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Abstract
A full Bayesian method utilizing data augmentation and Gibbs sampling algorithms
is presented for analyzing non-ignorable missing data. The discussion focuses on
a simplified selection model for regression analysis to demonstrate the rationale of
the introduced method. Regardless of missing mechanisms, it is always assumed
that missingness only depends on the missing variable itself. Simulation studies are
conducted and demonstrate that the selection model can recover model parameters
under both correctly specified situations and many mis-specified situations. The
method is also applied to analyzing a training intervention data set.

Missing data problem is a big challenge in statistical inference even for a well designed study. Little
& Rubin (2002) distinguished three kinds of missing data mechanisms – missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR). For the MCAR mechanism,
every subject (datum) has the same probability to be missing. For example, if a participant’s test score is
missing because his/her experimenter accidentally forgets to give the participant the test, then the resulting
missing datum can be viewed as MCAR. If missingness can be fully predicted by observed data in a study,
the missing mechanism is MAR. For example, in a pre-test post-test experiment, all subjects participated in
the pre-test. Some subjects missed the post-test because they did not perform well in the pre-test. In this
case, missingness during the post-test can be predicted using data from the pre-test. However, if missingness
cannot be fully predicted by observed data, missing data are MNAR. For example, in survey research, when
asking about salary, those with high salary often choose not to respond. Thus, missing data on income are
often believed to be MNAR.

To some extent, MCAR and MAR data are ignorable because problems caused by them can be over-
come through sophisticated statistical techniques such as the full information likelihood (FIML) method
and multiple imputation (e.g., Little & Rubin, 2002; Schafer, 1997). MNAR data, however, are non-
ignorable because without extra information/modeling, their influences cannot be well addressed. To deal
with non-ignorable missing data, selection models (see recent reviews by Ibrahim et al., 2006 and Ibrahim
& Molenberghs, 2009) and the MI method with auxiliary variables (e.g., Graham, 2009) can be used. How-
ever, both selection models and MI typically require extra/auxiliary variables (information) to account for
non-ignorable missingness.

Best et al. (1996) proposed a selection model that simplified the modeling of missingness to study
cognitive decline in the elderly. The model assumed that missingness in a variable was only related to itself
and the model, therefore, did not require auxiliary variables to model the non-ignorable missing mechanism.
Through empirical data analysis, they demonstrated that model parameters of interest were insensitive to
different prior specifications on the parameters predicting missingness. In this article, we examine and
extend the model by Best et al. in several ways with a focus on the robustness of the model. First, we
derive the full Bayesian posterior distribution for the simplified selection model. Second, we evaluate the
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performance of the model under different conditions. Third, we apply the model to analyze a set of training
intervention data to illustrate the use of the model.

In the remainder of the paper, we will first discuss selection models and the simplified version by Best
et al. (1996). Then, we will discuss selection model estimation through a full Bayesian method by obtaining
the full sets of conditional posterior distributions for model parameters utilizing the data augmentation
algorithm. After this, we will evaluate the performance of the model and the estimation method through
several simulation studies. Finally, we will present an empirical example to demonstrate how to apply the
model and method in behavioral research.

Selection models

Consider a multiple regression model with a dependent variable y and a vector of independent vari-
ables x. The regression model can be expressed as

yi = xiβ + ei (1)

where yi and xi are observed data for the i-th person, β is a vector of regression coefficients, and ei is
residual that is often assumed to be normally distributed such that ei ∼ N(0, φ). If both the dependent
and independent variables are fully observed, estimates of the regression coefficients can be obtained con-
veniently.

However, data are often incomplete or not fully observed for a variety of reasons such as non-response
and dropout. For example, we consider a scenario that the dependent variable y is partially observed and
independent variables x are fully observed. This scenario is very common in designed experiments and
survey research. For example, in an experiment, the controlled factors are often pre-determined and thus are
known. However, data of the outcome variables may not be always observed. In survey research, subjects
may respond to non-sensitive questions but are less likely to answer sensitive questions.

Let mi be an indicator variable where mi = 0 if yi is observed and mi = 1 if yi is missing. Then, the
missing probability of yi, in general, can be modeled as

Pr(yi is missing) = Pr(mi = 1) = f(γ0 + γ1yi + αvi) (2)

where v is a set of variables that may be related to the missingness of y. The variables in v may or may not
be fully observed and could be latent variables. v may also include part of or all variables of x. The γ0, γ1,
and α are regression coefficients. The link function f can be any function that maps its input to an output
value from 0 to 1. For example, if f is a logistic function, Equation (2) becomes a logistic regression model.

Equation (2) models the missing mechanism of y. The missing mechanisms defined by Little & Rubin
(2002) can be distinguished according to the parameter values in Equation (2). If γ1 = 0 and α = 0, the
missing probability is a constant and the missing mechanism is MCAR. If γ1 = 0, and α "= 0 and v are
fully observed, the missing mechanism is MAR. If γ1 "= 0 or the coefficients in α of the partially observed
or unobserved variables in v are not equal to zero, missing data are MNAR.

