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Background and Objective

Time series analysis mainly focuses on the changes within a person, which is often referred to as the
intra-individual change. As an opposite, the inter-individual change is to study the change between persons.
There are many approaches to study the time series analysis. Generally speaking, multiple subjects approach
is a practical approach to estimate the model parameters. First, multiple subjects will be measured, and then
the subjects with the similar behavior trend will be picked out to study. In the multiple subjects study, some
factors, such as the length of series T , the number of participants N , and the data type, are important in the
design of experiments. If the length of series is too short or the number of participants is too small, then
the researchers may can not obtain the accurate statistical inferences and therefore miss the intra-individual
change; On the other hand, if the length is too long or the number of participants is too large, then the
experiment will cost more than necessary, although it seems true that the longer the time series or the more
participants, the more accurate the estimate. Also, the choose of T and N will be different for different data
types. There are two data types, continuous and ordinal. The ordinal data are usually collected by the Likert
table.

After we collected data, basically, there are two MLE estimation methods: exact MLE estimation
method and conditional MLE estimation method. Both methods obtain the parameter estimates through
maximizing the multiple subjects’ likelihood function. For multiple subjects, theoretically we should use
multiple likelihood functions, or separate time series. However, in practice there is a more popular and more
convenient way to analyze data: using the pooled data, or the directly connected data. This method analyzes
the connected data from multiple subjects as from a single subject. Upon these two estimations and two
data organization forms, we have four methods to obtain estimates: pooled likelihood exact MLE, pooled
likelihood conditional MLE, pooled data exact MLE, pooled data conditional MLE.

This study compares these four estimation methods under different scenarios. The goals of this study
are (1) to investigate the estimation of four methods under different scenarios, such as different lengthes of
series, different numbers of subjects, and different data types; (2) to find which estimation method provides
accurate estimates for different scenarios; and (3) to provide some insights on experimental design, for
example, how many subjects and how many occasions should be used in a study.

Model Description

We first consider a model for a single subject (or individual). And then we extend it to the model for
multiple subjects.
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The AR(1) Model

Suppose in the current study we are interested in the first-order autoregressive model, denoted AR(1),
which satisfies the following difference equations,

y1 : the initial value

yt = µ+ α yt−1 + zt (t > 1) (1)

zt ∼ i.i.d. N(0, φ)

where yt is the observed value at time point t, α is the model autoregressive coefficient, µ is a parameter
correlated with the mean of y, z is a shock variable, or a white noise sequence, satisfying a normal distribu-
tion with mean 0 and variance φ. In this case, the vector of population parameters to be estimated consists
of θ = (µ, α, φ)′. When |α| < 1, there is a covariance stationary process for yt satisfying Eq (1). Thus, the
remainder of this discussion of AR(1) assumes that |α| < 1.

Eq (1) is equivalent to the following equation

yt = α yt−1 + (µ+ zt) (t > 1). (2)

Let L be a lag operator which satisfying L(yt) = yt−1, then the solution of Eq (2) is

yt = (1− αL)−1(µ+ zt)
= (µ+ zt) + α (µ+ zt−1) + α2 (µ+ zt−2) + α3 (µ+ zt−3) + ...

=
µ

1− α
+ (zt + α zt−1 + α2zt−2 + α3zt−3 + ...) (3)

Because of the expression of (3) and zt ∼ i.i.d. N(0, φ), we know yt follows a normal distribution with a
mean

E(yt) = E(
µ

1− α
) + E(zt + α zt−1 + α2zt−2 + α3zt−3 + ...)

=
µ

1− α
, (4)

the variance

Var(yt) = E(yt −
µ

1− α
)2

= E(zt + α zt−1 + α2zt−2 + α3zt−3 + ...)2

= (1 + α2 + α4 + α6 + ...)φ

=
φ

1− α2
, (5)

and the jth autocovariance

Cov(yt, yt−j) = E(yt −
µ

1− α
)(yt−j −

µ

1− α
)

= E(zt + α zt−1 + α2zt−2 + ...+ αjzt−j + αj+1zt−j−1 + ...)(zt−j + α zt−j−1 + α2zt−j−2 + ...)
= (αj + αj+2 + αj+4 + ...)φ

= αj
φ

1− α2
.

