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" where A is
random variable:

Some algebraic properties of the Reticular Action Model for moment;

struetures 5
J. Jack McArdle and Roderick P. McDonald !

i

A number of models for the analysis of moment structures, such as LISREL, have recently been shown !
to be capable of being given a particularly simple and economical representation, in terms of the '
Reticular Action Model (RAM). In contrast to previous treatments, a formal algebraic treatment is i
provided which shows that RAM directly incorporates many common structural models, including :
models describing the structure of means. It is also shown here that RAM treats coefficient matrices i
with patterned inverses simply and generally.

1. Introduction

There has recently been some interest in relationships among models that have
been proposed for the structural analysis of covariance matrices and mean vectors e
(i.e. moment structures). Seminal developments in statistical factor analysis (e.g. |
Anderson & Rubin, 1956) led to Bock & Bargmann’s (1966) introduction of a group |
of models for the analysis of covariance structures. This basic foundation was further
expanded by Joreskog to include a remarkably flexible second-order common factor |
model (ACOVS, 1970), and a variant accounting also for first-moments (ACOVSM,
1973a). The introduction of a patterned inverse matrix in the model was indicated in
the treatment by Keesling & Wiley (see Wiley, 1973) and by Joreskog (1973b) of a
model for linear structural relations (LISREL). More recently, McDonald (1978, 1979) ?
described an mth-order COSAN model in which the inverse of any matrix in the !
model could be patterned as desired, and which, as a consequence, yields the ACOVS {
model of any order and models of the LISREL type. |

The general chronological sequence outlined above shows a broad tendency toward |
increasing complexity of the matrix representation of the models accompanying an ;
apparent increase in generality. Most recently, however, McArdle (1978, 1979a, 1980)
used graphic concepts from latent variable path analysis (see Wright, 1934; Wold, |
1980) to develop a structural equation system termed the Reticular Action Model !
(RAM), whose algebraic representation required just three matrices. McArdle
(1979b, ¢) and Horn & McArdle (1980) have previously shown that many seemingly |
more complex models for the structural analysis of multivariate data, such as
LISREL, can be represented in terms of the more compact RAM algebra.

The object of this paper is to show how the original RAM logic (a) may be
presented in a formal and compact algebraic notation, (b) provides an algebraic !
device for the specification of a broad class of linear models, (¢) incorporates many |
models for structures on means, (d) treats models involving patterned inverses
generally, and, hence, (e) includes all necessary and sufficient parameter matrices for
a general structural equation system with these useful features.
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@ Jhere A is a (t xt) matrix of asgmmetric coefficients, and v and u are (f x 1) vectors of
. andom vamablgs. In most applications, the diagonal of A consists of zeros, and each
: (_Omponent of v is expressed as a linear combination of the remaining variables, plus

'+ residual u. This resembles and is a generalization of Guttman’s (1953) image theory;
g (he components of Av are the images of the ¢ variables in terms of the other ¢ — |

{ ariables while the components of u are anti-images. If it also happens that the ith

] ow of A consists of zeros, then the variable v; is the same as its own residual u;. We

let

§ = &{uu'}, (2)
! where S is a (£ x t) matrix of symmetric coefficients, and where & denotes the
¢ pxpectation operator. We also let the ( x t) symmetric matrix

€= E{vv'}). (3)
‘ It follows that equation (1) may now be rewritten as
| u=(I-A)v +)
| %0, by assuming that A is patterned so (I—A) is non-singular,

v=(I1-A)"1u. (5)

; Ve may also use the well-known identity

J E=I-A)""1= Y A"=1+A+A%+. +A%, (6)

r=0

! vhere A® = I, and which may be verified by (I—A) multiplication (e.g. Hohn, 1958,

L pp.217-224). The geometric series terminates at r+ 1 terms if A" #0 while A™*! = ¢.
That is, A is nilpotent of index r (Stein, 1967, p.24). In those cases where the ith
main diagonal of any A" is non-null, the geometric series is infinite and conditions for

{its ‘stability” may be required (e.g. Fox, 1980).

