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Note: Whilst we have endeavoured to ensure that our differential equation solving algorithms are
robust, there is no guarantee that a given system of equations can be solved accurately for all possible
sets of system parameters. Hence, it is sometimes essential to specify informative priors.

Worked Example 1

Our first worked example makes use of a physiologically based pharmacokinetic (PBPK) model for a
hepatically cleared drug given orally to some hypothetical animal. The model is for illustrative purposes
only, to show the reader how the WinBUGS Differential Interface (WBDiff) may be used – all of the
physiological parameter values specified have been fabricated and bear no (intended) relation to any
specific drug or animal species. The model is depicted in Figure 1 and can be described mathematically
via:

dCPP

dt
= KIP P CART −KOP P CPP (1)

dCRP

dt
= KIRP CART −KORP CRP (2)

dCGU

dt
= KIGU CART −KOGU CGU (3)

dCLI

dt
= (QHCART + KOGU VGUCGU + RA−RM) /VLI −KOLI CLI (4)

dCLU

dt
= KILU CV EN −KOLU CLU (5)

dCV EN

dt
= (KOP P VPP CPP + KORP VRP CRP + KOLI VLICLI −KILU VLUCV EN ) /VV EN (6)

dCART

dt
= (KOLU VLUCLU −QTOT CART ) /VART (7)

Here C. denotes the concentration of drug within the indicated compartment, KIT = QT /VT and
KOT = QT /VT KPT , where QT , VT and KPT denote the rate of blood flow, the volume, and the
tissue-to-blood partition coefficient associated with tissue/compartment T , respectively. In addition,
QH represents the liver’s arterial blood supply (QH = QLI −QGU ; see Fig. 1) and QTOT is the total
cardiac output, which is equal to QLU as all blood must flow through the lungs to be oxygenated. (Note
that for mass balance we must also have that QTOT = QLU = QPP + QRP + QGU + QH .) Also, for
this particular example, the rate of absorption is given by RA = ka×F ×Dose× exp(−kat) (first-order
absorption) and the rate of metabolism, RM , is given by Vmax × CLI/(Km + CLI) (Michaelis-Menten
metabolism), where ka, F , Vmax and Km are the first-order absorption rate constant, the fraction of
the administered dose that enters the liver, the maximum rate of metabolism, and the concentration of
drug in the liver at which exactly half the maximum rate of metabolism occurs, respectively.
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Figure 1: Physiologically based pharmacokinetic model for a hypothetical, orally administered, hepat-
ically cleared drug. Note that orally administered drug is generally absorbed across the gut wall into
the hepatic portal vein. In order to separate any drug that is being absorbed thus from that which is
recirculating into the hepatic portal vein, via the tissues of the gut, we tend to assume that as far as
the model is concerned oral absorption processes input drug directly into the “LIVER” compartment,
as shown, rather than the “GUT” compartment.
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This first worked example comes in two parts: in ‘part 1’ we use the above model to simulate a small
set of data; in ‘part 2’ we use the same model to perform Bayesian inference on those data.

Worked Example 1, Part 1: Simulation

Start your copy of WinBUGS 1.4 and open the file WBDiff/Examples/WBDiff example part1.odc from
within it. The following notes describe/explain various parts of the model code – the line numbers to
which they relate are given in the right-hand margin of the WBDiff example part1.odc file. The file
contains code for both parts of the worked example, colour-coded as follows: code that is only relevant
to part 1 of the worked example is shown in blue; code that is only relevant to part 2 of the worked
example is shown in red; and code that is relevant to both parts is shown in black. (Note that all of the
red code is commented out – using ‘#’ at the beginning of each line – for this first part of the example.)

Notes

Line 2: n.grid is the number of time-points at which the solution to the differential equations is required;
dim is the number of differential equations to be solved. ode(.) is the BUGS-language syntax for
the new differential equation solver. Its five arguments are described as follows: (i) init[.] con-
tains the initial conditions for each compartment, which pertain to the time-origin specified via
ode’s fourth argument, origin; (ii) grid[.] is the grid of time-points at which the solution is
required; (iii) D(C[.], t) is the system of differential equations to be solved; (iv) origin denotes
the time-origin of the system, i.e. to when the initial conditions apply (t = 0 in this example);
and (v) tol is the required level of accuracy (1× 10−3 here).

