
Stat Comput (2007) 17: 263–279
DOI 10.1007/s11222-007-9028-9

On population-based simulation for static inference

Ajay Jasra · David A. Stephens · Christopher C. Holmes

Received: 12 October 2005 / Accepted: 20 March 2007 / Published online: 27 July 2007
© Springer Science+Business Media, LLC 2007

Abstract In this paper we present a review of population-
based simulation for static inference problems. Such meth-
ods can be described as generating a collection of ran-
dom variables {Xn}n=1,...,N in parallel in order to simu-
late from some target density π (or potentially sequence
of target densities). Population-based simulation is impor-
tant as many challenging sampling problems in applied sta-
tistics cannot be dealt with successfully by conventional
Markov chain Monte Carlo (MCMC) methods. We sum-
marize population-based MCMC (Geyer, Computing Sci-
ence and Statistics: The 23rd Symposium on the Interface,
pp. 156–163, 1991; Liang and Wong, J. Am. Stat. Assoc.
96, 653–666, 2001) and sequential Monte Carlo samplers
(SMC) (Del Moral, Doucet and Jasra, J. Roy. Stat. Soc. Ser.
B 68, 411–436, 2006a), providing a comparison of the ap-
proaches. We give numerical examples from Bayesian mix-
ture modelling (Richardson and Green, J. Roy. Stat. Soc.
Ser. B 59, 731–792, 1997).

Keywords Markov chain Monte Carlo · Sequential Monte
Carlo · Bayesian mixture models · Adaptive methods

A. Jasra (�)
Department of Mathematics, Imperial College London,
SW7 2AZ, London, UK
e-mail: ajay.jasra@ic.ac.uk

D.A. Stephens
Department of Mathematics and Statistics, McGill University,
H3A 2K6, Montreal, Canada

C.C. Holmes
Department of Statistics, University of Oxford, OX1 3TG,
Oxford, UK

1 Introduction

A common problem in Bayesian statistics is that of evaluat-
ing an expectation of an integrable function h with respect
to a probability density π :

Eπ [h(X)] =
∫

E

h(x)π(x)dx,

π(x) = γ (x)

Z
,

(1.1)

where π is a probability density with respect to some σ -
finite measure dx on measurable space (E,E) and γ : E →
R

+ may be evaluated pointwise, with 0 < Z < ∞ unknown.
Since E is often of high dimension (1.1) can seldom be
computed analytically, via (deterministic) numerical meth-
ods or by using Monte Carlo integration with independent
sampling from π .

A solution to this problem is provided by Markov chain
Monte Carlo (Metropolis-Hastings (MH) kernels (Metropo-
lis et al. 1953; Hastings 1970)) which generates samples
from an ergodic Markov kernel K : E × E → [0,1] with
invariant measure π and estimates (1.1) via:

ST (h) = 1

T

T∑
i=1

h(xi), (1.2)

where x1:T � (x1, . . . , xT) (resp. X1:T � (X1, . . . ,XT)) and
x1:T have been drawn from K . Note that dx1:T � dx1 ×· · ·×
dxT and throughout this paper all probability measures are
assumed to be absolutely continuous with respect to some
σ -finite measure dx.

However, in many modern areas of applied statistics, for
example gene clustering (Heard et al. 2006) and admix-
ture modelling in population genetics (Pritchard et al. 2001),

264 Stat Comput (2007) 17: 263–279

Fig. 1 Sampled means from the
MCMC algorithm for mixtures.
The algorithm was run for 1
million iterations with a 10000
iteration burn-in and every
100th sample post burn-in is
displayed. The CPU time was
336 seconds

conventional MCMC methods are not able to correctly tra-
verse the state space. This is because the statistical models
used to analyze such data are often highly complex, induc-
ing multimodal and/or high dimensional target densities, and
leading to poorly mixing MCMC algorithms. We illustrate
this problem with the following example from Bayesian
mixture modelling.

1.1 Example: mixture modelling

Throughout this article we use Bayesian mixture modelling
to demonstrate the algorithms we review. Mixture models
are typically used to model heterogeneous data, or as a sim-
ple means of density estimation; see McLachlan and Peel
(2000) for an overview. It should be noted that, in our ex-
perience, population-based methods are often needed in the
Bayesian analysis of finite mixture models and thus provide
a non-trivial (if well understood) example.

Let y1, . . . , ym denote observed data yl ∈ R, l ∈ Tm,
Tm � {1, . . . ,m}. We assume that the yl are i.i.d with den-
sity:

p(yl |φ1:k,w1:k−1, k) =
k∑

j=1

wjf (yl;φj),

where φ1:k are component specific parameters, the weights
w1:k−1 = (w1, . . . ,wk−1) are such that

∑k−1
j=1 wj ≤ 1,

wj ≥ 0 ∀j = 1, . . . , k − 1, wk = 1 −∑k−1
j=1 wj , p(·) denotes

an arbitrary probability density function and f (·) is the
component density. We take f (·) to be normal, N (μ,λ−1)

where (μ,λ) are the location and scale parameters respec-
tively. The priors (which are the same for each compo-
nent j = 1, . . . , k) are the following (similar to Richard-
son and Green 1997): μj ∼ N (ξ, κ−1), λj ∼ Ga(α,β) and
w1:k−1 ∼ D(δ). Our notation is such that: D(δ) is the sym-
metric Dirichlet distribution with parameter δ and Ga(α,β)

is the gamma distribution, shape α, scale β . The prior pa-
rameter setting is as Richardson and Green (1997) and we
refer the reader to that paper. Note that one feature of this
mixture model is that due to the invariance of the posterior
distribution to permutation of the labels of the parameters,
it features k! symmetric modes (given that there are k com-
ponents in the mixture model); see Jasra et al. (2005a) for a
review.

To illustrate the aspects discussed above we consider the
simulated data in Jasra et al. (2005a): 100 simulated data
points from an equally weighted mixture of four (i.e. k = 4)
normal densities with means at (−3,0,3,6) and standard
deviations 0.55.

We ran a cycle of random walk MH steps updating, in
one block, μ1:k , then λ1:k and finally w1:k−1. The proposal
variances were adjusted to yield an average acceptance rate
in the range (0.3,0.6). The algorithm was run for 1 million
iterations, with a 10000 iteration burn in; the sampled means
are plotted in Fig. 1 (every 100th post burn-in). In Fig. 1 we
can observe that the sampler is unable to explore all of the 4!
symmetric modes. We remark here that we are unconcerned
with whether exploring the symmetric modes is important;
we simply seek to explore the target distribution correctly.

This situation is typical of many standard MCMC kernels
when attempting to simulate from probability measures with
multimodal or very high dimensional densities. We note that
the difficulties presented here may be alleviated via adap-
tive methods (Andrieu and Robert 2001). That is, to update
the transition kernel on the basis of realized values of the
chain. Such adaptive procedures include: adapting proposal
variances in random walk Metropolis-Hastings steps via the
Robbins-Monro algorithm and approximating the target and
using this approximation in a Metropolis-Hastings indepen-
dence sampler; see Andrieu and Moulines (2006). How-
ever, there can be examples in which the kernels mix so
badly that such adaptive strategies cannot always be ex-
pected to work. Due to our experience with more advanced
single chain MCMC methods (such as tempered transitions
(Neal 1996) and delayed rejection (Green and Mira 2001);
see Jasra et al. 2005a for examples), it seems clear that al-
ternative methods are needed. Note that one single chain
method, simulated tempering (Marinari and Parisi 1992;
Geyer and Thompson 1995), can perform better than some
population MCMC schemes discussed below (see Zheng
2003), if the pseudo prior can be estimated accurately
(this is typically a high dimensional integral which can be
estimated on the fly using stochastic approximation; see
Atchadé and Liu 2004). However, in some of the applica-
tions for which population methods are required (e.g. Bioin-
formatics), the two fold problem of estimating the pseudo
prior and exploring the state-space will be more difficult

Stat Comput (2007) 17: 263–279 265

than using a population of samples; we would not expect to
be able to solve both problems simultaneously (that is, we
seek to estimate marginal quantities and explore the space).

1.2 Population-based simulation and recent literature

Borrowing the term ‘population-based’ from Iba (2000), we
define a population-based simulation method as one which,
instead of sampling a single (independent/dependent) sam-
ple, generates a collection of samples in parallel. We distin-
guish two types of population algorithms; one which relies
solely upon MCMC methodology and another which uses
importance sampling/resampling ideas (Doucet et al. 2001;
Liu 2001). It should be stressed that whilst there are sub-
stantial similarities of both approaches (the simulation of
samples in parallel, sampling from families of distributions),
there are many key differences; for example the theoretical
convergence (the iteration (MCMC) against number of par-
allel samples (importance sampling)). The differences in the
approaches should become apparent as the reader proceeds
though the paper.

The first method, which we refer to as population-based
MCMC (note that this is different from population Monte
Carlo which correspond to importance sampling algorithms
such as in Cappé et al. 2004), works by building a new
target π∗(x1:N)dx1:N on the product space (EN,

∨N
i=1 E)

such that π∗ admits π as a marginal. To our knowledge,
this method was originally developed by (see also Iba 2001
for an introduction) Geyer (1991) who defined a new tar-
get density π∗(x1:2) = π(x1)π1(x2), with π1 different (but
related) to π and swapped x1 and x2 via an exchange step
(see Sect. 2.2). This approach was independently developed
by Hukushima and Nemoto (1996) who described this as
‘Exchange Monte Carlo’. Another population method, adap-
tive direction sampling, was devised by Gilks et al. (1994).
Further advances came in Liang and Wong (2001) who at-
tempted to produce genetic algorithm (GA) type moves to
improve the mixing of the Markov chains (the method was
termed ‘evolutionary Monte Carlo’). Liu (2001) provides
some further background.