Using these basic definitions it now follows that

E S=(I—A)C(I—AY =E~'CE"" (7)

C=(I-A)"'SO@—-A)" YV =ESE. (8)

i Now let v be partitioned into two subvectors; g of p components, and h of ¢

omponents. That is, { = p+¢ and

g
v=[h]. (9)

iThe p components of g may be considered observed, manifest or given variables, and
ﬁhe g components of h may be considered unobserved, latent or hidden variables
i‘(-‘Ommon factors, latent traits, true scores, etc.). We define

F=[I: 0 (10)

;isa (p x ¢) matrix with a (p x p) identity submatrix and a (p x q) null submatrix so
“hap
i

{ g = Fv, (11)
|
|
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and so, following (5),

g =FI—-A) 'u=FEu. (12);;

Finally, we define the (p x p) symmetric matrix

M= &{gg’}, (13)

whereby applying (8) to (12) then yields

M =FI—A) 'SI—A)" VF = FESEF = FCF'. (14
Equations (1) to (14) completely define RAM. In most applications we will wish to

explain the structure of the relations of the manifest variables, as given by M, in

terms of the structure of the relations among all variables, as given by A and S in C. !
In all cases, the matrices A and 8§ are patterned; the elements of these matrices could :

be prescribed constants, parameters that are free to be individually estimated, or
parameters that are constrained to be a function of one or more other parameters
(for details see McDonald, 1978; Joreskog & Sérbom, 1979). In contrast to A and 8, F
is a fixed known matrix of prescribed unity and zero constants that acts to filter or
select the manifest variables out of the full set of manifest and latent variables. If,
for any reason, the components of v are permuted to some mixed order, the columns
of F can be correspondingly permuted. Of course, the rows and columns of € that are
filtered out by F commonly contain useful information about the latent variable
structure.

3. Basic RAM specification

We now illustrate the simplicity and flexibility of RAM by the specification of five
alternative and well-known structural equation models for four vectors of manifest
variables. For simplicity in this section we provide only a few basic details on each
model, and we assume all means (i.e. first-moments) are zero.

Let us first consider a recursive path analysis model written as

w=Hx+e, x=Jy+f, y=Kz+m, (15)

where w, x, y and z are observed vectors, H, J and K are matrices of regression
coefficients, and e, f and m are residuals. This particular model configuration may be
recognized as a ‘causal chain’ (Wold, 1954) or a ‘simplex process’ (Guttman, 1954).
To complete the model we write

P=¢fee’}, Q=E&{ff}, R=¢&mm'}), T=¢&{z). (16)
To express this model in terms of (1) to (14) we write
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and, corresponding to (8), the model structure may be expressed as vhich yields, cor
I H HJ HIJK P 0 0 0 1 0 0 0 (w] [0
01 J JK 0 Qo0 0 H I 0 0 X 0
““loo 1 kK |[ooroofl vw ¥ 1 0 Bty [_|o
Lo 0 0o 1 0 0 0 TILKJH KJ K I z 0
[ P+HQH' +HJRJ'H' + HIKTK'J'H’ sym a 0
QH +JRJ'H +JKTK'J'H' Q+JRJ +JKTK'J’ Lb 1 L0
" | RVH +KTKYH RJ' +KTK'J' R +KTK’ and, correspondi
| TK'J'H’ TK'Y TK’ T ([ e
[ P+HT**H' sym _ f
_ T** H’ T** ’ S _ g m
T™JH T™¥§ T* n
| TK'JH TK'J TK T a
where T* = R+ KTK' and T** = Q+JT*J'. In this model only relations among L b
manifest variables are specified so ¢t = p, g = v, F =I and M = C as given. This final | The required inv

representation (22) is entirely consistent with Wright’s (1934) ‘multiplication’ or ’
‘tracing’ rules for the path analysis decomposition of all model covariances in either
extended (e.g. R+KTK') or compact (e.g. T*) form (see Alwin & Hauser, 1975;
Duncan, 1975).