Lines 3–10: Specification of the system of ordinary differential equations (ODEs) to be solved. Hopefully the
notation is self-explanatory. The use of compartment names, rather than numbers, to index the
various vectors involved helps make the system more ‘readable’ and thus probably reduces the
likelihood of coding errors. These compartment names are mapped to numbers in the data block
beneath the model code (e.g. PP = 1, RP = 2, etc.) Note that the rate of oral absorption (RA)
and the rate of metabolism (RM) are defined outside this equation block (on lines 16–18) – this
enhances clarity and also facilitates modification of the code to suit different circumstances.

Line 21: five.comp.model(.) is a new BUGS-language component that provides the link to a ‘hard-wired’
(i.e. compiled Pascal) version of the five compartment PBPK model described above – see “New
BUGS-language component” below for implementation details. This type of component provides
a much faster means of evaluating the model but is obviously much less straightforward for the
user to implement themselves. The new component’s five arguments are the same as for the
more general ode(.) component described above, except that a 22-dimensional parameter vector,
theta[.], replaces the set of system equations denoted previously by D(C[.], t). The elements
of theta[.] are defined on lines 22–27.

Line 30: We want our data set to comprise simulated concentrations of drug in venous blood and so we
specify solution[i,VEN] as the mean for each data[i] (i = 1, ..., n.grid).

Lines 32 & 33: For simulating the data we specify a fixed value of 10000 (tau.simulate) for the tau parameter
whereas for Bayesian inference (part 2) we specify a (minimally informative) gamma prior.

Lines 34–37: A log-normal prior with a precision, on the log-scale, of log.param.prec = 13.81 is specified for
each KPT

, T = 1, ..., 6. This level of precision corresponds to up to two-fold variation (from the
median) across the central 99 per cent of the distribution – thus the prior probability that a given
partition coefficient is greater than twice or less than half the value of the prior median is 0.01.
The prior median is specified via prior point estimates for each KPT contained in data.KP[.] –
see the block of data beneath the model code. Part 1 of our worked example is merely a Monte
Carlo simulation exercise, i.e. the sampling distribution for each stochastic variable is simply
the distribution specified for that variable in the model. In contrast, in part 2, where we have
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‘observed’ some data and wish to use them to perform Bayesian inference (via Markov chain
Monte Carlo simulation – MCMC), the sampling distributions of unobserved stochastic variables
are modified by the observed data. Thus in part 1 our prior merely acknowledges a level of
uncertainty to be directly reflected in the simulated concentrations (solution[.,.]) whereas
in part 2 it represents a priori uncertainty to be converted into posterior uncertainty via the
extraction of relevant information from the observed data.

Lines 38–39: The prior specified for log.ka is exactly analogous to that specified for each element of log.KP[.].

Running the simulation

In order to reproduce the selected results shown at the foot of the WBDiff example part1.odc file, you
should monitor the log.KP, log.ka and solution variables and run the simulation for 1000 iterations
– this took around three minutes on a 2GHz laptop machine. The plot is of simulated venous blood
concentrations versus time and was generated by entering solution[,6] and grid in the node and
axis fields, respectively, of the Comparison Tool dialogue box (select Compare... from the Inference
menu), and by then pressing the model fit command button. The data set to be used in part 2 of our
worked example is given by the current value of the data vector and can be obtained by selecting Save
State from the Model menu – note that the current values of log.KP[.] and log.ka, i.e. those used
to generate the data, are also given.

Worked Example 1, Part 2: Inference

The WinBUGS code required in order to run part 2 of this worked example, i.e. Bayesian inference
from the data generated in part 1, can be obtained by simply commenting out all of the blue code in
WBDiff example part1.odc and by also removing the comment markers from the beginning of each
line of red code; the data block beneath the model code also requires some minor alterations. For
your convenience the file WBDiff/Examples/WBDiff example part2.odc incorporates all of the required
modifications. In order to generate the results shown at the foot of this file, we first set the length of the
WinBUGS Metropolis algorithm’s adaptive phase equal to 2000 iterations (see “The Options Menu –
Update options...” in the WinBUGS manual for details) and then we ran WinBUGS for 4000 iterations
to obtain 2000 posterior samples (iterations 2001–4000). This took under 10 minutes on a 2GHz laptop
machine (with the BUGS-language specification of the PBPK model it would have taken around 90
minutes). The plot shown is of ‘model predicted’ together with ‘observed’ venous blood concentrations
against time – this was generated by entering solution[,6], data and grid in the node, other and axis
fields, respectively, of the Comparison Tool dialogue box, and by then pressing the model fit command
button. In what follows we discuss the implementation of the new five.comp.model(.) component
(see line 21 of WBDiff example part2.odc), with an emphasis on how to use the underlying Pascal
code as a template for creating further new components.