The second approach is sequential Monte Carlo, exem-
plified by the SMC sampler method of Del Moral et al.
(2006a). Sequential Monte Carlo methods have a rich his-
tory, originating from the initial work of Hammersely and
Morton (1954); see Doucet et al. (2000) and Liu (2001) for
a historical review. SMC methods were constructed to sam-
ple from a sequence of related target distributions, using im-
portance sampling to reweight the population of samples (or
particles) from the previous target density and resampling
to allow the samples to interact. Such simulation cannot
be achieved, efficiently, using MCMC. However, as noted
by Chopin (2002) and Del Moral and Doucet (2003), SMC
methods may also be used to simulate from a single, static

target. This idea also appeared in Jarzynski (1997) and inde-
pendently in Neal (2001). As a result, SMC is an alternative
population-based simulation method. We note that there are
many SMC methods appropriate for static inference such as
annealed importance sampling (Neal 2001), resample-move
(Gilks and Berzuini 2001), the sequential particle filter of
Chopin (2002), the dynamically weighted importance sam-
pling (DWIS) method (Liang 2002) and population Monte
Carlo (Cappé et al. 2004) but since the SMC sampler ap-
proach contains all of these methods as a special case (with
slight exception of DWIS) we concentrate upon this.

1.3 Structure and objectives of the paper

In this paper we provide a review of population-based sim-
ulation methods and a tutorial on how to use them. Our
intent is to convince applied statisticians that population-
based simulation provides an implementable and important
method, which can often be used in situations for which no
other methods work.

This paper is structured as follows. In Sect. 2 we review
population-based MCMC, in terms of the move types and
the sequence of densities. We also return to the mixture ex-
ample to provide some guidelines on how to construct popu-
lation MCMC algorithms. In Sect. 3 we consider SMC sam-
plers, detailing some important implementation issues. In
Sect. 4 we provide a comparison of these methodologies.
Finally, in Sect. 5 we conclude the paper, giving some dis-
cussion on potential new research areas.

2 Population-based MCMC

2.1 The method

Population-based MCMC may be described as follows. In
order to sample from a target density π , we define a new
target measure:

π∗(x1:N)dx1:N =
[

N∏
n=1

πn(xn)

]
dx1:N, (2.3)

where we assume that π ≡ πn for at least one n ∈ TN .
In order to construct a valid MCMC algorithm, we need

a (time homogeneous) Markov kernel that is π∗-irreducible,
aperiodic and admits π∗ as its invariant distribution. This
is easily achieved by considering the target as having vec-
tor components (x1, . . . , xN) as in hybrid MCMC; see for
example Roberts and Rosenthal (2004) (e.g. Metropolis-
within-Gibbs updates of x1, x2 etc.). Note that (1.2) is com-
puted by using samples from the chain with target of interest
(although importance sampling techniques may be adopted).

Two main elements provide the motivation of population
MCMC algorithms:

266 Stat Comput (2007) 17: 263–279

• The sequence of densities {πN } will be selected so that
they are all related and, in general, easier to simulate
than π . This can provide valuable information for sim-
ulating from π .

• The usage of a population of samples will allow more
global moves (than single chain MCMC) to be con-
structed resulting in faster mixing MCMC algorithms.

We now discuss some population moves and the se-
quence of distributions {πn}n∈TN

.

2.2 Population moves

The different types of population moves that have been used
are now described. We use the GA terminology of Liang
and Wong (2001) and Del Moral and Doucet (2003) (for
example). A similar coverage may be found in Liu (2001).

Mutation This move seeks to update a single member
of the population via a Markov kernel. That is, X′

n|xn ∼
K(xn, ·) (where ′ denotes a new value of the population
member). For example we may update x1:N via:

K(x1:N,dx′
1:N) =

N∏
n=1

Kn(xn, dx′
n),

where Kn is a Markov kernel that is πn-stationary. The pur-
pose of this move is to allow for local exploration of the state
space, as well as ensuring the required irreducibility of the
algorithm

Exchange The standard way to swap information between
chains is to use the exchange move. This is a Metropolis-
Hastings move that proposes to swap the value of two chains
n and q; this is accepted with probability min{1,A}:

A = πn(xq)πq(xn)

πn(xn)πq(xq)
, (2.4)

where we have assumed that we have selected both chains
with equal probability and the labelling of the proposed state
of the chain is with respect to the current state. The idea is
to move information between the population. For example,
we may try to swap information between chains that have
similar target distributions. One interesting approach, sug-
gested by Green and Mira (2001), is to use delayed rejection
to propose a bold swap (e.g. between chains that are very
different in some sense) and, if rejected, a more timid swap
(e.g. between chains that are similar in some sense).

Crossover This idea was introduced (in the MCMC liter-
ature) by Liang and Wong (2001). Suppose xn = (x1n, . . . ,

xdn) ∀n, then the crossover selects a position in the vector

to crossover information. That is, if we propose to crossover
the lth position in the vector for chains n and q we have:

x′
n = (x1n, . . . , x(l−1)n, xlq , . . . , xdq),

x′
q = (x1q, . . . , x(l−1)q , xln, . . . , xdn).

This move is accepted with probability min{1,A}, with A as
for (2.4) with appropriate change of notation and assuming
all choices (chains, crossover position) are made with uni-
form probability. We have found that this move can be rea-
sonably efficient (in terms of acceptance rate, often in the
range of 2–3% for quite challenging problems) if we do not
attempt to crossover too much information. One potential
extension, mentioned by a referee, is to allow for a circu-
lar crossover, that is to allow break points at different parts
of xn; we investigate this in Sect. 2.7.

Snooker moves Gilks et al. (1994) use the idea of mov-
ing population members towards each other. That is, it is
expected that some population members should have high
(original) target density and thus an intelligent move is to
propose values close to other members of the population.
We note that we do not want this move to occur so often
so that all chains are close together, that is, reducing the di-
versity of the population. This is of importance, as the one
of the ideas of population-based simulation is to use the ex-
tra information of the population to improve the exploration
ability of the algorithm. If all of the chains are stuck in a
single mode say, then the advantage is lost.

We note that further move types may be found in
Goswami and Liu (2007). They use a method termed tar-
get orientated evolutionary Monte Carlo, where the idea is
to produce more updates of the original target π (it is as-
sumed only one copy lies in π∗). Whilst, from a CPU time
perspective, this seems a good idea, it is not clear that this
will lead to faster theoretical convergence to π∗.

2.3 Sequence of distributions

The possible types of distributions that have been used are
as follows. Note that any of these methods may be used for
SMC.

Identical One simple idea is to take πn ≡ π ∀n ∈ TN . This
approach is used by Warnes (2001). We note that for this ap-
proach to be effective, the kernels used to sample the orig-
inal target must mix reasonably quickly, or some additional
approach must be used to improve exploration of the tar-
get. For example, Warnes (2001) updates a single population
member xn using a proposal that is a normal kernel estimate
of π , fitted to the other samples (at the current iteration).
Robert and Casella (2004) note that this may not work well
for high dimensional targets due to the poor performance of
density estimation in large spaces.

Stat Comput (2007) 17: 263–279 267

Tempered Suppose that
∫

E

[π(x)]ζ dx < ∞

for ζ ∈ with a set of values on (0,1]. Then we may take:
πn(x) ∝ [π(x)]ζn ζn ∈ and that ζn = 1 for at least one
n ∈ TN . This approach is used by Liang and Wong (2001)
and Jasra et al. (2005b). The idea is that the distributions
at high temperatures, that is, ζ close to zero, are easily sam-
pled and can improve the mixing of the entire algorithm. Se-
lecting the ζ is not always easy. The intuition is that, given a
number of distributions, we want the temperatures to be high
enough to allow for fast movement around the state space,
but at the same time, that there are enough chains which
hold information related to the original target density (i.e. as
noted by Neal 2001 we want the evolution of densities from
the flattest to the target to be ‘smooth’ in some sense). Liu
(2001) states that temperatures should be set so that the ex-
change move is accepted about half of the time. Further dis-
cussion can be found in Goswami and Liu (2007). A related
approach, suggested by Gelman and Meng (1998), is to take

πn(x) ∝ [π(x)]ζn [p(x)]1−ζn ,

where p is some probability density that may be sampled
from and

∫
E
[π(x)]ζn [p(x)]1−ζndx < ∞ ∀n.

As noted by Geyer and Thompson (1995), the tempering
procedure may not always improve mixing, for example in
the witches hat density (Matthews 1993). However, one po-
tential way to use the tempering idea is via multiple temper-
ing schemes across different regions of the target space. That
is, partition the state space and allow for separate tempering
strategies within each region. For example, in a complex re-
gion of the space we heat the targets (and hence they are
more easily sampled) and in well defined regions the targets
are cooled. We aim to investigate such a method in future
work.

Data point tempered In the situation that we work with
a target density related to observed data, some of the den-
sities in the population may only include some subset of
the data. For example in Chopin (2002), we seek to draw
inference from a posterior distribution π(θ |y) and suppose
N = m (the number of data-points). Chopin (2002) took the
sequence of densities to be

πn(θ |y1:n) ∝ p(y1:n|θ)π(θ),

we note that the densities may change by ‘batches’ of data.
To our knowledge, this has not been used in the MCMC lit-
erature (however is often used in SMC; see Sect. 3.5). Our
experience is that this approach does not often work well
for population-based MCMC, unless a careful choice of data
partitioning is made; we discuss this more in Sect. 3.5.

Different dimensions In this case, we define a sequence of
densities {πn}n∈TN

on state-space E = E1 × · · · × EN with
dim(E1) < · · · < dimEN . This has been presented in Liang
(2003) (although it had appeared previously in the compu-
tational physics literature; e.g. Ron et al. 2002), where the
idea is that the information in lower dimensional spaces
(which can easily be learnt), can be crossed over with that
in high dimensional spaces to improve exploration of state-
space (Liang 2003 terms this move extrapolation and pro-
jection). As an example, Liang (2003), when simulating
from the Ising model, uses Ising models with lower linear
sizes (fewer terms in the energy function than the target
of interest) as the sequence of densities. In our experience,
with complicated statistical models, it can be very diffi-
cult to crossover information between different dimensional
problems, but Liang (2003) successfully demonstrates the
method on the witches hat problem and the Ising model.