Let us next consider a first-order factor analysis model written as E =

w=Ha+e, x=Ja+f, y=Kb+m, z=Lb+n, (23)

[T 0

where, again, w, x, y and z are observed variables, but a and b are unobserved
common factors, H, J, K and L are reinterpreted as factor pattern coefficients, and e,
f, m and n are reinterpreted as unobserved unique factors. We write

S o e o e
I I

P= 5{%'}’ Q= @f“{ff’}, R = éa{mm'}, T = é’{nn'}, o) %0, correspondin,
V=¢6{aa}, U=¢&{bb}, W=¢&{ab). ‘ (1.0
This particular model configuration may be recognized as a ‘non-overlapping, oblique'! 0 I
common factor model (e.g. Cattell, 1965). ‘ 0 0
To express this model in terms of (1) to (14) we write E C= 0 0

[ w ] (0 0 0 0 H 0] [ e ] i 0 0

X 0 000 J O f | L0 o

v=y A=00000K u=m (25)"

z | 0000 0 L | n | ; P+H

a 0 0 00 0 O a JVH'
b ] (0000 0 0 | b | xwn
?‘ | LwH

i VH'

. WH'
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l“.hich yields, corresponding to (1),
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This model includes a mixture of manifest and latent variables so, following (10) To express this
and (11), we define f [ w ]
w I 0 0 0 00 ! X
b 01T 0 0 00 ;
E=l s " loor 00 0 0 v—z’
0 0 0TI 0O ‘ y
and, corresponding to (12), we now write
1 0 0 0 H 0 e | and whose requir
w 10000 0}orooJ off ! (1 0
X oI 00 00O 0 0 0 0 K m 0 I
vy loox1oo0o0|fooor1 o L|fn I [P
z 0 6 01 00 0 06 001 O a 0 0
[0 0 0 0 0 I]JL D | 0 0
and finally, corresponding to (12), the application of (30) to (29) yields | 1 o
P+HVH sym 0 1
M = JVH' Q+JIVJ | o 1o o
KWH' KWJ’ R+ KUK’ 0 0
LWH' LWJ' LUK’ T +LUL X
which, by (14), is equivalent to the first p = 4 rows and columns of C in (29). If the

. . i It fi irec
latent variables a or b are not listed last as in v above, the columns of F need to be ! ollows dlrectl
and E by (8) anc

correspondingly permuted. In this model the rows and columns of € that are filtered .

out by F contain the traditional factor structure and inter-factor covariance , I 0
submatrices. i 0 I
The two previous examples illustrate the basic features of RAM specification. i F=
These principles can be used for the specification of many seemingly more complex | 0 0
model configurations. Let us briefly consider a restricted canonical analysis model ! 0 0
written as | the )
g manifest strt
w=Ha+e. x=Jda+f, a=Ky+lz+d (%) Let us also bri
where, again, w, x, y and z represent observed variables, a represents an unobserved : w = Ha +e.

common factor, H and J represent factor pattern coeflicients, and e and f are wh
. . . . . i e
unobserved unique factors. while K and L are reinterpreted as coefficients for the e W, X,y an
i ommon first-ore

regression of unobserved a upon observed y and z with residual d. We write .
. 1are unobserves

P=¢lee), Q=4{f}. R=~yy}]. T=6{zz], (34! ; “;)Jnm(fn second-
V=_¢lyz), U=sélef’}. W=¢E{dd}. ? e write

This configuration, with the single latent variable a serving as a ‘mediator’ for : P= g{ee },
multiple manifest variable regressions. has been used to represent a ‘multiple ) V=2¢{dd)}.
indicators & multiple causes” model (e.g. MIMIC. Hauser & Goldberger. 1971) and.

Thi '