New BUGS-language component

The new component can be found in the file WBDiff/Mod/FiveCompModel.odc. This is a Component
Pascal module that under normal circumstances, i.e. if you had written it yourself, would need to
be compiled and then ‘linked’ into the core WinBUGS software before it could be used from within
the software – I have already done this for this example, however, so that the statistical model in
WBDiff example part2.odc can be analysed immediately. Before discussing the new module in detail
we provide instructions on how to set up your system so that Component Pascal code can be compiled.

1. Download BlackBox Component Builder from the following web-page:
http://www.oberon.ch/blackbox.html
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2. Unzip the downloaded file, if necessary. Install ‘BlackBox’ by double-clicking on the Setup.exe
icon and following the instructions. The software should be installed into the new directory
Program Files/BlackBox.

3. Open My Computer (or its equivalent) and navigate to the Program Files/WinBUGS14 directory;
then press Ctrl+A (or select Select All from the Edit menu) to select all files and sub-directories
within the WinBUGS14 directory. Now press Ctrl+C (or select Copy from the Edit menu) to copy
those files and sub-directories.

4. Continue using My Computer to navigate to the Program Files/BlackBox directory and then
press Ctrl+V (or select Paste from the Edit menu) to paste the copied files and sub-directories
to this location. Select “Yes to All” if prompted about replacing existing files.

5. Now your copy of BlackBox should include the full functionality of WinBUGS 1.4 within it, and
so the BlackBox.exe icon on the desk-top or that in the Program Files/BlackBox directory can
be used either to run WinBUGS in the normal way or to conduct WinBUGS development work
(or even more general Component Pascal programming).

Now we discuss the new BUGS-language component coded in WBDiff/Mod/FiveCompModel.odc – don’t
forget to open the file via BlackBox if you wish to modify and/or recompile it. Note that to reduce the
risk of errors creeping into the system we recommend that all other new components are also stored
in the WBDiff/Mod directory. The FiveCompModel component can be used as a template for such new
components – only those areas of the code currently marked in blue should be modified. The following
notes pertain to areas of the code labelled with the relevant numbers in brackets: (*.*)

(*1*) First note that in Component Pascal comments should be enclosed within (* and *), e.g. (* this
is a comment *). The first line of a Component Pascal module should always read MODULE,
followed by the module’s name, in this case WBDiffFiveCompModel, followed by a semi-colon.
The last line of the module should read END, followed by the module’s name, followed by a full
stop. All new module names for new BUGS-language components of this type should begin with
WBDiff; the corresponding file names should be identical but with the WBDiff prefix removed
(they must also begin with at least one capital letter); all new files of this type should be saved
in the WBDiff/Mod directory.

(*2*) Various other modules can be ‘imported’ into each new module, which means that procedures
and/or data structures defined in those modules can be used/exploited from within the new
module. The Math module is an integral part of the BlackBox software since it defines many
fundamental mathematical functions, which are called from within other modules via the syn-
tax Math. followed by the relevant procedure name, e.g. Math.Ln(.) for natural logarithms,
Math.Exp(.) for exponentials – see lines (*19*), (*22*) and (*23*). Documentation regarding
the Math module can be accessed by highlighting the word Math and selecting Documentation
from the second Info menu in BlackBox.

(*3*) nEq should be set equal to the number of equations to be solved, in this case 7 – one for each
compartment plus one for venous blood and one for arterial blood.

(*4*)–(*7*) Here we define meaningful names with which to index the system’s 22-dimensional parameter
vector (note that array indices in Component Pascal begin at 0 rather than 1). The ordering of
the parameters is arbitrary but, obviously, the same ordering should be used within the statistical
model, i.e. on lines 22–27 of WBDiff example part2.odc (see earlier). We use the ‘underscore’
character (‘ ’) rather than a full stop (‘.’) to separate the various parts of each name since ‘.’ has
a special meaning in Component Pascal.

(*8*) As in part 1 of our worked example (see lines 3–10 of WBDiff example part1.odc), we prefer to
index compartments via names rather than numbers and so here we provide a mapping between
the desired names and the indices to which they relate – obviously the same ordering should be
used within the statistical model in WBDiff example part2.odc.
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(*9*)–(*10*) The Derivatives procedure defines the system of ordinary differential equations to be solved.
It has four ‘input’ arguments, theta[.], C[.], n and t, and one ‘output’ argument, dCdt[.].
These are described as follows: theta[.] is the 22-dimensional parameter vector (in general, any
number of parameters is permissible, so long as the vector has the same length here as it does in
the statistical model); C[.] represents the set of compartmental concentrations; n is the number of
equations to be solved (you can probably ignore this); and t is the variable with respect to which
derivatives are calculated – ‘time’ in this case. Any of these input parameters can be used at any
point within the Derivatives procedure proper (lines (*16*)–(*34*)) in order to help define the
system equations, which are passed out of the Derivatives procedure via the dCdt[.] variable.
The output vector dCdt[.] is defined by setting each of its elements equal to one of the system
equations (as shown on lines (*26*)–(*34*)).