Selection models (e.g., Heckman, 1976; Little & Rubin, 2002) focus on modeling the joint distribution
of observed data and missing indicators as

p(yi, mi|β,φ,γ,α,xi,vi) = p(yi|xi, β, φ)p(mi|yi,γ,vi,α) (3)

where p(.) represents the probability density function and γ = (γ0, γ1)′. A possible choice for
p(mi|yi,γ,vi,α) is given in Equation (2). Model parameters in selection models can be estimated by
maximizing the following likelihood function (e.g., Little, 1982; Little & Rubin, 2002)

L =
ˆ

vmiss
i

ˆ

ymiss
i

n∏

i=1

p(yi, mi|β,φ, γ,α,xi,vi)dymiss
i vmiss

i (4)
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where ymiss
i denotes a missing datum in y and vmiss

i denotes unobserved data in v for individual i. To iden-
tify selection models, xi and vi should not completely overlap or the values of λ or α for some covariate(s)
are known or pre-constrained (e.g., Little, 1985; Olsen, 1980; Tang et al., 2003).

To properly apply selection models, variables in v have to be determined carefully, which often
hinders practical adoptions of selection models. Best et al. (1996) discussed a simplified selection model
with α ≡ 0. Thus, the model assumes that missingness in y is only related to itself and no auxiliary
variables need to be used in the model. One of the advantages of the model is avoiding the difficulty of
selecting auxiliary variables. Although the function f in Equation 2 can take many different forms, the
logistic function (the logit link) and the normal distribution function (the probit link) are most widely used
(e.g., Ibrahim et al., 2006; Little & Rubin, 2002). Best et al. used the logistic function in Equation 2. Here
we use the normal distribution function because of its convenience in obtaining posterior distributions and
the aim to provide an alternative configuration on the missing mechanism. Therefor, the missing mechanism
in the simplified selection model can be specified as






mi ∼ Bernoulli(pi)

pi = Φ(γ0 + γ1yi) = Φ

[
( 1 yi )

(
γ0

γ1

)]
= Φ(wiγ)

(5)

where pi is the probability that yi is missing and Φ is the normal distribution function. mi is a binary variable
following a Bernoulli distribution. Furthermore, wi = (1, yi) and γ = (γ0, γ1)′.

Note that if the missing mechanism is MCAR or MNAR depending on y only, the missing mechanism
is correctly specified. Otherwise, the missing mechanism is mis-specified, e.g., under the situation of MAR.
For convenience, we refer to the model in Equations (1) and (5) together as the simplified selection model
and the model in Equation (1) as the regular model in the remainder of the paper. Because of the focus
of Best et al.’s study, they did not present the posterior distributions of the selection model. Furthermore,
they did not investigate under what conditions the simplified selection model would/would not work. Thus,
in this study, we will present posterior distributions of the simplified selection model and then evaluate its
performance under a variety of conditions.

Full Bayesian estimation method

To estimate parameters in the simplified selection model, we will use the Bayesian estimation method
based on data augmentation (Albert & Chib, 1993; Tanner & Wong, 1987) and Gibbs sampling (e.g., Casella
& George, 1992). We first assume that there is an underlying normal variable zi ∼ N(wiγ, 1) for each mi.
If zi > 0, then mi = 1. Otherwise, mi = 0. In other words, if zi > 0, yi is unobserved. By augmenting zi

with mi, the joint distribution of mi and zi is

p(mi, zi|yi,γ) = p(mi|zi)p(zi|yi,γ).

The distribution of zi - p(zi|yi,γ) -is known as a normal distribution with mean wiγ and variance 1 and we
need to get the distribution for mi conditional on zi. Note that

p(mi = 1|zi > 0) = 1, p(mi = 1|zi ≤ 0) = 0,
p(mi = 0|zi > 0) = 0, p(mi = 0|zi ≤ 0) = 1.

Thus, the distribution for mi|zi can be expressed as

p(mi|zi) = I(mi = 1)I(zi > 0) + I(mi = 0)I(zi ≤ 0)

where I(A) is an indicator function which takes 1 if the expression A is true and otherwise 0.
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Furthermore, by augmenting missing data ymiss
i with observed data, mi and zi, the joint distribution

of yi, mi and zi is

p(yi, zi, mi|β,γ, φ,X) = p(yi|β, φ,X)p(mi|zi)p(zi|yi,γ)

=
1√
2πφ

exp
[
−(yi − xiβ)2

2φ

]

× [I(mi = 1)I(zi > 0) + I(mi = 0)I(zi ≤ 0)]

× 1√
2π

exp
[
−(zi − γ0 − γ1yi)2

2

]
. (6)

Thus, the likelihood function for the selection model with augmented data can be expressed as

L(β,γ, φ|y,X,z,m) =
n∏

i=1

p(yi, zi, mi|β,γ, φ,X) (7)

where y = (y1, . . . , yn)′ denotes a vector of data for the dependent variable and X = (x′
1, . . . ,x

′
n)′ is the

design matrix. Furthermore, z = (z1, . . . , zn)′ and m = (m1, . . . ,mn)′. By integrating out missing data
ymiss

i and the underlying variable zi, one can obtain the observed data likelihood for the maximum likelihood
estimation method. However, the integration is not an easy task. Bayesian estimation procedure, however,
can be implemented relatively easily through Gibbs sampling after obtaining the full set of conditional
posterior distributions for the selection model.

