PSY30100-03 -- Assignment 9

Chapter 12:
One-Way Analysis of Variance (One-Way ANOVA)

TA: Laura Lu
November 16, 2009

Problem 1:

\square Please describe rationale of one-way ANOVA and the F ratio.

Ans: (You may have your own answers)
One-way ANOVA is the technique used to determine whether more than two population means are equal when there is only one factor or grouping variable in the experiment.

The F-ratio is a ratio which measures the between-group variation compared with the within-group variation. When all group populations have the same standard deviation and the same mean, then this F ratio has the F(DFB, DFW) distribution. When some of group population means are not the same, the F ratio tends to be large.
In a test, if F ratio is large enough, we reject the hypothesis that all group population means are equal.

Problem 2:

\square A storeowner wishes to compare the average amount of money high school and college students spend on CDs. He randomly selects ten students from three different student populations: high school students, undergraduate students, and graduate students. The statistical assumptions required to perform a one-way ANOVA to compare the means of these three groups are reasonable based on the data. A partially completed ANOVA table is provided below:

Problem 2:

Source	Sum of Squares	DF	Mean Square	F
Between				
Within	3240			
Total	4450			

One-Way ANOVA

$\square S_{T}=S S_{B}+S_{W}$
\square d.f. ${ }_{B}=$ \#of groups -1
d.f. ${ }_{\mathrm{w}}=$ total sample size- \# of groups
$\square \mathrm{MS}_{\mathrm{B}}=\mathrm{SS}_{\mathrm{B}} /$ d.f. B_{B}
$M S_{w}=S S_{w} / d . f_{\cdot w}$
$\square \mathrm{F}=\mathrm{MS}_{\mathrm{B}} / \mathrm{MS}_{\mathrm{w}}$

Problem 2:

Source	Sum of Squares	DF	Mean Square	F
Between	$S^{\text {B }}$	K-1	$S S S_{B} /$ d.f. ${ }^{\text {B }}$	$\mathrm{MS}_{B} / \mathrm{MS}_{\mathrm{W}}$
Within	SS_{W}	N-K	$S_{\text {w }} /$ d.f.w	
Total	$\mathrm{SS}_{B}+\mathrm{SS}_{W}$			

N : total sample size
K: total number of groups

Problem 2:

Source	Sum of Squares	DF	Mean Square	F
Between	1210	2	605	5.04
Within	3240	27	120	
Total	4450	29		

(a) $d f=$?

Ans: B
(b) $\mathrm{F}=$?

Ans: C
(c) Reject null?

Ans: No, because $\operatorname{Fcv}(0.01,2,27)=5.49>5.04$

Table E F distribution critical values

Problem 3:

\square I am very interested in the use of technology in the classroom. Suppose we do an experiment in which we teach each of three sections of an introductory psychology class in a different way. One section of six students receives the standard lecture format (blackboard \& discussion), a second section of six students receives the same lectures with the addition of overhead transparencies, and the third section receives the lectures on the web. The dependent variable is performance on a standardized (final) exam. Do an analysis by hand to test whether there are different effects of different technology use on test performance. If the F is significant, you should conduct post hoc comparisons (Bonferroni approach).

Problem 3:

Subject	GROUP		
	Lecture	Overheads	Web
1	75	85	92
2	72	74	79
3	64	64	78
4	85	85	96
5	59	65	85
6	78	81	80

One-way ANOVA Steps

1. Compute group means and grand mean
2. Compute sums of squared deviations: SS_{W} and SS_{B} (maybe SS_{T})
(3. maybe: Check to see if $\mathrm{SS}_{\mathrm{T}}=\mathrm{SS}_{\mathrm{B}}+\mathrm{SS}_{\mathrm{W}}$)
3. Compute MS_{B} (using dfB)
4. Compute MS_{w} (using dfw)
5. Compute F and p-value (and create ANOVA source table)
6. Compare p to α (or $F_{\text {observed }}$ to $F_{\text {critical }}$) and decide...

Problem 3:

Step 1. Compute group means and grand mean.

Subject	GROUP		
	Lecture	Overheads	Web
1	75	85	92
2	72	74	79
3	64	64	78
4	85	85	96
5	59	65	85
6	78	81	80

Problem 3:

Step 2. Compute SST, SSW and SSB.
We have: $\mathrm{M}_{1}=72.2, \mathrm{M} 2=75.7, \mathrm{M} 3=85, G M=77.6$
Using the formulas,

$$
\begin{aligned}
& S S_{B}=\sum_{g=1}^{k} n_{g}\left(M_{g}-G M\right)^{2} \\
& S S_{W}=\sum_{g=1}^{k} \sum_{i=1}^{n_{g}}\left(x_{i g}-M_{g}\right)^{2}
\end{aligned}
$$

compute:
SSB= 528.1111
SSW=1182.167
(Step3: compute SST=1710.278, and Check SST=SSB+SSW)

Problem 3:

Step 4. Compute MS_{B}

$$
\begin{aligned}
\mathrm{MS}_{B} & =S S_{B} / \text { d.f. }_{B} \\
& =528.1111 / 2 \\
& =264.0555
\end{aligned}
$$

Step 5. Compute MS_{w}

$$
\begin{aligned}
\mathrm{MS}_{\mathrm{w}} & =\mathrm{SS}_{\mathrm{w}} / \text { d.f. } \cdot \mathrm{w} \\
& =1182.167 / 15 \\
& =78.81113
\end{aligned}
$$

Problem 3:

Step 6. Compute F and p-value (and create ANOVA source table)

$$
\begin{aligned}
F_{\text {obs }} & =M S_{B} / M S_{w} \\
& =264.0555 / 78.81113 \\
& =3.35
\end{aligned}
$$

Table E: $0.05<P(F>3.35)=0.0627<0.1$

Problem 3:

Step 7. Compare p to α (or $\mathrm{F}_{\mathrm{obs}}$ to F_{cv}) and decide...
$0.05<\underline{P(F>3.35)=0.0627<0.1}$
$\operatorname{Fcv}(0.05,2,15)=3.68>3.35$
$\operatorname{Fcv}(0.10,2,15)=2.70<3.35$
Conclusion:
The F is not significant at the level of 0.05 .
The F is significant at the level of 0.10 .

Bonferroni correction:

If the F is not significant, we don't need to conduct any post hoc comparisons.
But if the F is significant, we should conduct post hoc comparisons. For Bonferroni approach, we need to
(1) conduct 3 independent t tests,
(2) compare these three p-values with $a / 3$, or compare three ($3^{*} p$-values) with a,
(3) decide which 2 groups are significant different.