. 7 3 : s . i 8 pa

usually given that W = 6, a ‘structural canonical’ model (e.g. Bagozzi el al., 1981)- | Oommp reeular
‘ | on factor )
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lowing (10) To express this model in terms of (1) to (14) we can write
[ w ] 00 H 0 0] [ e ] [ P Sy
X 0 0 J 0 0O f U Q
(30 v=| a |, A=l 0 0 0 K L}, u=| d}|, S=| 0 0 W
z 0 0 0 0 O z 0 0 0 R
y | 00 0 0 0 | Y | | 0 0 0 V T
(35)
2d whose required inverse may be represented by the r = 2 termed geometric series
‘1 0000] [ooH o o] [o0o0o0 HK HL |
‘ 0 I 0 00 0 0 J 0 0 0 0 0 JK JL
B g—loo T o of+|00o o0 KL|t|ooo o o
0 0 0 I o 0 0 0 0 O 0 0 0 O 0
(0 0001} |O0O0O0 O 0] |O0O0OO0 O 0 |
1 0 H HK HL
0 I J JK JL
(32) : =10 0 I K L . (36)
: 0 0 0 I 0
00 0 O I
i?(iggaliotll;: tfollows directly that the overall model structure C may be simply created from 8

at are filtered ’znd E by (8) and, upon defining

lance I 0000
. 01 0 0 0
ification. F= , 57
ore complex 00010
rsts model ‘ 0 0 0 0 1

he manifest structure M may be completed as (14).
) Let us also briefly consider the second-order factor analysis model written as

“u“‘)bserved‘ w=Ha+e, x=Ja+f, y=Kb+m, z=Lb+n, a=Ge+d b=Dec+i (38)

1fare :
there w, x, y and z represent observed variables, a and b represent unobserved

1ts for the
write ommon first-order factors, H, J, K and L are factor pattern coefficients, e, f, m and
1are unobserved first-order unique factors, and, in addition, e is an unobserved
(34) ‘mmon second-order factor, and d and i are unobserved second-order unique factors.
Ve write
stor for - P= &lee’}, Q=¢&{ff}, R=&mm'), T= &{nn'}, (30)
ultiple V=e¢{dd), U=§&liit}, W=~&{cc). )

. 1971) and,
et al. 2981). his particular configuration is a special case of a hierarchical or higher-order

mmmon factor model (e.g. Cattell, 1965; Joreskog, 1973a).
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To express this model in terms of (1) to (14) we write
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and the resulting structure may be obtained by an application of (8) to (14) (compar
Weeks, 1978a,b, 1980).
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[et us finally consider a non-recursive path analysis model,
w=Hx+Ky+e, x=Jw+Lz+f,

here. again, w, x, y and z represent observed variables, H, J, K and L represent
{gression coefficients, and e, f and m represent unobserved regression residuals. The
Ltical feature of this model is that w is regressed upon x and, simultaneously, x is
qressed upon w. Due to the mathematically non-recursive configuration of this
‘odel it has been used in representations of ‘feedback and servo-mechanism’ models
g Cattell, 1966), as well as ‘crossed and lagged panel’ models (e.g. Duncan, 1975).

je write
P=_¢&lee’}, Q=2¢{ff"}, U= &{ef'},

42
R=é&lyy)., T=&zz), V=e&lyd). (42)
"To express this model in terms of (1) to (14) we write
w 0 H K O e P sym
X A J 0 0 L f S U Q 43
/ © V froncy . —_— s u - s — -
- y 00 0 0 y 0 0 R *+3)
Z o0 0 0 O A 0o 0V T
yllowing (6), the required inverse may be expanded as a full r-termed geometric
aies
: I 0 0O 0 HK O
: series
0 I 00 J 0 0 L
E= +
0 0 I O 0 0 0 O
0 0 0 I 0 0 0 O
"H] 0 0 HL 0 HJH HJK 0
0 JH JK 0 JHJ O 0 JHL
+ + +...
6o o0 o0 0 0 0 0 0
[ 0 o0 o0 0 0 0 0 0
‘ [ (1—¢)Z*HJ (¢)Z*H (9)Z*K (1 —¢)Z* HL
1 ¢ N (PZ*J (1—P)Z¥*JH (1—¢)Z*JK (P)Z* L
" 0 0 0 0
, L 0 0 0 0
(41) Zix 7k Z**K Z**HL
Z**J Z** Z** JK Z** L
_ (44)
0 0 I 0
0 0 0 I

» (14) (compa® there for r>2, ¢ = mod [r/2] (i.e. ¢ =0 when r is even and ¢ = 1 when r is odd),
b= (HJ) 3, and Z** = (I-HJ)~ !, the geometric series representation of HJ (see
mation 6). The expansion (44), which may be verified by (I-A) multiplication,
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yields an infinite sequence, resulting from terms in the main diagonal of A?, which
shows the influence of the HJ product term. As before, the resulting structure may be
obtained by the application of (8) to (14), yielding a number of well-known results in
path analysis directly (e.g. Heise, 1975; Fox, 1980).