Stratified Suppose A1, . . . ,AN−1 form a partition of E,
An ∈ E ∀n = 1, . . . ,N − 1,

∫
An

π(x)dx > 0 and take

π∗(x1:N) ∝ π(xN)

N−1∏
n=1

π(xn)IAn(x),

where IA(·) is the indicator function. The objective is that in
each An we may be able to construct a Markov kernel that
mixes quickly across the space, so by constraining chains to
lie in different regions we can correctly sample the target.
The difficulty lies in determining the partition. One appli-
cation for which this may not be so problematic is trans-
dimensional simulation; see Atchadé and Liu (2004). Addi-
tionally, it is not always easy to make the chains interact.
For example, Jasra et al. (2005b) use a special exchange that
only allows for jumps between the same region (with some
chains constrained to lie in overlapping sets), but this can-
not always be expected to work (since we need to be able to
jump between regions).

An idea that may work well is to use the population
(which is stratified) to produce a proposal that approximates
the target. That is, to use adaptive methods to construct a
proposal (note that if this is done in the MCMC framework
then if adaptation is only done finitely often then conver-
gence is still achieved; see Roberts and Rosenthal 2005).

A related but differing approach is used by Kou et al.
(2006). They adopt the sequence of densities:

πn(x) ∝ exp{−ζngn(x)},
gn(x) = g(x) ∨ Gi,

g(x) = − log{γ (x)},
(2.5)

where π(x) = 1
Z

γ (x), infx∈E{g(x)} ≥ G1 < · · · < GN <

∞ is a stratification of the energy space. If used in a popu-
lation MCMC framework this approach will lead to diverse

268 Stat Comput (2007) 17: 263–279

samples with respect to the energy (which may not mean
the samples are diverse with respect to the state space). We
discuss the method of Kou et al. (2006) below.

A similar stratification idea is the multicanonical sampler
(Mitsutake et al. 2003), see also Atchadé and Liu (2006). In
this approach:

πn(x) ∝
Ne∑
j=1

1

Zn,j

π(x)ζn

Zn

IGj
(x)

with Zn = ∫
π(x)ζndx, Zn,j = ∫

π(x)ζn

Zn
IGj

(x)dx and⋃Ne

i Gi is a partition of the energy space. This class of algo-
rithm is complicated by the fact that the {Zn,j } are unknown
and often learnt on the fly (e.g. by the Wang-Landau algo-
rithm); see Atchadé and Liu (2006). Atchadé and Liu (2006)
report that this is similar to the equi-energy sampler, in terms
of efficiency.

We note that any of the densities mentioned above may
be applied simultaneously. We have often found that com-
bining tempered densities with stratified/partitioned chains
leads in some sense to satisfactory performance. The identi-
cal approach is less useful in the MCMC framework, unless
clever population moves may be formulated with reasonable
computational cost.

2.4 Number of distributions

The choice of the number of distributions is not always clear.
Our guidance is as follows. An obvious constraint is being
able to store the number of chains on a computer (i.e. hav-
ing enough memory). Given this constraint, we want enough
chains so that we have a lot of information to improve ex-
ploration around the space, but not too many chains so that
convergence to π∗ takes too long in terms of CPU time
(this latter point will not be such a problem if fast mix-
ing, global population moves can be constructed). Addition-
ally, the complexity of the problem will determine whether
a large or small number of chains are needed. For example,
for high dimensional problems the target density is likely to
be multimodal and very complex which suggests that a large
number of chains are needed so that we can successfully tra-
verse the state space.

We have often used the criterion that samples from the
target of interest are reasonably similar for long runs of
the algorithm. Kou et al. (2006) suggest that the number of
chains (for equi-energy sampling) should be roughly pro-
portional to the dimensionality of the target density. See
Sect. 2.7 for some further discussion.

2.5 Equi-energy sampler

One population method, which does not fall exactly into the
class of population-based MCMC is the equi-energy sam-
pler of Kou et al. (2006) (see also the methods of Mitsutake

et al. (2003), Andrieu et al. (2007a) and Brockwell et al.
(2007)). This method generates a non-Markovian stochastic
process with target densities (2.5). The method proceeds by
sampling from a Metropolis-Hastings kernel with station-
ary distribution πN . Once convergence is reached, we store
samples and start another ‘chain’ (after C > 0 steps of the
πN chain) which targets πN−1 and updates at each time step
by either using a Metropolis-Hastings kernel or by propos-
ing to exchange the current state of the chain with a value
stored of the chain targeting πN within the same energy band
(i.e. if xi

N−1 ∈ [Gl,Gl+1] at time i we propose to swap with
a stored value in this band). The process continues until we
target π1 which is the target density of interest.

The advantage of this method over population-based
MCMC discussed above is that we will retain information
of where we have been and be able to make large moves
between separated modes. This is at the cost of increased
storage and having an estimate of the posterior mode, prior
to simulation. Also a sensible partitioning of the energy
space is required; see Kou et al. (2006) for details. We note,
also, that adaptive methods may be used very naturally for
population-based MCMC (given that it can be shown to be
ergodic, see Sect. 5 for further discussion) which will be less
computationally expensive than storing samples and poten-
tially just as effective.

We believe that this method is very important and worthy
of detailed consideration by applied statisticians. However,
a substantial theoretical investigation is needed as there is
limited discussion in Kou et al. (2006); see Andrieu et al.
(2007b). It should be noted that such an algorithm can be in-
terpreted within the framework of non-linear MCMC (An-
drieu et al. 2007a) and may be studied using the techniques
considered there. Due to space constraints we do not con-
sider this method further.

2.6 A typical algorithm

In Algorithm 1 we give a typical algorithm used in popula-
tion-based MCMC: it may be used as a basic template to
build more complex algorithms. Note that assuming

∨N
i=1 E

is countably generated the algorithm will converge to π∗
(in total variation distance) (see Theorem 4 of Roberts and
Rosenthal 2004) from π∗−a.e. starting points. We remark
that there are no theoretical difficulties in defining a trans-
dimensional (Green 1995) version of the algorithm; see
Jasra et al. (2005b).

Algorithm 1 (A population-based MCMC algorithm)
0. (INTIALIZATION)

• Initialize the chain x1:N , Xn ∼ ν, ν a probability den-
sity.

• For t = 1, . . . , T sweep over the following:

Stat Comput (2007) 17: 263–279 269

1. (MUTATION)
• Select a chain n with a fixed (time homogeneous)

probability and then update xn using a πn−irreducible,
aperiodic Markov kernel, which admits πn as its invari-
ant distribution.

2. Make a random choice between performing steps 3 or 4.
3. (CROSSOVER)

• Perform the crossover move in Sect. 2.2.
4. (EXCHANGE)

• Perform the exchange move in Sect. 2.2.
end

2.7 Example

To see that population-based simulation can provide im-
provements over standard MCMC methods and to investi-
gate some of the ideas discussed above, we return to the
mixture example in Sect. 1.1.

The algorithm followed the framework of Algorithm 1,
except that the only population move used was an exchange
move; we investigate the crossover move later in the Sec-
tion. We will adopt (with l(y1:m;φ1:k,w1:k−1) the mixture
likelihood) densities of the form:

πn(φ1:k,w1:k−1|y1:m)

∝ l(y1:m;φ1:k,w1:k−1)
ζnp(φ1:k,w1:k−1)

that is, tempered densities. We firstly investigate, empiri-
cally, the performance of various heating schemes, then the
size of the population, finally we look at the crossover move.
The performance criteria we use is the point estimates of the
component specific means μ1:k ; which are the same in the
posterior and approximately equal to 1.5. The MH proposal
variances were set as:

σn = σ1

γn + 1
, n = 2, . . . ,N,

with σ1 = 0.4 (means), σ1 = 0.55 (precisions) and σ1 = 0.6
(weights) (these were the settings for the first example). We
found that this lead to acceptance rates in the range (0.3,0.5)

(averaged over each chain).

2.7.1 Various tempering approaches

In this section we run the algorithm with N = 20 using the
following tempering schemes (note ζ1 = 1):

• Uniformly Spaced (A):

ζn = ζn−1 − 1

N
, n = 2, . . . ,N.

• Logarithmic Decay (B):

ζn = log(ζn−1 + 1)

log(K)
, n = 2, . . . ,N,

K > 0.

Table 1 Estimates of means from mixture comparison for various
tempering strategies. We ran each sampler for 1 million iterations,
4 times and heating schedule (C) was used. The estimates are presented
in increasing order, for presentation purposes

Sampler details Component

1 2 3 4

A 1.28 1.41 1.49 1.58

B 1.02 1.03 1.54 1.71

C1 1.34 1.39 1.51 1.52

C2 0.83 1.19 1.74 2.01

• Power Decay (C):

ζn = (ζn−1 − K)α̃, n = 2, . . . ,N,

K ∈ (0,1) and α̃ > 1.

We ran four versions of the algorithm (A), (B) with
K = 2.25, (C1) with α̃ = 3/2, K = 0.001 and (C2) with
α̃ = 6/5, K = 0.001. The first algorithm (A) provides a
spread of densities from the very flat to the target, the sec-
ond (B) with a quickly heating scheme (that is, the target is
isolated from the flat densities), the third (C1) with a slowly
heating sequence and (C2) likewise, except with many den-
sities similar to the target. We remark that it is possible to
derive automatic temperature selection; see Iba (2001) for
an approach that uses pilot simulations.

The algorithm was run four times for 1 million iterations,
allowing for a 10000 iteration burn in, the means were esti-
mated on the basis of every 100th sample post burn-in, the
CPU time was approximately 338 seconds for each run. The
exchange move was accepted 23% of the time for (A), 59%
(B), 33% (C1), 87% (C2). In Table 1 we can observe the es-
timated means. On the basis of the estimated means, (A) and
(C1) have provided the best estimates of the means, with val-
ues all close to 1.5. We explain this as follows. For scheme
(C1) the densities are slowly evolving to a very simple one,
which means:

1. There is large amount of information that is relevant to
sampling the target.

2. The sequence of densities allows for an efficient bridge to
the easiest to sample density, which can provide valuable
information in sampling π .