(*11*)–(*14) Note that any number of ‘local’ variables can be declared and used to aid in specifying the system
equations, so long as their names do not clash with other variable/procedure names – the compiler
(Ctrl+K) will normally inform the programmer of any errors.

(*15*)–(*35*) This part of the code is intended to be reasonably self-explanatory and hopefully demonstrates
sufficient use of the Component Pascal syntax that the reader is able to write their own module
from this template. Please note that (almost) every Component Pascal statement ends
with a semi-colon.

Using “WBDiffFiveCompModel” as a template

The following steps should be followed closely when defining a new BUGS-language component via the
FiveCompModel template:

1. Choose a name for the new component, NewComponent, say (the new name must begin with a cap-
ital letter). Start your copy of BlackBox and open the WBDiff/Mod/FiveCompModel.odc template
from within it; then save the template under the new name, e.g. WBDiff/Mod/NewComponent.odc
– be careful not to overwrite an existing module! Now modify the module name both at
the top and at the bottom of the new file – change these from WBDiffFiveCompModel to WBDiff
followed by the new component’s name, e.g. WBDiffNewComponent. Save and compile the new
component by pressing Ctrl+S (save) followed by Ctrl+K (compile) – there should be no compi-
lation errors at this stage since only the module name has been changed.

2. Now modify the code in the new module according to your desired model. You can save the new
module at any time by pressing Ctrl+S (or by selecting Save from the File menu). You can also
attempt to compile the code at any time by pressing Ctrl+K (or by selecting Compile from the
Dev menu). If there are any compilation errors when you attempt to compile your code, each one
will be marked in the code by a grey box with a white cross running through it. An error message
pertaining to the first error will be displayed on the status bar (which lies across the bottom of
the BlackBox ‘program window’) and the cursor should automatically position itself next to the
corresponding grey box. We advise that you deal with any compilation errors in order, but if
for some reason this makes things awkward (or is not possible) then error messages for specific
compilation errors can be obtained by clicking on the appropriate grey boxes – a single click shows
the error message on the status bar whereas double-clicking reveals it within the code, in place of
the grey box (double-click again to revert back to the grey box).

3. Once the new module has been successfully compiled (and saved) then it can be ‘linked’ into the
WinBUGS software by modifying the file WBDiff/Rsrc/Grammar.odc. The first line of this file
contains the required entry for the five.comp.model(.) component:

v <- “five.comp.model”(v, v, v, s, s) “MathRungeKutta45.Install; WBDiffFiveCompModel.Install”

Make a copy of this line immediately beneath it, and replace five.comp.model on the new line
with the desired BUGS-language name for your new model, e.g. new.component (this is the name
with which you wish to refer to the new model during future WinBUGS sessions). Now specify
the name of the module where the new model’s ‘installation’ procedure can be found: replace
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WBDiffFiveCompModel with your new module’s name, e.g. WBDiffNewComponent. You should
end up with something like

v <- “five.comp.model”(v, v, v, s, s) “MathRungeKutta45.Install; WBDiffFiveCompModel.Install”
v <- “new.component”(v, v, v, s, s) “MathRungeKutta45.Install; WBDiffNewComponent.Install”

at the top of the WBDiff/Rsrc/Grammar.odc file. Now save the new WBDiff/Rsrc/Grammar.odc
file – the new component will be available from the next time that BlackBox is started, so don’t
forget to shut down the software before trying to use your new model. Good luck!

Worked Example 2

The physiologically based pharmacokinetic model used in the previous example(s) is such that all of
the first derivatives are smooth functions of time1 (i.e. the second derivatives, with respect to time,
are all continuous). WBDiff is capable of handling situations where this is not the case but it requires
additional information regarding the times at which discontinuities occur. It needs this information so
that it can break up the problem into “blocks” of time where, throughout each block, all second deriva-
tives are continuous. Because specifying such models is somewhat more complicated than with their
smooth counterparts, WBDiff provides an additional BUGS-language component (ode.block(.)) and
an additional template module (WBDiffWorkedExample2) dedicated to this task. This worked example
demonstrates their usage; we begin by describing the model.

