PSY30100-03 -- Assignment 2

Chapter 1: Describing Distributions with Numbers, Density Curves and Normal Distributions

TA: Laura Lu

September 7, 2009

Question 1

- Calculate the sample means, sample medians, and sample standard deviations of the following two data sets. Please notice that each value of the second data set is obtained by multiplying the corresponding value of the first data set by -1 and then adding 3. Comment on the relationship between the two means, two medians the two standard deviations.
- Data set 1: <u>1 3 6 9 10;</u>
- Data set 2: <u>2 0 -3 -6 -7</u>

Using definitions: a) sample mean $= \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{5} (1+3+6+9+10) = 5.8$

b) sample median=6

Question 1

c) sample standard deviation

$$= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$= \sqrt{\frac{1}{5-1}} [(1-5.8)^2 + (3-5.8)^2 + (6-5.8)^2 + (9-5.8)^2 + (10-5.8)^2]$$

$$\approx 3.8$$

Question 1

Data set 2: <u>2 0 -3 -6 -7</u>

```
Two ways:
```

The first way: using definitions

- a) sample mean=-2.8
- b) sample median=-3
- c) sample standard deviation \approx 3.8

Question 1

The second way: using linear transformation!

Data set 1: <u>1</u> <u>3</u> <u>6</u> <u>9</u> <u>10</u> <u>-> x</u> Data set 2: <u>2</u> <u>0</u> <u>-3</u> <u>-6</u> <u>-7</u> <u>-> y</u> each y value is obtained by first multiplying the corresponding x value by -1 and then adding 3

Linear transformation (a=3, b=-1)

y = 3 + (-1)x

Recap

Properties of linear transformations

mean(new)=a+b*mean(original)
median(new)=a+b*median (original)
sd(new)=|b|*sd(original)

Question 1

Data set 1: <u>1 3 6 9 10;</u> Data set 2: <u>2 0 -3 -6 -7</u>

	sample mean	sample median	sample standard deviation
Data set 1	5.8	6	≈ 3.8
Data set 2	a+b*5.8	a+b*6	≈ b *3.8
	=3-1*5.8	=3-1*6	=1*3.8
	=-2.8	=-3	=3.8

Question 2: problem 1.68 (p.50)

- Be careful about how you treat the zeros.
- Keep the whole sample!
- Do not delete the member in the sample which has a value zero.

Ans: (Lot of answers, you can have your own)

0 0 20,000

Omit zeros \rightarrow median: 20,000; mean: 20,000 Place 0 by 14,000 \rightarrow new median: 14,000; new mean: 16,000

Question 3: problem 1.111 (p.72)

A strategy to distinguish mean, mode, and median:

Step 1. Symmetric or not.
Step 2. Symmetric: three values take the same point.

Non-symmetric: 3 Steps:

(1) Find the highest peak: the mode.

(2) The median always stays in the middle.

(3) The mean always moves away from the median towards the longer tail.

Question 3: problem 1.111 (p.72)

Ans:

- a) Non-symmetric: B: the median. C: the mean.
- b) Symmetric: A: the median. A: the mean.
- c) Non-symmetric: B: the median. A: the mean.

Question 4: problem 1.121 (p.74)