Based on the discussion above and with Eq (1), (4) and (5), we have the following distribution of yt{
y1 ∼ N( µ

1−α ,
φ

1−α2 ),
yt|yt−1 ∼ N(µ+ α yt−1, φ), (t > 1).
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The Constant Coefficient AR(1) Model

We discussed the distribution of AR(1) model for a single subject. For multiple subjects, there are
two types of AR(1) model: (1) constant coefficient AR(1) model and (2) random coefficient AR(1) model.

Suppose there are N individuals, the constant coefficient AR(1) model can be expressed as follows:

yit = µ+ α yi(t−1) + zit, (i = 1, ..., N ; t = 2, ..., T )

where zit i.i.d. ∼ N(0, φ) and the parameters µ, α and φ are constants which keep the same values across
all individuals. This model is very useful when the sample size (or number of participants) is small but with
fairly large measurement occasions.

The Random Coefficient AR(1) Model

Let βi = (µi, αi)′, β = (µ, α)′, vi = (v0i, v1i)′ with E(vi) = 0 and Cov(vi) = Σ =(
σ2

1 σ12

σ12 σ2
2

)
. The random coefficient AR(1) model can be expressed as follows:


yit = µi + αiyi(t−1) + zit, (i = 1, ..., N ; t = 2, ..., T )
µi = µ+ v0i,
αi = α+ v1i,

where zit i.i.d. ∼ N(0, φ). In this model, µi and αi are random variables which are allowed to be dif-
ferent for different individuals. Therefore, random coefficients model sounds more reasonable for multiple
subjects, but it requires a relatively large sample size.

Let Yi(t−1) = (1, yi(t−1))′, then the conditional distribution of (yit|yi(t−1)) is

(yit|yi(t−1)) ∼ N(Y′i(t−1)β, ψit)

where

ψit = Var(yit|yi(t−1)) = (Yi(t−1))
′Σ(Yi(t−1)) + φ (6)

because E(βi) = β and Cov(βi) = Cov(vi) = Σ.

Estimation Methods

Basically, we have two MLE estimation methods. Exact MLE estimation method: the parameter es-
timates are obtained by maximizing the exact log-likelihood function which includes the distribution of y1,
and conditional MLE estimation method: the parameter estimates are obtained by maximizing the condi-
tional log-likelihood function which does not include the distribution of y1. The differences between these
two methods is that the exact MLE uses the information of first observation but requires stationarity assump-
tion, but the conditional MLE does not uses the information of the the first observation and does not require
stationarity assumption.

As described in the section of ”background and objectives”, for multiple subjects theoretically we
should pool together all the likelihood functions for all individuals, then we use exact MLE and conditional
MLE. But in practice pooling data is another method to deal with time series data. It assumes there is
some relationship between yiT and y(i+1)1. Based on this data form, exact MLE and conditional MLE are
obtained.
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(1) Exact MLE

Exact MLE estimation method estimates the parameter by maximizing the exact log-likelihood func-
tion which includes the distribution of y1.

(i) Pooled likelihood exact MLE for constant coefficients model.
The exact likelihood function of the stationary AR(1) model described in Eq (1) is

Li(α, µ, φ|yi) =
T∏
t=1

p(yit|α, µ, φ)

=
1√

2π( φ
1−α2 )

exp

[
−

(yi1 − µ
1−α)2

2 ( φ
1−α2 )

]{
T∏
t=2

1√
2πφ

exp

[
−

(yit − µ− α yi(t−1))2

2φ

]}
,

and its corresponding log likelihood function is

log(L) =
N∑
i=1

log(Li)

= −N
2
log(

2πφ
1− α2

)−
∑N

i=1(yi1 − µ
1−α)2

2 ( φ
1−α2 )

+
N∑
i=1

T∑
t=2

[
−1

2
log(2πφ)−

(yit − µ− α yi(t−1))2

2φ

]

=
N

2
log(1− α2)− 1− α2

2φ

N∑
i=1

(yi1 −
µ

1− α
)2 − NT

2
log(2πφ)− 1

2φ

N∑
i=1

T∑
t=2

(yit − µ− α yi(t−1))
2.