These five different models for the same four vectors of manifest variables show
how RAM specification is both simple and flexible. In any RAM specification: (a)
manifest or latent variables are identified by the choice of unities and zeros in the
filter matrix F, (b) asymmetric relations among variables are indicated by the choice
of parameters in the asymmetric matrix A, and (c) symmetric relations among
variables are indicated by the choice of parameters in the symmetric matrix S. As the
previous examples illustrate, alternative variables and parameters are included or
deleted with minimal changes in matrix elements and orders, and interpretation
depends on the particular configuration of the F, A and 8 matrices.

4. First-moment RAM specification

In typical applications all manifest variables may be scaled to have zero means so
that M, S and € become covariance matrices. But, more generally, M can be
considered a raw product-moment matrix, without ‘correction for means’, whose scale
can be used to determine the scale of A, 8 and C. It will now be shown that the
simple RAM model (1) to (14) directly takes account of both first and second
moments.

Without changing notation we will reinterpret all vectors of variables as matrices %
containing N columns, consisting of independent observations from a sample of size
N. In this way we write the general multivariate linear hypothesis (see Bock, 1975)
as

y = Bx+e,

?s

1
!

(45)

where y, (i x N), is a raw score data matrix, x, (j x N), is a fixed design matrix of
known constants of rank i <N, B, (i x j), is a matrix of parameters to be estimated,
and e, (i X N), is a random matrix. We assume

i

&{e} =0, so &{y} = (1/N)Bx, (46 %

and we write E‘
* = &{(1/N)ee’}, W = (1/N)(xx (47 |

i

In terms of (1) we now rewrite this model as N

~ !

Y| _ 0 Bily + e (48) %

X 0 0]|x X )

and. corresponding to (47), !
s=[M @0 !

L ow) |

which yields hoth first and second moment information as i
- {

oo | M +BWE BW | (50 )

| WB’ W

and is fitted to the joint raw

1) I:(y): )

product-moment matrix

(xy") ] | (Bl !
(xx') |
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i
i
f eDonald (1979) has shown, for the equivalent COSAN-based treatment of this type
roblem, that if the usual likelihood-based loss function for a covariance matrix is
lied to fit model (48) to (50) to a sample joint raw product-moment matrix
Orrebpondmg to (51), it yields the likelihood estimators both of parameters
ptermining the means and of parameters determining the covariances (also see
Joreskog & Sorbom, 1980, 1981; compare Sorbom, 1978)
* This general linear model has been extended for use in a wide variety of
pphcatlons For example, Pothoff & Roy (1964) presented a model for growth-curve
problems which can be written as

f y = QPx +e, (52)
.shere Q, (¢ x k), of rank k< is a within-subjects design matrix, and P, (k% j), is a
Tpammeter matrix of rank j<N. We rewrite (52) as

: y = Qx* +e, = Px.

‘That is, we interpret the rank factorization B = QP as implying a recursive regression
Jfy on some x* that is regressed on x with zero residuals. In terms of (1) we may

x*

ns’, whose scale

1 that the
second

28 as matrices

sample of size

> Bock, 1975)
(45)

1 matrix of
be estimated,

(46)

y 0 Q o y e M*
o lx*|=l0o o0 P x*|+]0] S= 0 , (54)
X 0o 0 O X X w

which is fitted to M after the appropriate choice of F.

