3636 0.6989
beta8 50000 0.0106 0.0271 -0.00723 0.0118 0.0293
beta9 50000 0.1272 0.1064 0.0579 0.1300 0.1997

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

beta1 0.050 0.4649 3.0214 0.5117 3.0465
beta2 0.050 -0.2704 0.0114 -0.2746 0.00524
beta3 0.050 -1.2180 0.8449 -1.2394 0.7984
beta4 0.050 -0.0501 0.0257 -0.0512 0.0245
beta5 0.050 -1.1233 1.7232 -1.1124 1.7291
beta6 0.050 -0.4136 1.2970 -0.4385 1.2575
beta7 0.050 -0.5551 1.3593 -0.5423 1.3689
beta8 0.050 -0.0451 0.0618 -0.0451 0.0616
beta9 0.050 -0.0933 0.3272 -0.0763 0.3406

An alternative to using the LAG function is to use the PROC option JOINTMODEL. With this
option, the log-likelihood function you specify applies not to a single observation but to the entire
data set. See “Modeling Dependent Data” on page 3549 for details on how to properly use this
option. The basic idea is that you store all necessary data set variables in arrays and use only the
arrays to construct the log likelihood of the entire data set. This approach works here because for
every observation i , you can use index to access different values of arrays to construct the risk set
S. To use the JOINTMODEL option, you need to do some additional data manipulation. You want
to create a stop variable for each observation, which indicates the observation number that should
be included in S for that observation. For example, if observations 4, 5, 6 all have the same survival
time, the stop value for all of them is 6.

Example 52.8: Cox Models F 3647

The following statements generate a new data set myelomaM that contains the stop variable:

data myelomaM;
merge myelomaM freqs(drop=percent);
by descending time;
retain stop;
if first.time then do;

stop = _n_ + count - 1;
end;

run;

The following SAS program fits the same Cox model by using the JOINTMODEL option:

proc mcmc data=myelomaM outpost=outa nmc=50000 ntu=3000 seed=1 jointmodel;
ods select none;
array beta[9]; array timeA[&n]; array vstatusA[&n];
array logbunA[&n]; array hgbA[&n]; array plateletA[&n];
array ageA[&n]; array logwbcA[&n]; array fracA[&n];
array logpbmA[&n]; array proteinA[&n]; array scalcA[&n];
array stopA[&n]; array bZ[&n]; array S[&n];

begincnst;
timeA[ind]=time; vstatusA[ind]=vstatus;
logbunA[ind]=logbun; hgbA[ind]=hgb;
plateletA[ind]=platelet; ageA[ind]=age;
logwbcA[ind]=logwbc; fracA[ind]=frac;
logpbmA[ind]=logpbm; proteinA[ind]=protein;
scalcA[ind]=scalc; stopA[ind]=stop;

endcnst;

parms (beta:) 0;
prior beta: ~ normal(0, var=1e6);

jl = 0;

/* calculate each bZ and cumulatively adding S as if there are no ties.*/
do i = 1 to &n;

bZ[i] = beta1*logbunA[i] + beta2*hgbA[i] + beta3*plateletA[i] +
beta4*ageA[i] + beta5*logwbcA[i] + beta6*fracA[i] +
beta7*logpbmA[i] + beta8*proteinA[i] + beta9*scalcA[i];

if(i eq 1) then S[i] = exp(bZ[i]);
else S[i] = S[i-1] + exp(bZ[i]);

end;

do i = 1 to &n;
/* correct the S[i] term, when needed. */
if(stopA[i] > i) then do;

do j = (i+1) to stopA[i];
S[i] = S[i] + exp(bZ[j]);

end;
end;
jl = jl + vstatusA[i] * (bZ[i] - log(S[i]));

end;
model general(jl);

run;

3648 F Chapter 52: The MCMC Procedure (Experimental)

No output tables were produced as this PROC MCMC run gives identical posterior samples as the
previous example.

Multiple ARRAY statements allocate array symbols that are used to store the parameters (beta), the
response (timeA), the covariates (vstatusA, logbunA, hgbA, plateletA, ageA, logwbcA, fracA, logpbmA,
proteinA, scalcA, and stopA), and the work space (bZ and S). The bZ and S arrays store the regression
term and the risk set term for every observation. The BEGINCNST and ENDCNST statements en-
close programming statements that read the data set variables into these arrays. This was explained
in the section “BEGINCNST/ENDCNST Statement” on page 3507. The rest of the programming
statements construct the log likelihood for the entire data set.

You use two DO-loops to loop through the array-based data set and sum up observational level log
likelihood. In the first DO-loop, you calculate bZ for each observation and cumulatively add the
risk set term S as if there are no ties in time. This underevaluates some of the S elements. For those
observations that have a tied time, you make the necessary correction to the corresponding S values.
The correction takes place in the second DO-loop. Any observation that has a tied time also has a
stopA[i] that is different from i. You add the right terms to S and sum up the joint log likelihood jl.
The MODEL statement specifies that the log likelihood takes on the value of jl. Note that there is
no data set variable outside of the BEGINCNST and ENDCNST statements in this example. For
the JOINTMODEL to work correctly, PROC MCMC does not access the data set during the entire
simulation.

To see that you get identical results from these two approaches, use PROC COMPARE to compare
the posterior samples from two runs:

proc compare data=outi compare=outa;
ods select comparesummary;
var beta1-beta9;

run;

The output is omitted.

Generally speaking, the JOINTMODEL option can be slightly faster than using the default setup.
The savings come from avoiding the overhead cost of accessing the data set repeatedly at every
iteration. Note, however, that the speed gain is not guaranteed because it largely depends on the
efficiency of your programs.

PROC PHREG fits the same model, and you get very similar results to PROC MCMC. The follow-
ing statements run PROC PHREG and produce Output 52.8.2:

proc phreg data=Myeloma;
ods select PostSummaries PostIntervals;
ods output posteriorsample = phout;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC

Frac LogPBM Protein Scalc;
bayes seed=1 nmc=10000;

run;

Example 52.8: Cox Models F 3649

Output 52.8.2 Summary Statistics for Cox Model with Time Independent Explanatory Variables
and Ties in the Survival Time, Using PROC PHREG

Cox Model with Time Independent Covariates

The PHREG Procedure

Bayesian Analysis

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

LogBUN 10000 1.7610 0.6593 1.3173 1.7686 2.2109
HGB 10000 -0.1279 0.0727 -0.1767 -0.1287 -0.0789
Platelet 10000 -0.2179 0.5169 -0.5659 -0.2360 0.1272
Age 10000 -0.0130 0.0199 -0.0264 -0.0131 0.000492
LogWBC 10000 0.3150 0.7451 -0.1718 0.3321 0.8253
Frac 10000 0.3766 0.4152 0.0881 0.3615 0.6471
LogPBM 10000 0.3792 0.4909 0.0405 0.3766 0.7023
Protein 10000 0.0102 0.0267 -0.00745 0.0106 0.0283
SCalc 10000 0.1248 0.1062 0.0545 0.1273 0.1985

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

LogBUN 0.050 0.4418 3.0477 0.4107 2.9958
HGB 0.050 -0.2718 0.0150 -0.2801 0.00599
Platelet 0.050 -1.1952 0.8296 -1.1871 0.8341
Age 0.050 -0.0514 0.0259 -0.0519 0.0251
LogWBC 0.050 -1.2058 1.7228 -1.1783 1.7483
Frac 0.050 -0.3995 1.2316 -0.4273 1.2021
LogPBM 0.050 -0.5652 1.3671 -0.5939 1.3241
Protein 0.050 -0.0437 0.0611 -0.0405 0.0637
SCalc 0.050 -0.0935 0.3264 -0.0846 0.3322

Output 52.8.3 shows kernel density plots that compare the posterior marginal distributions of all the
beta parameters from the PROC MCMC run and the PROC PHREG run. The following statements
generate the comparison:

proc kde data=outi;
ods exclude all;
univar beta1 beta2 beta3 beta4 beta5 beta6 beta7 beta8 beta9

/ out=m1 (drop=count);
run;
ods exclude none;

%reshape(m1, mcmc, suffix1=, suffix2=md);

data phout;
set phout(drop = LogPost Iteration);
beta1 = LogBUN; beta2 = HGB; beta3 = Platelet;

3650 F Chapter 52: The MCMC Procedure (Experimental)

beta4 = Age; beta5 = LogWBC; beta6 = Frac;
beta7 = LogPBM; beta8 = Protein; beta9 = SCalc;
drop LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc;

run;

proc kde data=phout;
ods exclude all;
univar beta1 beta2 beta3 beta4 beta5 beta6 beta7 beta8 beta9

/ out=m2 (drop=count);
run;
ods exclude none;

%reshape(m2, phreg, suffix1=p, suffix2=pd);

data all;
merge mcmc phreg;

run;

proc template;
define statgraph threebythree;

%macro plot;
begingraph;

layout lattice / rows=3 columns=3;
%do i = 1 %to 9;

layout overlay /yaxisopts=(label=" ");
seriesplot y=beta&i.md x=beta&i

/ connectorder=xaxis
lineattrs=(pattern=mediumdash color=blue)

legendlabel = "MCMC" name="MCMC";
seriesplot y=beta&i.pd x=beta&i.p

/ connectorder=xaxis lineattrs=(color=red)
legendlabel = "PHREG" name="PHREG";

endlayout;
%end;
Sidebar / align = bottom;

discretelegend "MCMC" "PHREG";
endsidebar;

endlayout;
endgraph;

%mend; %plot;
end;

run;

proc sgrender data=all template=threebythree;
title "Kernel Density Comparison";

run;

The macro %RESHAPE is defined in the example “Logistic Regression Random-Effects Model”
on page 3608. The posterior densities are almost identical to one another.

Example 52.8: Cox Models F 3651

Output 52.8.3 Comparing Estimates from PROC MCMC and PROC PHREG

Time Dependent Model

To model Zi .ti / as a function of the survival time, you can relate time ti to covariates by using this
formula:

ˇ0Zj .ti / D .ˇ1 C ˇ2ti /logbunC .ˇ3 C ˇ4ti /hgbC .ˇ5 C ˇ6ti /platelet

For illustrational purposes, only three explanatory variables, LOGBUN, HBG, and PLATELET, are
used in this example.

Since Zj .ti / depends on ti , every term in the summation of
P

l2Ri
exp.ˇ0Zl.ti // is a product of

the current time ti and all observations that are in the risk set. You can use the JOINTMODEL
option, as in the last example, or you can modify the input data set such that every row contains not
only the current observation but also all observations that are in the corresponding risk set. When
you construct the log likelihood for each observation, you have all the relevant data at your disposal.

3652 F Chapter 52: The MCMC Procedure (Experimental)

The following statements illustrate how you can create a new data set with different risk sets at
different rows:

title ’Cox Model with Time Dependent Covariates’;
ods select none;
proc freq data=myeloma;

tables time / out=freqs;
run;
ods select all;

proc sort data = freqs;
by descending time;

run;

data myelomaM;
set myeloma;
ind = _N_;

run;

data myelomaM;
merge myelomaM freqs(drop=percent); by descending time;
retain stop;
if first.time then do;

stop = _n_ + count - 1;
end;

run;

%macro array(list);
%global mcmcarray;
%let mcmcarray = ;
%do i = 1 %to 32000;

%let v = %scan(&list, &i, %str());
%if %nrbquote(&v) ne %then %do;

array _&v[&n];
%let mcmcarray = &mcmcarray array _&v[&n] _&v.1 - _&v.&n%str(;);

do i = 1 to stop;
set myelomaM(keep=&v) point=i;
_&v[i] = &v;

end;
%end;
%else %let i = 32001;

%end;
%mend;

data z;
set myelomaM;
%array(logbun hgb platelet);
drop vstatus logbun hgb platelet count stop;

run;

data myelomaM;
merge myelomaM z; by descending time;

run;

Example 52.8: Cox Models F 3653

The data set myelomaM contains 65 observations and 209 variables. For each observation, you
see added variables stop, _logbun1 through _logbun65, _hgb1 through _hgb65, and _platelet1 through
_platelet65. The variable stop indicates the number of observations that are in the risk set of the cur-
rent observation. The rest are transposed values of model covariates of the entire data set. The data
set contains a number of missing values. This is due to the fact that only the relevant observations
are kept, such as _logbun1 to _logbunstop. The rest of the cells are filled in with missing values. For
example, the first observation has a unique survival time of 92 and stop is 1, making it a risk set of
itself. You see nonmissing values only in _logbun1, _hgb1, and _platelet1.