In order to find the maximum likelihood estimates (MLE) of parameters µ, α and φ, we need to make
all of their first order derivatives with respective to these parameters 0 and their corresponding second order
derivatives negative. The MLE obtained through solving the exact likelihood function is called the exact
MLE. Notice that

∂log(L)
∂µ =

1 + α

φ

N∑
i=1

(yi1 −
µ

1− α
) +

1
φ

N∑
i=1

T∑
t=2

(yit − µ− α yi(t−1))

∂ log(L)
∂α = − Nα

1− α2
+

N∑
i=1

{(
yi1 −

µ

1− α

)
(1 + α)µ
(1− α)φ

+
(
yi1 −

µ

1− α

)2 α

φ

}

+
1
φ

N∑
i=1

T∑
t=2

[
(yit − µ− α yi(t−1)) yi(t−1)

]
∂ log(L)
∂φ =

1− α2

2φ2

N∑
i=1

(yi1 −
µ

1− α
)2 − NT

2φ
+

1
2φ2

N∑
i=1

T∑
t=2

(yit − µ− α yi(t−1))
2,

we can make them equal 0 at θ̂ = (µ̂, α̂, φ̂) to obtain the solution. Unfortunately, there is no simple solution
for θ in terms of ({yit}, 1 ≤ i ≤ N, 1 ≤ t ≤ T ). But with the help of computers, we adopt iterative or
numerical procedures to solve the equation.

(ii) Pooled data exact MLE for constant coefficients model.
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The exact likelihood function of the connected stationary AR(1) model is

L(α, µ, φ|y) =
NT∏
t=1

p(yt|α, µ, φ)

=
1√

2π( φ
1−α2 )

exp

[
−

(y1 − µ
1−α)2

2 ( φ
1−α2 )

]{
NT∏
t=2

1√
2πφ

exp
[
−(yt − µ− α yt−1)2

2φ

]}
,

and its corresponding log likelihood function is

log(L) = −1
2
log(

2πφ
1− α2

)−
(y1 − µ

1−α)2

2 ( φ
1−α2 )

+
NT∑
t=2

[
−1

2
log(2πφ)− (yt − µ− α yt−1)2

2φ

]

=
1
2
log(1− α2)− 1− α2

2φ
(y1 −

µ

1− α
)2 − NT

2
log(2πφ)− 1

2φ

NT∑
t=2

(yt − µ− α yt−1)2.

Notice that

∂log(L)
∂µ =

1 + α

φ
(y1 −

µ

1− α
) +

1
φ

NT∑
t=2

(yt − µ− α yt−1)

∂ log(L)
∂α = − α

1− α2
+
(
y1 −

µ

1− α

)
(1 + α)µ
(1− α)φ

+
(
y1 −

µ

1− α

)2 α

φ

+
1
φ

NT∑
t=2

[(yt − µ− α yt−1) yt−1]

∂ log(L)
∂φ =

1− α2

2φ2
(y1 −

µ

1− α
)2 − NT

2φ
+

1
2φ2

NT∑
t=2

(yt − µ− α yt−1)2,

we make them equal to 0 at θ̂ = (µ̂, α̂, φ̂) to obtain the solution. Again, unfortunately, there is no simple
solution for θ in terms of ({yit}, 1 ≤ i ≤ N, 1 ≤ t ≤ T ).

(2) Conditional MLE

An alternative approach to maximize the exact likelihood function is to regard the value of y1 as
deterministic and maximize the conditional likelihood function. The MLE obtained through solving the
conditional likelihood function is called the conditional MLE.

