PSY30100-03 -- Assignment 7

Chapter 7: Power Analysis

TA: Laura Lu November 2, 2009

Question 1: 6.106 (p.410)

Make a recommendation.

Ans: (You may have your own answers) The power of this study is far less than what is generally desired - for example, it is well below the "80% standard" mentioned in the text. 20% power for the specified effect means that, if the effect is present, we will only detect it 20% of the time. With such a small chance of detecting an important difference, the study should probably not be run, unless the sample size is increased to give sufficiently high power.

Question 2: 6.108 (p.410)

Power for a different alternative.

Ans: The power for $\mu = -5$ is 0.82, the same as the power for $\mu = 5$ because both alternatives are an equal distance from the null value of $\mu = 0$. The symmetry of two-tailed tests with the normal distribution means that we only need to consider the size of the difference, not the direction.

Mail-order catalog sales.

(b) Find the type II error.

	H0 true	Ha true
Reject HO	Type I error (alpha)	Correct decision (Power)
Fail to reject HO	Correct decision	Type II error (beta)

A **Type I error** is the probability of incorrectly rejecting a true H_0 . A **Type II error** is the probability of incorrectly keeping a false H_0 . The power of a test is $1 - \beta$. Yellow (including barred area): Power Gold: Type II error Barred: Type I error

2. For different μ_{H_a} value, the power or type II error will be different.

Mail-order catalog sales.

(b) Ans:

Step1: Write down the null and alternative hypotheses.

 $H_0: \mu = 25$ vs. $H_a: \mu > 25$

Step2: Sketch the distributions involved and define the type II error area (use μ_{H_a})

Step2: Find the Z_{Ha}

$$z_{Ha} = \frac{\overline{x} - \mu_{Ha}}{\sigma_{\overline{x}}} = \frac{26 - 28}{50 / \sqrt{900}} = -1.2$$

Step3: Obtain the type II error

 $p(Type \ II \ error \ when \ \mu = 28) = p(Z_{H_a} < -1.2) = 0.1151$

=1-type II error =1-0.1151 =0.8849

□ Mail-order catalog sales.

Additional Q2: Can you find a conceptual error in this question?

Ans: We *never* accept HO!

□ Mail-order catalog sales.

Ans: (d) "(The central limit theorem!) the fourth rule of the sampling distribution of a sample mean."
The sample size, n=900, is so large that the sample mean will be very close to Normal.