The following statements fit the Cox model by using PROC MCMC:
proc mcmc data=myelomaM outpost=outi nmc=50000 ntu=3000 seed=17

missing=ac;
ods select PostSummaries PostIntervals;
array beta[6];
&mcmcarray
parms (beta:) 0;
prior beta: ~ normal(0, prec=1e-6);

b = (beta1 + beta2 * time) * logbun +
(beta3 + beta4 * time) * hgb +
(beta5 + beta6 * time) * platelet;

S = 0;
do i = 1 to stop;

S = S + exp((beta1 + beta2 * time) * _logbun[i] +
(beta3 + beta4 * time) * _hgb[i] +
(beta5 + beta6 * time) * _platelet[i]);

end;
loglike = vstatus * (b - log(S));

model general(loglike);
run;

Note that the option MISSING= is set to AC. This is due to missing cells in the input data set. You
must use this option so that PROC MCMC retains observations that contain missing values.

The macro variable &mcmcarray is defined in the earlier part in this example. You can use a %put

statement to print its value:

%put &mcmcarray;

This statement prints the following:

array _logbun[65] _logbun1 - _logbun65; array _hgb[65] _hgb1 - _hgb65; array
_platelet[65] _platelet1 - _platelet65;

The macro uses the ARRAY statement to allocate three arrays, each of which links their correspond-
ing data set variables. This makes it easier to reference these data set variables in the program. The
PARMS statement puts all the parameters in the same block. The PRIOR statement gives them
normal priors with large variance. The symbol b is the regression term, and S is cumulatively added
from 1 to stop for each observation in the DO-loop. The symbol loglike completes the construction of
log likelihood for each observation and the MODEL statement completes the model specification.

3654 F Chapter 52: The MCMC Procedure (Experimental)

Posterior summary and interval statistics are shown in Output 52.8.4.

Output 52.8.4 Summary Statistics on Cox Model with Time Dependent Explanatory Variables
and Ties in the Survival Time, Using PROC MCMC

Cox Model with Time Dependent Covariates

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

beta1 50000 3.2397 0.8226 2.6835 3.2413 3.7830
beta2 50000 -0.1411 0.0471 -0.1722 -0.1406 -0.1092
beta3 50000 -0.0369 0.1017 -0.1064 -0.0373 0.0315
beta4 50000 -0.00409 0.00360 -0.00656 -0.00408 -0.00167
beta5 50000 0.3548 0.7359 -0.1634 0.3530 0.8445
beta6 50000 -0.0417 0.0359 -0.0661 -0.0423 -0.0181

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

beta1 0.050 1.6399 4.8667 1.6664 4.8752
beta2 0.050 -0.2351 -0.0509 -0.2294 -0.0458
beta3 0.050 -0.2337 0.1642 -0.2272 0.1685
beta4 0.050 -0.0111 0.00282 -0.0112 0.00264
beta5 0.050 -1.0317 1.8202 -1.0394 1.8100
beta6 0.050 -0.1107 0.0295 -0.1122 0.0269

You can also use the option JOINTMODEL to get the same inference and avoid transposing the
data for every observation:

proc mcmc data=myelomaM outpost=outa nmc=50000 ntu=3000 seed=17 jointmodel;
ods select none;
array beta[6]; array timeA[&n]; array vstatusA[&n];
array logbunA[&n]; array hgbA[&n]; array plateletA[&n];
array stopA[&n]; array bZ[&n]; array S[&n];

begincnst;
timeA[ind]=time; vstatusA[ind]=vstatus;
logbunA[ind]=logbun; hgbA[ind]=hgb;
plateletA[ind]=platelet; stopA[ind]=stop;

endcnst;

parms (beta:) 0;
prior beta: ~ normal(0, prec=1e-6);

jl = 0;
do i = 1 to &n;

v1 = beta1 + beta2 * timeA[i];
v2 = beta3 + beta4 * timeA[i];

Example 52.8: Cox Models F 3655

v3 = beta5 + beta6 * timeA[i];
bZ[i] = v1 * logbunA[i] + v2 * hgbA[i] + v3 * plateletA[i];

/* sum over risk set without considering ties in time. */
S[i] = exp(bZ[i]);
if (i > 1) then do;

do j = 1 to (i-1);
b1 = v1 * logbunA[j] + v2 * hgbA[j] + v3 * plateletA[j];
S[i] = S[i] + exp(b1);

end;
end;

end;

/* make correction to the risk set due to ties in time. */
do i = 1 to &n;

if(stopA[i] > i) then do;
v1 = beta1 + beta2 * timeA[i];
v2 = beta3 + beta4 * timeA[i];
v3 = beta5 + beta6 * timeA[i];
do j = (i+1) to stopA[i];

b1 = v1 * logbunA[j] + v2 * hgbA[j] + v3 * plateletA[j];
S[i] = S[i] + exp(b1);

end;
end;
jl = jl + vstatusA[i] * (bZ[i] - log(S[i]));

end;
model general(jl);

run;

The multiple ARRAY statements allocate array symbols that are used to store the parameters (beta),
the response (timeA), the covariates (vstatusA, logbunA, hgbA, plateletA, and stopA), and work space
(bZ and S). The bZ and S arrays store the regression term and the risk set term for every observation.
Programming statements in the BEGINCNST and ENDCNST statements input the response and
covariates from the data set to the arrays.

Using the same technique shown in the example “Time Independent Model” on page 3644, the next
DO-loop calculates the regression term and corresponding S for every observation, pretending that
there are no ties in time. This means that the risk set for observation i involves only observation 1

to i . The correction terms are added to the corresponding S[i] in the second DO-loop, conditional
on whether the stop variable is greater than the observation count itself. The symbol jl cumulatively
adds the log likelihood for the entire data set, and the MODEL statement specifies the joint log-
likelihood function.

The following statements run PROC COMPARE and show that the output data set outa contains
identical posterior samples as outi:

proc compare data=outi compare=outa;
ods select comparesummary;
var beta1-beta6;

run;

The results are not shown here.

3656 F Chapter 52: The MCMC Procedure (Experimental)

The following statements use PROC PHREG to fit the same time dependent Cox model:

proc phreg data=Myeloma;
ods select PostSummaries PostIntervals;
ods output posteriorsample = phout;
model Time*VStatus(0)=LogBUN z2 hgb z3 platelet z4;
z2 = Time*logbun;
z3 = Time*hgb;
z4 = Time*platelet;
bayes seed=1 nmc=10000;

run;

Coding is simpler than PROC MCMC. See Output 52.8.5 for posterior summary and interval statis-
tics:

Output 52.8.5 Summary Statistics on Cox Model with Time Dependent Explanatory Variables
and Ties in the Survival Time, Using PROC PHREG

Cox Model with Time Dependent Covariates

The PHREG Procedure

Bayesian Analysis

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

LogBUN 10000 3.2423 0.8311 2.6838 3.2445 3.7929
z2 10000 -0.1401 0.0482 -0.1723 -0.1391 -0.1069
HGB 10000 -0.0382 0.1009 -0.1067 -0.0385 0.0297
z3 10000 -0.00407 0.00363 -0.00652 -0.00404 -0.00162
Platelet 10000 0.3778 0.7524 -0.1500 0.3389 0.8701
z4 10000 -0.0419 0.0364 -0.0660 -0.0425 -0.0178

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

LogBUN 0.050 1.6059 4.8785 1.5925 4.8582
z2 0.050 -0.2361 -0.0494 -0.2354 -0.0492
HGB 0.050 -0.2343 0.1598 -0.2331 0.1603
z3 0.050 -0.0113 0.00297 -0.0109 0.00322
Platelet 0.050 -0.9966 1.9464 -1.1342 1.7968
z4 0.050 -0.1124 0.0296 -0.1142 0.0274

Output 52.8.6 shows a kernel density comparison plot that compares posterior marginal distributions
of all the beta parameters from the PROC MCMC run and the PROC PHREG run. The following
statements generate Output 52.8.6:

proc kde data=outi;
ods exclude all;
univar beta1 beta2 beta3 beta4 beta5 beta6 / out=m1 (drop=count);

run;
ods exclude none;

Example 52.8: Cox Models F 3657

%reshape(m1, mcmc, suffix1=, suffix2=md);

data phout;
set phout(drop = LogPost Iteration);
beta1 = LogBUN; beta2 = z2; beta3 = HGB;
beta4 = z3; beta5 = Platelet; beta6 = z4;
drop LogBUN HGB Platelet z2-z4;

run;

proc kde data=phout;
ods exclude all;
univar beta1 beta2 beta3 beta4 beta5 beta6 / out=m2 (drop=count);

run;
ods exclude none;

%reshape(m2, phreg, suffix1=p, suffix2=pd);

data all;
merge mcmc phreg;

run;

proc template;
define statgraph twobythree;

%macro plot;
begingraph;

layout lattice / rows=2 columns=3;
%do i = 1 %to 6;
layout overlay /yaxisopts=(label=" ");

seriesplot y=beta&i.md x=beta&i
/ connectorder=xaxis

lineattrs=(pattern=mediumdash color=blue)
legendlabel = "MCMC" name="MCMC";

seriesplot y=beta&i.pd x=beta&i.p
/ connectorder=xaxis lineattrs=(color=red)
legendlabel = "PHREG" name="PHREG";

endlayout;
%end;
Sidebar / align = bottom;

discretelegend "MCMC" "PHREG";
endsidebar;

endlayout;
endgraph;

%mend; %plot;
end;

run;

proc sgrender data=all template=twobythree;
title "Kernel Density Comparison";

run;

The macro %RESHAPE is defined in the example “Logistic Regression Random-Effects Model”
on page 3608.

3658 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.8.6 Comparing Estimates from PROC MCMC and PROC PHREG

Example 52.9: Normal Regression with Interval Censoring

You can use PROC MCMC to fit failure time data that can be right, left, or interval censored. To
illustrate, a normal regression model is used in this example.

Assume that you have the following simple regression model with no covariates:

y D �C ��

where y is a vector of response values (the failure times), � is the grand mean, � is an unknown
scale parameter, and � are errors from the standard normal distribution. Instead of observing yi

directly, you only observe a truncated value ti . If the true yi occurs after the censored time ti , it is
called right censoring. If yi occurs before the censored time, it is called left censoring. A failure
time yi can be censored at both ends, and this is called interval censoring. The likelihood for yi is
as follows:

p.yi j�/ D

8̂̂<̂
:̂

�.yi j�; �/ if yi is uncensored
S.tl;i j�/ if yi is right censored by tl;i

1 � S.tr;i j�/ if yi is left censored by tr;i

S.tl;i j�/ � S.tr;i j�/ if yi is interval censored by tl;i and tr;i

where S.�/ is the survival function, S.t/ D P r.T > t/.

Example 52.9: Normal Regression with Interval Censoring F 3659

Gentleman and Geyer (1994) uses the following data on cosmetic deterioration for early breast
cancer patients treated with radiotherapy:

title ’Normal Regression with Interval Censoring’;
data cosmetic;

label tl = ’Time to Event (Months)’;
input tl tr @@;
datalines;

45 . 6 10 . 7 46 . 46 . 7 16 17 . 7 14
37 44 . 8 4 11 15 . 11 15 22 . 46 . 46 .
25 37 46 . 26 40 46 . 27 34 36 44 46 . 36 48
37 . 40 . 17 25 46 . 11 18 38 . 5 12 37 .
. 5 18 . 24 . 36 . 5 11 19 35 17 25 24 .

32 . 33 . 19 26 37 . 34 . 36 .
;

The data consist of time interval endpoints (in months). Nonmissing equal endpoints (tl = tr) in-
dicates uncensoring; a nonmissing lower endpoint (tl ¤ .) and a missing upper endpoint (tr = .)
indicates right censoring; a missing lower endpoint (tl = .) and a nonmissing upper endpoint (tr¤ .)
indicates left censoring; and nonmissing unequal endpoints (tl¤ tr) indicates interval censoring.

With this data set, you can consider using proper but diffuse priors on both � and � , for example:

�.�/ / �.0; sd D 1000/

�.�/ / f�.0:001; iscale D 0:001/

where f� is the gamma density function.

The following SAS statements fit an interval censoring model and generate Output 52.9.1:

proc mcmc data=cosmetic outpost=postout seed=1 nmc=20000 missing=AC;
ods select PostSummaries PostIntervals;
parms mu 60 sigma 50;

prior mu ~ normal(0, sd=1000);
prior sigma ~ gamma(shape=0.001,iscale=0.001);

if (tl^=. and tr^=. and tl=tr) then
llike = logpdf(’normal’,tr,mu,sigma);

else if (tl^=. and tr=.) then
llike = logsdf(’normal’,tl,mu,sigma);

else if (tl=. and tr^=.) then
llike = logcdf(’normal’,tr,mu,sigma);

else
llike = log(sdf(’normal’,tl,mu,sigma) -

sdf(’normal’,tr,mu,sigma));

model general(llike);
run;

Because there are missing cells in the input data, you want to use the MISSING=AC option so that
PROC MCMC does not delete any observations that contain missing values. The IF-ELSE state-
ments distinguish different censoring cases for yi , according to the likelihood. The SAS functions

3660 F Chapter 52: The MCMC Procedure (Experimental)

LOGCDF, LOGSDF, LOGPDF, and SDF are useful here. The MODEL statement assigns llike as
the log likelihood to the response. The Markov chain appears to have converged in this example
(evidence not shown here), and the posterior estimates are shown in Output 52.9.1.