Both of these points are exemplified by the exchange ac-
ceptance rate which shows that we can share information in
the population efficiently. For algorithm (A) we note that we
have the lowest exchange acceptance rate, which indicates
that this approach is best used with N large (larger than 20
for this example); this will reduce the ‘gaps’ between den-
sities. As a result, we conclude that we can more efficiently
adopt other tempering strategies (that is, produce better re-
sults with fewer densities). We note, however, that points (1)

270 Stat Comput (2007) 17: 263–279

and (2) above seem to be satisfied for algorithm (A) which
is why it has performed well. Heating schedule (B) is mod-
erately successful: the fact that the target is quite ‘far’ from
the other densities indicates that the algorithm suffers from
a slight bottleneck. The algorithm (C2) is the worst; the ex-
change probabilities are quite high, and the mean estimates
are very poor. That this occurs is unsurprising; there are not
enough densities at high temperatures to provide a fast ex-
ploration of the state-space.

On the basis of this experiment, it appears that (A) and
(C1) are the best strategies to adopt. In the case of (C1), the
densities evolve very slowly to one which is easy to sample.
(A) has provided consistent results (across various runs) and
can be a useful default setting of the temperature parameters.

2.7.2 The number of distributions

We now investigate the number of distributions. We ran our
experiment using heating scheme (C) with N = 5 (K =
0.001, α̃ = 6), N = 10 (K = 0.001, α̃ = 2), N = 15 (K =
0.001, α̃ = 1.75) and N = 25 (K = 0.001, α̃ = 1.35). The
algorithms were all run for 1 million iterations; the CPU
times were quite similar (as the cost of the algorithm, per
iteration, does not increase with N). The results are summa-
rized in Table 2.

In Table 2 we can observe that the estimates of the means
generally improve with N , until we reach N = 25 when they
become worse. This can be explained, for this example, as
follows. The improved sampling from π is induced by the
fact that for larger N a large amount of information about
the target density π can be stored, simultaneously. In ad-
dition, the larger number of densities can make it easier to
specify temperature parameters with fewer gaps. However,
as the algorithm that we implement is of fixed computational
complexity, as the number of chains increase, the increase in
the theoretical convergence time of the Markov chain (see
Sect. 5 for more discussion) is not counter-balanced by the
former two points (for N = 25).

On the basis of the results seen here, we would recom-
mend taking a reasonably large population relative to stor-
age constraints. As noted in Sect. 2.4 this can improve the
sampling if good population moves may be constructed. See
Geyer and Thompson (1995) for some discussion on the
number of distributions in the context of simulated temper-
ing.

2.7.3 The crossover move

We now investigate the usefulness of the crossover move. To
provide a sensible discussion we change the dataset to the
well-known Galaxy data (see Richardson and Green 1997
and the references therein) and set k = 6; we explain why
below.

Table 2 Estimates of means from mixture comparison for various
population sizes. We ran each sampler for 1 million iterations, 4 times.
The estimates are presented in increasing order, for presentation pur-
poses

N Component

1 2 3 4

5 1.17 1.37 1.51 1.96

10 0.45 1.61 1.85 1.93

15 1.29 1.46 1.64 1.62

25 1.04 1.12 1.73 1.87

The algorithm is now modified to allow with probability
1/2 to perform a crossover move, instead of an exchange
step. This is performed as follows. Firstly, we select two
chains with uniform probability. Secondly, we permute the
component specific parameters so that we order on the com-
ponent means. Thirdly, we draw a component j = 1, . . . , k,
with probability proportional to 1/j , to crossover, swapping
the component means and precisions to the left of j inclu-
sive. We then accept or reject this move via the Hastings ra-
tio and then permute the labels at random after the move; this
ensures invariance of the composition of moves. Another
potential way to crossover, is to try a circular crossover,
that is, to allow for break points at different points in the
component. We allowed the first and last components to be
swapped in this move (for ease of programming and to in-
vestigate, potentially, the best case scenario in terms of being
a local move). It is now apparent why we have changed the
data. Performing this move when the data is as for the first
part will yield very high acceptance rates due to the geome-
try of the parameter space (i.e. on permuting the means, the
states will be virtually identical).

To investigate the performance of the crossover move, we
ran three algorithms for 100000 iterations, one with only or-
dinary crossover (E1), circular crossover (E2) and only ex-
change (E3). We set N = 10 and adopted heating scheme
(C) with K = 0.001, α̃ = 2. To compare performances we
consider the acceptance rates of crossover moves (0.49 (E1))
and (0.16 (E2)) as well as the autocorrelations of the (unnor-
malized) log likelihood (Fig. 2) (this is used over estimation
of the means due to the permutation move used in crossover
and the fact that this quantity is invariant to permutation).

From the acceptance rate of the ordinary crossover move,
it appears that this is more effective. However, it should
be noted that, in this move we will generally attempt to
crossover less information; the acceptance rate of the cir-
cular crossover is still quite good. In Fig. 2 we can observe
the autocorrelations of unnormalized log-likelihood of the
chain of interest for every iteration (note the autocorrelation
is quite high due to the fact that at some iterations we do not
update the particular chain). We can see that the addition
of a crossover move can vastly reduce the autocorrelations,

Stat Comput (2007) 17: 263–279 271

Fig. 2 Autocorrelations of the likelihoods. This is from the crossover comparison with the galaxy data. The algorithms were run for 100000
iterations

however, at the cost of an increased CPU time (55 seconds
against 42 seconds). We conclude, as noted by Liang and
Wong (2001), that the crossover can improve the exploration
ability of parallel tempering, at the cost of increased compu-
tational cost and coding effort.

3 Sequential Monte Carlo methods

3.1 The method

We now describe a generic sequential Monte Carlo method,
SMC samplers, which is appropriate to sample from a
specific distribution π . Consider an identical situation to
population-based MCMC, that is, we have a sequence of re-
lated densities {πn}n∈Tp

on (E,E) of which at least one is
the target of interest (denote this πp , note that we use p as
opposed to N , since this represents a time parameter instead
of the number of particles). The method begins by generat-
ing each particle x

(i)
1 , i = 1, . . . ,N from an initial distribu-

tion ν say then computing the importance weights:

W1(x
(i)
1) = π1(x

(i)
1)

ν(x
(i)
1)

.

We note that we that do not require the normalizing con-
stants of π1 and ν as they cancel when estimating expecta-
tions; that is:

̂Eπ1 [h(X)] =
∑N

i=1 W1(x
(i)
1)h(x

(i)
1)∑N

i=1 W1(x
(i)
1)

is a consistent estimator for Eπ1 [h(X)].

Now to produce samples for π2 we sample each particle
from a Markov kernel X

(i)
2 |x(i)

1 ∼ K2(x
(i)
1 , ·) and reweight

by using the incremental weights ω:

ω2(x
(i)
1:2) = π2(x

(i)
2)ν(x

(i)
1)

π1(x
(i)
1)

∫
E

ν(x)K2(x, x
(i)
2)dx

,

W2(x
(i)
1:2) = W1(x

(i)
1)ω2(x

(i)
1:2).

(3.6)

The problem is that the integral in (3.6) can seldom be cal-
culated. To remove this problem, Del Moral et al. (2006a)
(and Neal 2001) extend the state space to (E × E,E × E)

and define new target density π̃2(x1:2) such that:

π2(x2) =
∫

E

π̃2(x1:2)dx1

i.e. it admits π2 as its marginal. Then we may calculate (3.6)
as:

ω2(x
(i)
1:2) = π̃2(x

(i)
1:2)

π1(x
(i)
1)K1(x

(i)
1 , x

(i)
2)

.

We then take π̃n to admit marginal πn, n = 3, . . . , p. The
algorithm continues by sampling from (potentially time in-
homogeneous) Markov kernels K3, . . . ,Kn; the algorithm is
described fully in Algorithm 2. Note that π̃1 = π1.

It is a well-known problem in sequential importance sam-
pling (see Liu 2001 for example) that as the algorithm pro-
gresses the weights will degenerate to zero, except for a sin-
gle particle which has weight approximately 1. (Note, that
this will mean that this particle is most relevant among the
current particles, but may have low target density overall.)
To deal with this, the method of resampling or selection is
applied.

Resampling is a method which seeks to remove the low-
est weighted particles, in the hope that future samples lie in
regions of high target density, as well as reducing the CPU
time spent on updating lowly weighted particles. One of
the most simple methods of resampling is the multinomial

272 Stat Comput (2007) 17: 263–279

approach, where particles are resampled with replacement
from a multinomial distribution with probabilities equal to
Wn(x

(i))/
∑N

i=1 Wn(x
(i)). The multinomial method will in-

troduce unnecessary noise into the algorithm (that is, the
variance of the number of replicates of particle i can be re-
duced) so other resampling techniques are available: for ex-
ample stochastic remainder selection (Baker 1985) (leading
to residual resampling (Liu and Chen 1998)) and systematic
resampling (Whitley 1994). See Douc et al. (2005) for some
comparisons of various resampling schemes in the context
of particle filters. Note also, the pruned-enriched Rosenbluth
method (Grassberger 1997) may be used. This is a different
procedure to resampling. However, resampling is arguably
easier to perform as, with the exception of an effective sam-
ple size (ESS) threshold (see below), it does not require tun-
ing parameters to be set.

3.2 The algorithm

In Algorithm 2 we provide the basic sampling scheme. We
note that the resampling criteria is based upon the effective
sample size (Liu 2001). Resampling may occur at determin-
istic times, as opposed to that given in Algorithm 2. The
position of the resampling step will depend upon the alge-
braic form of the incremental weights; if they are indepen-
dent of the sampled state (as occurs below) then it is possible
to resample the particles before they are mutated (this will
improve the diversity of the population). Note that it is pos-
sible to derive continuous time versions of this algorithm;
see Rousset (2006) and Rousset and Stoltz (2006).