' The introduction of latent x* with zero residuals illustrates another feature of this
ass of models. That is, if desirable, we may introduce residuals with zero variances.
This kind of specification easily provides for the practically useful simultaneous
‘noment structure models given by Joreskog (1973a) and by Sorbom (1978), as well
s the mean structure proposed by Bentler (1976) and Bentler & Weeks (1979, 1980).
This device may also be used to provide a matrix specification for some of the
wmplex ‘scalar specifications’ discussed by McDonald (1980). For example, Horn &
fcArdle (1980) show how latent x* with zero residuals may be patterned with
wquality constraints to yield a variety of more complex inequality and polynomial
wnstraints on both first and second moment structures. Thus, it is not necessary to
nake separate algebraic provisions for the first moment structures, or for some of the
nore common inequality constraints.

i General RAM specification

Previous published work on RAM (i.e. McArdle, 1979¢; Horn & McArdle, 1980) has
hown how a suitable choice of pattern in A and 8§ can yield many commonly used
noment structure models, such as LISREL. But now, in order to provide a formal
md general treatment of the RAM representation of patterned inverse matrices, we
ive an account of McDonald’s (1978, 1980) simple comprehensive model for the
malysis of moment structures (COSAN) in terms of RAM. In the original notation,
the COSAN model may be written as

(m)e(fie)-

there F; is of order (n;_; xn;), and P is of ovder n,,.

(55)

M

[n the general case, any of these
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parameter matrices may have a patterned inverse. The COSAN model yields
hierarchical models of arbitrary order, such as the mth-order extension of Joreskog’s
(1973a) ACOVS model remarked upon by Bentler (1976). Because a patterned matrix
does not in general have an inverse of the same pattern, hierarchical models without
provision for the inverse of a patterned matrix cannot be regarded as equivalent to
models such as LISREL or COSAN (compare Weeks, 1978a, b).

Consider, first, the special case of the moment structure (55), in which we write

I
I -1 I I
M=B, I Ll][ BJ [ I LJP | [ Bl’] [Ll,]Bo"‘, (56)

L,
corresponding to the model
x=B, '2,+B, 'L;B, 'z, +B, 'L, B, 'L,f,
=By {zo+Ly[B; (2, + L, f,)]}.

This model may be considered as a recursive version of the familiar model for linear
structural relations since it may be written

(5 |

Box=20+Lf;, Bif, =z, +L,f,, (58)
where x = g as in (11), and !
&{zo 20’} ‘

P= é{z,2,'} (59)

£{8,1,)

Although not immediately obvious, it is possible to express this mixed sequence |
model in terms of (1) by writing :
I x (I-B,) L, 0 Z, a
v=| f, |, A= 0 I-B,) L, |, u=| z; |, (60)
f, 0 0 0 f, !
with § = P as given by (59). This result follows from the fact that ;
B,”' B, 'L,B,”! B, 'L,B, 'L, |
E=(I-A)'=]0 B, ! B, 'L, , (61) ;
o 0 I "
as may be verified by multiplication by (I—A) from (60). Thus, the model (56) or ;
(57) can be rewritten, in the form of (13), as '
B, -—-L, 0 1z, :
x={I1:0:0| 0 B, -—L, z, |, (62 |
0 0 1 f, :

and the corresponding moment structure given by substitution into (14) is i
algebraically equivalent to (56).
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? The mth-order counterpart of (62) follows in the same way. That is, the model
-Bo — Ly 170 Zg |
B —~L zZ
=100 ..0] g 3 2 (63)
Bm—l —Lm Zy -1
I I 7 1 f
" the same as the model
x=B, 'zo+B, 'L,;B, 'z, +By 'L, B, 'L,B, 'z, +...
+B,”'L,B,"'L,B,"'...B,,_, 'L,f,. (64)

This is shown, straightforwardly but a little tediously, by writing the mth-order
- ounterpart of the inverse (61) in the obvious way, and verifying it by multiplication.
"Then, by setting any matrix L; or B; in (63) equal to the identity matrix, we can
“obtain any mixed sequence of matrices L; and inverted matrices Bj'l. That is, the
'RAM model (63) may be used to express any COSAN model given by (55). In terms
f (63), patterned matrices in (55) appear on the super-diagonal of A, matrices in (55)
yith patterned inverses appear on the diagonal of A, and it is not necessary to have
a inverted submatrix within A (as in Bentler & Weeks, 1979).
’ This mixed-sequence representation forms the basis for the interrelations among
'many structural equation systems. For example, Joreskog’s widely used LISREL
‘model (e.g. Joreskog, 1973b; Joreskog & Sorbom, 1979, 1981; Wiley, 1973) may be
;written as