(i) Pooled likelihood conditional MLE for constant coefficients model.
The conditional likelihood function of the stationary AR(1) model does not take the distribution of y1

into consideration, so the function is

Li(α, µ, φ|yi) =
T∏
t=2

p(yit|α, µ, φ) =
T∏
t=2

1√
2πφ

exp

[
−

(yit − µ− α yi(t−1))2

2φ

]
,

and its log likelihood function is

log(L(α, µ, φ|y)) =
N∑
i=1

log(Li) = −N(T − 1)
2

log(2πφ)− 1
2φ

N∑
i=1

T∑
t=2

(yit − µ− α yi(t−1))
2. (7)
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Similarly, to find the MLE of parameters µ, α and φ, first we need to obtain their first and second
order derivatives. Since

∂log(L)
∂µ =

1
φ

N∑
i=1

T∑
t=2

(yit − µ− α yi(t−1))

∂ log(L)
∂α =

1
φ

N∑
i=1

T∑
t=2

[
(yit − µ− α yi(t−1)) yi(t−1)

]
∂ log(L)
∂φ = −N(T − 1)

2φ
+

1
2φ2

N∑
i=1

T∑
t=2

(yit − µ− α yi(t−1))
2,

then by making them equal 0 at θ̂ = (µ̂, α̂, φ̂), we have

µ̂ =
1

N(T − 1)

N∑
i=1

T∑
t=2

(yit − α̂ yi(t−1)) (8)

α̂ =

∑N
i=1

∑T
t=2

[
(yit − µ̂)yi(t−1)

]∑N
i=1

∑T
t=2 y

2
i(t−1)

(9)

φ̂ =
1

N(T − 1)

N∑
i=1

T∑
t=2

(yit − µ̂− α̂ yi(t−1))
2 (10)

By combing Eq (8) and (9), the solution for (µ, α) is obtained as

µ̂ =
(
∑N

i=1

∑T
t=2 y

2
i(t−1))(

∑N
i=1

∑T
t=2 yit)− (

∑N
i=1

∑T
t=2 yi(t−1))(

∑N
i=1

∑T
t=2 yi(t−1)yit)

N(T − 1)
∑N

i=1

∑T
t=2 y

2
i(t−1) − (

∑N
i=1

∑T
t=2 yi(t−1))2

(11)

α̂ =
N(T − 1)(

∑N
i=1

∑T
t=2 yi(t−1)yit)− (

∑N
i=1

∑T
t=2 yi(t−1))(

∑N
i=1

∑T
t=2 yit)

N(T − 1)
∑N

i=1

∑T
t=2 y

2
i(t−1) − (

∑N
i=1

∑T
t=2 yi(t−1))2

. (12)

And then by inserting (11) and (12) into Eq (10), we have the MLE of φ.
There is another simple way to obtain the estimate of θ = (µ, α, φ) using the ordinal least square

(OLS) estimation method. Notice that maximizing (7) with respect to µ and α is equivalent to minimizing

N∑
i=1

T∑
t=2

(yit − µ− α yi(t−1))
2 (13)

with respect to µ and α. Let Yt be a [N × (T − 1)]-dimensional vector Yt =
(y12, y13, ..., y1T , y22, y23, ..., y1T , ..., yN2, yN3, ..., , yNT )′, Yt−1 be a [N × (T − 1)]× 2 matrix,

Yt−1 =
(

1 1 ... 1 1 1 ... 1 ... 1
y11 y12 ... y1(T−1) y21 y22 ... y2(T−1) ... yN(T−1)

)′
and β = (µ, α)′. Then minimizing (13) becomes minimizing

Yt −Yt−1β

Thus, we have the OLS estimate of µ and α as follows,

β̂ =
[
µ̂
α̂

]
= (Y′t−1Yt−1)−1(Y′t−1Yt)

=

[
N(T − 1)

∑N
i=1

∑T
t=2 yi(t−1)∑N

i=1

∑T
t=2 yi(t−1)

∑N
i=1

∑T
t=2 y

2
i(t−1)

]−1 [ ∑N
i=1

∑T
t=2 yit∑N

i=1

∑T
t=2 yi(t−1)yit

]
.
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Again, the MLE of φ can be obtained by inserting the MLE of (µ, α) into Eq (10).
The OLS solution is exactly the same as the MLE solution.

