PSY30100-03 -- Assignment 3

Chapter 4: The Study of Randomness

TA: Laura Lu

Feb 15, 2010

Question 1

\square A card is drawn from an ordinary deck of 52 playing cards. What is the probability that the card is

1) A club?
2) A king?
3) A club and a king?
4) A club or a king?
5) Neither a club nor a king?

Review of Probability

\square Addition Rule:
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
[Special case: $P(A$ or $B)=P(A)+P(B)$, when A and B are disjoint]

ㅁ Subtraction Rule:
$P(A)=1-P(\operatorname{not} A)$

- Multiplication rule:
$P(A$ and $B)=P(B) P(A \mid B)=P(A) P(B \mid A)$
[Special case: $P(A$ and $B)=P(A) P(B)$ when A and B are independent]

Review of Probability

The rule on equally likely outcomes
ㅁ If there are N possible equally likely outcomes, then the probability assigned to each is $1 / \mathrm{N}$.
\square If an event A consists of $N(A)$ outcomes, then $P(A)=N(A) / N$ or

$$
P(A)=\frac{\text { count of outcomes in } A}{\text { count of outcomes in } S} .
$$

Question 1

Question 1

ㅁ Definitions:
Event A: the card is a club
Event B : the card is a king

1) A club? $<=>p(A)$?
2) A king? <=> $p(B)$?
3) A club and a king? $<=>p(A$ and $B)$?
4) A club or a king? $<=>p(A$ or $B)$?
5) Neither a club nor a king?
$=>1-p(A$ or $B)$?

Question 1

\square Ans:

1) $p(A)$?

$N(A)=13$
$N=52$
$p(A)=N(A) / N=13 / 52=1 / 4$

Question 1

\square Ans:
2) $p(B)$?
$N(B)=4$
$N=52$
$p(B)=N(B) / N=4 / 52=1 / 13$

Question 1

\square Ans:
3) $p(A$ and $B)=p(A) * p(B \mid A)$

Because $p(B \mid A)=1 / 13$, we have
$p(A$ and $B)=p(A) * p(B \mid A)$

$$
\begin{aligned}
& =1 / 4^{*} 1 / 13 \\
& =1 / 52
\end{aligned}
$$

Question 1

\square Ans:
4) $p(A$ or $B)=p(A)+p(B)-p(A$ and $B)$

$$
\begin{aligned}
& =1 / 4+1 / 13-1 / 52 \\
& =16 / 52=4 / 13
\end{aligned}
$$

Question 1

\square Ans:

$$
\text { 5) } \begin{aligned}
& 1-p(A \text { or } B) \\
& =1-4 / 13 \\
& =9 / 13
\end{aligned}
$$

Question 2: 4.22

a the tables in 4.21

Blood Type	A	B	AB	O
US Probability	0.40	0.11	0.04	$?$

\square the tables in 4.22

Blood Type	A	B	AB	O
China Probability	0.27	0.26	0.12	0.35

Question 2: 4.22

(1) Event $A=$ the American has type O blood Event $B=$ the Chinese has type O blood $P(A$ and $B)=$?
\square Ans:
Since A and B are independently, we can use the simplified multiplication rule:

$$
\begin{aligned}
P(A \text { and } B) & =P(A) * P(B) \\
& =0.45 * 0.35 \\
& =0.1575
\end{aligned}
$$

Question 2: 4.22

(2) Event $A=$ both have type A blood Event $B=$ both have type B blood Event $C=$ both have type $A B$ blood Event $D=$ both have type O blood
$\square \mathrm{P}(\mathrm{A}$ or B or C or D$)=$?

Question 2: 4.22

\square Ans:
$P(A)=0.40 * 0.27=0.108$
$P(B)=0.11 * 0.26=0.0286$
$P(C)=0.04 * 0.12=0.0048$
$P(D)=0.45 * 0.35=0.1575$
\square Since events A, B, C and D are disjoint (mutually exclusive), we can use the simplified addition rule:

$$
\begin{aligned}
P(A \text { or } B \text { or } C \text { or } D) & =P(A)+P(B)+P(C)+P(D) \\
& =0.108+0.0286+0.0048+0.1575 \\
& =0.2989
\end{aligned}
$$

Extension: the general addition rule for more than 2 sets

\square Caution!
If events A, B, C and D are not disjoint, then we can't use the simplified addition rule!
\square The general addition rule for 3 sets:
$P(A$ or B or $C)=P(A)+P(B)+P(C)$
$-P(A$ and $B)-P(A$ and $C)-P(B$ and $C)$
$+P(A$ and B and $C)$
\square The general addition rule for 4 sets:

Question 3: 4.32

\square Win: if the winning number contains the digits in your number, in any order.
(a) There are 6 arrangement of the digits 4, 5, 6 (456, 465, 546, 564, 645, 654), so $p($ win $)=6 / 1000=0.006$.
(b) With digits $2,1,2$, there are only 3 distinct arrangements (122, 212, 221), so $p($ win $)=3 / 1000=0.003$.