Output 52.9.1 Interval Censoring

Normal Regression with Interval Censoring

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

mu 20000 41.7807 5.7882 37.7220 41.3468 45.2249
sigma 20000 29.1122 6.0503 24.8774 28.2210 32.4250

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

mu 0.050 32.0499 54.6104 31.3604 53.6115
sigma 0.050 20.0889 43.1335 19.4041 41.6742

Example 52.10: Constrained Analysis

Conjoint analysis uses regression techniques to model consumer preferences and to estimate con-
sumer utility functions. A problem with conventional conjoint analysis is that sometimes your
estimated utilities do not make sense. Your results might suggest, for example, that the consumers
would prefer to spend more on a product than to spend less. With PROC MCMC, you can specify
constraints on the part-worth utilities (parameter estimates). Suppose that the consumer product
being analyzed is an off-road motorcycle. The relevant attributes are how large each motorcycle is
(less than 300cc, 301–550cc, and more than 551cc), how much it costs (less than $5000, $5001–
$6000, $6001–$7000, and more than $7000), whether or not it has an electric starter, whether or
not the engine is counter-balanced, and whether the bike is from Japan or Europe. The preference
variable is a ranking of the bikes. You could perform an ordinary conjoint analysis with PROC
TRANSREG (see Chapter 90, “The TRANSREG Procedure”) as follows:

title ’Constrained Conjoint Analysis’;

options validvarname=any;
proc format;

value sizef 1 = ’< 300cc’ 2 = ’300-550cc’ 3 = ’> 551cc’;
value pricef 1 = ’< $5000’ 2 = ’$5000 - $6000’

3 = ’$6001 - $7000’ 4 = ’> $7000’;
value startf 1 = ’Electric Start’ 2 = ’Kick Start’;
value balf 1 = ’Counter Balanced’ 2 = ’Unbalanced’;
value orif 1 = ’Japanese’ 2 = ’European’;

run;

Example 52.10: Constrained Analysis F 3661

data bikes;
input Size Price Start Balance Origin Rank @@;
format size sizef. price pricef. start startf.

balance balf. origin orif.;
datalines;

2 1 2 1 2 3 1 4 2 2 2 7 1 2 1 1 2 6
3 3 1 1 2 1 1 3 2 1 1 5 3 4 2 2 2 12
2 3 2 2 1 9 1 1 1 2 1 8 2 2 1 2 2 10
2 4 1 1 1 4 3 1 1 2 1 11 3 2 2 1 1 2
;

proc transreg data=bikes utilities cprefix=0 lprefix=0;
ods select Utilities;
model identity(rank / reflect) =

class(size price start balance origin / zero=sum);
output out=coded(drop=intercept) replace;

run;

The DATA step reads the experimental design and dependent variable Rank and assigns formats to
label the factor levels. PROC TRANSREG is run specifying UTILITIES, which requests a conjoint
analysis. The rank variable is reflected around its mean (1 ! 12, 2 ! 11, . . . , 12 ! 1) so that
in the analysis, larger part-worth utilities correspond to higher preference. The OUT=CODED
data set contains the reflected ranks and a binary coding of the factors that can be used in other
analyses. Refer to Kuhfeld (2004) for more information about conjoint analysis and coding with
PROC TRANSREG.

The Utilities table from the conjoint analysis is shown in Output 52.10.1. Notice the part-worth
utilities for price. The part-worth utility for < $5000 is 0.25. As price increases to the $5000–$6000
range, utility decreases to �0:5. Then as price increases to the $6001–$7000 range, part-worth
utility increases to 0.5. Finally, for the most expensive bikes, utility decreases again to �0:25. In
cases like this, you might want to impose constraints on the solution so that the part-worth utility
for price never increases as prices go up.

3662 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.10.1 Ordinary Conjoint Analysis by PROC TRANSREG

Constrained Conjoint Analysis

The TRANSREG Procedure

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 6.5000 0.95743 Intercept

< 300cc -0.0000 1.35401 0.000 Class.< 300cc
300-550cc -0.0000 1.35401 Class.300-550cc
> 551cc 0.0000 1.35401 Class.> 551cc

< $5000 0.2500 1.75891 13.333 Class.< $5000
$5000 - $6000 -0.5000 1.75891 Class.$5000 - $6000
$6001 - $7000 0.5000 1.75891 Class.$6001 - $7000
> $7000 -0.2500 1.75891 Class.> $7000

Electric Start -0.1250 1.01550 3.333 Class.Electric Start
Kick Start 0.1250 1.01550 Class.Kick Start

Counter Balanced 3.0000 1.01550 80.000 Class.Counter Balanced
Unbalanced -3.0000 1.01550 Class.Unbalanced

Japanese -0.1250 1.01550 3.333 Class.Japanese
European 0.1250 1.01550 Class.European

You could run PROC TRANSREG again, specifying monotonicity constraints on the part-worth
utilities for price:

proc transreg data=bikes utilities cprefix=0 lprefix=0;
ods select ConservUtilities;
model identity(rank / reflect) =

monotone(price / tstandard=center)
class(size start balance origin / zero=sum);

run;

The output from this PROC TRANSREG step is shown in Output 52.10.2.

Example 52.10: Constrained Analysis F 3663

Output 52.10.2 Constrained Conjoint Analysis by PROC TRANSREG

Constrained Conjoint Analysis

The TRANSREG Procedure

Utilities Table Based on Conservative Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 6.5000 0.97658 Intercept

Price -0.1581 . 7.143 Monotone(Price)
< $5000 0.2500 .
$5000 - $6000 0.0000 .
$6001 - $7000 0.0000 .
> $7000 -0.2500 .

< 300cc -0.0000 1.38109 0.000 Class.< 300cc
300-550cc 0.0000 1.38109 Class.300-550cc
> 551cc 0.0000 1.38109 Class.> 551cc

Electric Start -0.2083 1.00663 5.952 Class.Electric Start
Kick Start 0.2083 1.00663 Class.Kick Start

Counter Balanced 3.0000 0.97658 85.714 Class.Counter Balanced
Unbalanced -3.0000 0.97658 Class.Unbalanced

Japanese -0.0417 1.00663 1.190 Class.Japanese
European 0.0417 1.00663 Class.European

This monotonicity constraint is one of the few constraints on the part-worth utilities that you can
specify in PROC TRANSREG. In contrast, PROC MCMC allows you to specify any constraint that
can be written in the DATA step language. You can perform the restricted conjoint analysis with
PROC MCMC by using the coded factors that were output from PROC TRANSREG. The data set
is coded.

The likelihood is a simple regression model:

ranki � normal.x0
iˇ; �/

where rank is the response, the covariates are ‘< 300cc’n, ‘300-500cc’n, ‘< $5000’n, ‘$5000 - $6000’n,
‘$6001 - $7000’n, ‘Electric Start’n, ‘Counter Balanced’n, and Japanese. Note that OPTIONS VALID-
VARNAME=ANY allows PROC TRANSREG to create names for the coded variables with blanks
and special characters. That is why the name-literal notation (‘variable-name’n) is used for the
input data set variables.

Suppose that there are two constraints you want to put on some of the parameters: one is that
the parameters for ‘< $5000’n, ‘$5000 - $6000’n, and ‘$6001 - $7000’n decrease in order, and the
other is that the parameter for ‘Counter Balanced’n is strictly positive. You can consider a truncated
multivariate normal prior as follows:

�
�
ˇ‘< $5000’n; ˇ‘$5000 - $6000’n; ˇ‘$6001 - $7000’n; ˇ‘Counter Balanced’n

�
� MVN.0; �I/

3664 F Chapter 52: The MCMC Procedure (Experimental)

with the following set of constraints:

ˇ‘< $5000’n > ˇ‘$5000 - $6000’n > ˇ‘$6001 - $7000’n > 0

ˇ‘Counter Balanced’n > 0

The condition that ˇ‘$6001 - $7000’n > 0 reflects an implied constraint that, by definition, 0 is the
utility for the highest price range, > $7000, which is the reference level for the binary coded price
variable. The following statements fit the desired model:

proc mcmc data=coded outpost=bikesout ntu=3000 nmc=50000 thin=10
seed=448;

ods select PostSummaries;
array sigma[4,4] sigma1-sigma16;
array mu[4] mu1-mu4;

begincnst;
call identity(sigma);
call mult(sigma, 100, sigma);
call zeromatrix(mu);
rc = logmpdfsetsq(’v’, of sigma1-sigma16);

endcnst;

parms intercept pw300cc pw300_550cc pwElectricStart pwJapanese ltau 1;
parms pw5000 0.3 pw5000_6000 0.2 pw6001_7000 0.1 pwCounterBalanced 1;

beginprior;
prior intercept pw300: pwE: pwJ: ~ normal(0, var=100);
if (pw5000 >= pw5000_6000 & pw5000_6000 >= pw6001_7000 &

pw6001_7000 >= 0 & pwCounterBalanced > 0) then
lp = logmpdfnormal(of mu1-mu4, pw5000, pw5000_6000,

pw6001_7000, pwCounterBalanced, ’v’);
else

lp = .;
prior pw5000 pw5000_6000 pw6001_7000 pwC: ~ general(lp);
prior ltau ~ egamma(0.001, scale=1000);
tau = exp(ltau);
endprior;

mean = intercept +
pw300cc * ’< 300cc’n +
pw300_550cc * ’300-550cc’n +
pw5000 * ’< $5000’n +
pw5000_6000 * ’$5000 - $6000’n +
pw6001_7000 * ’$6001 - $7000’n +
pwElectricStart * ’Electric Start’n +
pwCounterBalanced * ’Counter Balanced’n +
pwJapanese * Japanese;

model rank ~ normal(mean, prec=tau);
run;

data _null_;
rc = logmpdffree();

run;

Example 52.10: Constrained Analysis F 3665

The two ARRAY statements allocate a 4 � 4 dimensional array for the prior covariance and an
array of size 4 for the prior means. In the BEGINCNST and ENDCNST statements, the CALL
IDENTITY function sets sigma to be an identity matrix; the CALL MULT function sets sigma’s
diagonal elements to be 100 (the diagonal variance terms); the CALL ZEROMATRIX function sets
mu to be a vector of zeros (the prior means); and the LOGMPDFSETSQ function sets up sigma to
be called in a multivariate normal density function later. For matrix functions in PROC MCMC, see
the section “Matrix Functions in PROC MCMC” on page 3529. For multivariate density functions,
see the section “Multivariate Density Functions” on page 3544. It is important to note that if you
used the LOGMPDFSET or the LOGMPDFSETSQ functions to set up covariance matrix, you must
free the memory allocated by these functions after you exit PROC MCMC. To free the memory, use
the function LOGMPDFFREE.

There are two PARMS statements, with each of them naming a block of parameters. The first
PARMS statement blocks the following: the intercept, the two size parameters, the one start-type
parameter, the one origin parameter, and the log of the precision. The second PARMS statement
blocks the three price parameters and the one balance parameter, parameters that have the constraint
multivariate normal prior. The second PARMS statement also specifies initial values for the param-
eter estimates. The initial values reflect the constraints on these parameters. The initial part-worth
utilities all decrease from 0.3 to 0.2 to 0.1 to 0.0 (for the implicit reference level) as the prices in-
crease. Also, the initial part-worth utility for the counter-balanced engine is set to a positive value,
1.

In the PRIOR statements, regression coefficients without constraints are given an independent nor-
mal prior with mean at 0 and variance of 100. The next IF-ELSE construction imposes the con-
straints. When these constraints are met, pw5000, pw5000_6000, pw6001_7000, pwCounterBalanced
are jointly distributed as a multivariate normal prior with mean mu and covariance sigma (as defined
via the symbol ‘v’ in the BEGINCNST and ENDCNST statements). Otherwise, the prior is not
defined and lp is assigned a missing value.

The parameter ltau is given an egamma prior. It is an equivalent prior to placing a gamma prior,
with the same configuration, on tau D exp.ltau/. For the definition of the egamma distribution, see
the section “Standard Distributions” on page 3529. This transformation often improves mixing (see
“Example 52.4: Nonlinear Poisson Regression Models” on page 3599 and “Example 52.12: Using
a Transformation to Improve Mixing” on page 3677). The next assignment statement transforms
ltau back to tau.

The model specification is linear. The mean is comprised of an intercept and the sum of terms like
pw300cc * ‘< 300cc’n, which is a parameter times an input data set variable. The MODEL statement
specifies that the linear model for rank is normally distributed with mean mean and precision tau.