One point of interest is that we are able to estimate ra-
tios of normalizing constants as a by-product of the algo-
rithm; see Neal (2001) and Del Moral et al. (2006a) for more
details. Also see: Neal (2005), Johansen et al. (2006) and
Rousset and Stoltz (2006) for more advanced techniques.

The theoretical justification for an SMC algorithm is es-
sentially asymptotic (in the number of particles); see Crisan
and Doucet (2000); Del Moral and Miclo (2000); Chopin
(2004); Del Moral (2004); Künsch (2005) and Douc and
Moulines (2006). Note, also, that the selection/mutation for-
mat of the algorithm can be interpreted as a particle ap-
proximation of a Feynman-Kac formulae (Del Moral 2004),
which provides an elegant framework for the theoretical
analysis of SMC methods.

Algorithm 2 (A sequential Monte Carlo sampler)
0. (INITIALIZATION)

• Set n = 1.

• For i = 1, . . . ,N draw X
(i)
1 ∼ ν.

• Set

W1(x
(i)
1) = π1(x

(i)
1)

ν(x
(i)
1)

.

Iterate steps 1 and 2.
1. (SELECTION)

• If ((
∑

i (Wn(x
(i)
1:n))2)/(

∑
j Wn(x

(j)

1:n))2)−1 < L (L is
some user set threshold), resample the particles and
set all weights equal to 1.

2. (MUTATION)
• Set n = n + 1, if n = p + 1 stop.

• For i = 1, . . . ,N draw X
(i)
n ∼ Kn(x

(i)
n−1, ·).

• Reweight

ωn(x
(i)
1:n) = π̃n(x

(i)
1:n)

π̃n−1(x
(i)
1:n−1)Kn(x

(i)
n−1, x

(i)
n)

,

Wn(x
(i)
1:n) = Wn−1(x

(i)
1:n−1)ωn(x

(i)
1:n).

end

3.3 Specifying the auxiliary distributions

When constructing an SMC sampler we need to specify the
auxiliary distributions {π̃n}n∈Tp

. The approach used by Del
Moral et al. (2006a) (also Jarzynski 1997 and Neal 2001) is
to set:

π̃n(x1:n) = πn(xn)

n∏
j=2

Lj−1(xj , xj−1), (3.7)

where Ln−1 is a backward in time Markov kernel. Thus the
incremental weights become:

ωn(x
(i)
1:n) = πn(x

(i)
n)Ln−1(x

(i)
n , x

(i)
n−1)

πn−1(x
(i)
n−1)Kn(x

(i)
n−1, x

(i)
n)

.

Del Moral et al. (2006a) show that the optimal backwards

kernel {Lopt
n−1} (in terms of minimizing the variance of the

importance weights) should be taken as:

L
opt
n−1(xn, xn−1) = νn−1(xn−1)Kn(xn−1, xn)

νn(xn)
,

νn(xn) =
∫

ν(x1)K2(x1, x2) · · ·Kn(xn−1, xn)dx1:n−1.

That is, the importance weights are of the form we started
with (i.e. calculating an intractable integral). Due to the fact
that such backward kernels cannot be calculated (otherwise
we would not have resorted to extending the state space),
Del Moral et al. (2006a) suggest a variety of alternatives,
including (also in Neal 2001):

Ln−1(xn, xn−1) = πn(xn−1)Kn(xn−1, xn)

πn(xn)
(3.8)

Stat Comput (2007) 17: 263–279 273

with Kn an MCMC kernel with invariant distribution πn;
this will mean that the integral in (3.8) can be easily calcu-
lated. However, we can use non-MCMC and even time adap-
tive kernels; see Cappé et al. (2004) for an example with the
latter. For problems in mixture modelling, we have found
that non-MCMC kernels are hard to construct so that they
do not lead to fast impoverishment (importance weights de-
generating to zero). Additional move types, including Gibbs
steps, can be found in Del Moral et al. (2006b).

To select the densities, as long as πp ≡ π , any of the
choices in Sect. 2.3 may be chosen (assuming that the in-
cremental weights are well-defined). We note that it is not
always easy to specify the densities; we demonstrate this in
Sect. 3.5.

In addition, it is also possible to derive algorithms such
that the kernel is a mixture of moves:

Kn(xn−1, xn) =
D∑

i=1

αi(xn−1)Kn,i(xn−1, xn)

with associated backward kernel:

Ln−1(xn, xn−1) =
D∑

i=1

βi(xn)Ln−1,i (xn, xn−1).

It can be computationally expensive to evaluate the mix-
ture of kernels, and so we can extend the state space to
En × T

n
D and simulate an indicator at time n (with prob-

ability αi(xn−1)) and compute the incremental weight:

ωn(x
(i)
1:n, j) = πn(x

(i)
n)βj (x

(i)
n)Ln−1,j (x

(i)
n , x

(i)
n−1)

πn−1(x
(i)
n−1)αj (x

(i)
n−1)Kn,j (x

(i)
n−1, x

(i)
n)

. (3.9)

3.4 Relation to other methods

In this section we show that some other SMC methods fall
into the framework of Del Moral et al. (2006a).

The annealed importance sampler (AIS) of Neal (2001)
corresponds to the case with Kn is an MCMC kernel with in-
variant distribution πn with backward kernel
πn(xn−1)Kn(xn−1, xn)/πn(xn). Note that this method does
not use resampling and this can often make it more dif-
ficult to specify simulation parameters; see Del Moral et
al. (2006a) for a comparison of SMC samplers and AIS.
A point of interest, is that this method cannot be adopted if
the support of each density is nested; see Del Moral et al.
(2006a, 2006b) for further details.

The population Monte Carlo method of Cappé et al. 2004
occurs in the situation where we have a homogeneous se-
quence of targets π , L(x′, x) = π(x) and K(x,x′) = q(x′),
with q some importance distribution, which is typically
adapted on the fly. In the next generation of this method-
ology, the D-kernel approach (Douc et al. 2006a, 2006b)

perform a similar method, where the importance function is
a time adaptive mixture of Markov kernels:

Kn(xn−1, xn) =
D∑

i=1

αn,iKi(xn−1, xn).

In this case we have πn ≡ π , L(x, x′) = π(x′) and Kn as
above is a time adaptive kernel (in the case of Douc et
al. 2006b) whose mixture weights are updated during iter-
ations. For the algorithm of Douc et al. (2006a), there is an
auxiliary variable version of this algorithm as in (3.9). The
objective of the D-kernel method is to allow the algorithm to
select an importance distribution which is optimal, in terms
of minimizing the asymptotic variance of self-normalized
estimates (in Douc et al. 2006b); in Douc et al. (2006a)
it is, primarily, the Kullback divergence between the target
and the proposal (on a product space). We note a potential
drawback of this methodology is that the kernel needs to
be evaluated pointwise, in order to calculate the importance
weights. This immediately removes MH kernels (and thus
many trans-dimensional problems) and will restrict the po-
tential user to kernels, among others, such as Gibbs updates
or random walk moves (also prior approximations of π). In
the case of the former, it will not always be the case that we
are able, in complex problems, to construct a collection (or
a single) of Gibbs samplers (e.g. different blocking strate-
gies); we note, however, if indeed we are able to do so, the
D-kernel procedure may be very useful. In the setting of the
latter, it can be very difficult to select kernels, in high di-
mensions, so that the variance of the importance weights is
finite; that is, such a method is not always going to be use-
ful in problems where population-based methods are really
needed. As noted by one of the referees, the D-kernel ap-
proach is time adaptive as opposed to sequential. This means
that the algorithm seeks to use the experience in the past to
provide a correction of the methodology which is not present
in the SMC samplers we have presented. However, we argue
that such a procedure can fall directly into an SMC sampler
framework. In the static case, which is our concern, we can
set πn−1 ≈ πn and thus information at time n − 1 is rele-
vant for determining the properties of Kn; we are free to use
all of the adaptive MCMC procedures (Robbins-Monro, MH
independence sampler with proposal approximating the tar-
get (Andrieu and Moulines 2006)) in the literature. Further
this can be effective, as the tempering procedure allows us
to select good kernels initially and thus correct potentially
poor kernels in the future.

The approach of Liang (2002) falls under the case πn ≡ π

∀n, Kn(x, x′) = Ln(x
′, x) = K(x,x′) (as applied in prac-

tice), with the exception that the weights are updated via
dynamic weighting (Wong and Liang 1997). One potential
drawback is that the weights, on unbounded state-spaces, are
likely to have infinite variance (although all the examples in

274 Stat Comput (2007) 17: 263–279

Liang 2002 are indeed on compact spaces); this is not neces-
sarily the case for SMC samplers. In addition, the asymptotic
variance (of sample path averages in the central limit theo-
rem) for SMC can be shown to be upper-bounded for any
finite time horizon for the case of AIS (with resampling) as-
suming geometric ergodicity of the Markov kernels (Jasra
and Doucet 2006); see Chopin (2004) and Künsch (2005)
for analysis in the context of filtering and Sect. 5 for a dis-
cussion on the bounds on the actual Monte Carlo variance.

3.5 Example

We now provide an example on how to construct and apply
a SMC sampler; we use the mixture example of Sect. 1.1.
We consider two tempering approaches: tempered densities
and data point tempered. Note that Fearnhead and Meligkot-
sidou (2007) have a method for simulating from mixture
models using particle approaches; we do not consider that
here.

3.5.1 Two tempering approaches: algorithm details

Tempered densities We take the target distributions to be:

πn(φ1:k,w1:k−1|y1:m)

∝ l(y1:m;φ1:k,w1:k−1)
ζnp(φ1:k,w1:k−1), n ∈ Tp.

We will adopt the MCMC kernels in Sect. 2.7, adapted to
the sequence of densities used for SMC. We allowed, with
probability 1/2 for an application of the kernel to be 10 iter-
ates of the sweep over μ1:k , λ1:k and w1:k−1. The backward
kernel (3.8) is adopted and p = 100. Thus, using the invari-
ance of the MCMC kernels, for n ∈ Tp we have incremental
weight (adopting the convention ζ0 = 0):

ωn(φ1:k,n−1,w1:k−1,n−1)

= l(y1:m;φ1:k,n−1,w1:k−1,n−1)
ζn−ζn−1 .