To use the Bayesian method, we need to specify priors for unknown parameters. We first consider the
following semi-conjugate priors and then discuss the use of uninformative priors (Gelman et al., 2003). For
the regression coefficients β, a multivariate normal prior is used as

p(β) = MN(β0,Σ0) ∝ |Σ0|−1/2 exp
[
−1

2
(β − β0)′Σ−1

0 (β − β0)
]

(8)

where β0 and Σ0 are predefined hyper-parameters representing the mean vector and covariance matrix of
the multivariate normal distribution. For the residual variance parameter φ, an inverse gamma distribution
is employed,

p(φ) = IG(a0, b0) ∝ φ−a0/2−1 exp
(
− b0

2φ

)
(9)

where a0 and b0 are assumed to be known shape and scale parameters. Finally, for parameters γ, a multi-
variate normal prior is also used,

p(γ) = MN(γ0, D0) ∝ |D0|−1/2 exp
[
−1

2
(γ − γ0)′D−1

0 (γ − γ0)
]

(10)

where γ0 and D0 are known mean vector and covariance matrix. These priors are called semi-conjugate
priors because the corresponding conditional posteriors are from the same distribution family (Gelman et
al., 2003).

With the likelihood function in (7) and priors in (8), (9), and (10), the joint posterior distribution of the
unknown parameters is readily available. However, the marginal posterior distributions of the parameters are
difficult to obtain explicitly. To avoid the difficulty of getting the marginal posterior distributions explicitly,
we obtain the conditional distributions of the parameters and then utilize the Gibbs sampling method to
generate Markov chains for the parameters and construct the Bayesian parameter estimates.

The conditional posterior distribution for β is a multivariate normal distribution defined by

β|y,X, φ ∼MN(β1,Σ1)
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where
β1 =

(
Σ−1

0 + X ′Xφ−1
)−1 (

Σ−1
0 β0 + X ′yφ−1

)
,

and
Σ1 =

(
Σ−1

0 + X ′Xφ−1
)−1

where X and y are as defined earlier.
The conditional posterior distribution for φ is an inverse Gamma distribution given by

φ|β,y,X ∼ IG(a1, b1)

where
a1 =

a0 + n

2
and

b1 =
b0 + (y −Xβ)′(y −Xβ)

2
.

The conditional posterior distribution for γ is

γ|z,y,W ∼MN(γ1, D1)

where
γ1 =

(
D−1

0 + W ′W
)−1 (

D−1
0 γ0 + W ′z

)

and
D1 =

(
D−1

0 + W ′W
)−1

where W = (w′
1, . . . ,w

′
n)′.

The conditional posterior distribution for the underlying variable zi is

zi|γ, yi, mi ∼
{

N(wiγ, 1)I(0,+∞) mi = 1
N(wiγ, 1)I(−∞, 0] mi = 0

.

Thus, zi follows a truncated normal distribution.
Finally, the conditional posterior distribution for missing data ymiss

i is

ymiss
i |β,γ, zi, φ,xi ∼ N(µ1, φ1)

where

µ1 =
[
xiβ

φ
+ γ1(zi − γ0)

] (
1
φ

+ γ2
1

)−1

and

φ1 =
(

1
φ

+ γ2
1

)−1

.

Note that if missing data are MCAR, one should expect that γ1 = 0. Then the posterior for missing data
ymiss

i reduces to
ymiss

i |β,γ, zi, φ,xi ∼ N(xiβ, φ)

which can be viewed as the multiple imputation method.
Uninformative priors can also be used in obtaining the conditional posterior distributions of the model

parameters. One form of uninformative priors can be

p(φ) ∝ 1/φ
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and
p(β,γ) ∝ 1.

Note that these priors are improper and can be viewed as carrying no information (Box & Tiao, 1973).
With these priors, the conditional posterior distributions for zi and ymiss

i remain the same. The conditional
posterior distributions for the model parameters become

β|yi,xi, φ ∼ MN
[
(X ′X)−1X ′Y , (X ′X)−1φ

]

φ|β, yi,xi ∼ IG

[
n

2
,
(Y −Xβ)′(Y −Xβ)

2

]

γ|zi, yi ∼ MN
[
(W ′W )−1W ′Z, (W ′W )−1

]
,

where Y = (y′
1, . . . ,y

′
n)′ and Z = (z′

1, . . . ,z
′
n)′.

With the conditional posterior distributions, one can implement the following Gibbs sampling proce-
dure.

1. Start with initial values β(0), φ(0),γ(0), z(0)
i , ymiss(0)

i .

2. Assume at the iteration t, one has β(t), φ(t),γ(t), z(t)
i , ymiss(t)

i .