(ii) Pooled data conditional MLE for constant coefficients model.
The conditional likelihood function of the connected stationary AR(1) model is

L(α, µ, φ|y) =
NT∏
t=2

p(yt|α, µ, φ)

=
NT∏
t=2

1√
2πφ

exp
[
−(yt − µ− α yt−1)2

2φ

]
,

and its corresponding log likelihood function is

log(L) =
NT∑
t=2

[
−1

2
log(2πφ)− (yt − µ− α yt−1)2

2φ

]

= −NT − 1
2

log(2πφ)− 1
2φ

NT∑
t=2

(yt − µ− α yt−1)2.

Notice that

∂log(L)
∂µ =

1
φ

NT∑
t=2

(yt − µ− α yt−1)

∂ log(L)
∂α =

1
φ

NT∑
t=2

[(yt − µ− α yt−1) yt−1]

∂ log(L)
∂φ = −NT − 1

2φ
+

1
2φ2

NT∑
t=2

(yt − µ− α yt−1)2,

we make them equal to 0 at θ̂ = (µ̂, α̂, φ̂) to obtain the solution.

(iii) Pooled likelihood conditional MLE for random coefficients model.
The likelihood function for (yit|yi(t−1)) is

Lit =
1√

2πψit
exp[−

(yit −Y′i(t−1)β)2

2ψit
]

where ψ is defined in (6). Then the likelihood function for all participants at all time points is

N∏
i=1

T∏
i=2

Lit =
N∏
i=1

T∏
i=2

1√
2πψit

exp[−
(yit −Y′i(t−1)β)2

2ψit
]

We can also express it as a multivariate form. Let Yi = (yi2, ..., yiT )′, Yi. =
(

1 ... 1
yi,1 ... yi(T−1)

)′
,

then E(Yi) = Yi.β, and Var(Yi) = Ψi = Yi.ΣY′i. + Φ where Φ is a (T − 1)× (T − 1) diagonal matrix
with equal diagonal element φ. The conditional distribution of (Yi|Yi.) is

(Yi|Yi.) ∼MNT−1(Yi.β,Ψi)
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The likelihood function for (Yi|Yi.) is

Li =
1

(
√

2π)T−1
|Ψi|−1/2 exp[−1

2
(Yi −Yi.β)′Ψ−1

i (Yi −Yi.β)],

and the likelihood function for all Yi is

N∏
i=1

Li =
N∏
i=1

1
(
√

2π)T−1
|Ψi|−1/2 exp[−1

2
(Yi −Yi.β)′Ψ−1

i (Yi −Yi.β)]

The parameters we want to estimate are φ, β and Σ. Let θ be the all parameters vestor θ =
(µ, α, φ, σ2

1, σ
2
2, σ12). Like the ML method for the constant coefficient model, we can obtain its maxi-

mum likelihood estimates by making its first derivatives with respect to θ zero and the second derivatives
negative.

Simulation Studies

To investigate the performance of the exact MLE estimation method and conditional MLE estimation
method fitting different models under different sceneries, we conduct three simulation studies: continuous
constant coefficients model simulation study; categorical constant coefficients model simulation study; and
continuous random coefficients model simulation study.

The R language is used to implement all these simulation studies. First, the simulation data as re-
quired are generated. Second, all parameters through four estimation methods are estimated. For the equa-
tions which have no explicit solutions, we adopt iterative or numerical procedures to solve them. Finally,
estimation results obtained from all simulation replications are summarized, so that the conclusions are
drawn.