For the temperature parameters, {ζn} increased from 0
to 15/100 for the first 20 time points then from 15/100
to 40/100 for the next 40 and finally from 40/100 to 1
for the last 40 time points. We note that the specific cool-
ing scheme (e.g. logarithmic, power decay) can more easily
be chosen (than population MCMC), in a problem specific
way via ESS plots (see the next section). We recommend,
generally, that the densities evolve slowly, initially, and then
more quickly. The automatic construction of a temperature
sequence is the subject of current research work.

One point to be discussed is the choice of p. This is a
little clearer in the SMC context. If p is quite large, then we
can allow the consecutive densities to be such that πn−1 ≈
πn; indeed it can be the case that resampling is not even
needed (as the weight degeneracy is quite slow). This is at

the cost of an increase in CPU time. The objective is then
to set πn−1 ≈ πn, but not have p so large that CPU times
take too long; this can be guided by the rate of resampling
as discussed below. A thorough discussion of the choice of
p can be found, for the example below, can be found in Del
Moral et al. (2006a).

Data point tempering To apply SMC under the ‘adding
data points’ tempering (Chopin 2002 notes that this may
have a beneficial tempering effect) we perform the same al-
gorithm (densities changing by adding the data in some or-
der) except we have incremental weight for n = 2, . . . ,m:

ωl(φ1:k,n−1,w1:k−1,n−1) = l(yn;φ1:k,n−1,w1:k−1,n−1).

Population size The choice of population size is dependent
upon the Markov kernels applied. If the kernels mix well it
is often a good idea to run a large number of samples for
a short period, conversely, if the kernels mix badly then it
is best to have a small sample size and to run the algorithm
for a long time. For this example, the mixing of the kernels
is reasonable for the full posterior. However, the usage of
tempering allows the kernels to be more effective. Thus, we
might expect a good representation of the target under the
population size chosen.

For illustration we chose population sizes of 1000 and
2000 particles for the tempered and data point tempered ap-
proaches respectively. We observed extremely poor perfor-
mance for the adding data method with population size 1500
or smaller, so we included a larger set of particles for this
approach (also to make a reasonable comparison in terms of
CPU time between the tempering methods).

We applied the systematic resampling approach before
mutating the particles, resampling upon the basis of when
the ESS drops below N/2. We note that the order at which
the data appears is important in the data point tempered ap-
proach, and we ordered the data so that information came
from each of the modes (−3,0,3,6) in turn; we discuss this
further below.

3.5.2 Performance of tempering schemes on the simulated
data

The CPU times were 185 and 197 seconds for the tempered
and data point tempered procedures. In Table 3 and in Fig. 3
we can observe the performance of the two SMC samplers.

In Table 3 we can see the estimated means. It is clear that
the tempered approach has allowed for a significantly bet-
ter estimation of these quantities. This is because the values
of the means are reasonably similar for the tempered densi-
ties. The data point tempered approach has been unable to
explore each of the 4! symmetric modes in the correct pro-
portion.

Stat Comput (2007) 17: 263–279 275

Fig. 3 Effective sample size plots from the SMC samplers. We fitted a four component normal mixture to the data, the output is a single population
of 1000 samples from an SMC sampler using 100 tempered densities (a) and a single population of 2000 samples from an SMC sampler which
had densities change by adding data points (b). For both plots, the horizontal line is the resampling threshold

Table 3 Estimates of means from mixture comparison for the two
tempering procedures. We ran each sampler for 100 time-points,
4 times with 1000 (tempering) and 2000 (data point tempering) par-
ticles respectively. The estimates are presented in increasing order, for
presentation purposes

N Component

1 2 3 4

Tempered 1.24 1.39 1.51 1.61

Data Point Tempered 0.88 1.20 1.82 1.87

Figure 3 displays the ESS. For the tempered densities
(Fig. 3(a)) we see the typical weight degeneracy problem,
and the resampling allows us to remove the problem suc-
cessfully (note that the plot indicates that initializing the al-
gorithm from the prior is a very poor choice; see Del Moral
et al. 2006b for alternative approaches). The adding data
points plot (Fig. 3(b)) shows a different trend. Initially the
ESS is very low, which corresponds to the fact that the tar-
get is changing very quickly. As the amount of data increases
the average value of the ESS appears to increase. However,
the resampling for adding data is less effective than for the
tempered densities.

In this example we have demonstrated two tempering
procedures for an SMC sampler, when simulating from a
mixture posterior. We found that the tempered densities ap-
proach seemed to sample the space more effectively. In gen-
eral, we would recommend that the first tempering proce-
dure be applied, when it is not too expensive to calculate
the likelihood. This is because of the dynamic nature of the
adding data point method can mean poor initial performance
(without careful thought) and the tempering effect does not
appear to be as effective as for the former method. However,
for problems in which data exhibit a natural order (e.g. hid-
den Markov models) data point tempering may be far more
effective (see Chopin 2007 for some examples in hidden
Markov modelling).

3.5.3 Link between temperatures and data order with
resampling

We now discuss the importance of the temperature parame-
ters {ζn}. In Fig. 3(a) we observe the resampling rate of the
algorithm. In Fig. 3(a) the resampling rate is reasonably con-
sistent. The main factor affecting this is the choice of tem-
perature parameter and Markov kernel (note that the resam-
pling threshold is clearly another element which affects re-
sampling); in this example the latter mixes quite fast so we
address the former point. If the rate of resampling is reason-
ably consistent it implies that the evolution of densities pro-
vides a smooth path for the particles to adapt to (clearly this
comment applies to a non-deterministic resampling sched-
ule). Conversely, if resampling occurs irregularly, it often
means that our choice of temperature parameters leads to
large discrepancy between consecutive densities in certain
regions of ‘time’. Therefore, we unnecessarily remove par-
ticle diversity, which is of particular importance in multi-
modal situations.

To illustrate, we ran the tempered densities for p = 100,
for a cooling scheme:

ζn = log{n}
log{100} , n = 2, . . . ,100

and ζ1 = 1. In Fig. 4(a) we can observe the rate of resam-
pling (under similar Markov kernels to those in Fig. 3(a)).
We see that we have resampled less (for the log cooling
scheme), and appear to have a slightly more consistent rate
of resampling; this can manifest itself in terms of better point
estimates (although this does not occur for this run—we
resample close to time p). We note, in extreme situations,
where resampling occurs too often (e.g. every iteration) we
can reduce the cooling rate and increase the number of den-
sities. This is at the cost of further extending the state space.
Our experience is that the choice of temperature parame-
ters is often critical to efficient performance of algorithm, in
terms of resampling.

276 Stat Comput (2007) 17: 263–279

Fig. 4 Effective sample size plots from the SMC samplers. We fitted
a four component normal mixture to the data, the output is a single
population of 1000 samples from an SMC sampler using 100 tempered
densities (log cooling sequence) (a) and a single population of 2000

samples from an SMC sampler which had densities change by adding
data points (b) (different order to Fig. 3(b)). For both plots, the hori-
zontal line is the resampling threshold

For the data point tempering, the order of adding data
can have an impact upon the performance of the algorithm.
We ran the data point tempered algorithm, with a random
choice of data arriving (Fig. 4(b)). We can thus see that im-
proved performance for the adding data point method can be
achieved by adding (for univariate mixture data) data in the
(mixture) proportion of which they occur in the data. That
is, for this example, we may add a data point from the mode
at −3, 0, 3 then 6 and continue in this order. A drawback of
this approach is that it requires that we have some knowl-
edge of the model generating the data (i.e. exactly what we
wish to infer).

4 Comparison of the population schemes

In this Section we consider a comparison of population-
based MCMC with SMC samplers. Since the methods differ
in many aspects, we provide a large amount of qualitative
discussion corresponding to our experience in applying both
methodologies.

4.1 Computational cost

Our first observation concerns the CPU times associated
with the usage of both methods. We have often found that,
when a large number of distributions are required so that the
SMC method operates correctly, population-based MCMC
is substantially cheaper. That is, since population-based
MCMC uses a smaller population and more updates per
chain, the storage requirements are substantially reduced.
This must be counter-balanced by the fact that for SMC
there is no burn-in and often (given reasonable performance
of the SMC sampler) the samples appear to be close to i.i.d
(propagation of chaos properties; see Del Moral 2004), and
for MCMC, both of these require extra iterations (i.e. a burn-
in period and thinning of sample realizations).

4.2 Specification of simulation parameters

We now consider how difficult (or easy) it is to specify sim-
ulation parameters for both methods, in order that sampler
performance is adequate.

In terms of temperature specification for SMC samplers,
as shown in Sect. 3.5, this can often be vital to the perfor-
mance. That is, the rate of resampling is heavily dependent
upon the temperature parameters and tuning these for effi-
cient performance is often time consuming. Conversely, for
population-based MCMC, it is not too difficult to specify
temperature parameters so that reasonable acceptance rates
(see Liu 2001 and Iba 2001 for some discussion on what is
meant by a reasonable acceptance rate) are found. However,
this does not mean that the algorithm will necessarily per-
form well: it is more difficult to judge what cooling sched-
ule yields satisfactory performance for MCMC. It should be
noted that, for both MCMC and SMC, we should not rely
solely upon the ideal exchange acceptance rate/resampling
rate to indicate upon good performance of the algorithm. It is
recommended that checking sampled parameters and having
multiple runs to help ensure that the sampler approximates
the target density correctly.

There is more freedom to choose a tempering procedure
for SMC than for MCMC. For example, in our experience,
data point tempering can perform very badly for MCMC
methods.

4.3 Markov kernels

In terms of Markov kernels there is substantially more free-
dom in specifying these for the SMC method. Kernels need
not be reversible or even Markov (and hence time adaptive)
for the SMC method. Despite this fact, it is not always sim-
ple to construct an efficient backward Markov kernel for
such moves. For example, if we wish to calculate the sub-
optimal choice (3.8), we need to evaluate an integral which
may not be available in closed form.