3. At iteration t + 1,

(a) Generate β(t+1) from β|yobs
i , ymiss(t)

i ,xi, φ(t),

(b) Generate φ(t+1) from φ|β(t+1), yobs
i , ymiss(t)

i ,xi,

(c) Generate z(t+1)
i from zi|γ(t), yobs

i , ymiss(t)
i , mi for i = 1, . . . , n,

(d) Generate γ(t+1) from γ|z(t+1)
i , yobs

i , ymiss(t)
i ,

(e) Generate ymiss(t+1)
i from ymiss

i |β(t+1),γ(t+1), z(t+1)
i , φ(t+1),xi if yi is missing.

The above Gibbs sampling procedure can be used to generate a Markov chain for each model parameter,
underlying variable, and missing datum. After convergence, these Markov chains can be viewed as sam-
ples from the joint distribution and marginal distributions of the parameters and thus Bayesian parameter
estimates can be constructed (e.g., Casella & George, 1992; Geman & Geman, 1984).

Simulation studies

In this section, we conduct several simulation studies to investigate the performance of the selection
model and the Bayesian estimation method. The focus of the simulation studies is to evaluate whether
the Bayesian selection model is robust to choices of priors, choices of link functions, and missing data
mechanisms. In the first study, we compare the parameter estimates from the selection model and the
regular regression model assuming MNAR and the missing mechanism is known to depend solely on y.
In the second simulation, we evaluate whether results from the selection model are influenced by different
choices of priors and in the third simulation, we investigate whether results from the selection model are
influenced by different choices of the link functions. In Simulation 4, the missing mechanism is related to
an external unobserved variable. In Simulation 5, the missingness depends on both the dependent variable
y and independent variables X . In Simulation 6, the missing mechanism is MCAR.
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General settings of the simulation studies

In all simulation studies, data are generated from a multiple regression model with two covariates as
in

yi = β0 + β1x1i + β2x2i + ei = xiβ + ei. (11)

The population parameters are β0 = β1 = β2 = 1 and ei ∼ N(0, φ) with variance φ = .25. Both covariates
x1i and x2i are generated from the standard normal distribution. Complete data are first generated from this
model and missing data are then generated according to each simulation condition. In all simulation studies,
sample size is n = 100 and the missing data percentage is 40%. Furthermore, for each simulation study, a
total of 1000 data sets with missing data are generated and analyzed.

For each simulation study, four statistics will be reported. The first one is the parameter estimate
which is calculated as the average of parameter estimates of 1000 simulation replications. The second one
is the average standard error (ASE) which is the average of standard errors of parameter estimates from the
1000 replications. The third one is the standard deviation of the 1000 sets of estimated parameters. Finally,
the coverage probability of the 95% credible (confidence) interval of each parameter are also reported.

In each simulation study, the following priors are used without further elaboration. For β, the trivari-
ate normal prior is used with β0 = (0, 0, 0)′ and

Σ0 =




106 0 0
0 106 0
0 0 106



 .

For φ, the inverse gamma prior is used with a0 = b0 = 10−3. And for γ, the bivariate normal prior is used
with γ0 = (0, 0)′ and

D0 =
(

106 0
0 106

)
.

These priors can be considered as carrying little information (Congdon, 2003).
All simulations are conducted using SAS and WinBUGS (Zhang et al., 2008). The convergence of

the Markov chains is monitored through the Geweke statistics (Geweke, 1992). The WinBUGS codes for
the selection model are provided in the Appendix.

Simulation 1: Missingness depends on y only

Purpose. This simulation study investigates whether the regression model parameters can be recov-
ered using the selection model and the Bayesian estimation method when the missing mechanism is correctly
specified.

Missing data generation. In this simulation study, the probability that a datum is missing is assumed
to depend on itself. Thus, the missingness is non-ignorable. Missing data are generated in the following
way. Let cα denote the 100α-th percentile of y. Then, the probability that yi is missing is set as

Pr(yi is missing) = Pr(mi = 1) =

{
0.9r/(1− α) if yi > cα

0.1r/α otherwise
,

where r is the predefined missing data rate. In this simulation study, we set α = 60% and r = .4. Note
that the missing probability function is a step function instead of a continuous function. It also indicates that
when yi is larger than the 60th percentile, its missing probability is 0.9. Otherwise, its missing probability
is about 0.067.
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Results. The simulated data are analyzed using the selection model in Equations (1) and (5). For
the purpose of comparison, we also analyze the data by ignoring the missing mechanism, namely, the data
are analyzed as MAR through a regular regression model. The results from the analysis are summarized in
Table 1.