1

 y=Am+e x=A5+8, By=TE+E, (65)
with expectations
E{EE} =@, &L} =Y, &g} =0, &{88} =0, (66)
As McArdle (1978, 19796; Horn & McArdle, 1980) originally showed, (65) may be
epresented as
I 0 —-A, 0 1'Te
[yl [T 00 o]0 T 0 —A 5
! = ; (67)
:, X 0 I 0 0jjo 0 B -r €
‘ 00 0 I g
by defining
y 00 A, 0 g 0,
% X 0 0 0 Ax 8 G)a
i vV = R A = y = , S =
; n 0 0 I-B T ¢ b 4
§ 0 0 0 0 g o
,: (68)

As previous work on RAM has demonstrated (McArdle, 1978; Horn & McArdle,
1980), and these results verify, the inherent flexibility of the inverse of the patterned
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matrix permits a large number of ways to illustrate these interrelations among the
general models with an inverse of a patterned matrix. An apparent paradox follows;
namely, any model that includes the fundamental RAM properties, such as COSAN
and LISREL above, should be considered as general as any other model which
includes these properties. In fact, as the result (63) demonstrates, it is also possible to
find a very large number of ways to express any of these models, including RAM
itself, directly within the three matrix RAM scheme. Thus, although the required
RAM matrices are small in number, each of these three matrices can be chosen to be
indefinitely large and sparse (see McArdle & Horn, 1983). But out of this large and
seemingly paradoxical variety of models RAM stands out for one particularly
fundamental property-—RAM requires only the necessary and sufficient matrices for
general linear structural equation model specification.

6. Final remarks

It should be clear from the above that many popular moment structure models can
be represented easily and economically in terms of the simple RAM algebra (1) to

)

(14). We now present a few of the other conceptual and practical features that can be

realized by using RAM logic in tandem with more popular mode] developments.

The algebraic development of RAM represents both a natural simplification and a
natural extension of the basic specification features of general models such as
LISREL and COSAN. One can therefore use RAM to build upon any of the other
generally useful features of these systems. For example, the LISREL model is often
presented as a psychometrically based ‘measurement’ model combined with an
econometrically based ‘structural’ model (Joreskog & Sorbom, 1979, 1980, 1981). In
RAM these decidedly useful concepts are not eliminated—RAM algebra simply
indicates that this distinction represents only one of several possible ways to
distinguish components of a model (see equations 65-68). In this context the RAM
reformulation may be most useful when dealing with, for example: (@) arbitrarily
patterned measurement models (e.g. Joreskog, 19730), (b) multi-level and hierarchical
measurement models (e.g. Cattell, 1978; Weeks, 1978qa, b; compare Weeks, 1980), (¢)
highly extended structural models (e.g. Joreskog, 1977), (d) manifest and latent mean
structures (e.g. Horn & McArdle, 1980; Joreskog & Sorbom, 1981), and (¢) complex
non-linear scalar constraints (e.g. Horn & McArdle, 1980; Rindskopf, 1983). In such
models the interpretative distinction between ‘measurement’ and ‘structural’
components is typically less useful than the distinction between ‘asymmetric’ and
‘symmetric’ patterning. Similar arguments apply to the hierarchical distinctions
made in COSAN.

The simplicity and flexibility of RAM specification is a result of a minimum and
fundamental set of modelling distinctions expressed in broad structural terms. But,
not surprisingly and in a non-trivial sense, the simplicity and flexibility of RAM also
carries over into other complex modelling problems, such as in model identification,
estimation and comparison (e.g. Browne, 1982; McDonald & Krane, 1979; McDonald,
1982; Joreskog & Sorbom. 1979). The particularly simple form of RAM moment
structure (14), for example. permits the use of existing matrix calculus theorems for
the direct calculation of all first and second derivatives required for any non-linear
optimization based on any well-defined loss function (e.g. weighted least squares,
maximum-likelihood. ete.: MeDonald. 1978, pp. 66-69). This result is verified by the
particularly simple and flexible specification of RAM matrices F. A and S within the
available programs for both COSAN (55) and LISREL (65) and (66) (see Horn &
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i