After the PROC MCMC run, you must run the memory clean up function LOGMPDFFREE, which
should produce the following note in the log file:

NOTE: The matrix - v - has been deleted.

The MCMC results are shown in Output 52.10.3.

3666 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.10.3 MCMC Results

Constrained Conjoint Analysis

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

intercept 5000 2.2052 2.6285 0.8089 2.3658 3.8732
pw300cc 5000 0.0780 2.5670 -1.4062 0.0717 1.5850
pw300_550cc 5000 -0.0173 2.5378 -1.5136 -0.00275 1.4536
pwElectricStart 5000 -1.2175 2.1805 -2.4933 -1.1041 0.1410
pwJapanese 5000 -0.4212 2.1485 -1.6575 -0.4102 0.7909
ltau 5000 -2.4440 0.7293 -2.9024 -2.3787 -1.9177
pw5000 5000 4.3724 2.4962 2.6418 3.9163 5.5202
pw5000_6000 5000 2.6649 1.8227 1.3878 2.2894 3.5162
pw6001_7000 5000 1.4880 1.3303 0.5077 1.1389 2.0849
pwCounterBalanced 5000 5.9056 2.0591 4.6440 5.9033 7.1036

The estimates of the part-worth utility for the price categories are ordered as expected. This agrees
with the intuition that there is a higher preference for a less expensive motor bike when all other
things are equal, and that is what you see when you look at the estimated posterior means for the
price part-worths. The estimated standard deviations of the price part-worths in this model are
of approximately the same order of magnitude as the posterior means. This indicates that the part-
worth utilities for this subject are not significantly far from each other, and that this subject’s ranking
of the options was not significantly influenced by the difference in price.

One advantage of Bayesian analysis is that you can incorporate prior information in the data anal-
ysis. Constraints on the parameter space are one possible source of information that you might
have before you examine the data. This example shows that it can easily be accomplished in PROC
MCMC.

Example 52.11: Implement a New Sampling Algorithm

This example illustrates using the UDS statement to implement a new Markov chain sampler. The
algorithm demonstrated here is proposed by Holmes and Held (2006), hereafter referred to as HH.
They presented a Gibbs sampling algorithm for generating draws from the posterior distribution of
the parameters in a probit regression model. The notation follows closely to HH.

Example 52.11: Implement a New Sampling Algorithm F 3667

The data used here is the remission data set from a PROC LOGISTIC example:

title ’Implement a New Sampling Algorithm’;
data inputdata;

input remiss cell smear infil li blast temp;
ind = _n_;
label remiss=’Complete Remission’;
datalines;
1 0.8 0.83 0.66 1.9 1.1 0.996

... more lines ...

0 1 0.73 0.73 0.7 0.398 0.986
;

The variable remiss is the cancer remission indicator variable with a value of 1 for remission and a
value of 0 for nonremission. There are six explanatory variables: cell, smear, infil, li, blast, and temp.
These variables are the risk factors thought to be related to cancer remission. The binary regression
model is as follows:

remissi � binary.pi /

where the covariates are linked to pi through a probit transformation:

probit.pi / D x0ˇ

ˇ are the regression coefficients and x0 the explanatory variables. Suppose that you want to use
independent normal priors on the regression coefficients:

ˇi � normal.0; var D 25/

Fitting a logistic model with PROC MCMC is straightforward. You can use the following state-
ments:

proc mcmc data=inputdata nmc=100000 propcov=quanew seed=17
outpost=mcmcout;

ods select PostSummaries ess;
parms beta0-beta6;
prior beta: ~ normal(0,var=25);
mu = beta0 + beta1*cell + beta2*smear +

beta3*infil + beta4*li + beta5*blast + beta6*temp;
p = cdf(’normal’, mu, 0, 1);
model remiss ~ bern(p);

run;

The expression mu is the regression mean, and the CDF function links mu to the probability of
remission p in the binary likelihood.

The summary statistics and effective sample sizes tables are shown in Output 52.11.1. There are
high autocorrelations among the posterior samples, and efficiency is relatively low. The correlation
time is reduced only after a large amount of thinning.

3668 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.11.1 Random Walk Metropolis

Implement a New Sampling Algorithm

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

beta0 100000 -2.0531 3.8299 -4.6418 -2.0354 0.5638
beta1 100000 2.6300 2.8270 0.6563 2.5272 4.4846
beta2 100000 -0.8426 3.2108 -3.0270 -0.8263 1.3429
beta3 100000 1.5933 3.5491 -0.7993 1.6190 3.9695
beta4 100000 2.0390 0.8796 1.4312 2.0028 2.6194
beta5 100000 -0.3184 0.9543 -0.9613 -0.3123 0.3418
beta6 100000 -3.2611 3.7806 -5.8050 -3.2736 -0.7243

Implement a New Sampling Algorithm

The MCMC Procedure

Effective Sample Sizes

Correlation
Parameter ESS Time Efficiency

beta0 4280.8 23.3602 0.0428
beta1 4496.5 22.2398 0.0450
beta2 3434.1 29.1199 0.0343
beta3 3856.6 25.9294 0.0386
beta4 3659.7 27.3245 0.0366
beta5 3229.9 30.9610 0.0323
beta6 4430.7 22.5696 0.0443

As an alternative to the random walk Metropolis, you can use the Gibbs algorithm to sample from
the posterior distribution. The Gibbs algorithm is described in the section “Gibbs Sampler” on
page 154. While the Gibbs algorithm generally applies to a wide range of statistical models, the ac-
tual implementation can be problem-specific. In this example, performing a Gibbs sampler involves
introducing a class of auxiliary variables (also known as latent variables). You first reformulate the
model by adding a zi for each observation in the data set:

yi D

�
1 if zi > 0

0 otherwise

zi D x0
iˇ C �i

� � normal.0; 1/

ˇ � �.ˇ/

If ˇ has a normal prior, such as �.ˇ/ D N.b; v/, you can work out a closed form solution to the
full conditional distribution of ˇ given the data and the latent variables zi . The full conditional

Example 52.11: Implement a New Sampling Algorithm F 3669

distribution is also a multivariate normal, due to the conjugacy of the problem. See the section
“Conjugate Priors” on page 146. The formula is shown here:

ˇjz; x � normal.B; V/

B D V..v/�1bC x0z/

V D .v�1
C x0x/�1

The advantage of creating the latent variables is that the full conditional distribution of z is also easy
to work with. The distribution is a truncated normal distribution:

zi jˇ; xi ; yi �

�
normal.xiˇ; 1/I.zi > 0/ if yi D 1

normal.xiˇ; 1/I.zi � 0/ otherwise

You can sample ˇ and z iteratively, by drawing ˇ given z and vice verse. HH point out that a
high degree of correlation could exist between ˇ and z, and it makes this iterative way of sampling
inefficient. As an improvement, HH proposed an algorithm that samples ˇ and z jointly. At each
iteration, you sample zi from the posterior marginal distribution (this is the distribution that is
conditional only on the data and not on any parameters) and then sample ˇ from the same posterior
full conditional distribution as described previously:

1. Sample zi from its posterior marginal distribution:

zi jz�i ; yi �

�
normal.mi ; vi /I.zi > 0/ if yi D 1

normal.mi ; vi /I.zi � 0/ otherwise
mi D xi B � wi .zi � xi B/

vi D 1C wi

wi D hi=.1 � hi /

hi D .H/i i; H D xVx0

2. Sample ˇ from the same posterior full conditional distribution described previously.

For a detailed description of each of the conditional terms, refer to the original paper.

PROC MCMC cannot sample from the probit model by using this sampling scheme but you can
implement the algorithm by using the UDS statement. To sample zi from its marginal, you need
a function that draws random variables from a truncated normal distribution. The functions, RLT-
NORM and RRTNORM, generate left- and right-truncated normal variates, respectively. The algo-
rithm is taken from Robert (1995).

3670 F Chapter 52: The MCMC Procedure (Experimental)

The functions are written in PROC FCMP (see the FCMP Procedure in the Base SAS Procedures
Guide):

proc fcmp outlib=sasuser.funcs.uds;
/**/
/* Generate left-truncated normal variate */
/**/
function rltnorm(mu,sig,lwr);
if lwr<mu then do;

ans = lwr-1;
do while(ans<lwr);

ans = rand(’normal’,mu,sig);
end;

end;
else do;

mul = (lwr-mu)/sig;
alpha = (mul + sqrt(mul**2 + 4))/2;
accept=0;
do while(accept=0);

z = mul + rand(’exponential’)/alpha;
lrho = -(z-alpha)**2/2;
u = rand(’uniform’);
lu = log(u);
if lu <= lrho then accept=1;

end;
ans = sig*z + mu;

end;
return(ans);
endsub;

/***/
/* Generate right-truncated normal variate */
/***/
function rrtnorm(mu,sig,uppr);
ans = 2*mu - rltnorm(mu,sig, 2*mu-uppr);
return(ans);
endsub;

run;

The function call to RLTNORM(mu,sig,lwr) generates a random number from the left-truncated
normal distribution:

� � normal.mu; sd D sig/I.� > lwr/

Similarly, the function call to RRTNORM(mu,sig,uppr) generates a random number from the right-
truncated normal distribution:

� � normal.mu; sd D sig/I.� < lwr/

These functions are used to generate the latent variables zi .

Example 52.11: Implement a New Sampling Algorithm F 3671

Using the algorithm A1 from the HH paper as an example, Output 52.37 lists a line-by-line imple-
mentation with the PROC MCMC coding style. The table is broken into three portions: set up the
constants, initialize the parameters, and sample one draw from the posterior distribution. The left
column of the table is identical to the A1 algorithm stated in the appendix of HH. The right column
of the table lists SAS statements.

Table 52.37 Holmes and Held (2006), algorithm A1. Side-by-Side Comparison to SAS

Define Constants In the BEGINCNST/ENDCNST Statements

V .XT X C v�1/�1

call transpose(x,xt); /* xt = transpose(x) */

call mult(xt,x,xtx);

call inv(v,v); /* v = inverse(v) */

call addmatrix(xtx,v,xtx); /* xtx = xtx+v */

call inv(xtx,v); /* v = inverse(xtx) */

L Chol.V / call chol(v,L);

S VXT call mult(v,xt,S);

FOR j D 1 to n

HŒj � XŒj; �SŒ; j �

W Œj � HŒj �=.1 �HŒj �/

QŒj � W Œj �C 1

END

call mult(x,S,HatMat);

do j=1 to &n;

H = HatMat[j,j];

W[j] = H/(1-H);

sQ[j] = sqrt(W[j] + 1); /* use s.d. in SAS */

end;

Initial Values In the BEGINCNST/ENDCNST Statements

Z � normal.0; In/Ind.Y; Z/

do j=1 to &n;

if(y[j]=1) then

Z[j] = rltnorm(0,1,0);

else

Z[j] = rrtnorm(0,1,0);

end;

B SZ call mult(S,Z,B);

3672 F Chapter 52: The MCMC Procedure (Experimental)

Table 52.37 (continued)

Draw One Sample Subroutine HH

FOR j D 1 to n

zold ZŒj �

m XŒj; �B

m m �W Œj �.ZŒj � �m/

ZŒj � � normal.m; QŒj �/Ind.Y Œj �; ZŒj �/

B B C .ZŒj � � zold /SŒ; j �

END
T � normal.0; Ip/

ˇŒ; i � B C LT

do j=1 to &n;

zold = Z[j];

m = 0;

do k= 1 to &p;

m = m + X[j,k] * B[k];

end;

m = m - W[j]*(Z[j]-m);

if (y[j]=1) then

Z[j] = rltnorm(m,sQ[j],0);

else

Z[j] = rrtnorm(m,sQ[j],0);

diff = Z[j] - zold;

do k= 1 to &p;

B[k] = B[k] + diff * S[k,j];

end;

end;

do j = 1 to &p;

T[j] = rand(’normal’);

end;

call mult(L,T,T);

call addmatrix(B,T,beta);

The following statements define the subroutine HH (algorithm A1) in PROC FCMP and store it in
library sasuser.funcs.uds:

/* define the HH algorithm in PROC FCMP. */
%let n = 27;
%let p = 7;
options cmplib=sasuser.funcs;
proc fcmp outlib=sasuser.funcs.uds;

subroutine HH(beta[*],Z[*],B[*],x[*,*],y[*],W[*],sQ[*],S[*,*],L[*,*]);
outargs beta, Z, B;
array T[&p] / nosym;
do j=1 to &n;

zold = Z[j];
m = 0;
do k = 1 to &p;

m = m + X[j,k] * B[k];
end;
m = m - W[j]*(Z[j]-m);
if (y[j]=1) then

Z[j] = rltnorm(m,sQ[j],0);
else

Z[j] = rrtnorm(m,sQ[j],0);
diff = Z[j] - zold;
do k = 1 to &p;