When the missing mechanism is MNAR and the data are analyzed ignoring the missing mechanism,
the parameter estimates are biased - underestimated in this simulation study. Furthermore, the coverage
probabilities are not correct, much smaller than 95% especially for the regression coefficients (β). When
the data are analyzed using the selection model, the parameters are well recovered, especially for the regres-
sion coefficients, with less than 0.6% bias. The coverage probabilities are also very close to .95. Finally,
the ASE and SD are very close for the regression parameters, which indicates that the standard error es-
timates of parameters are also accurate. Note that although the missing mechanism is modeled using the
normal distribution function and the missingness is not simulated from the normal distribution function
but a step function, the regression model parameter estimates (β) are still accurate. This indicates that the
non-ignorable missing mechanism does not need to be perfectly specified.

Table 1 Estimate MNAR data using the selection model and the regular model

Selection model Regular model
Parameters Estimates ASE SD Coverage Estimates ASE SD Coverage

β0(Intercept) 0.998 0.082 0.081 0.947 0.855 0.075 0.076 0.477
β1(x1) 0.994 0.075 0.077 0.945 0.922 0.074 0.076 0.808
β2(x2) 0.997 0.075 0.076 0.932 0.924 0.074 0.077 0.823

φ 0.261 0.056 0.054 0.945 0.236 0.045 0.044 0.922
γ0 -1.488 0.365 0.503 - - - - -

γ1(y) 1.023 0.218 0.323 - - - - -

Note. The results are based on 1000 simulation replications. ASE: average standard error. SD: standard
deviation of parameter estimates. Coverage: coverage probability of the 95% highest posterior density
credible interval.

Simulation 2: Semi-conjugate priors vs. uninformative priors (sensitivity analysis of priors)

Purpose. During the discussion of the model estimation method, we used two types of priors - the
semi-conjugate priors and the uninformative priors. This simulation study is to investigate whether the
estimated model parameters are influenced by the choice of the two sets of priors.

Missing data generation. The data are generated using the same procedure of Simulation 1.

Results. The results from the analysis using two types of priors are given in Table 2. From the results,
the parameter estimates, especially the regression coefficients (β), are very close from two different types
of priors. The results for using the uninformative priors can be viewed as the baseline data analysis. Prior
information, when available, can be incorporated into the semi-conjugate priors.1

Simulation 3: Normal distribution function vs. logistic function

Purpose. In Equation (2), the f function can be any function that maps a value to be within 0 and
1. For convenience, we have used the normal distribution function. With it, the explicit forms of the
conditional posterior distributions can be obtained conveniently. However, the other functions such as the

1Best et al. (1996) compared three sets of informative priors and found that parameter estimates were insensitive to the chosen
priors.
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Table 2 Selection model with different priors

Semi-conjugate priors Uninformative priors
Parameters Estimates ASE SD Coverage Estimates ASE SD Coverage

β0(Intercept) 0.998 0.082 0.081 0.947 1.004 0.084 0.082 0.954
β1(x1) 0.994 0.075 0.077 0.945 0.997 0.077 0.077 0.947
β2(x2) 0.997 0.075 0.076 0.932 1.000 0.076 0.077 0.933

φ 0.261 0.056 0.054 0.945 0.272 0.060 0.057 0.950
γ0 -1.488 0.365 0.503 - -1.514 0.385 0.553 -

γ1(y) 1.023 0.218 0.323 - 1.036 0.229 0.356 -

Note. The same as the previous table.

logistic function can also be used as in Best et al. (1996). In this simulation study, we investigate whether the
choice of the function f such as the normal distribution function or the logistic function influences parameter
estimates.

Missing data generation. The data are generated using the same procedure of Simulation 1.

Results. The results from the selection model using normal distribution and logistic functions are
provided in Table 3. The results are almost identical for the regression parameters (β). For the γs, the
estimates using the logistic distribution is about 1.83 times of those using the normal distribution. This
simulation suggests that the selection model again does not require the link function to match the missing
mechanism exactly.

Table 3 Selection model with different f

Normal distribution function Logistic function
Parameters Estimates ASE SD Coverage Estimates ASE SD Coverage

β0(Intercept) 0.998 0.082 0.081 0.947 0.996 0.080 0.078 0.958
β1(x1) 0.994 0.075 0.077 0.945 0.994 0.074 0.075 0.947
β2(x2) 0.997 0.075 0.076 0.932 0.997 0.074 0.074 0.933

φ 0.261 0.056 0.054 0.945 0.256 0.054 0.052 0.946
γ0 -1.488 0.365 0.503 - -2.721 0.686 0.663 -

γ1(y) 1.023 0.218 0.323 - 1.903 0.439 0.420 -

Note. The same as the previous table.

Simulation 4: Missing data depend on an external and unobserved variable z

Purpose. In this simulation, we consider the situation that the missingness of y depends on an external
variable z that is related to y but unobserved. The purpose of this simulation is to investigate whether we
can recover model parameters using the selection model when the missing mechanism is mis-specified.

Missing data generation. To generate data, zi is first generated using

zi = ayi + vi

where vi ∼ N(0, 1). To investigate whether the correlation between y and z influences parameter estimates,
we set a at 1 and 0.2 corresponding to the correlations (ρ) betweeny and z at 0.83 and 0.29, respectively.
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Let cα denote the 100α-th percentile of z. Then, the probability that yi is missing is set as

Pr(yi is missing) = Pr(mi = 1) =

{
0.9r/(1− α) if zi > cα

0.1r/α otherwise
,

where r is the missing data rate. As in the previous simulations, we set α = 60% and r = .4.