Population PK Model

Our model for this example is designed to illustrate several features of ‘advanced’ WBDiff use, such
as the specification of population models, handling discontinuities in time, and allowing compartments
to empty into each other, for example. In pharmacokinetics, a population model is required when,
in order to draw inferences about the target population2, a study is conducted whereby a number
of healthy volunteers or patients each receive one or more doses of the drug under investigation and
concentration measurements are taken from each one. Typically we have a (parametric) structural
model that describes the shape of the concentration-time profile and we model variability throughout
the study population by allowing the parameters of that structural model to differ between individuals.
The structural model for this example is shown in Figure 2. The human body is represented by a
single compartment (“Compartment 1”) and as such is assumed to be homogeneous – the blood and all
organs/tissues contain the same concentration of drug, C, which is given by the total amount of drug in
the body at time t, A1 = A1(t), divided by an apparent volume of distribution, V . Drug is eliminated
(or cleared) from the body via a ‘flow-rate’ of CL (clearance) – the rate of elimination, i.e. the rate at
which drug leaves the body, is given by dAel

dt = CL×C = CL×A1/V . Compartments 2 and 3 contain
doses of drug to be administered, to Compartment 1, at times t = tb2 and t = tzo, respectively. These
have been incorporated purely for illustrative purposes – they are actually unnecessary as we could
easily specify the model using Compartment 1 alone (with an appropriate sequence of initial conditions
for each block of time).

The full sequence of events that generates our model is described as follows. At time t = 0, the
volunteer/patient receives an intravenous bolus dose3 of size D. At time t = tb2 > 0 a second bolus, of
the same size, is administered. This is the process represented by the dashed arrow from Compartments
2 to 1 in Figure 2 – dashed arrows represent processes whereby one compartment empties into another
instantaneously at the specified time (t = tb2 in this case) whereas normal arrows denote rates of
movement of drug. At time t = tzo > tb2 a zero-order process is initiated between Compartments 3

1Note that, in general, derivatives may be defined with respect to any suitable quantity, e.g. temperature, concentration
of substrate. In situations where a variable other than time is appropriate, then the name of that variable can be
substituted for “time” in the text.

2The target population comprises those individuals who will receive the drug therapeutically.
3Intravenous boluses are such that the whole dose is administered, as quickly as possible, directly into venous blood –

the time taken to deliver the dose is generally modelled as zero and the rate of input is effectively infinite.

7



A1 = C×V

A2 A3

CL

R31t = tb2

Figure 2: Structural three compartment model used in Worked Example 2 – see text for details.

and 1 whereby the dose initially in Compartment 3 (again, D) is transferred to Compartment 1 at a
constant rate given by D/TI, where TI denotes the duration of the zero-order input process. Clearly
this process must terminate at t = tzo + TI. All of this means that the somewhat abstract quantity
R31 in Figure 2, which simply represents the rate of movement of drug from Compartments 3 to 1, is
a piecewise smooth function of time. Explicitly, it is given by

R31 =





0 0 ≤ t < tb2
0 tb2 ≤ t < tzo

D/TI tzo ≤ t < tzo + TI
0 t ≥ tzo + TI

(8)

More generally, we can write R31 = pw(v, o, t), where v and o are vectors containing each smooth
function and the times at which they begin, respectively; in this case, v = (0, 0, D/TI, 0), o =
(0, tb2, tzo, tzo + TI) and pw = vb, where

b =
∑

i

i× I(t ∈ [oi, oi+1)) (o5 = ∞), (9)

that is, b simply specifies which ‘block’ of time, defined by a pair of ‘change-points’, contains the
current value of t. WBDiff provides a new BUGS-language component called piecewise(.) that can
be used for specifying arbitrary piecewise-smooth functions within WBDiff models. Only the vector
v is required as an input parameter, however. This is because the ‘origins’ in o are passed into the
associated ode.block(.) component instead, so that it knows where to break the problem up into
‘smooth’ sub-problems (t is defined/controlled by the ODE solving algorithm). For this reason, the o
vector passed into ode.block(.) must comprise the union of all ‘change-points’ in the model and each
instance of piecewise(.) must be defined in terms of a smooth function vector (v) of the same length.
This is why R31 above incorporates components for both [0, tb2) and [tb2, tzo) even though it has the
same value throughout both intervals: ode.block(.) needs to know that a discrete event occurs at
t = tb2 and so all of its piecewise parents (just R31 in this case) must be ‘split’ accordingly.