Example 52.11: Implement a New Sampling Algorithm F 3673

B[k] = B[k] + diff * S[k,j];
end;

end;
do j=1 to &p;

T[j] = rand(’normal’);
end;
call mult(L,T,T);
call addmatrix(B,T,beta);
endsub;

run;

Note that one-dimensional array arguments take the form of name[*] and two-dimensional array
arguments take the form of name[*,*]. Three variables, beta, Z, and B, are OUTARGS variables,
making them the only arguments that can be modified in the subroutine. For the UDS statement to
work, all OUTARGS variables have to be model parameters. Technically, only beta and Z are model
parameters, and B is not. The reason that B is declared as an OUTARGS is because the array has
to be updated throughout the simulation, and this is the only way to modify its values. The input
array x contains all of the explanatory variables, and the array y stores the response. The rest of the
input arrays, W, sQ, S, and L, store constants as detailed in the algorithm. The following statements
illustrate how to fit a Bayesian probit model by using the HH algorithm:

options cmplib=sasuser.funcs;

proc mcmc data=inputdata nmc=5000 monitor=(beta) outpost=hhout;
ods select PostSummaries ess;
array xtx[&p,&p]; /* work space */
array xt[&p,&n]; /* work space */
array v[&p,&p]; /* work space */
array HatMat[&n,&n]; /* work space */
array S[&p,&n]; /* V * Xt */
array W[&n];
array y[&n]; /* y stores the response variable */
array x[&n,&p]; /* x stores the explanatory variables */
array sQ[&n]; /* sqrt of the diagonal elements of Q */
array B[&p]; /* conditional mean of beta */
array L[&p,&p]; /* Cholesky decomp of conditional cov */
array Z[&n]; /* latent variables Z */
array beta[&p] beta0-beta6; /* regression coefficients */

begincnst;
y[ind] = remiss;
x[ind,1] = 1;
x[ind,2] = cell;
x[ind,3] = smear;
x[ind,4] = infil;
x[ind,5] = li;
x[ind,6] = blast;
x[ind,7] = temp;
if ind=&n then do;

call identity(v);
call mult(v, 25, v);
call transpose(x,xt);
call mult(xt,x,xtx);
call inv(v,v);

3674 F Chapter 52: The MCMC Procedure (Experimental)

call addmatrix(xtx,v,xtx);
call inv(xtx,v);
call chol(v,L);
call mult(v,xt,S);
call mult(x,S,HatMat);
do j=1 to &n;

H = HatMat[j,j];
W[j] = H/(1-H);
sQ[j] = sqrt(W[j] + 1);

end;

do j=1 to &n;
if(y[j]=1) then

Z[j] = rltnorm(0,1,0);
else

Z[j] = rrtnorm(0,1,0);
end;
call mult(S,Z,B);

end;
call streaminit(83101);

endcnst;

uds HH(beta,Z,B,x,y,W,sQ,S,L);
parms z: beta: 0 B1-B7 / uds;
prior z: beta: B1-B7 ~ general(0);

model general(0);
run;

The options statement names the catalog of FCMP subroutines to use. The cmplib library stores
the subroutine HH. You do not need to set a random number seed in the PROC MCMC statement
because all random numbers are generated from the HH subroutine. The initialization of the rand
function is controlled by the streaminit function, which is called in the program with a seed value of
83101.

A number of arrays are allocated. Some of them, such as xtx, xt, v, and HatMat, are work space that
is used to construct constant arrays. Other arrays are used in the subroutine sampling. Explanations
of the arrays are shown in comments in the statements.

In the BEGINCNST and ENDCNST statements, you read data set variables in the arrays x and y.
You want to hold off on any array calculations until both arrays are filled. When the condition ind=&n
is satisfied, you calculate all the constant terms and assign initial values to Z and B. For listings of
all array functions and their definitions, see the section “Matrix Functions in PROC MCMC” on
page 3529.

The UDS statement declares that the subroutine HH is used to sample the parameters beta, Z, and
B. You also specify the UDS option in the PARMS statement. Because all parameters are updated
through the UDS interface, there is no need to declare the actual form of the prior for any of the
parameters. Each parameter is declared to have a prior of general(0). Similarly, it is not necessary to
declare the actual form of the likelihood. The MODEL statement also takes a flat likelihood of the
form general(0).

Example 52.11: Implement a New Sampling Algorithm F 3675

Summary statistics and effective sample sizes are shown in Output 52.11.2. The posterior estimates
are very close to what was shown in Output 52.11.1. The HH algorithm produces samples that are
much less correlated.

Output 52.11.2 Holms and Held

Implement a New Sampling Algorithm

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

beta0 5000 -2.0567 3.8260 -4.6537 -2.0777 0.5495
beta1 5000 2.7254 2.8079 0.7812 2.6678 4.5370
beta2 5000 -0.8318 3.2017 -2.9987 -0.8626 1.2918
beta3 5000 1.6319 3.5108 -0.7481 1.6636 4.0302
beta4 5000 2.0567 0.8800 1.4400 2.0266 2.6229
beta5 5000 -0.3473 0.9490 -0.9737 -0.3267 0.2752
beta6 5000 -3.3787 3.7991 -5.9089 -3.3504 -0.7928

Implement a New Sampling Algorithm

The MCMC Procedure

Effective Sample Sizes

Correlation
Parameter ESS Time Efficiency

beta0 3651.3 1.3694 0.7303
beta1 1563.8 3.1973 0.3128
beta2 5005.9 0.9988 1.0012
beta3 4853.2 1.0302 0.9706
beta4 2611.2 1.9148 0.5222
beta5 3049.2 1.6398 0.6098
beta6 3503.2 1.4273 0.7006

3676 F Chapter 52: The MCMC Procedure (Experimental)

The following statements generate the kernel density comparison plots shown in Output 52.11.3:
proc kde data=mcmcout;

ods exclude all;
univar beta0 beta1 beta2 beta3 beta4 beta5 beta6 / out=m1(drop=count);

run;
ods exclude none;

%reshape(m1, mcmc, suffix1=, suffix2=md);

proc kde data=hhout(drop = LogPost logprior loglike Iteration z1-z27 b1-b7);;
ods exclude all;
univar beta0 beta1 beta2 beta3 beta4 beta5 beta6

/ out=m2 (drop=count);
run;
ods exclude none;

%reshape(m2, hh, suffix1=p, suffix2=pd);

data all;
merge mcmc hh;

run;

proc template;
define statgraph threebythree;

%macro plot;
begingraph;

layout lattice / rows=3 columns=3;
%do i = 0 %to 6;

layout overlay /yaxisopts=(label=" ");
seriesplot y=beta&i.md x=beta&i

/ connectorder=xaxis
lineattrs=(pattern=mediumdash color=blue)

legendlabel = "PROC MCMC" name="MCMC";
seriesplot y=beta&i.pd x=beta&i.p

/ connectorder=xaxis lineattrs=(color=red)
legendlabel = "Holmes and Held" name="HH";

endlayout;
%end;
Sidebar / align = bottom;

discretelegend "MCMC" "HH";
endsidebar;

endlayout;
endgraph;

%mend; %plot;
end;

run;

proc sgrender data=all template=threebythree;
title "Kernel Density Comparison";

run;

The macro %RESHAPE is defined in the example “Logistic Regression Random-Effects Model”
on page 3608.

Example 52.12: Using a Transformation to Improve Mixing F 3677

Output 52.11.3 Kernel Density Comparison

It is interesting to compare the two approaches of fitting a generalized linear model. The ran-
dom walk Metropolis on a seven-dimensional parameter space produces autocorrelations that are
substantially higher than the HH algorithm. A much longer chain is needed to produce roughly
equivalent effective sample sizes. On the other hand, the Metropolis algorithm is faster to run. The
running time of these two examples is roughly the same, with the random walk Metropolis with
100000 samples, a 20-fold increase over that in the HH algorithm example. The speed difference
can be attributed to a number of factors, ranging from the implementation of the software and the
overhead cost of calling PROC FCMP subroutine and functions. In addition, the HH algorithm
requires more parameters by creating an equal number of latent variables as the sample size. Sam-
pling more parameters takes time. A larger number of parameters also increases the challenge in
convergence diagnostics, because it is imperative to have convergence in all parameters before you
make valid posterior inferences. Finally, you might feel that coding in PROC MCMC is easier.
However, this really is not a fair comparison to make here. Writing a Metropolis algorithm from
scratch would have probably taken just as much, if not more, effort than the HH algorithm.

Example 52.12: Using a Transformation to Improve Mixing

Proper transformations of parameters can often improve the mixing in PROC MCMC. You already
saw this in “Example 52.4: Nonlinear Poisson Regression Models” on page 3599, which sampled
using the log scale of parameters that priors that are strictly positive, such as the gamma priors.

3678 F Chapter 52: The MCMC Procedure (Experimental)

This example shows another useful transformation: the logit transformation on parameters that take
a uniform prior on [0, 1].

The data set is taken from Sharples (1990). It is used in Chaloner and Brant (1988) and Chaloner
(1994) to identify outliers in the data set in a two-level hierarchical model. Congdon (2003) also
uses this data set to demonstrates the same technique. This example uses the data set to illustrate
how mixing can be improved using transformation and does not address the question of outlier
detection as in those papers. The following statements create the data set:

title ’Using Transformation to Improve Mixing’;
data inputdata;

input nobs grp y @@;
ind = _n_;
datalines;

1 1 24.80 2 1 26.90 3 1 26.65
4 1 30.93 5 1 33.77 6 1 63.31
1 2 23.96 2 2 28.92 3 2 28.19
4 2 26.16 5 2 21.34 6 2 29.46
1 3 18.30 2 3 23.67 3 3 14.47
4 3 24.45 5 3 24.89 6 3 28.95
1 4 51.42 2 4 27.97 3 4 24.76
4 4 26.67 5 4 17.58 6 4 24.29
1 5 34.12 2 5 46.87 3 5 58.59
4 5 38.11 5 5 47.59 6 5 44.67
;

There are five groups (grp, j D 1; � � � ; 5) with six observations (nobs, i D 1; � � � ; 6) in each. The
two-level hierarchical model is specified as follows:

yij � normal.�j ; prec D �w/

�j � normal.�; prec D �b/

� � normal.0; prec D 1e � 6/

� � gamma.0:001; iscale D 0:001/

p � uniform.0; 1/

with the precision parameters related to each other in the following way:

�b D �=p

�w D �b � �

The total number of parameters in this model is eight: �1; � � � ; �5; �; � , and p.

Example 52.12: Using a Transformation to Improve Mixing F 3679

The following statements fit the model:
ods graphics on;
proc mcmc data=inputdata nmc=50000 thin=10 outpost=m1 seed=17

plot=trace;
ods select ess tracepanel;
array theta[5];

parms theta:;
parms p tau;
parms mu ;

beginprior;
hyper p ~ uniform(0,1);
hyper tau ~ gamma(shape=0.001,iscale=0.001);
hyper mu ~ normal(0,prec=0.00000001);
taub = tau/p;
prior theta: ~ normal(mu,prec=taub);
tauw = taub-tau;
endprior;

model y ~ normal(theta[grp],prec=tauw);
run;

The ods select statement displays the effective sample size table and the trace plots. The ods

graphics on statement requests ODS Graphics. The PROC MCMC statement specifies the usual
options for the MCMC run and produces trace plots (PLOTS=TRACE). The ARRAY statement
allocates an array of size 5 for theta. The three PARMS statements put parameters in three different
blocks. The remaining statements specify the hyperprior, prior, and likelihood for the data, as
described previously. The resulting trace plots are shown in Output 52.12.1, and the effective sample
sizes table is shown in Output 52.12.2.

3680 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.12.1 Trace Plots

Example 52.12: Using a Transformation to Improve Mixing F 3681

Output 52.12.1 continued

Output 52.12.2 Bad Effective Sample Sizes

Using Transformation to Improve Mixing

The MCMC Procedure

Effective Sample Sizes

Correlation
Parameter ESS Time Efficiency

theta1 2207.5 2.2650 0.4415
theta2 1713.5 2.9180 0.3427
theta3 1458.5 3.4281 0.2917
theta4 1904.4 2.6255 0.3809
theta5 585.9 8.5345 0.1172
p 77.2 64.7758 0.0154
tau 140.8 35.5052 0.0282
mu 3340.3 1.4969 0.6681

The trace plots show that most parameters have relatively good mixing. Two exceptions appear to
be p and � . The trace plot of p shows a slow periodic movement. The � parameter does not have
good mixing either. When the values are close to zero, the chain stands there for long periods of
time. An inspection of the effective sample sizes table reveals the same conclusion: p and � have

3682 F Chapter 52: The MCMC Procedure (Experimental)

much smaller ESSs than the rest of the parameters.