Simulation Study 1: Continuous Constant Coefficients Model

Simulation Design.
In this simulation study, we generate continuous data and use them to fit the constant coefficients

AR(1) model. We focus on the influence of initial value y1 on the parameter estimation. There are three
cases for the initial value y1:

• a fixed y1 = 0;
• a random y1 from N(0, φ);
• a random y1 from N( µ

1−α ,
φ

1−α2 ).
Estimates are obtained using four estimation methods: pooled likelihood exact MLE; pooled likeli-

hood conditional MLE; pooled data exact MLE; and pooled data conditional MLE.
In order to catch the change patterns, we investigate and compare estimates through different lengths

of series and different number of subjects. The lengths of series and the number of subjects are T =
(5, 10, 15, 20, 30) and N = (10, 20, 30, 40, 50), respectively.

The true values are µ = 0, α = 0.5, φ = 0.25, and the replication number is 1000.

Simulation Results.
To save space, we only show several of all result tables which present the changing trend:

Insert Table 1 - 8 here.
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Conclusions.
Through the simulation, we have the following conclusions: (1) The method of pooled data does

not perform very well. The pooled likelihood function methods perform better; (2)For the case of random
y1 ∼ N( µ

1−α ,
φ

1−α2 ), the exact MLE method is the best. For the other two initial values, the conditional
MLE method is the best; (3) The longer the time series, the more accurate the estimate; and (4) The more
individual participated, the more accurate the estimate.

Simulation Study 2: Categorical Constant Coefficients Model

Simulation Design.
In this simulation study, we use the categorical data to fit the constant coefficients AR(1) model. Let

nc be the number of categories we are studying. We use 3 steps to generate the categorical data,
• Step 1: Generate the continuous data according to the constant coefficients AR(1) model yit =

µ+ αyi(t−1) + zit.
• Step 2: Generate thresholds τ = (τ1, ..., τnc−1). With the assumption of the normality distribution

of yt, the thresholds τ are created by (1) obtaining the standardized thresholds τ z by dividing the segment
[−2, 2] into nc − 2 parts evenly, and then (2) transform τ z to τ according to the original data scale. For
example, if nc = 5, then the standardized thresholds are τ z = (τz1, τz2, τz3, τz4) = (−2,−2/3, 2/3, 2),
then

τ = τ zσy + µy

where µy = µ
1−α and σy =

√
φ

1−α2 .
• Step 3: Generate the categorical data ycit by

ycit = 1, when yit ≤ τ1;
ycit = k, when τk−1 < yit ≤ τk;
ycit = nc, when yit > τnc−1.

Obviously, the scale of ycit is from 1 to nc.
Let π be a nc-dimensional vector π = (π1, ..., πnc) which is defined as

π1 = Φ(τ1)
πk = Φ(τk)− Φ(τk−1) (2 ≤ k ≤ nc− 1)
πnc = 1− Φ(τnc−1).

So each πk (1 ≤ k ≤ nc) is defined to be the probability of corresponding kth category. With π, the mean
of nc categories is

Mc =
nc∑
k=1

πk k

Then the true µ and φ of nc categories are

µc = Mc (1− α),

φc =

[
nc∑
k=1

πk (k −Mc)2
]

(1− α2),

respectively.
When the categorical data are ready, the same four estimation methods as those in simulation study 1

are used to estimate the model. The other factors examined in this study include the initial value, the number
of categories, the lengths of series and the number of subjects:
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• The initial value y1 has three cases: (i) a fixed yc1 based on a fixed y1 = 0; (ii) a random yc1 based
on a random y1 from N(0, φ); and (iii) a random yc1 based on a random y1 from N( µ

1−α ,
φ

1−α2 ).
• The number of categories: nc = (5, 7, 9).
• The lengths of series and the number of subjects: T = (5, 10, 15, 20, 30, 40, 50) and N =

(50, 100, 150, 200).
The true values are µ = µc, α = 0.5, φ = φc, and the replication number is 1000.