The system equations are as follows:

dA1

dt
= R31(t)− CL×A1/V (10)
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dA2

dt
= 0 (11)

dA3

dt
= −R31(t) (12)

(Note that neither bolus dose is represented in the system equations. This is because bolus doses are
instantaneous and are thus best described via the initial conditions, as we discuss below.) The structural
model is completed by the specification of a sequence of initial conditions for each compartment. First in
the sequence are the initial conditions proper, which pertain to the time origin given by o1. Note that the
easiest way in which to model the first intravenous bolus dose is to simply specify A1(o1) = A1(0) = D
in the initial conditions. At each subsequent origin (e.g. o2, o3, o4) we may, generally speaking, wish
to apply an instantaneous adjustment to the system to account for certain types of discrete event that
may have occurred, such as the administration of a bolus dose (which cannot be represented by a
finite rate). In WBDiff we specify such adjustments by declaring an amount (of whatever quantity the
differential equations are to be solved for) to be added to each compartment at the appropriate time. If
no adjustment is specified (or if a value of zero is declared) then the relevant part of the system is left
unchanged. Thus for the example above, we specify the following matrix of ‘initial conditions’, where
rows correspond to origins (o1, o2, o3, o4) and the columns represent compartments.




D D D
+A2 −A2 NA
NA NA NA
NA NA NA


 (13)

where the “NA”s denote missing values. The ±A2 on row 2 represents ± the solution to the second
differential equation at the relevant time, i.e. t = tb2 (the second ‘origin’). Thus the amount of drug
in Compartment 2 instantaneously changes from A2(tb2−) to zero at t = tb2 (because its value is
reduced by A2(tb2−)). In contrast, the amount of drug in Compartment 1 changes from A1(tb2−) to
A1(tb2−) + A2(tb2−). In other words, Compartment 2 instantaneously empties into Compartment 1
at time t = tb2. Since Compartment 2 initially contains an amount D of drug and dA2

dt ≡ 0, this is
equivalent to an intravenous bolus dose being administered, to Compartment 1, at t = tb2.4

The statistical model is defined as follows. First note that the measurable quantity here is concentration
of drug in Compartment 1, i.e. C = A1/V . This is a function of the dose D, time t, and additional
parameters, namely CL, V and TI, that we collectively denote by θ: C = C(θ, t, D). For this example
we will allow both θ and D to vary between individuals, although the doses are assumed known, as
they would be in practice (normally). Suppose we have n concentration measurements, indexed by j,
from each of K individuals, indexed by i. We denote these by yij , i = 1, ..., K, j = 1, ..., n. Often in
pharmacokinetics, the size of the error associated with each concentration measurement is proportional
to the underlying true concentration and so we tend to model the natural logarithm of the data as a
function of log C. At the first stage of the statistical model we assume

log yij = log C(θi, tij , Di) + εij , i = 1, ..., K, j = 1, ..., n, (14)

where tij denotes the time at which yij was collected and the εij terms are independent and identically
distributed normal random variables with mean zero and variance τ−1 (i.e. precision = τ). At the
second stage of the model we have

θi ∼ MVN3(µ, Ω), i = 1, ...,K, (15)

where µ and Ω are the population mean and the variance-covariance of pharmacokinetic parameters,
respectively. At the final stage of our population model, appropriate multivariate normal, Wishart and
gamma priors are specified for µ, Ω−1 and τ , respectively. WinBUGS code for this model is provided
in the file WBDiff/Examples/WBDiff example2.odc, which is discussed in detail below.

4Alternatively, in the absence of Compartment 2, we could have modelled the second bolus dose simply by specifying a D
on row 2 of column 1, to indicate that an amount D should be added to Compartment 1 at t = tb2, i.e. A1 → A1(tb2−)+D.
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Worked Example 2, WinBUGS code

The following notes describe/explain various parts of the model code for this worked example – the line
numbers to which they relate are given in the right-hand margin of the WBDiff example2.odc file.

Lines 2, 6 & 7: n.grid and n.ind are the WinBUGS variables used to store the values of n and K, respectively.
For this example, n.grid = n = 14 and n.ind = K = 10.

Lines 2–5: Here we specify two variables, namely s1[1:n.grid] and s2[1:n.grid] that are required for
defining the analytic solution for C, which is readily available for this example – see the notes for
lines 11–15 below. Both variables represent ‘shifted’ time: s1[j] (j = 1, ..., n.grid) is given by
grid[j] minus second.bolus.time, where second.bolus.time = tb2 and grid[j] represents
tij (note that all individuals share the same grid of time points, and so, for each j, tij = tj for
all i); s2[j], on the other hand, is defined as grid[j] minus zo.start.time where the latter
variable represents tzo.