A scatter plot of the posterior samples of p and � reveals why mixing is bad in these two dimensions.
The following statements generate the scatter plot in Output 52.12.3:

title ’Scatter Plot of Parameters on Original Scales’;

proc sgplot data=m1;
yaxis label = ’p’;
xaxis label = ’tau’ values=(0 to 0.4 by 0.1);
scatter x = tau y = p;

run;

Output 52.12.3 Scatter Plot of � versus p

The two parameters clearly have a nonlinear relationship. It is not surprising that the Metropolis
algorithm does not work well here. The algorithm is designed for cases where the parameters are
linearly related with each other.

Instead of sampling on � , you can sample on the log of � . The formulation

�.�/ / f�.0:001; iscale D 0:001/

�.log.�// / fe�.0:001; iscale D 0:001/

where f� and fe� are density functions for the gamma and egamma distributions. See the section
“Standard Distributions” on page 3529 for the definitions of the distributions. In addition, you can

Example 52.12: Using a Transformation to Improve Mixing F 3683

sample on the logit of p. The formulation

�.p/ / funiform.0; 1/

is equivalent to the following transformation:

lgp D logit.p/

�.lgp/ / exp.�lgp/.1C exp.�lgp//�2

The following statements fit the same model by using transformed parameters:
proc mcmc data=inputdata nmc=50000 thin=10 outpost=m2 seed=17

monitor=(tau p mu theta) plot=trace;
ods select ess tracepanel;
array theta[5];

parms theta:;
parms lgp 0 ltau ;
parms mu ;

beginprior;
prior ltau ~ egamma(shape=0.001,iscale=0.001);
lp = -lgp - 2*log(1+exp(-lgp));
prior lgp ~ general(lp);
tau = exp(ltau);
p = (1+exp(-lgp))**-1;
prior mu ~ normal(0,prec=0.00000001);
taub = tau/p;
prior theta: ~ normal(mu,prec=taub);
tauw = taub-tau;
endprior;

model y ~ normal(theta[grp],prec=tauw);
run;
ods graphics off;

The variable lgp is the logit transformation of p, and ltau is the log transformation of � . The prior
for ltau is egamma. The lp assignment statement evaluates the log density of �.lgp/. The tau and p
assignment statements transform the parameters back to their original scales. The prior distributions
for mu, theta, and the log likelihood in the MODEL statement remain unchanged. Trace plots
(Output 52.12.4) and effective sample size (Output 52.12.5) both show significant improvements in
the mixing for both p and � .

3684 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.12.4 Trace Plots after Transformation

Example 52.12: Using a Transformation to Improve Mixing F 3685

Output 52.12.4 continued

Output 52.12.5 Effective Sample Sizes after Transformation

Scatter Plot of Parameters on Original Scales

The MCMC Procedure

Effective Sample Sizes

Correlation
Parameter ESS Time Efficiency

tau 1916.5 2.6089 0.3833
p 2468.7 2.0253 0.4937
mu 3273.9 1.5272 0.6548
theta1 2184.5 2.2888 0.4369
theta2 1938.1 2.5799 0.3876
theta3 1947.1 2.5679 0.3894
theta4 2115.8 2.3632 0.4232
theta5 2152.0 2.3235 0.4304

3686 F Chapter 52: The MCMC Procedure (Experimental)

The following statements generate Output 52.12.6 and Output 52.12.7:
title ’Scatter Plot of Parameters on Transformed Scales’;

proc sgplot data=m2;
yaxis label = ’logit(p)’;
xaxis label = ’log(tau)’;
scatter x = ltau y = lgp;

run;

title ’Scatter Plot of Parameters on Original Scales’;

proc sgplot data=m2;
yaxis label = ’p’;
xaxis label = ’tau’;
scatter x = tau y = p;

run;

Output 52.12.6 Scatter Plot of log.�/ versus logit.p/, After Transformation

Example 52.13: Gelman-Rubin Diagnostics F 3687

Output 52.12.7 Scatter Plot of � versus p, After Transformation

The scatter plot of log.�/ versus logit.p/ shows a linear relationship between the two transformed
parameters, and this explains the improvement in mixing. In addition, the transformations also help
the Markov chain better explore in the original parameter space. Output 52.12.7 shows a scatter
plot of � versus p. The plot is similar to Output 52.12.3. However, note that tau has a far longer tail
in Output 52.12.7, extending all the way to 0.4 as opposed to 0.15 in Output 52.12.3. This means
that the second Markov chain can explore this dimension of the parameter more efficiently, and as
a result, you are able to draw more precise inference with an equal number of simulations.

Example 52.13: Gelman-Rubin Diagnostics

PROC MCMC does not have the Gelman-Rubin test (see the section “Gelman and Rubin Diagnos-
tics” on page 161) as a part of its diagnostics. The Gelman-Rubin diagnostics rely on parallel chains
to test whether they all converge to the same posterior distribution. This example demonstrates how
you can carry out this convergence test. The regression model from the section “Simple Linear
Regression” on page 3478 is used. The model has three parameters: ˇ0 and ˇ1 are the regression
coefficients, and �2 is the variance of the error distribution.

3688 F Chapter 52: The MCMC Procedure (Experimental)

The following statements generate the data set:

title ’Simple Linear Regression, Gelman-Rubin Diagnostics’;

data Class;
input Name $ Height Weight @@;
datalines;

Alfred 69.0 112.5 Alice 56.5 84.0 Barbara 65.3 98.0
Carol 62.8 102.5 Henry 63.5 102.5 James 57.3 83.0
Jane 59.8 84.5 Janet 62.5 112.5 Jeffrey 62.5 84.0
John 59.0 99.5 Joyce 51.3 50.5 Judy 64.3 90.0
Louise 56.3 77.0 Mary 66.5 112.0 Philip 72.0 150.0
Robert 64.8 128.0 Ronald 67.0 133.0 Thomas 57.5 85.0
William 66.5 112.0
;

To run a Gelman-Rubin diagnostic test, you want to start Markov chains at different places in the
parameter space. Suppose that you want to start ˇ0 at 10, �15, and 0; ˇ1 at �5, 10, and 0; and �2

at 1, 20, and 50. You can put these starting values in the following init SAS data set:

data init;
input Chain beta0 beta1 sigma2;
datalines;
1 10 -5 1
2 -15 10 20
3 0 0 50

;

The following statements run PROC MCMC three times, each with starting values specified in the
data set init:

/* define constants */
%let nchain = 3;
%let nparm = 3;
%let nsim = 50000;
%let var = beta0 beta1 sigma2;

%macro gmcmc;
%do i=1 %to &nchain;

data _null_;
set init;
if Chain=&i;
%do j = 1 %to &nparm;

call symputx("init&j", %scan(&var, &j));
%end;
stop;

run;

proc mcmc data=class outpost=out&i init=reinit nbi=0 nmc=&nsim
stats=none seed=7;

parms beta0 &init1 beta1 &init2;
parms sigma2 &init3;
prior beta0 beta1 ~ normal(0, var = 1e6);

Example 52.13: Gelman-Rubin Diagnostics F 3689

prior sigma2 ~ igamma(3/10, scale = 10/3);
mu = beta0 + beta1*height;
model weight ~ normal(mu, var = sigma2);

run;
%end;

%mend;

ods listing close;
%gmcmc;
ods listing;

The macro variables nchain, nparm, nsim, and var define the number of chains, the number of param-
eters, the number of Markov chain simulations, and the parameter names, respectively. The macro
GMCMC gets initial values from the data set init, assigns them to the macro variables init1, init2 and
init3, starts the Markov chain at these initial values, and stores the posterior draws to three output
data sets: out1, out2, and out3.

In the PROC MCMC statement, the INIT=REINIT option restarts the Markov chain after tuning at
the assigned initial values. No burn-in is requested.

You can use the autocall macro GELMAN to calculate the Gelman-Rubin statistics by using the
three chains. The GELMAN macro has the following arguments:

%macro gelman(dset, nparm, var, nsim, nc=3, alpha=0.05);

The argument dset is the name of the data set that stores the posterior samples from all the runs,
nparm is the number of parameters, var is the name of the parameters, nsim is the number of sim-
ulations, nc is the number of chains with a default value of 3, and alpha is the ˛ significant level
in the test with a default value of 0.05. This macro creates two data sets: _Gelman_Ests stores the
diagnostic estimates and _Gelman_Parms stores the names of the parameters.

The following statements calculate the Gelman-Rubin diagnostics:

data all;
set out1(in=in1) out2(in=in2) out3(in=in3);
if in1 then Chain=1;
if in2 then Chain=2;
if in3 then Chain=3;

run;

%gelman(all, &nparm, &var, &nsim);

data GelmanRubin(label=’Gelman-Rubin Diagnostics’);
merge _Gelman_Parms _Gelman_Ests;

run;

proc print data=GelmanRubin;
run;

The Gelman-Rubin statistics are shown in Output 52.13.1.

3690 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.13.1 Gelman-Rubin Diagnostics of the Regression Example

Simple Linear Regression, Gelman-Rubin Diagnostics

Between- Within- Upper
Obs Parameter chain chain Estimate Bound

1 beta0 5384.76 1168.64 1.0002 1.0001
2 beta1 1.20 0.30 1.0002 1.0002
3 sigma2 8034.41 2890.00 1.0010 1.0011

The Gelman-Rubin statistics do not reveal any concerns about the convergence or the mixing of the
multiple chains. To get a better visual picture of the multiple chains, you can draw overlapping trace
plots of these parameters from the three Markov chains runs.

The following statements create Output 52.13.2:

/* plot the trace plots of three Markov chains. */
%macro trace;

%do i = 1 %to &nparm;
proc sgplot data=all cycleattrs;

series x=Iteration y=%scan(&var, &i) / group=Chain;
run;

%end;
%mend;
%trace;

Output 52.13.2 Trace Plots of Three Chains for Each of the Parameters

Example 52.13: Gelman-Rubin Diagnostics F 3691

Output 52.13.2 continued

The trace plots show that three chains all eventually converge to the same regions even though they

3692 F Chapter 52: The MCMC Procedure (Experimental)

started at very different locations. In addition to the trace plots, you can also plot the potential
scale reduction factor (PSRF). See the section “Gelman and Rubin Diagnostics” on page 161 for
definition and details.

The following statements calculate PSRF for each parameter. They use the GELMAN macro re-
peatedly and can take a while to run:

/* define sliding window size */
%let nwin = 200;
data PSRF;
run;

%macro PSRF(nsim);
%do k = 1 %to %sysevalf(&nsim/&nwin, floor);

%gelman(all, &nparm, &var, nsim=%sysevalf(&k*&nwin));
data GelmanRubin;

merge _Gelman_Parms _Gelman_Ests;
run;

data PSRF;
set PSRF GelmanRubin;

run;
%end;

%mend PSRF;

options nonotes;
%PSRF(&nsim);
options notes;

data PSRF;
set PSRF;
if _n_ = 1 then delete;

run;

proc sort data=PSRF;
by Parameter;

run;

%macro sepPSRF(nparm=&nparm, var=&var, nsim=&nsim);
%do k = 1 %to &nparm;

data save&k; set PSRF;
if _n_ > %sysevalf(&k*&nsim/&nwin, floor) then delete;
if _n_ < %sysevalf((&k-1)*&nsim/&nwin + 1, floor) then delete;
Iteration + &nwin;

run;

proc sgplot data=save&k(firstobs=10) cycleattrs;
series x=Iteration y=Estimate;
series x=Iteration y=upperbound;
yaxis label="%scan(&var, &k)";

run;
%end;

%mend sepPSRF;

%sepPSRF(nparm=&nparm, var=&var, nsim=&nsim);

Example 52.13: Gelman-Rubin Diagnostics F 3693

Output 52.13.3 PSRF Plot for Each Parameter

3694 F Chapter 52: The MCMC Procedure (Experimental)

Output 52.13.3 continued

PSRF is the square root of the ratio of the between-chain variance and the within-chain variance. A
large PSRF indicates that the between-chain variance is substantially greater than the within-chain
variance, so that longer simulation is needed. You want the PSRF to converge to 1 eventually, as it
appears to be the case in this simulation study.

References
Aitkin, M., Anderson, D., Francis, B., and Hinde, J. (1989), Statistical Modelling in GLIM, Oxford:

Oxford Science Publications.

Atkinson, A. C. (1979), “The Computer Generation of Poisson Random Variables,” Applied Statis-
tics, 28, 29–35.

Atkinson, A. C. and Whittaker, J. (1976), “A Switching Algorithm for the Generation of Beta Ran-
dom Variables with at Least One Parameter Less Than One,” Proceedings of the Royal Society of
London, Series A, 139, 462–467.

Bacon, D. W. and Watts, D. G. (1971), “Estimating the Transition between Two Intersecting Straight
Lines,” Biometrika, 58, 525–534.

Berger, J. O. (1985), Statistical Decision Theory and Bayesian Analysis, Second Edition, New York:
Springer-Verlag.