Question 4: 4.64

Review of geometry

\square Area (a square) $=$ base* height
\square Area (a triangle) $=1 / 2 *$ base* height
\square Area $($ a trapezoid $)=1 / 2^{*}$ (top base+bottom base)*height
"The height" must be perpendicular to "the base"!

Question 4: 4.64

Ans:
\square (a) There are many ways to verify it.
\square (b) $p(y<1)=0.5$
$\square(c) p(y<1.5)=1-1 / 2 * 1 / 2 * 1 / 2=0.875$
(shaded areas: see blackboard)

Question 5: 4.106

\square Known: $p(A), p(B), p(A$ and $B)$
To find: $p(A$ or $B)$?
\square The general addition rule:

$$
\begin{aligned}
P(A \text { or } B) & =P(A)+P(B)-P(A \text { and } B) \\
& =0.138+0.261-0.082 \\
& =0.317
\end{aligned}
$$

Question 6: 4.108(based on 4.106)

\square There are 4 events,

1) Draw a Venn diagram;
2) Indicate each event on the diagram;
3) Calculate the probability of each event;
4) Describe in words what each event is.

Question 6: 4.108(based on 4.106)

Ans:

\square The Venn diagram: see blackboard
\square a) $p(A$ and $B)=0.082$.
A household is both prosperous and educated.
\square b) $p\left(A^{c}\right.$ and $\left.B\right)=p(B)-p(A$ and $B)=0.261-0.082=0.179$.
A household is not prosperous but educated.
\square c) $p\left(A\right.$ and $\left.B^{c}\right)=p(A)-p(A$ and $B)=0.138-0.082=0.056$.
A household is prosperous but not educated.
\square d) $p\left(A^{c}\right.$ and $\left.B^{c}\right)=1-p(A$ or $B)$

$$
\begin{aligned}
& =1-(0.082+0.179+0.056) \\
& =0.683
\end{aligned}
$$

A household is neither prosperous nor educated.

Question 7: 4. 110

- Define:

Event A: an adjusted gross income of at least \$100,000
Event B: an adjusted gross income of at least \$1,000,000
$=>\quad A \supset B$
$\Rightarrow \quad p(A$ and $B)=p(B)$
$\square P(B \mid A)=$?

Question 7: 4. 110

Method 1:
$\square P(A)=(12,757,005) /(312,226,042)$
$=0.04085824$
$\square P(B)=(240,128) /(312,226,042)$
$=0.0007690838$
$\square P(B \mid A)=p(A$ and $B) / p(A)$
$=p(B) / p(A)$
$=0.01882322$

Question 7: 4. 110

Method 2:
\square Treat event A as a new sample space, then $N=12,757,005$.
Since $N(B)=240,128$
then $p(B)=N(B) / N$

$$
\begin{aligned}
& =(240,128) /(12,757,005) \\
& =0.01882322
\end{aligned}
$$

Question 8: 4.132 (a)

\square About Means \& Variances of Discrete Random Variables

Review: Means \& Variances of
 Discrete Random Variables

For a discrete random variable \mathbf{X} with values x_{i}, that occur with probabilities $p\left(x_{i}\right)$
\square The mean of \mathbf{X} is

$$
\mu_{X}=\sum_{i=1}^{n} x_{i} \cdot p\left(x_{i}\right)
$$

\square The variance of \mathbf{X} is

$$
\sigma_{X}^{2}=\sum_{i=1}^{n}\left(x_{i}-\mu_{X}\right)^{2} p\left(x_{i}\right)
$$

Question 8: 4.132 (a)

Ans:
\square Mean

$$
\mu_{X}=1 \times 0.2+2 \times 0.6+3 \times 0.2=2
$$

\square Variance

$$
\begin{aligned}
\sigma_{X}^{2} & =(1-2)^{2} \times 0.2+(2-2)^{2} \times 0.6+(3-2)^{2} \times 0.2 \\
& =0.4 \\
\sigma_{X} & =\sqrt{0.4}=0.6325
\end{aligned}
$$

