Robust Bayesian growth curve modeling using Student’s t

distribution
Let y; = (yi1,-..,yir) be aT x 1 random vector and y;; be the observation of individual i at time ¢
t=1,...,N;t=1,...,T). For a growth curve model, we have
yi = An; +e;

where A is aT" x ¢ factor loading marix determining the growth trajectory, 7; is a ¢ X 1 random vector,
and e; is a vector of residuals or measurement erros. e; is often assumed to be normally distributed as
e; ~ MNr(0,®). Many times, it is assumed that @ = I¢ where ¢ is a scalar and I is an identity matrix.
1); are often called random effects because they are different for each individual. The means of 7; are fixed
effects so that

=06+ ¢€

where €; ~ M N,(0, ).
If y;; is not normally distributed, for example, with a long tail or outliers, the normality assumption
may not hold any more. A possible solution is to use the Student’s t distribution such that

Eit ~ t(kv 0, ¢)
where k is the degree of freedom and ¢ can be viewed as variance.

Likelihood function
Conditonally on 7;, the distribution of y; is a multivariate student distribtion with density function
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Thus, the joint distribution of y; and n; is
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Thus, the likelihood function for the model is

n
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Priors

For (3, a multivariate normal prior is used

p(B) = MNy(Bo, Bo) = (2m) 42|/ ? exp [—;(5 — Bo)'=51 (B - ﬁo)] :

For W, the inverse Wishart prior is used

mg+q+1

Vo™ 2T exp [—tr(Vp® ) /2]
B 2m04/2T(mg /2)

p(¥) = IW(mg, Vo)

For ¢, the inverse gamma distribution prior is used

p(¢) = IG(a0, %) = 71](20)%(‘“0“) exp (—?;) :

For k, we first consider an exponential distribution prior,
p(k) = Exp(\) = Aexp(—Ak).
Posteriors

The joint posterior distribution for (3, ¥, ¢, k) is the product of the likelihood function and the priors

p(B,¥,¢,k[Y,n) =L xp(B) x p(¥) x p(¢) x p(k).

The conditional posterior distribution for 3 is a multivariate normal distribution

p(,@\\Il,m,i = 1, e ,n) = MNq(,Bl, 21)
where

n
Br=31(T D ni+ 35" Bo)
i=1
and
=me 1+ h
The conditional posterior distribution for W is an inverse Wishart distribution

p(P|B,mi,i=1,...,n) =IW(mq, V1)

where
mi1 =mg+n
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and .
Vi=Vo+ ) (m—B)mi—B).
i=1
The kernal for the conditional posterior distribution of £ is
F(M) n , n —(k+T)/2
2 i=1

The kernal for the conditional posterior distribution of ¢ is

p(plk,miyyii=1,...,n) = ¢ (T nT/2ey p( Y;)

n 1 —(k+T)/2
X {}:{l [1 - E(b*l(yi —An) (yi — Am)} }
Finally, the conditional posterior distribution for 7; is
1 -
6. W BLkys) o exp |~ — 0¥ (i )
—(k+T)/2

X [1 + %(Yi — Any) (L) (yi — A"i)]

With the full set of conditional posterior distributions, Gibbs sampling can be used to generate Markov
chains for model parameters and latent variables. Because the conditional posterior distributions for k, ¢,
and 7; do not follow an existing distribution, the Metropolis-Hastings sampling method is used within each
itereation of Gibbs sampling. Specifically, in using M-H algorithm, the exponential proposal distribution,
the inverse gamma proposal distribution, and the multivariate normal proposal distribution are used for k, ¢,
and 7);, respectively.

Simulation studies

Data will be generated from the following linear growth curve model,

yir = Li +Si(t — 1) + ey
L; =B +wvy )
Si = [ + vy

2
where e;; ~ N(0, ) or e ~ t(k,0,¢) and Cov [(v14,v2;)'] = ¥ = ( UUL UULQS > We set the popula-
LS S
tion parameters at 3; = 50, B2 = 5, ¢ = 25, and

100 0
v= ( 0 25 ) '
Another way to set up the population parameters is to first analyze the empirical example and then
use the parameter estiamtes as population values.
The number of measurement occasions can be set at 7' = 4 and 5. For the sample size, n = 100, 200

and 500 can be used. The degrees of freedom will be set at 3, 10, and 50.
The following simulation studies should be conducted.
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1. With generated student’s t data, whether the parameters can be recovered?
2. What the influence of analyzing student’s t data as normal data?

3. What the influence of analyzing normal data as student’s t data?

An empirical example

Pull out a subset of data from the National Longitudianl Study of Youth data base. Conduct the
empirical data analysis based on the data.

Appendix
A simple example

#WinBUGS codes generated by BAUW: http://bauw.psychstat.org
#USE WITH CAUTION!

Model {
# Model specification for linear growth curve model
for (i in 1:N) {
LS[i,1:2]~dmnorm(mulLS[i,1:2], Inv_cov[1l:2,1:2])
mulLS[i,1]<=bL[1]
mulLS[i,2]<=bS[1]
for (t in 1:5){
yli, €] ~ dt(muY[i,t], Inv_Sig e2, k)
muY[i,t]<-LS[i,1]1+LS[i,2]*t

k~dunif (3, 30)

#Priors for model parameter
for (i in 1:1){

bL[i] ~ dnorm(0, 1.0E-06)

bS[i] ~ dnorm(0, 1.0E-6)

}

Inv_cov[l:2,1:2]~dwish(R[1:2,1:2], 2)
R[1,1]1<-1

R[2,2]<-1

R[2,1]<-R[1,2]

R[1,2]<=-0

Inv_Sig_e2 ~ dgamma(.001, .001)

Sig_e2 <= 1/Inv_Sig_e?2
Cov[l:2,1:2]<-inverse (Inv_cov[1l:2,1:2])

Sig_L2 <= Cov[1l,1]
Sig_S2 <= Cov[2,2]
Cov_LS <= Cov]I[l,2]
rho_LS <= Cov[1l,2]/sqgrt(Cov[l,1]*Cov[2,2])



