PSY30100-03 -- Assignment 10

Two-Way Tables

TA: Laura Lu
April 26, 2010

A joke

\square Here is a joke I heard days ago.
"Every human being's brain has two parts: the left and the right. The left brain has nothing right. The right brain has nothing left."

Problem

There are a two-way table:

	Smoker	Not
Dead	139	230
Alive	438	502

Questions

1. Row variable? Column variable?
2. Marginal distributions in percentage for both variables.
3. Conditional distributions of survival given smoking status.
4. Carry out a test on relationship between the two variables.
5. Conclusion.

Ans. of Q.1-2

		Smoking status		marg. dist.	
		Smoker	Not	Total	Per.
Survival status	Dead	139	230	369	28.2%
	Alive	438	502	940	71.8%
marg. dist.	Total	577	732	1309	
	Per.	44.1%	55.9%		100%

Ans. of Q. 3

Conditional distributions of survival given smoking status

	Smoker	Not
Dead	$24.1 \%<$	31.4%
Alive	$75.9 \%>$	68.6%
total	100%	100%

Ans. of Q. 4

Expected Cell Count $=\frac{\text { rwo tatal } \times \text { column total }}{\text { total count }}$

	Smoker	Not	Total
Dead	139 $(E=162.7)$	230 $(E=206.3)$	369
Alive	438		
$(E=414.3)$	$(E=525.7)$	940	
Total	577	732	1309

Ans. of Q. 4

$$
\begin{aligned}
& \sum_{\text {all cells }} \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }} \\
= & \frac{(139-162.7)^{2}}{162.7}+\frac{(230-206.3)^{2}}{206.3} \\
+ & \frac{(438-414.3)^{2}}{414.3}+\frac{(502-525.7)^{2}}{525.7} \\
\approx & 8.6
\end{aligned}
$$

The table is 2×2, so there are $(2-1)(2-1)=1$ degrees of freedom.
And the critical value for χ_{1}^{2} at alpha $=0.05$ is 3.84 .
Therefore, we reject HO .

Ans. of Q. 5

\square Conclusions:
\square 1. Smoking status is significantly associate with survival status at the alpha level of 0.05 .
\square 2. Smokers have a lower death rate than non-smokers.

Ans. of Q.6: Age 18-44

		Smoking status		marg. dist.	
		Smoker	Not	Total	Per.
Survival status	Dead	19	13	32	5.1%
	Alive	269	327	596	94.9%
marg. dist.	Total	288	340	628	
	Per.	45.9%	54.1%		100%

Ans. of Q.6: Age 18-44

Conditional distributions of survival given smoking status

	Smoker	Not
Dead	$6.6 \%>$	3.8%
Alive	$93.4 \%<$	96.2%
total	100%	100%

Ans. of Q.6: Age 45-64

		Smoking status		marg. dist.	
		Smoker	Not	Total	Per.
Survival status	Dead	78	52	130	29.6%
	Alive	162	147	309	70.4%
marg. dist.	Total	240	199	439	
	Per.	54.7%	45.3%		100%

Ans. of Q.6: Age 45-64

Conditional distributions of survival given smoking status

	Smoker	Not
Dead	$32.5 \%>$	26.1%
Alive	$67.5 \%<$	73.9%
total	100%	100%

Ans. of Q.6: Age 65+

		Smoking status		marg. dist.	
		Smoker	Not	Total	Per.
Survival status	Dead	42	165	207	85.5%
	Alive	7	28	35	14.5%
marg. dist.	Total	49	193	242	
	Per.	20.2%	79.8%		100%

Ans. of Q.6: Age 65+

Conditional distributions of survival given smoking status

	Smoker	Not
Dead	$85.7 \%>$	85.5%
Alive	$14.3 \%<$	14.5%
total	100%	100%

Ans. of Q. 7

\square Conclusion:
\square For each age subgroup, non-smokers have a lower death rate than smokers.

Ans. of Q. 8

\square Simpson's Paradox!
\square The variable age is a lurking variable in this problem.

Ans. of Q. 9

- Take-home message:
\square Lurking variables can strongly influence relationships between categorical variables. An association or comparison that holds for all subgroups can reverse direction when lurking variables are ignored and the data are combined to form a single group.
\square In this problem, when age is ignored, smokers seem to have a lower death rate, even though non-smokers do have a lower death rate in each of three age subgroups.

Another take-home message:

\square Stay away from smoking, drugs, or other unhealthy habits. I hope you have a healthy body, and enjoy your life.
\square Although we don't have perfect brains, I do hope you have perfect scores on your final examination.