References F 3695

Box, G. E. P. and Cox, D. R. (1964), “An Analysis of Transformations,” Journal of the Royal
Statistics Society, Series B, 26, 211–234.

Carlin, B. P., Gelfand, A. E., and Smith, A. F. M. (1992), “Hierarchical Bayesian Analysis of
Changepoint Problems,” Applied Statistics, 41(2), 389–405.

Chaloner, K. (1994), “Residual Analysis and Outliers in Bayesian Hierarchical Models,” in Aspects
of Uncertainty: A Tribute to D. V. Lindley, 149–157, New York: Wiley.

Chaloner, K. and Brant, R. (1988), “A Bayesian Approach to Outlier Detection and Residual Anal-
ysis,” Biometrika, 75(4), 651–659.

Cheng, R. C. H. (1978), “Generating Beta Variates with Non-integral Shape Parameters,” Commu-
nications ACM, 28, 290–295.

Congdon, P. (2003), Applied Bayesian Modeling, John Wiley & Sons.

Crowder, M. J. (1978), “Beta-Binomial Anova for Proportions,” Applied Statistics, 27, 34–37.

Draper, D. (1996), “Discussion of the Paper by Lee and Nelder,” Journal of the Royal Statistical
Society, Series B, 58, 662–663.

Eilers, P. H. C. and Marx, B. D. (1996), “Flexible Smoothing with B-Splines and Penalties,” Statis-
tical Science, 11, 89–121, with discussion.

Finney, D. J. (1947), “The Estimation from Individual Records of the Relationship between Dose
and Quantal Response,” Biometrika, 34, 320–334.

Fisher, R. A. (1935), “The Fiducial Argument in Statistical Inference,” Annals of Eugenics, 6, 391–
398.

Fishman, G. S. (1996), Monte Carlo: Concepts, Algorithms, and Applications, New York: John
Wiley & Sons.

Gaver, D. P. and O’Muircheartaigh, I. G. (1987), “Robust Empirical Bayes Analysis of Event Rates,”
Technometrics, 29, 1–15.

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2004), Bayesian Data Analysis, Second Edition,
London: Chapman & Hall.

Gentleman, R. and Geyer, C. J. (1994), “Maximum Likelihood for Interval Censored Data: Consis-
tency and Computation,” Biometrika, 81, 618–623.

Gilks, W. (2003), “Adaptive Metropolis Rejection Sampling (ARMS),” software from MRC
Biostatistics Unit, Cambridge, UK, http://www.maths.leeds.ac.uk/~wally.gilks/
adaptive.rejection/web_page/Welcome.html.

Gilks, W. R. and Wild, P. (1992), “Adaptive Rejection Sampling for Gibbs Sampling,” Applied
Statistics, 41, 337–348.

Holmes, C. C. and Held, L. (2006), “Bayesian Auxiliary Variable Models for Binary and
Multinomial Regression,” Bayesian Analysis, 1(1), 145–168, http://ba.stat.cmu.edu/
journal/2006/vol01/issue01/held.pdf.

http://www.maths.leeds.ac.uk/~wally.gilks/adaptive.rejection/web_page/Welcome.html
http://www.maths.leeds.ac.uk/~wally.gilks/adaptive.rejection/web_page/Welcome.html
http://ba.stat.cmu.edu/journal/2006/vol01/issue01/held.pdf
http://ba.stat.cmu.edu/journal/2006/vol01/issue01/held.pdf

3696 F Chapter 52: The MCMC Procedure (Experimental)

Ibrahim, J. G., Chen, M. H., and Sinha, D. (2001), Bayesian Survival Analysis, New York: Springer-
Verlag.

Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. (1998), “Markov Chain Monte Carlo in Practice:
A Roundtable Discussion,” The American Statistician, 52, 93–100.

Krall, J. M., Uthoff, V. A., and Harley, J. B. (1975), “A Step-up Procedure for Selecting Variables
Associated with Survival,” Biometrics, 31, 49–57.

Kuhfeld, W. F. (2004), Conjoint Analysis, Technical report, SAS Institute Inc., http://support.
sas.com/resources/papers/tnote/tnote_marketresearch.html.

Matsumoto, M. and Kurita, Y. (1992), “Twisted GFSR Generators,” ACM Transactions on Modeling
and Computer Simulation, 2(3), 179–194.

Matsumoto, M. and Kurita, Y. (1994), “Twisted GFSR Generators,” ACM Transactions on Modeling
and Computer Simulation, 4(3), 254–266.

Matsumoto, M. and Nishimura, T. (1998), “Mersenne Twister: A 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator,” ACM Transactions on Modeling and
Computer Simulation, 8, 3–30.

McGrath, E. J. and Irving, D. C. (1973), Techniques for Efficient Monte Carlo Simulation, Volume
II: Random Number Generation for Selected Probability Distributions, Technical report, Science
Applications Inc., La Jolla, CA.

Michael, J. R., Schucany, W. R., and Haas, R. W. (1976), “Generating Random Variates Using
Transformations with Multiple Roots,” American Statistician, 30(2), 88–90.

Pregibon, D. (1981), “Logistic Regression Diagnostics,” Annals of Statistics, 9, 705–724.

Ripley, B. D. (1987), Stochastic Simulation, New York: John Wiley & Sons.

Robert, C. (1995), “Simulation of Truncated Normal Variables,” Statistics and Computing, 5, 121–
125.

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997), “Weak Convergence and Optimal Scaling of
Random Walk Metropolis Algorithms,” Annual of Applied Probability, 7, 110–120.

Roberts, G. O. and Rosenthal, J. S. (2001), “Optimal Scaling for Various Metropolis-Hastings Al-
gorithms,” Statistical Science, 16, 351–367.

Rubin, D. B. (1981), “Estimation in Parallel Randomized Experiments,” Journal of Educational
Statistics, 6, 377–411.

Schervish, M. J. (1995), Theory of Statistics, New York: Springer-Verlag.

Sharples, L. (1990), “Identification and Accommodation of Outliers in General Hierarchical Mod-
els,” Biometrika, 77, 445–453.

Spiegelhalter, D. J., Thomas, A., Best, N. G., and Gilks, W. R. (1996), “BUGS Examples, Volume
2, Version 0.5, (version ii),” .

http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html
http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html

Subject Index

arrays
constants (MCMC), 3508
MCMC procedure, 3506
monitor values of (MCMC), 3500, 3633

Behrens-Fisher problem
MCMC procedure, 3486

Bernoulli distribution
definition of (MCMC), 3530
MCMC procedure, 3511, 3530

beta distribution
definition of (MCMC), 3530
MCMC procedure, 3511, 3530

binary distribution
definition of (MCMC), 3530
MCMC procedure, 3511, 3530

binomial distribution
definition of (MCMC), 3530
MCMC procedure, 3511, 3530

blocking
MCMC procedure, 3522

Box-Cox transformation
estimate � D 0, 3582
MCMC procedure, 3577

Cauchy distribution
definition of (MCMC), 3531
MCMC procedure, 3511, 3531

censoring
MCMC procedure, 3542, 3658

chi-square distribution
definition of (MCMC), 3531
MCMC procedure, 3511, 3531

constants specification
MCMC procedure, 3507

convergence, see assessing MCMC convergence
MCMC procedure, 3561

Cox models
MCMC procedure, 3642

definition of (MCMC)
posterior predictive distribution, 3554

dgeneral distribution
MCMC procedure, 3512, 3540

dlogden distribution
MCMC procedure, 3512

double exponential distribution
definition of (MCMC), 3535
MCMC procedure, 3513, 3535

examples, MCMC
array subscripts, 3507
arrays, 3507
arrays, constants, 3508
arrays, store data set variables, 3508, 3509,

3593
BEGINCNST/ENDCNST statements, 3593
Behrens-Fisher problem, 3486
blocking, 3522
Box-Cox transformation, 3577
censoring, 3543, 3658
change point models, 3624
cloglog transformation, 3549
constant arrays, 3508
constrained analysis, 3660
Cox models, 3642
Cox models, time dependent covariates,

3651
Cox models, time independent covariates,

3644
deviance information criterion, 3639
discrete priors, 3582
DO-loop, 3508
error finding using the PUT statement, 3562
estimate functionals, 3590, 3633
estimate posterior probabilities, 3489
exponential models, survival analysis, 3629
FCMP procedure, 3520, 3670, 3672
Gelman-Rubin diagnostics, 3687
generalized linear models, 3586
GENMOD procedure, BAYES statement,

3595, 3598
getting started, 3477
GLIMMIX procedure, 3612
graphics, box plots, 3637
graphics, custom template, 3552, 3557,

3616, 3621, 3649, 3656, 3676
graphics, fit plots, 3628
graphics, kernel density comparisons, 3575,

3577, 3617, 3624
graphics, multiple chains, 3691
graphics, posterior predictive checks, 3559
graphics, PSRF plots, 3694
graphics, scatter plots, 3625, 3682, 3686,

3687
graphics, survival curves, 3639
hierarchical centering, 3609
IF statement, 3508

IF-ELSE statement, 3487
implement a conjugate Gibbs sampler, 3520
implement a new sampling algorithm, 3666
improve mixing, 3599, 3677
improving mixing, 3609
initial values, 3528
interval censoring, 3658
Jeffreys’ prior, 3592
JOINTMODEL option, 3550, 3647, 3654
LAG functions, 3644
linear regression, 3478
log transformation, 3549
logistic regression, diffuse prior, 3586
logistic regression, Jeffreys’ prior, 3592
logistic regression, random-effects, 3608
logistic regression, sampling via Gibbs,

3666
logit transformation, 3549
matrix functions, 3593, 3664, 3673
MISSING= option, 3653
mixed-effects models, 3490, 3608
mixing, 3599, 3677
mixture of normal densities, 3575
model comparison, 3639
modelling dependent data, 3550
MONITOR= option, arrays, 3633
multivariate priors, 3664
NLMIXED procedure, 3620
nonlinear Poisson regression, 3599
PHREG procedure, BAYES statement,

3648, 3656
Poisson regression, 3596
Poisson regression, nonlinear, 3599, 3617
Poisson regression, random-effects, 3617
posterior predictive distribution, 3555
probit transformation, 3549
proportional hazard models, 3642
random-effects models, 3608
regenerate diagnostics plots, 3552
SGPLOT procedure, 3574, 3576, 3625,

3626, 3637, 3638, 3682, 3686, 3690,
3692

SGRENDER procedure, 3553, 3558, 3617,
3621, 3649, 3656, 3676

specifying a new distribution, 3540
store data set variables in arrays, 3508,

3509, 3593
survival analysis, 3628
survival analysis, exponential models, 3629
survival analysis, Weibull model, 3633
TEMPLATE procedure, 3552, 3557, 3616,

3621, 3649, 3656, 3676
truncated distributions, 3543, 3664
UDS statement, 3519, 3666

use macros to construct loglikelihood, 3652
user-defined samplers, 3519, 3666
Weibull model, survival analysis, 3633

exponential chi-square distribution
definition of (MCMC), 3532
MCMC procedure, 3512, 3532

exponential distribution
definition of (MCMC), 3534
MCMC procedure, 3512, 3534

exponential exponential distribution
definition of (MCMC), 3532
MCMC procedure, 3512, 3532

exponential gamma distribution
definition of (MCMC), 3532
MCMC procedure, 3512, 3532

exponential inverse chi-square distribution
definition of (MCMC), 3533
MCMC procedure, 3512, 3533

exponential inverse-gamma distribution
definition of (MCMC), 3533
MCMC procedure, 3512, 3533

exponential scaled inverse chi-square distribution
definition of (MCMC), 3533
MCMC procedure, 3512, 3533

floating point errors
MCMC procedure, 3559

gamma distribution
definition of (MCMC), 3534
MCMC procedure, 3512, 3534

Gaussian distribution
definition of (MCMC), 3537
MCMC procedure, 3513, 3537

Gelman-Rubin diagnostics
MCMC procedure, 3687

general distribution
MCMC procedure, 3513, 3540

generalized linear models
MCMC procedure, 3586

geometric distribution
definition of (MCMC), 3534
MCMC procedure, 3512, 3534

handling error messages
MCMC procedure, 3562

hierarchical centering
MCMC procedure, 3609

initial values
MCMC procedure, 3477, 3498, 3514,

3526–3528
inverse chi-square distribution

definition of (MCMC), 3535
MCMC procedure, 3513, 3535

inverse Gaussian distribution
definition of (MCMC), 3539
MCMC procedure, 3514, 3539

inverse-gamma distribution
definition of (MCMC), 3535
MCMC procedure, 3513, 3535

Laplace distribution
definition of (MCMC), 3535
MCMC procedure, 3513, 3535

likelihood function specification
MCMC procedure, 3511

logden distribution
MCMC procedure, 3513

logistic distribution
definition of (MCMC), 3536
MCMC procedure, 3513, 3536

lognormal distribution
definition of (MCMC), 3536
MCMC procedure, 3513, 3536

long run times
MCMC procedure, 3560

marginal distribution
MCMC procedure, 3555

Maximum a posteriori
MCMC procedure, 3526

MCMC procedure, 3476
arrays, 3506
Behrens-Fisher problem, 3486
Bernoulli distribution, 3511, 3530
beta distribution, 3511, 3530
binary distribution, 3511, 3530
binomial distribution, 3511, 3530
blocking, 3522
Box-Cox transformation, 3577
Cauchy distribution, 3511, 3531
censoring, 3542, 3658
chi-square distribution, 3511, 3531
compared with other SAS procedures, 3477
computational resources, 3564
constants specification, 3507
convergence, 3561
Cox models, 3642
deviance information criterion, 3639
dgeneral distribution, 3512, 3540
dlogden distribution, 3512
double exponential distribution, 3513, 3535
examples, see also examples, MCMC, 3572
exponential chi-square distribution, 3512,