Lines 8–10: log.data[i,j] and log.model[i,j] represent the natural logarithms of yij and C(θi, tij , Di),
respectively. In this worked example, we specify the value(s) of C in three different ways: (i) the
analytic solution; (ii) via BUGS-language representation of the underlying ordinary differential
equations; and (iii) via a hard-wired Component Pascal representation of the underlying equations.
We can use any one of these in order to model the data, although the time taken to run the
analysis will, of course, depend on that choice. Here we have chosen to specify our population
model in terms of the BUGS-language ODE representation, which is represented by the variable
c.language[.] – see below.

Lines 11–15: Here we specify the three different ways of defining C(θi, tij , Di). On lines 11–13 we specify
the analytic solution, which we denote by c.analytic[.]. This is given by the sum of three
‘time-shifted’, ‘closed-form’, ‘single-dose’ pharmacokinetic models, one for each dose received by
the volunteers/patients. The functions wbdiff.pkIVbol1(.) and wbdiff.pkZO1(.) have been
‘borrowed’ from the PKBugs software [1]. Although detailed information about them can be
found in the PKBugs documentation, this is unnecessary for our worked example as we only use
the analytic solution to check that the ODE-solving capabilities of WBDiff are working correctly.
On lines 14 and 15, we define c.language[i,j] and c.hard.wired[i,j] as being given by
a.language[i,j,1] and a.hard.wired[i,j,1], respectively, divided by the relevant individual’s
volume parameter, V[i]. a.language[.] and a.hard.wired[.] hold the numerical solutions
to the differential equations specified via the BUGS language and via compiled Pascal code,
respectively; a.language[.,.,1] and a.hard.wired[.,.,1] represent the amounts of drug in
Compartment 1 derived from each approach.

Lines 16 & 17: The e[.] variable is defined simply to check that the ODEs are being solved correctly. Pre-
dicted concentrations based on both the BUGS-language specification and on the ‘hard-wired’
specification of the differential equations are subtracted from the analytic solution to form error
measurements.

Lines 19 & 20: The first p (= 3) elements of each row of the theta[.] matrix represent θi whereas the fourth
element contains Di for convenience. This is because we need to pass Di to our hard-wired
component along with the stochastic parameters in θi so that it can be defined properly.

Lines 24–27: Use of the ode.block(.) BUGS-language component and of analogous (i.e. ‘blocked’) hard-wired
components is virtually the same as before (i.e. for ode(.) and related new components). The
only differences are those alluded to in the mathematical description of the model given above.
First, for each set of equations (i.e. for each individual in this example) the single time origin
specified previously is replaced by a vector of ‘origins’ (denoted origins[.] here) that define the
blocks of time throughout which the differential equations are smooth. Second, for the BUGS-
language specification, we replace the vector of initial conditions required previously, for each set
of equations, with a matrix (denoted inits[.] here) whose rows correspond to origins and whose
columns represent compartments/equations. Note that except for the first row of this matrix,
“initial conditions” here means ‘potential additive adjustments to the system’ as described above.
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Note in particular that only those rows of inits[i,.,.] that contain non-zero adjustments need
be specified5 – for this example, only inits[i,1,.] and inits[i,2,.] have been defined for
each individual (see lines 36–40 and line 25) as no other adjustments are necessary.

For hard-wired systems of ‘blocked’ differential equations, we only pass the initial conditions
proper into each specialized component, as before – hence the first argument to ode.example2(.)
for individual i is inits[i,1,1:dim], i.e. just the first row of the inits[i,.,.] matrix. This is
because we make all necessary adjustments to the system internally, i.e. within the new module.
Any additional parameters that are required in order to define such adjustments should be passed
into the hard-wired component via the theta[i,.] vector – no such parameters are required for
this worked example, however. We discuss hard-wired components in more detail below.