Stat Comput (2007) 17: 263–279 277

In our experience, when the Markov kernels used in
MCMC and SMC allow for easy movement around the state-
space, then there is little to choose between the methods
(since performance and CPU times are similar, unless we
run a very large number particles for SMC). However, when
the kernels mix slowly, it is easier to compensate for this
via a long tempering sequence in SMC (which can be more
effective than many iterations in population MCMC). This
is demonstrated in our examples, by the fact that the SMC
sampler with tempered densities (Table 3) provides compa-
rable results to the best population MCMC (Table 1), with
slightly more than half the CPU time.

4.4 Summary

Overall, our thoughts on the relative advantages/disadvan-
tages of population-based MCMC against sequential Monte
Carlo samplers are as follows:

(A) MCMC is often easier to calibrate (in terms of simula-
tion parameters).

(B) SMC requires no burn-in.
(C) SMC is a richer method, allowing us the freedom to

design good samplers.

One area where we feel SMC is superior to MCMC is in
problems with a natural ordering of the data; for example
in time series data. For example in hidden Markov models
(e.g. Robert et al. 2000) SMC samplers will be able to take
advantage of the Markov nature of the hidden sequence and
use data point tempering which is very computationally ef-
ficient.

We feel that the freedom of SMC is its main advantage.
However, population-based MCMC provides a principled
way to draw from a target density, that is often easier to
implement than SMC. In more simple terms, the compari-
son between population-based MCMC and SMC is analo-
gous to that of the Gibbs sampler and Metropolis-Hastings:
population-based MCMC methods are less flexible but eas-
ier to use.

5 Discussion

In this paper we have provided a review of population-
based simulation. We discussed population-based MCMC
and SMC samplers and compared the approaches. We have
given examples of how to use the methodology and demon-
strated that it can be superior to standard (single chain)
MCMC.

As outlined at the beginning of the paper, we intended to
convince applied statisticians the population-based simula-
tion can be easily implemented at reasonable computational
cost. We hope that the examples included have done this. For

more complex examples (e.g. the gene expression and pop-
ulation genetics examples alluded to at the beginning of the
paper) we have shown in previous work (Jasra 2005) that
population-based simulation provides significant improve-
ment when standard methods completely fail to work; at
reasonable increase in computational cost (i.e. as noted in
Robert and Casella 2004 there is no free lunch: an increase
in storage means longer CPU times).

Areas of future research in population-based MCMC are
as follows. The theoretical analysis of such methods is sel-
dom considered in the literature (see Madras and Zheng
2003 for an exception) and it is important to see if there is
any theoretical advantages of population-based MCMC vs
single chain MCMC. One important aspect is whether popu-
lation algorithms converge any faster to π∗ than the original
algorithm to π . For population algorithms we can observe
better mixing across the space for the target of interest and,
given a sensible definition of iteration, will the population
kernel necessarily or ever converge quicker? Madras and
Zheng (2003) show that this can be the case for the mean-
field Ising model, but it is vital to investigate if any general
result may be obtained. One important point, that is unclear
to us, is whether as N → ∞ (or in practice large N) pop-
ulation MCMC improves (for reasonable population moves
and not necessarily fixed computational cost per iteration;
e.g. mutation for each chain at every step). It is not obvi-
ous that MCMC algorithms will fail completely (due to an
increase in the size of the state-space) or improve (due to
the increase of information). This may be investigated using
spectral gap analysis; see Diaconis and Saloff-Coste (1993)
and Eberle and Marinelli (2006) for a starting point. Addi-
tionally, it is important to produce fast mixing transition ker-
nels. One way this may be achieved is to use adaptive meth-
ods (see Jasra et al. 2005c in the trans-dimensional case via
SMC methods). That is, we may use the population to update
kernels and improve the exploration of the state space. Such
a procedure is clearly non-Markovian thus the ergodicity of
such a stochastic process needs to be verified; see Andrieu
and Moulines (2006) and Roberts and Rosenthal (2005) for
finite dimensional analysis and Andrieu et al. (2007a) for
infinite dimensional approaches.

Possible research areas in SMC is as follows. An as-
pect of interest is when and how to resample. For exam-
ple, as noted by Chen et al. (2005) the time parameter
is not always an appropriate way to decide when to re-
sample (since certain samples may have low importance
weights, but as time n approaches these samples have higher
weights); see Del Moral (2004) for coverage with the earlier
multilevel Feynman-Kac formulae approach. Additionally,
Chopin (2002) notes that the weights themselves are not al-
ways a suitable criterion to judge the performance of the
algorithm as they do not always take into account the ef-
fectiveness of the mutation step. It is interesting to see if

278 Stat Comput (2007) 17: 263–279

there are alternative criteria (to time, ESS, form of impor-
tance weights) to decide when to resample and how well the
sampler has performed (online). One area that appears to be
under utilized in the static case, is the usage of advanced
strategies typically used in sequential problems, for exam-
ple rejection control (Liu et al. 1998) and pilot-exploration
resampling (Zhang and Liu 2002). However, due to the na-
ture of these techniques, it may not always be computation-
ally efficient to use the methods; for example it is conceiv-
able that the method of Liu et al. (1998) may improve SMC
methods (in the static case), but the value of the pilot ex-
ploration scheme is of less clear (due to the fact that con-
secutive artificial densities will be similar, providing good
guidance for the future). Finally, a very important point are
Lp-bounds for centered sample path averages of unbounded,
integrable functions; whilst weak laws of large numbers ex-
ist (e.g. Douc and Moulines 2006), the bounds are currently
only for bounded functions (Del Moral 2004, Chap. 7).

Acknowledgements The first author was supported by an Engineer-
ing and Physical Sciences Research Council Studentship. The first
author acknowledges many useful conversations and correspondence
with Arnaud Doucet. We thank three referees and the editor in chief
for many useful comments that have allowed us to improve, substan-
tially, the paper. We also thank Mark Briers for some comments on
earlier versions of the paper.

References

Andrieu, C., Moulines, É.: On the ergodicity properties of some
adaptive MCMC algorithms. Ann. Appl. Probab. 16, 1462–1505
(2006)

Andrieu, C., Robert, C.P.: Controlled MCMC for optimal sampling.
Technical Report, Universitié Paris Dauphine (2001)

Andrieu, C., Jasra, A., Doucet, A., Del Moral, P.: Non-linear Markov
chain Monte Carlo via self interacting approximations. Technical
Report, University of Bristol (2007a)

Andrieu, C., Jasra, A., Doucet, A., Del Moral, P.: A note on the conver-
gence of the equi-energy sampler. Technical Report, University of
Bristol (2007b). Stoch. Anal. Appl. (to appear)

Atchadé, Y.F., Liu, J.S.: The Wang-Landau algorithm for Monte Carlo
computation in general state spaces. Technical Report, University
of Ottawa (2004)

Atchadé, Y.F., Liu, J.S.: Discussion of the ‘equi-energy sampler’. Ann.
Stat. 34, 1620–1628 (2006)

Baker, J.E.: Adaptive selection methods for genetic algorithms. In:
Grefenstette, J. (ed.) Proc. Intl. Conf. on Genetic Algorithms and
Their Appl., pp. 101–111. Erlbaum, Mahwah (1985)

Brockwell, A.E., Del Moral, P., Doucet, A.: Sequentially interacting
Markov chain Monte Carlo for Bayesian computation. Technical
Report, Carnagie Mellon University (2007)

Cappé, O., Guillin, A., Marin, J.M., Robert, C.P.: Population Monte
Carlo. J. Comput. Graph. Stat. 13, 907–925 (2004)

Chen, Y., Xie, J., Liu, J.S.: Stopping-time resampling for sequential
Monte Carlo methods. J. Roy. Stat. Soc. Ser. B 67, 199–217
(2005)

Chopin, N.: A sequential particle filter method for static models. Bio-
metrika 89, 539–552 (2002)

Chopin, N.: Central limit theorem for sequential Monte Carlo methods
and its application to Bayesian inference. Ann. Stat. 32, 2385–
2411 (2004)

Chopin, N.: Inference and model choice for time-ordered hidden
Markov models. J. Roy. Stat. Soc. Ser. B (2007, to appear)

Crisan, D., Doucet, A.: Convergence of sequential Monte Carlo meth-
ods. Technical Report, University of Cambridge (2000)

Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting
Particle Systems with Applications. Springer, New York (2004)

Del Moral, P., Doucet, A.: On a class of genealogical and interacting
Metropolis models. In: Azéma, J., Emery, M., Ledoux, M., Yor,
M. (eds.) Séminaire de Probabilités XXXVII. Lecture Notes in
Math., vol. 1832, pp. 415–446. Springer, Berlin (2003)

Del Moral, P., Miclo, L.: Branching and interacting particle systems
approximations of Feynman-Kac formulae with applications to
non-linear filtering. In: Séminaire de Probabilitiés XXXIV. Lec-
ture Notes in Math., vol. 1729, pp. 1–145. Springer, Berlin (2000)

Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers.
J. Roy. Stat. Soc. Ser. B 68, 411–436 (2006a)

Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo for
Bayesian computation (with discussion). In: Bayarri, S., Berger,
J.O., Bernardo, J.M., Dawid, A.P., Heckerman, D., Smith, A.F.M.,
West, M. (eds.) Bayesian Statistics 8 (2006b, in press)

Diaconis, P., Saloff-Coste, L.: Comparison theorems for reversible
Markov chains. Ann. Appl. Probab. 3, 696–730 (1993)

Douc, R., Moulines, É.: Limit theorems for weighted samples with
applications to sequential Monte Carlo methods. Technical Re-
port, Centre de Mathématiques Appliquées, École Polytechnique
(2006). Ann. Stat. (to appear)

Douc, R., Cappé, O., Moulines, É.: Comparison of resampling schemes
for particle filtering. In 4th International Symposium on Image
and Signal Processing and Analysis (ISPA) (2005)

Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Convergence of adap-
tive sampling schemes. Ann. Stat. (2006a, in press)

Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Minimum variance
importance sampling via population Monte Carlo. Technical Re-
port, Université Paris-Dauphine (2006b). ESIAM Probab. Stat. (to
appear)

Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sam-
pling for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)

Doucet, A., De Freitas, J.F.G., Gordon, N.J.: Sequential Monte Carlo
Methods in Practice. Springer, New York (2001)

Eberle, A., Marinelli, C.: Convergence of sequential Markov chain
Monte Carlo methods I: Non-linear flow of probability measures.
Technical Report, Universität Bonn (2006)

Fearnhead, P., Meligkotsidou, L.: Filtering methods for mixture mod-
els. J. Comput. Graph. Stat. (2007, to appear)

Gelman, A., Meng, X.L.: Simulating normalizing constants: from im-
portance sampling to bridge sampling to path sampling. Stat. Sci.
13, 163–185 (1998)

Geyer, C.J.: Markov chain maximum likelihood. In: Keramigas, E.
(ed.) Computing Science and Statistics: The 23rd Symposium on
the Interface, pp. 156–163. Interface Foundation, Fairfax (1991)

Geyer, C.J., Thompson, E.A.: Annealing Markov chain Monte Carlo
with applications to ancestral inference. J. Am. Stat. Assoc. 90,
909–920 (1995)

Gilks, W.R., Roberts, G.O., George, E.I.: Adaptive direction sampling.
The Statistician 43, 179–189 (1994)

Gilks, W.R., Berzuini, C.: Following a moving target—Monte Carlo
inference for dynamic Bayesian models. J. Roy. Stat. Soc. Ser. B
63, 127–146 (2001)

Goswami, G.R., Liu, J.S.: On learning strategies for evolutionary
Monte Carlo. Stat. Comput. 17, 23–28 (2007)

Grassberger, P.: Pruned-enriched Rosenbluth method: simulations of θ

polymers of chain length up to 1 000 000. Phys. Rev. E 56, 3682–
3693 (1997)

Green, P.J.: Reversible jump Markov chain Monte Carlo computa-
tion and Bayesian model determination. Biometrika 82, 711–732
(1995)

Stat Comput (2007) 17: 263–279 279

Green, P.J., Mira, A.: Delayed rejection in reversible jump Metropolis-
Hastings. Biometrika 88, 1035–1053 (2001)

Hammersley, J.M., Morton, K.W.: Poor man’s Monte Carlo. J. Roy.
Stat. Soc. Ser. B 16, 23–38 (1999)

Hastings, W.K.: Monte Carlo sampling methods using Markov chains
and their applications. Biometrika 57, 97–109 (1970)

Heard, N.A., Holmes, C.C., Stephens, D.A.: A quantitative study of
gene regulation involved in the immune response of anopheline
mosquitoes: an application of Bayesian hierarchical clustering of
curves. J. Am. Stat. Assoc. 101, 18–29 (2006)

Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and appli-
cation to spin glass simulations. J. Phys. Soc. Jpn. 65, 1604–1608
(1996)

Iba, Y.: Population Monte Carlo algorithms. Trans. Jpn. Soc. Artif. In-
tell. 16, 279–286 (2000)

Iba, Y.: Extended ensemble Monte Carlo. Int. J. Mod. Phys. 12, 653–
656 (2001)

Jarzynski, C.: Nonequilibrium equality for free energy differences.
Phys. Rev. Lett. 78, 2690–2693 (1997)

Jasra, A.: Bayesian inference for mixture models via Monte Carlo com-
putation. PhD thesis, Imperial College London (2005)

Jasra, A., Doucet, A.: Stability of sequential Monte Carlo samplers via
the Foster-Lyapunov condition. Technical Report, University of
British Columbia (2006)

Jasra, A., Holmes, C.C., Stephens, D.A.: Markov chain Monte Carlo
methods and the label switching problem in Bayesian mixture
modelling. Stat. Sci. 20, 50–67 (2005a)

Jasra, A., Stephens, D.A., Holmes, C.C.: Population-based reversible
jump Markov chain Monte Carlo. Technical Report, Imperial Col-
lege London (2005b). Biometrika (to appear)

Jasra, A., Doucet, A., Stephens, D.A., Holmes, C.C.: Interacting se-
quential Monte Carlo samplers for trans-dimensional simulation.
Technical Report, Imperial College London (2005c)

Johansen, A., Del Moral, P., Doucet, A.: Sequential Monte Carlo sam-
plers for rare event estimation. Technical Report, University of
Cambridge (2006)

Kou, S.C., Zhou, Q., Wong, W.H.: Equi-energy sampler with applica-
tions to statistical inference and statistical mechanics. Ann. Stat.
32, 1581–1619 (2006)

Künsch, H.R.: Recursive Monte Carlo filters; algorithms and theoreti-
cal analysis. Ann. Stat. 33, 1983–2021 (2005)

Liang, F.: Dynamically weighted importance sampling in Monte Carlo
computation. J. Am. Stat. Assoc. 97, 807–821 (2002)

Liang, F.: Use of sequential structure in simulation from high-
dimensional systems. Phys. Rev. E 67, 056101–056107 (2003)

Liang, F., Wong, W.H.: Real parameter evolutionary Monte Carlo with
applications to Bayesian mixture models. J. Am. Stat. Assoc. 96,
653–666 (2001)

Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer,
New York (2001)

Liu, J.S., Chen, R.: Sequential Monte Carlo methods for dynamic sys-
tems. J. Am. Stat. Assoc. 93, 1032–1044 (1998)

Liu, J.S., Chen, R., Wong, W.H.: Rejection control and sequential im-
portance sampling. J. Am. Stat. Assoc. 93, 1022–1031 (1998)

Madras, N., Zheng, Z.: On the swapping algorithm. Random Struct.
Algorithms 22, 66–97 (2003)

Marinari, E., Parisi, G.: Simulated tempering; a new Monte Carlo
scheme. Europhys. Lett. 19, 451–458 (1992)

Matthews, P.: A slowly mixing Markov chain and its implication for
Gibbs sampling. Stat. Probab. Lett. 17, 231–236 (1993)

McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, Chichester
(2000)

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.,
Teller, E.: Equations of state calculations by fast computing ma-
chines. J. Chem. Phys. 21, 1087–1092 (1953)

Mitsutake, A., Sugita, Y., Okamoto, Y.: Replica-exchange multicanoni-
cal and multicanonical replica exchange Monte Carlo simulations
of peptides. I. Formula and benchmark tests. J. Chem. Phys. 118,
6664–6676 (2003)

Neal, R.M.: Sampling from multimodal distributions using tempered
transitions. Stat. Comput. 4, 353–366 (1996)

Neal, R.M.: Annealed importance sampling. Stat. Comput. 11, 125–
139 (2001)

Neal, R.M.: Estimating ratios of normalizing constants using linked
importance sampling. Technical Report, University of Toronto
(2005)

Pritchard, J.K., Stephens, M., Donnelly, P.: Inference of population
structure using multilocus genotype data. Genetics 155, 945–959
(2001)

Richardson, S., Green, P.J.: On Bayesian analysis of mixture mod-
els with an unknown number of components (with discussion).
J. Roy. Stat. Soc. Ser. B 59, 731–792 (1997)

Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn.
Springer, New York (2004)

Robert, C.P., Rydén, T., Titterington, D.M.: Bayesian inference in hid-
den Markov models through reversible jump Markov chain Monte
Carlo. J. Roy. Stat. Soc. Ser. B 62, 57–75 (2000)

Roberts, G.O., Rosenthal, J.S.: General state space Markov chains and
MCMC algorithms. Probab. Surv. 1, 20–71 (2004)

Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive
MCMC. Technical Report, University of Lancaster (2005)

Ron, D., Swendson, R.H., Brandt, A.: Inverse Monte Carlo renormal-
ization group transformations for critical phenomena. Phys. Rev.
Lett. 89, 275701–275705 (2002)

Rousset, M.: Continuous time population Monte Carlo and compu-
tational physics. PhD thesis, Universitié Paul Sabatier, Toulouse
(2006)

Rousset, M., Stoltz, G.: Equilibrium sampling from nonequilibrium dy-
namics. J. Stat. Phys. 123(6), 1251–1272 (2006)

Warnes, A.: The normal kernel coupler: an adaptive Markov chain
Monte Carlo method for efficiently sampling from multimodal
distributions. PhD thesis, University of Washington (2001)

Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4, 65–85
(1994)

Wong, W.H., Liang, F.: Dynamic weighting in Monte Carlo optimiza-
tion. Proc. Nat. Acad. Sci. 94, 14220–14224 (1997)

Zhang, J.L., Liu, J.S.: A new sequential importance sampling
method and its application to the two dimensional hydrophobic-
hydrophilic model. J. Chem. Phys. 117, 3492–3498 (2002)

Zheng, Z.: On swapping and simulated tempering algorithms. Stoch.
Process. Appl. 104, 131–153 (2003)

	On population-based simulation for static inference
	Abstract
	Introduction
	Example: mixture modelling
	Population-based simulation and recent literature
	Structure and objectives of the paper

	Population-based MCMC
	The method
	Population moves
	Mutation
	Exchange
	Crossover
	Snooker moves

	Sequence of distributions
	Identical
	Tempered
	Data point tempered
	Different dimensions
	Stratified

	Number of distributions
	Equi-energy sampler
	A typical algorithm
	Example
	Various tempering approaches
	The number of distributions
	The crossover move

	Sequential Monte Carlo methods
	The method
	The algorithm
	Specifying the auxiliary distributions
	Relation to other methods
	Example
	Two tempering approaches: algorithm details
	Tempered densities
	Data point tempering
	Population size

	Performance of tempering schemes on the simulated data
	Link between temperatures and data order with resampling

	Comparison of the population schemes
	Computational cost
	Specification of simulation parameters
	Markov kernels
	Summary

	Discussion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