Simulation Results.
Again, to save space, we only present several result tables which show the changing trend:

Insert Table 9 - 26 here.

Conclusions.
Through the simulation, we have the following conclusions: (1) The pooled likelihood methods per-

form better than the pooling data methods; (2) For the case of random y1 ∼ N( µ
1−α ,

ψ
1−α2 ), the pooled

likelihood exact MLE are the best. For the other two initial values, the pooled likelihood conditional MLE
are the best; (3) The more categories, the more accurate the estimate; (4) The longer the time series, the
more accurate the estimate; (5) The more individual participated, the more accurate the estimate; and (6)
For categorical data, the coverage probabilities are poor. This is because the categorical data seem more
“flat” than the corresponding continuous data, so autoregressive coefficient for categorical time series is
smaller than the “true” autoregressive coefficient which is for the continuous time series.

Simulation Study 3: Continuous Random Coefficients Model

Simulation Design.
From the previous two simulation studies, we conclude that the pooled likelihood conditional MLE

are the best if the initial values are not from the true distribution of yt. In other word, the pooled likelihood
conditional MLE is not sensitive to initial values. Therefore, in the simulation study of continuous random
coefficients model, we mainly focus on the method of pooled likelihood conditional estimation.

In order to catch the change patterns, we investigate and compare the estimates through different
lengths of series T = (10, 15, 20, 30, 40, 50) and different number of subjects N = (50, 100, 150, 200). We
reduce the influence of the initial values by deleting the first 50 observations when we generate the data.

The true values are φ = 25, µ = 16, α = 0.4,Σ =
(

30 −0.5
−0.5 0.02

)
. And the replication number is

still 1000.

Simulation Results.
Several result tables which show the changing trend are presented as follows:

Insert Table 27 - 50 here.

Conclusions.
With the simulation results, we have the following rough conclusions: (1) The conditional MLE

method performs well; (2) The longer the time series, the more accurate the estimate; (3) The more individ-
ual participated, the more accurate the estimate.
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A Real Data Analysis

Data Description

The data were collected in Fall 1991 or Spring 1992 at the University of Illinois. They are daily
self-reports of students’ emotional experiences for 52 consecutive days.

Totally, there are 153 participants, 52 occasions. There are 2 variables include the pleasant affect (PA)
and the unpleasant affect (UA). The variable PA is combined from 8 items: love, affection, caring, fondness,
joy, happiness, contentment, and satisfaction. And the variable UA is combined from 8 items: depression,
unhappiness, shame, nervousness, loneliness, sadness, anxiety, and irritation. For each item, there is 7-point
Likert-type scale, so the total scale for PA or UA is (1− 7)× 8 = (8− 56).

Estimation

Considering the sample size is quite large (N=153), we use the conditional random coefficients model
to fit this real data set. The results for PA and UA variables are as follows:

PA UA
Estimate SE Estimate SE

fixed effect:
intercept µ 16.035 0.640 9.197 0.299
slope α 0.428 0.018 0.388 0.016
random effect:
Var(zit) = φ 24.943 1.472 11.771 0.704
Var(µi) = σ2

1 30.175 6.552 7.480 1.767
Var(αi) = σ2

2 0.021 0.003 0.020 0.004
Cov(µi, αi) = σ12 -0.495 0.119 -0.208 0.078

Conclusions

From the results, we can see that the pleasant affect has a higher intercept than the unpleasant affect
which means in the first semester students are happier. The pleasant affect also has a larger variance of the
white noise which means it has a bigger fluctuation than the unpleasant affect, so it is easier to be unstable.
The two slopes of these two variables are very close to each other which means the changing trends are
similar for both pleasant affect and unpleasant affect.

Discussions

We analyzed the simplest AR(1) model. We can extend the analysis to AR(p) model

yit = µi +
p∑
l=1

αilyi(t−l) + zit

We can also extent the study to the other dynamic system models, such as the damped oscillation model
which is described as follows

y′′it = ay′it + byit + zit.