Area = 0.9901

Area = 0.9901

Area = 0.0099

Z = 2.33

TA	TABLE A Standard normal probabilities									
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.	.4 .000	3 .0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.	3 .000	5 .0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.	1 .000	00002	.0000	.0006	8000	0000	20000	.0005	.0005	.0005
- 3.	0 001	3 0013	.0009	0012	.0008	.0008	.0008	.0008	.0007	.0007
-2	0 .001	9 0018	0013	.0012	0016	.0016	0015	.0015	0014	.0014
-2	8 .002	6 .0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2	7 .003	5 .0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.	6 .004	7 .0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2	5 .006	2 .0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.	.4 .008	2 .0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.	.3 .010	7 .0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.	.2 .013	9 .0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.	.1 .017	9 .0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.	.0 .022	8 .0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.	.9 .028	7 .0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.	.8 .035	9 .0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.	.7 .044	6 .0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.	.6 .054	8 .0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.	.5 .066	8 .0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.	2 004	8 .0793 8 00E1	.0778	.0764	.0749	.0135	.0721	.0708	.0694	.0681
-1	2 115	0 .0951	.0954	1002	1075	1054	1029	1020	1003	.0823
-1	1 125	7 1225	1214	1202	1271	1251	1 220	1210	11005	1170
-1	0 158	7 1562	1530	1515	1402	1460	1446	1423	1401	1370
-0	9 .184	1 .1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0	8 .211	9 .2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0	7 .242	0 .2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.	.6 .274	3 .2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.	5 .308	5 .3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.	4 .344	6 .3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.	.3 .382	1 .3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.	.2 .420	7 .4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.	.1 .460	2.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.	.0 .500	0.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8415	.8438	.8401	.8485	.8508	.85.51	.8554	.8577	.8399	.8621
1.1	.0043	.8000	.8080	.8708	.8729	.0149	.8//0	.8/90	.8810	.8830
1.2	.0049	.0040	.0000	.0907	.8923	.0944	.8902	0147	.0997	.9015
1.5	.90.52	.9049	.9000	.9082	.9099	.9115	0270	.9147	.9102	.9177
1.4	.9192	0245	0257	.92.50	0282	0204	.9279	0418	0420	.9519
1.5	.9352	0463	0474	0484	0405	9505	0515	0525	0535	0545
17	9554	0564	0573	0582	0501	0500	9608	9616	0625	0633
1.8	9641	.9640	9656	9664	.9671	9678	.9686	0603	0600	9706
1.9	.9713	.0710	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997

TABLE A Standard normal probabilities

Ζ	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	0033	-0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.00)606 is	the	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.00		dor	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.00 d	irea un	uer	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.01 N	(0,1) le	ft of \mid	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.01	z = -1.5	55	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.01			.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.022		×2	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	. D. Q	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0330	Q329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	0436	.0427	.0418	.5-09	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0. Z	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	9643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793) a	.0764	.0749	.0735	.0721	.0708	.0694	.0681

......

.0287 is the area under N(0,1) left of z = -1.9

Question 4: problem 1.121 (p.74)
a)
$$Z \le -1.9$$
 ->check table A =.0287
b) $Z \ge -1.9$ ->1-area($Z < -1.9$)=1-.0287=.9713
c) $Z > 1.55$ ->area($Z < -1.55$)=.0606
d) -1.9 < $Z < 1.55$
-> area($Z < 1.55$) - area($Z < -1.9$)
= [1-area($Z < -1.55$)] - area($Z < -1.9$)
= .9394-.0287=.9107

Question 5: problem 1.124 & 1.125 (p.74)

1. Usually, 2 steps 1) Standardize x to a Z-score using the following formula $z = \frac{x - \mu}{\sigma}$

2) Check Table A for the percentage

2. For some special cases, we can use "The 68-95-99.7 Rule"

Recap: The 68-95-99.7 Rule

All Normal curves $N(\mu,\sigma)$ share the same properties

About 68% of all observations
 are within 1 standard deviation
 (σ) of the mean (μ).

• About 95% of all observations are within 2 σ of the mean μ .

Almost all (99.7%)
 observations are within 3 σ of the mean.

Question 5: problem 1.124 & 1.125 (p.74)

1.124 Ans: $z = \frac{x - \mu}{\sigma} = \frac{70 - 100}{15} = -2$

using "The 68-95-99.7 Rule", the answer is 2.5%.

1.125 Ans: $z = \frac{x - \mu}{\sigma} = \frac{130 - 100}{15} = 2$

using "The 68-95-99.7 Rule", the answer is 2.5%.

Question 6: problem 1.126 & 1.129 (p.74)

1.126 Ans: Tonya: $z = \frac{x - \mu}{\sigma} = \frac{1320 - 1026}{209} \approx 1.4067$ Jermaine: $z = \frac{x - \mu}{\sigma} = \frac{28 - 20.8}{4.8} \approx 1.5$

1.129 Ans:
Maria:
$$z = \frac{x - \mu}{\sigma} = \frac{29 - 20.8}{4.8} \approx 1.7083$$

 $z = \frac{x - \mu}{\sigma} \iff x = z\sigma + \mu \approx 1.7083 \times 209 + 1026 = 1383$