Results. Results from this simulation are summarized in Table 4. Biases in parameter estimates (β)
are small and the coverage probabilities are close to 95% regardless of the size of the correlation between
the external variable and the outcome variable. Thus, the regression model parameters can still be recovered
well using the selection model even when the missing mechanism is mis-specified in the current situation.

Table 4 Missing mechanism is related to an external variable z

a = 1 and ρ = .83 a = .2 and ρ = .29
Parameters Estimates ASE SD Coverage Estimates ASE SD Coverage

β0(Intercept) 1.009 0.078 0.078 0.945 1.003 0.067 0.067 0.952
β1(x1) 1.001 0.072 0.072 0.955 0.998 0.066 0.067 0.942
β2(x2) 1.000 0.072 0.071 0.946 1.003 0.066 0.069 0.944

φ 0.263 0.055 0.052 0.960 0.259 0.049 0.047 0.952
γ0 -1.061 0.258 0.252 - -0.557 0.174 0.127 -

γ1(y) 0.680 0.150 0.162 - 0.191 0.099 0.103 -

Note. The same as the previous table.

Simulation 5: Missing data depend on both y and X (a mixture of MNAR and MAR)

Purpose. This simulation study investigates whether the selection model is robust to the missing
mechanism that the missing probability depends on both y and X . The missing mechanism can be viewed
as a mixture of MNAR and MAR. Thus, the missing mechanism is also mis-specified in the selection model
in this simulation study.

Missing data generation. To generate missing data, we first generate a variable z such that

zi = .5yi + x1i − .5x2i.

Then the missing probability is set by

Pr(yi is missing) = Pr(mi = 1) =

{
0.9r/(1− α) if zi > cα

0.1r/α otherwise
,

where cα is the 100α-th percentile of z. In this simulation, we have α = 60% and r = .4.

Results. Results from this simulation study are given in Table 5. The biases of the regression coef-
ficient parameters (β) are slightly larger than the previous simulations. For example, for the intercept β0,
the relative bias is about 3.8%. However, the bias is still small (less than 5%). Furthermore, the coverage
probabilities seem correct. Thus, the selection model appears to work well under the current condition.

Simulation 6: MCAR data analysis using the selection model

Purpose. This simulation study investigates whether the selection model can be applied when the
missing mechanism is MCAR. Note that for MCAR, the selection model is still correctly specified and one
would expect that γ1 = 0.
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Table 5 Missing probability is related to both y and X

Parameters Estimates ASE SD Coverage
β0(Intercept) 1.038 0.084 0.082 0.934

β1(x1) 1.026 0.080 0.077 0.954
β2(x2) 0.998 0.073 0.072 0.949

φ 0.271 0.059 0.055 0.953
γ0 -1.438 0.364 0.476 -

γ1(y) 0.948 0.209 0.289 -

Note. The same as the previous table.

Missing data generation. To generate missing data, the missing probability is set as

Pr(yi is missing) = Pr(mi = 1) = r,

where r is a constant and is set as .4 in this simulation.

Results. Results from this simulation are given in Table 6. First, the estimate of γ1 is almost 0.
Thus, the selection model correctly identifies that the missing mechanism does not depend on y. Second,
the regression coefficient estimates are very close to the true values with the maximum relative bias about
0.3%. Third, the estimate of φ is not as accurate as the regression coefficients but close to the true value .25.
Finally, the coverage probabilities are close to the nominal value .95. Clearly, if the missing mechanism is
MCAR, the selection model can still be applied.

Table 6 Analyze MCAR data using the selection model

Parameters Estimates ASE SD Coverage
β0(Intercept) 1.002 0.068 0.066 0.958

β1(x1) 1.002 0.067 0.066 0.944
β2(x2) 1.003 0.067 0.067 0.937

φ 0.259 0.051 0.049 0.951
γ0 -0.258 0.159 0.096 -

γ1(y) -0.002 0.093 0.093 0.955

Note. The same as the previous table.

An empirical example

In this section, we illustrate the application of the simplified selection model through the analysis of
a subset of data from the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study.
The ACTIVE study is a randomized and controlled study designed to determine whether cognitive training
interventions can affect cognitively based measures of daily functioning (Jobe et al., 2001; Tennstedt, 2001).
For the purpose of illustration, the analysis here focuses on whether booster training on memory can improve
everyday problem solving ability (EPT) of the elderly.

The sample size for this data analysis is N = 703 with about 53% (372) participants selected ran-
domly to receive the booster training on memory. Before and after the booster training, everyday problem
sloving ability test was administered to the participants. The time interval between the two tests was about
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one year. In this data set, the change scores (∆EPT) as the difference between test scores before and af-
ter training were available for 76.5% (583) participants (about 23.5% participants had missing data). It is
hypothesized that the training group has a larger ∆EPT than the control group. To control possible con-
founding factors, we also included demographic variables, age and education level, in our data analysis.
There are no missing data in the demographic variables.