i
i

mong the -+ ardle, 1980, p.536). Practical concerns about optimal computational storage and
e P p &

lox follows: | ficiency, however, dictate the programming of a RAM-COSAN ‘interface’ which
as _COSAN , ;eorganizes and partitions the large and sparse matrices A and 8 into smaller
which _ qatrices B and L following (63) here. A program interface which places minimum
50 possible t, ;lsef requirements on input and output, and uses available sparse matrix

g R{\M Urogramming (e.g. George & Liu, 1979), has recently been developed by McArdle &
required ‘ Horn (1983), and specific program comparisons are forthcoming.

‘hosen to he | A modification of this RAM approach has been presented by Bentler & Weeks
large and ;(1979, 1980). Although McArdle’s (1978, 1979a) basic RAM equation was recognized
larly ‘ iby Bentler & Weeks (1979, equations 5 and 6; Weeks, 1980), it is relevant (as a
atrices for ' eviewer has pointed out) that these authors were not aware of the broad generality
%of RAM (cf. Bentler & Weeks, p. 181: ‘It appears to be more general than (6) . . ."). It
pllows that the Bentler & Weeks (1979, 1980) accounts do not follow RAM logic in

i jealing with the inverses of patterned matrices. They propose a model which can be
recognized as a variant of RAM in which a further patterned matrix, further submatrix

models can artitioning and a separate structural equation for the mean vector are all required.
ra (1) to [n effect, Bentler & Weeks propose separate models for first and second moments and
3 that can be ' lso treat the LISREL structural distinction between ‘independent’ and ‘dependent’
ments. ' nodel components as essential. These particular distinctions, although traditional in
ation and a 'y and useful for certain matrix computations (e.g. Joreskog & Sérbom, 1979),

h as ' may be most simply recognized as one particular configuration of the A and 8

the other ! matrices in RAM. That is, in terms of the original logic of the simpler RAM

del is often.. |y mulation, these revised features are unnecessary.

ith an | Of further conceptual interest is the fact that the basic RAM algebra (1) to (14),
),’ 1981). In funlike most other structural forms, has an exact isomorphic relationship with the
simply ' nathematical basis of graph theory (e.g. Harary et al., 1965). In virtually all graphic
8 to ?representations a distinction is made between ‘nodes’ and ‘edges’. This parallels the
btllt]farl?lAM primary distinction between variables and parameters. In some forms of graph

Y itheory a further distinction is made between ‘directed arrows’ and ‘undirected spans’.

hierarchical ' pyi5 parallels the secondary distinction between asymmetric and symmetric
» 1980), () ‘parameters. Finally, in contemporary path analytic forms of graph theory (e.g.
latent mean  Joreskog & Sorbom, 1979, 1981) it is common to distinguish manifest variables,

‘) complex ! mpolized by rectangles, from latent variables, symbolized by ellipses. This simple
3). In such !but general graphic treatment guided the initial development of the simple algebraic

n'a‘l . treatment presented here (McArdle, 1978, 1979) and will, we hope, lead to further

‘tric and “useful graphic-algebraic isomorphisms (e.g. Gilli, 1981).

nctions . These conceptual and practical properties lead to a broad interpretation of RAM
“uwsing the input/output logic typically offered by a ‘general systems’ philosophy (e.g.

mum and ' Rapoport, 1972). The general nature of this system logic, albeit somewhat abstract,

e;![r{l?s;\?u? 'provides a broad and flexible base for future RAM possibilities, and vice versa
) M also . MeArdle, 1980). In the recent psychonomic literature, only Cattell (1965, 1978) has

f“fvllhicgtlonl’d “promoted a general systems foundation which includes manifest and latent variables
> e (t)na ' in a free-form network, or ‘reticule’, of asymmetric and symmetric action. To
1omen “emphasize the importance of Cattell’s theoretical contribution, we have chosen the

1emelr.ns for ‘mnemonic Reticular Action Model (RAM) to represent our algebra.
non-linear |

squares, :
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