3532
exponential distribution, 3512, 3534
exponential exponential distribution, 3512,

3532

exponential gamma distribution, 3512, 3532
exponential inverse chi-square distribution,

3512, 3533
exponential inverse-gamma distribution,

3512, 3533
exponential scaled inverse chi-square

distribution, 3512, 3533
floating point errors, 3559
gamma distribution, 3512, 3534
Gaussian distribution, 3513, 3537
Gelman-Rubin diagnostics, 3687
general distribution, 3513, 3540
generalized linear models, 3586
geometric distribution, 3512, 3534
handling error messages, 3562
hierarchical centering, 3609
hyperprior distribution, 3510, 3515
initial values, 3477, 3498, 3514, 3526–3528
inverse chi-square distribution, 3513, 3535
inverse Gaussian distribution, 3514, 3539
inverse-gamma distribution, 3513, 3535
Laplace distribution, 3513, 3535
likelihood function specification, 3511
logden distribution, 3513
logistic distribution, 3513, 3536
lognormal distribution, 3513, 3536
long run times, 3560
marginal distribution, 3555
Maximum a posteriori, 3526
mixed-effects models, 3608
mixing, 3599, 3677
model specification, 3511
modeling dependent data, 3642
negative binomial distribution, 3513, 3536
nonlinear Poisson regression, 3599
normal distribution, 3513, 3537
options, 3495
options summary, 3494
output ODS Graphics table names, 3571
output table names, 3569
overflows, 3559
parameters specification, 3514
pareto distribution, 3513, 3537
Poisson distribution, 3513, 3538
posterior predictive distribution, 3554
posterior samples data set, 3501
precision of solution, 3562
prior distribution, 3510, 3515
prior predictive distribution, 3554
programming statements, 3515
proposal distribution, 3524
random-effects models, 3608
run times, 3560, 3564

scaled inverse chi-square distribution, 3514,
3538

specifying a new distribution, 3540
standard distributions, 3529
survival analysis, 3628
syntax summary, 3493
t distribution, 3514, 3538
truncated distributions, 3542
tuning, 3524
UDS statement, 3517
uniform distribution, 3514, 3538
user defined sampler statement, 3517
user-defined distribution, 3513
user-defined samplers, 3519, 3666
using the IF-ELSE logical control, 3577
Wald distribution, 3514, 3539
Weibull distribution, 3514, 3539

mixed-effects models
MCMC procedure, 3608

mixing, see convergence
convergence (MCMC), 3677
improving (MCMC), 3561, 3599, 3677
MCMC procedure, 3599, 3677

model specification
MCMC procedure, 3511

negative binomial distribution
definition of (MCMC), 3536
MCMC procedure, 3513, 3536

nonlinear Poisson regression
MCMC procedure, 3599

normal distribution
definition of (MCMC), 3537
MCMC procedure, 3513, 3537

output ODS Graphics table names
MCMC procedure, 3571

output table names
MCMC procedure, 3569

overflows
MCMC procedure, 3559

parameters specification
MCMC procedure, 3514

pareto distribution
definition of (MCMC), 3537
MCMC procedure, 3513, 3537

Poisson distribution
definition of (MCMC), 3538
MCMC procedure, 3513, 3538

posterior predictive distribution
definition of (MCMC), 3554
MCMC procedure, 3554

precision of solution
MCMC procedure, 3562

prior distribution
data-set-dependent (MCMC), 3608
distribution specification (MCMC), 3510,

3515
hyperprior specification (MCMC), 3510,

3515
predictive distribution (MCMC), 3554, 3555
user-defined (MCMC), 3513, 3540

programming statements
MCMC procedure, 3515

proposal distribution
MCMC procedure, 3524

random-effects models
MCMC procedure, 3608

run times
MCMC procedure, 3560, 3564

scaled inverse chi-square distribution
definition of (MCMC), 3538
MCMC procedure, 3514, 3538

specifying a new distribution
MCMC procedure, 3540

standard distributions
MCMC procedure, 3529

survival analysis
MCMC procedure, 3628

t distribution
definition of (MCMC), 3538
MCMC procedure, 3514, 3538

truncated distributions
MCMC procedure, 3542

tuning
MCMC procedure, 3524

UDS statement, see user defined samplers
MCMC procedure, 3517

uniform distribution
definition of (MCMC), 3538
MCMC procedure, 3514, 3538

user defined sampler statement
MCMC procedure, 3517

user-defined distribution
MCMC procedure, 3513

user-defined samplers
MCMC procedure, 3519, 3666

using the IF-ELSE logical control
MCMC procedure, 3577

Wald distribution
definition of (MCMC), 3539
MCMC procedure, 3514, 3539

Weibull distribution
definition of (MCMC), 3539
MCMC procedure, 3514, 3539

Syntax Index

ACCEPTTOL= option
PROC MCMC statement, 3495

ARRAY statement
MCMC procedure, 3506

AUTOCORLAG= option
PROC MCMC statement, 3495

BEGINCNST statement
MCMC procedure, 3507

BEGINHYPER statement
MCMC procedure, 3510

BEGINPRIOR statement
MCMC procedure, 3510

BY statement
MCMC procedure, 3510

DATA= option
PROC MCMC statement, 3498

DIAG= option
PROC MCMC statement, 3496

DIAGNOSTICS= option
PROC MCMC statement, 3496

DIC option
PROC MCMC statement, 3498

DISCRETE= option
PROC MCMC statement, 3495

ENDCNST statement
MCMC procedure, 3507

ENDHYPER statement
MCMC procedure, 3510

ENDPRIOR statement
MCMC procedure, 3510

HYPERPRIOR statement
MCMC procedure, 3515

INF= option
PROC MCMC statement, 3498

INIT= option
PROC MCMC statement, 3498

JOINTMODEL option
PROC MCMC statement, 3499

LIST option
PROC MCMC statement, 3499

LISTCODE option
PROC MCMC statement, 3499

MAXTUNE= option
PROC MCMC statement, 3499

MCMC procedure, 3493
ARRAY statement, 3506
BEGINCNST statement, 3507
BEGINHYPER statement, 3510
BEGINPRIOR statement, 3510
BY statement, 3510
ENDCNST statement, 3507
ENDHYPER statement, 3510
ENDPRIOR statement, 3510
HYPERPRIOR statement, 3515
MODEL statement, 3511
PARMS statement, 3514
PRIOR statement, 3515
syntax, 3493

MCMC procedure, ARRAY statement, 3506
MCMC procedure, BEGINCNST statement,

3507
MCMC procedure, BEGINHYPER statement,

3510
MCMC procedure, BEGINPRIOR statement,

3510
MCMC procedure, BY statement, 3510
MCMC procedure, ENDCNST statement, 3507
MCMC procedure, ENDHYPER statement, 3510
MCMC procedure, ENDPRIOR statement, 3510
MCMC procedure, HYPERPRIOR statement,

3515
MCMC procedure, MODEL statement, 3511
MCMC procedure, PARMS statement, 3514
MCMC procedure, PRIOR statement, 3515
MCMC procedure, PROC MCMC statement

ACCEPTTOL= option, 3495
AUTOCORLAG= option, 3495
DATA= option, 3498
DIAG= option, 3496
DIAGNOSTICS= option, 3496
DIC option, 3498
DISCRETE= option, 3495
INF= option, 3498
INIT= option, 3498
JOINTMODEL option, 3499
LIST option, 3499
LISTCODE option, 3499
MAXTUNE= option, 3499
MINTUNE= option, 3500
MISSING= option, 3500

MONITOR= option, 3500
NBI= option, 3500
NMC= option, 3500
NTU= option, 3500
OUTPOST=option, 3501
PLOTS= option, 3501
PROPCOV= option, 3504
PROPDIST= option, 3504
SCALE option, 3504
SEED option, 3504
SIMREPORT= option, 3505
SINGDEN= option, 3505
STATISTICS= option, 3505
STATS= option, 3505
TARGACCEPT= option, 3506
TARGACCEPTI= option, 3506
THIN= option, 3506
TRACE option, 3506
TUNEWT= option, 3506

MCMC procedure, Programming statements
ABORT statement, 3516
CALL statement, 3516
DELETE statement, 3516
DO statement, 3516
GOTO statement, 3516
IF statement, 3516
LINK statement, 3516
PUT statement, 3516
RETURN statement, 3516
SELECT statement, 3516
STOP statement, 3516
SUBSTR statement, 3516
WHEN statement, 3516

MINTUNE= option
PROC MCMC statement, 3500

MISSING= option
PROC MCMC statement, 3500

MODEL statement
MCMC procedure, 3511

MONITOR= option
PROC MCMC statement, 3500

NBI= option
PROC MCMC statement, 3500

NMC= option
PROC MCMC statement, 3500

NTU= option
PROC MCMC statement, 3500

OUTPOST= option
PROC MCMC statement, 3501

PARMS statement
MCMC procedure, 3514

PLOTS= option

PROC MCMC statement, 3501
PRIOR statement

MCMC procedure, 3515
PROPCOV=method

PROC MCMC statement, 3504
PROPDIST= option

PROC MCMC statement, 3504

SCALE option
PROC MCMC statement, 3504

SEED option
PROC MCMC statement, 3504

SIMREPORT= option
PROC MCMC statement, 3505

SINGDEN= option
PROC MCMC statement, 3505

STATISTICS= option
PROC MCMC statement, 3505

STATS= option
PROC MCMC statement, 3505

TARGACCEPT= option
PROC MCMC statement, 3506

TARGACCEPTI= option
PROC MCMC statement, 3506

THIN= option
PROC MCMC statement, 3506

TRACE option
PROC MCMC statement, 3506

TUNEWT= option
PROC MCMC statement, 3506

Your Turn

We welcome your feedback.

� If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if
applicable).

� If you have comments about the software, please send them to
suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

	The MCMC Procedure (Experimental)
	Overview: MCMC Procedure
	PROC MCMC Compared with Other SAS Procedures

	Getting Started: MCMC Procedure
	Simple Linear Regression
	The Behrens-Fisher Problem
	Mixed-Effects Model

	Syntax: MCMC Procedure
	PROC MCMC Statement
	ARRAY Statement
	BEGINCNST/ENDCNST Statement
	BEGINPRIOR/ENDPRIOR BEGINHYPER/ENDHYPER Statements
	BY Statement
	MODEL Statement
	PARMS Statement
	PRIOR/HYPERPRIOR Statement
	Programming Statements
	UDS Statement

	Details: MCMC Procedure
	How PROC MCMC Works
	Blocking of Parameters
	Samplers
	Tuning the Proposal Distribution
	Initial Values of the Markov Chains
	Assignments of Parameters
	Matrix Functions in PROC MCMC
	Standard Distributions
	Specifying a New Distribution
	Using Density Functions in the Programming Statements
	Truncation and Censoring
	Multivariate Density Functions
	Some Useful SAS Functions
	Modeling Dependent Data
	Regenerating Diagnostics Plots
	Posterior Predictive Distribution
	Handling of Missing Data
	Floating Point Errors and Overflows
	Handling Error Messages
	Computational Resources
	Displayed Output
	ODS Table Names
	ODS Graphics

	Examples: MCMC Procedure
	Example 52.1: Simulating Samples From a Known Density
	Example 52.2: Box-Cox Transformation
	Example 52.3: Generalized Linear Models
	Example 52.4: Nonlinear Poisson Regression Models
	Example 52.5: Random-Effects Models
	Example 52.6: Change Point Models
	Example 52.7: Exponential and Weibull Survival Analysis
	Example 52.8: Cox Models
	Example 52.9: Normal Regression with Interval Censoring
	Example 52.10: Constrained Analysis
	Example 52.11: Implement a New Sampling Algorithm
	Example 52.12: Using a Transformation to Improve Mixing
	Example 52.13: Gelman-Rubin Diagnostics

	References

	Subject Index
	Syntax Index