Table 7 presents the summary statistics of each group in the data analysis. From Table 7, we can see
that the control group had more missing data on EPT than the training group. There were no significant
differences in age and education between the two groups. Both groups on average had negative change on
EPT and the control group seemed to have more everyday functioning decline. Based on the two-sample
t-test on ∆EPT with list-wise deletion, the difference on ∆EPT between two groups was not significant.

Table 7 Summary statistics for the ACTIVE sub-sample

Variable Training group Control group Difference
Sample Size 372 331
Missing rate 17.2% 30.5% -13.3%
Age (years) 73.25 (5.78) 73.84 (6.28) -0.59
Education (years) 13.71 (2.60) 13.45 (2.87) 0.26
∆EPT -0.11 (3.27) -0.28 (3.13) 0.17

Note: Values in the parentheses are standard deviations.

Two models were fitted to the data. The first one is a regular regression model assuming that miss-
ingness on ∆EPT is MAR. Thus, the model can be written as

∆EPTi = β0 + β1Trainingi + β2Agei + β3Educationi + ei.

The second one is a selection model assuming that missingness of ∆EPT is related to change in EPT before
and after training. Therefore, the model can be specified as

∆EPTi = β0 + β1Trainingi + β2Agei + β3Educationi + ei

mi ∼ Bernoulli(pi)
pi = Φ(γ0 + γ1∆EPTi).

In the two models, Training is a binary variable with 1 denoting that a participant is from the booster
training group and 0 denoting the control group. The missingness indicator variable m was created with 1
indicating that the score of ∆EPT is missing. Both models were estimated through the Bayesian method as
discussed earlier. For priors, each regression coefficient was given a normal distribution with mean 0 and
variance 106 and the variance of the residuals was given an inverse gamma distribution with both scale and
shape parameters equal to 10−3. The results from the two models are summarized in Table 8.

First, the Geweke statistics show that the Markov chain for each model parameter may have converged
to its marginal distribution because all Geweke statistics were in the range of−1 to 1. Second, for all model
parameters, the ratios between the Monte Carlo error and the standard deviation are smaller than 5%. This
indicates that the parameter estimates were accurate. Thus, we can make our inference based on the results
in Table 8.

When missing data are assumed to be MAR, results from the regular regression model show that
booster training did not improve everyday problem solving ability of the elderly after controlling effects
of age and education level. Age did not predict change in everyday problem solving ability, which is not
consistent with aging literature (e.g., Finkel et al., 2003; Hedden & Gabrieli, 2004). However, analyzing the
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Table 8 Bayesian parameter estimates from the regular regression model and the selection model

Estimate s.d. MC/s.d. HPD Geweke
Intercept 1.816 1.925 0.036 -2.011 5.506 -0.124
Training 0.117 0.281 0.006 -0.429 0.671 -0.740

Regular Model Age -0.041 0.024 0.035 -0.087 0.006 -0.018
Education 0.070 0.051 0.018 -0.031 0.171 0.805

φ 10.280 0.631 0.003 9.057 11.520 0.649
Intercept 1.384 2.083 0.040 -2.843 5.273 0.483
Training 0.739 0.316 0.011 0.110 1.351 -0.819

Age -0.057 0.026 0.039 -0.105 -0.005 -0.426
Selection Model Education 0.090 0.054 0.020 -0.018 0.194 -0.277

φ 13.010 1.288 0.021 10.460 15.500 -0.961
γ0 -1.312 0.230 0.028 -1.766 -0.866 0.994

γ1(∆EPT) -0.256 0.058 0.028 -0.366 -0.142 0.865

Note. s.d.: standard deviation, can also be viewed as standard error from a frequentist’s perspective.
MC/s.d.: the ratio between Monte Carlo error and standard deviation of a parameter. HPD: highest pos-
terior density credible interval.

data as MNAR using the simplified selection model reveals a different picture. Training did have a positive
effect in the change of everyday problem solving ability. Overall, participants in the training group had .739
(s.d.: .316; HPD: .110-1.351) more positive change than those in the control group after controlling effects of
age and education level. In addition, age is negatively related to change in everyday problem solving ability
(older adults had more negative change than younger adults), which is consistent with previous findings
(e.g., see the review by Hedden & Gabrieli, 2004).

With different assumptions on missing mechanisms and consequently different models, our data anal-
ysis led to different conclusions. Empirical results indicate that it is more likely that missing data were
MNAR in this example. From the selection model, ∆EPT was negatively related to the missingness of
itself. This means that participants with a lower ∆EPT (less positive change) were more likely to have miss-
ing data on EPT. In other words, if a participant expected that he/she would not gain much on EPT through
training, he/she was more likely to miss the post-test. Note that we have found that for the training group,
participants on average had 0.739 more positive change in their EPT scores than the control group after con-
trolling the effects of age and education from the selection model. Thus, participants in the training group
would have a lower probability to have missing data than participants in the control group. Actually, from
the empirical missing data rates of the ACTIVE study, about 30.5% percent of participants have missing
data in the control group and about 17.2% of participants have missing data in the booster training group. In
addition, participants who have complete data are more likely to have a higher ∆EPT. Therefore, the con-
trol group had a higher missing data rate, which means that relatively more lower ∆EPTs were missed and
relatively more higher ∆EPTs were included in the analysis than the training group in terms of proportions.