Hopefully, the remainder of the WinBUGS model code is self-explanatory. Following the code are
three blocks of input information, which are labelled “Data (inference)”, “Initial values” and “Data
(simulation)”. Clearly the “Initial values” section defines initial values for the MCMC analysis. The
reason that there are two blocks of data, however, is that the data to be used to run the example,
“Data (inference)”, were originally simulated using the “Data (simulation)” block and the latter is
given, towards the foot of the file, for completeness. In particular, individual θi vectors were generated
from a trivariate normal distribution with mean and inverse-covariance given by the specified values
of mu[.] and omega.inv[.], respectively. Then, log-concentration measurements (log.data[.]) were
generated by simulating from

N(log C(θi, tij , Di), τ−1), τ = 100. (16)

In practice, this is achieved by simply: (i) specifying the same model as for the analysis (except that lines
46–49 are removed); (ii) loading the data contained in “Data (simulation)” and compiling; (iii) clicking
on the “gen inits” button in the Specification Tool dialogue box; (iv) running the simulation for
any number of iterations > 0 (we used 100); and, finally, (v) selecting “Save State” from the Model
menu. Some summary statistics from analysis of these simulated data are given at the foot of the
WBDiff example2.odc file.

Worked Example 2, “WBDiffWorkedExample2” template

Component Pascal code for the system of differential equations used in this worked example can be found
in the file WBDiff/Mod/WorkedExample2.odc. This module is linked into the WinBUGS software via
the new BUGS-language component ode.example2(.). The linking procedure for new modules based
on this template is virtually identical to that for new components based on the WBDiffFiveCompModel
template (see “Using WBDiffFiveCompModel as a template”). However, there is one very minor, albeit
very important, difference: the argument list for a ‘blocked’ system of ODEs must be “v, v, v, v, s”
rather than “v, v, v, s, s”, to reflect the fact that a single time origin has been replaced by a vector
of origins. You can ensure that the correct argument list is specified in WBDiff/Rsrc/Grammar.odc,
when linking a new component into the software, by always copying and modifying the entry pertaining
to the relevant original template, i.e. “v <- "five.comp.model"(...” for smooth systems and “v <-
"ode.example2"(...” for piecewise smooth systems.

We close this worked example with a few notes on the Component Pascal code contained within
WBDiffWorkedExample2. Each note pertains to lines of code labelled with the relevant number(s)
in brackets: (*.*) in the left-hand margin of WBDiffWorkedExample2.

Lines 2 & 19–21: It is a convention that we have adopted to define hard-wired systems of differential equations in
terms of an abstract vector quantity C[.]. Be careful not to confuse this with ‘concentration’
– the differential equations in WBDiffWorkedExample2 are defined in terms of amounts of drug
regardless of what might otherwise be implied by the notation.

5The first row of each initial conditions matrix must be fully specified as it contains the initial conditions proper.
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Lines 5, 8 & 13–18: As discussed previously, WBDiff splits the time-grid up into m, say, (user-specified) blocks of
time, throughout which it can assume all of the ODEs to be smooth. The e.Block() procedure
automatically returns an integer value informing us of which block of time is currently of interest
to the ODE solver; we use the integer variable ‘block’ in order to store this value, an integer
between zero and m − 1 (inclusive). This can be used in order to define any piecewise functions
that may be required to fully specify the equations. On lines 13–18 we make use of a Component
Pascal “CASE” statement to define the value of R31: for each possible value of block (0, 1, 2, 3),
a corresponding value for R31 is specified. (More generally, arbitrary statement sequences can be
specified for each possible value of the ‘CASE variable’.)

Lines 23–36: The “Adjust” procedure allows us to specify additive adjustments to the system of differential
equations to be applied at the beginning of specific blocks of time – the procedure is called
automatically by WBDiff as soon as the ODE solver begins work on a new ‘block’. Again we
make use of an integer variable named block, and of the e.Block() procedure, to store the index
of the current block of time. This is then used to form a CASE statement whereby any necessary
adjustments can be associated with the correct change-point/origin. Note that within the Adjust
procedure the possible values of block are 1, 2, ..., m− 1; that is, adjustments cannot be made at
the beginning of ‘block 0’ because that is the time origin, when the initial conditions proper apply.
Note also that ‘empty statement sequences’ can be specified if no adjustment is required, as is the
case at the beginning of the blocks indexed by block = 2 (t = tzo) and block = 3 (t = tzo +TI).
At the beginning of the block indexed by block = 1, i.e. at time t = tb2, we wish to allow
Compartment 2 to empty instantaneously into Compartment 1. As we have direct access to the
numerical solution to the ODEs (i.e. the C[.] array/vector) within the Adjust procedure, this
is somewhat easier than with the BUGS-language specification. We describe the Compartment 1
adjustment in much the same way (C[0] := C[0] + C[1]), but, rather than specifying C[1] :=
C[1] - C[1], as we have essentially done with the BUGS-language specification, we can write
C[1] := 0 instead.
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