Conclusion and discussion

To ease the choice of appropriate variables in explaining missing mechanisms in selection models,
we examined and extended the selection model used by Best et al. (1996) in which missingness depends
solely on the missing variable itself. We first derived the full conditional posterior distributions for the
simplified selection model using the data augmentation algorithm. Then, we conducted seven simulation
studies to evaluate the performance of the simplified selection model under a variety of conditions. Finally,
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we demonstrated the application of the simplified selection model through a real example using data from
the ACTIVE study.

Our simulation studies clearly portrayed important features of the simplified selection model. Simula-
tion study 1 showed that when MNAR data were analyzed as MAR data, parameter estimates were incorrect.
When the simplified selection model was applied, parameter estimates were accurate. Simulation studies
2 and 3 demonstrated that the simplified selection model was insensitive to the choice of priors and link
functions. For example, using either semi-conjugate priors or uninformative priors, model parameters were
recovered equally well. Furthermore, although missing data were generated through a step function, both
the normal distribution and logistic functions can be used to obtain correct model parameter estimates.

MNAR data may be resulted from different situations other than the simple situation that missingness
depends on variables themselves of interest. For example, missingness could be related to an auxiliary and
unobserved variable. Simulation study 4 investigated such a scenario and found that the simplified selection
model was still able to recover model parameter very well. It is also possible that missingness not only
depends on the variables with missing data themselves but also other variables. Simulation study 5 looked
into the situation where missingness in y depends on both y and X . The results showed that the simplified
selection model again performed well in this situation.

Overall, it seems that the simplified selection model worked if missing data involved were MNAR no
matter whether the exact missing mechanism was modeled or not. In other words, the performance of the
simplified selection model was related to whether missing data were MNAR but not how MNAR data were
generated. Therefore, the simplified selection model is robust in terms of analyzing MNAR data.

Our ACTIVE data analysis provided another example on how to judge missing mechanisms based on
prior information. From previous research, we knew that with the increase of age, there was a accelerated
decline in cognitive ability (e.g., Finkel et al., 2003; Hedden & Gabrieli, 2004). However, the regular data
analysis assuming MAR missing data showed that age was not related to the change of EPT. This signaled
that the missing mechanism here may not be MAR. On the other hand, when the simplified selection model
was applied, the negative relation between age and the change in EPT showed up. Furthermore, other results
from the selection model seemed aslo reasonable. It demonstrated that if a participant did not expect much
help from booster training, she/he was more likely to miss a test. It should be clear that this is not a formal
test for distinguishing missing mechanisms. Thus, we suggest whenever a selection model is used to analyze
missing data, data analysis based on a corresponding regular model should be conducted and reported for
comparison.

This study has its limitations. Admittedly, the regression model discussed in the current study is a
relatively simple model. However, with a simple model, we can disentangle complexity of missing data
analysis in a transparent way. For example, conditional posterior distributions of missing data are readily
available and they clearly show the difference and connection between a regular model and a selection
model. The method and strategy used in this study can be readily generalized to more complex models, e.g.,
growth curve models and growth mixture models.2 By presenting the details of a simple model, it is our
hope that future research on non-ignorable missing data can be conducted for other sophisticated models.

Although only the monotonously increasing link functions including the logistic function and the
normal distribution function are considered in this study, we want to emphasize that the link function can
take many different forms according to substantive soundness of data analysis. For example, if there is a
higher missing probability for those participants who have either a relatively higher value or a relatively
lower value, a U-shape link function can be adopted. Furthermore, even for the same link function, we
can specify different relationship between missing probability and its predicting variables. In this study, we
focused on a linear relationship. However, it is convenient to model a nonlinear relationship, for example,
by adding a quadratic term into the model if previous substantive findings support this.

2Manuscripts on those models are under review and preparation and can be obtained from the first author.
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Appendix
WinBUGS codes for the selection model

## Model
model{
for (i in 1:N){

mu[i]<-b[1]+b[2]*x1[i]+b[3]*x2[i]
y[i]~dnorm(mu[i], pre.phi)

z[i]~dnorm(muz[i], 1)I(L[i],U[i])
muz[i]<-b[4]+b[5]*y[i]

L[i]<- -(1-m[i])*10000
U[i]<- m[i]*10000

}
for (i in 1:5){

b[i]~dnorm(0, 1.0E-6)
Para[i]<-b[i]

}
pre.phi~dgamma(.001,.001)
Para[6]<-1/pre.phi

}
## Starting values
list(b=c(0,0,0,0,0), pre.phi=1)
## Data are omitted for the sake of saving space


