

Graphical Models

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

Wiley Series in Computational Statistics

Consulting Editors:

Paolo Giudici
University of Pavia, Italy

Geof H. Givens
Colorado State University, USA

Bani K. Mallick
Texas A & M University, USA

Wiley Series in Computational Statistics is comprised of practical guides and
cutting edge research books on new developments in computational statistics.
It features quality authors with a strong applications focus. The texts in
the series provide detailed coverage of statistical concepts, methods and case
studies in areas at the interface of statistics, computing, and numerics.

With sound motivation and a wealth of practical examples, the books show
in concrete terms how to select and to use appropriate ranges of statistical
computing techniques in particular fields of study. Readers are assumed to
have a basic understanding of introductory terminology.

The series concentrates on applications of computational methods in statis-
tics to fields of bioinformatics, genomics, epidemiology, business, engineering,
finance and applied statistics.

Graphical Models
Representations for Learning,
Reasoning and Data Mining

Second Edition

Christian Borgelt
European Centre for Soft Computing, Spain

Matthias Steinbrecher & Rudolf Kruse
Otto-von-Guericke University Magdeburg, Germany

A John Wiley and Sons, Ltd., Publication

This edition first published 2009
c© 2009, John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19
8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about
how to apply for permission to reuse the copyright material in this book please see our

website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in
accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs
and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as
trademarks. All brand names and product names used in this book are trade names,
service marks, trademarks or registered trademarks of their respective owners. The
publisher is not associated with any product or vendor mentioned in this book. This
publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the publisher is not engaged

in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data
Record on file

A catalogue record for this book is available from the British Library.

ISBN 978-0-470-72210-7

Typeset in 10/12 cmr10 by Laserwords Private Limited, Chennai, India
Printed in Great Britain by TJ International Ltd, Padstow, Cornwall

Contents

Preface ix

1 Introduction 1
1.1 Data and Knowledge . 2
1.2 Knowledge Discovery and Data Mining 5

1.2.1 The KDD Process . 6
1.2.2 Data Mining Tasks . 7
1.2.3 Data Mining Methods 8

1.3 Graphical Models . 10
1.4 Outline of this Book . 12

2 Imprecision and Uncertainty 15
2.1 Modeling Inferences . 15
2.2 Imprecision and Relational Algebra 17
2.3 Uncertainty and Probability Theory 19
2.4 Possibility Theory and the Context Model 21

2.4.1 Experiments with Dice 22
2.4.2 The Context Model . 27
2.4.3 The Insufficient Reason Principle 30
2.4.4 Overlapping Contexts 31
2.4.5 Mathematical Formalization 35
2.4.6 Normalization and Consistency 37
2.4.7 Possibility Measures . 39
2.4.8 Mass Assignment Theory 43
2.4.9 Degrees of Possibility for Decision Making 45
2.4.10 Conditional Degrees of Possibility 47
2.4.11 Imprecision and Uncertainty 48
2.4.12 Open Problems . 48

3 Decomposition 53
3.1 Decomposition and Reasoning 54
3.2 Relational Decomposition . 55

vi CONTENTS

3.2.1 A Simple Example . 55
3.2.2 Reasoning in the Simple Example 57
3.2.3 Decomposability of Relations 61
3.2.4 Tuple-Based Formalization 63
3.2.5 Possibility-Based Formalization 66
3.2.6 Conditional Possibility and Independence 70

3.3 Probabilistic Decomposition . 74
3.3.1 A Simple Example . 74
3.3.2 Reasoning in the Simple Example 76
3.3.3 Factorization of Probability Distributions 77
3.3.4 Conditional Probability and Independence 78

3.4 Possibilistic Decomposition . 82
3.4.1 Transfer from Relational Decomposition 83
3.4.2 A Simple Example . 83
3.4.3 Reasoning in the Simple Example 84
3.4.4 Conditional Degrees of Possibility and Independence . . 85

3.5 Possibility versus Probability 87

4 Graphical Representation 93
4.1 Conditional Independence Graphs 94

4.1.1 Axioms of Conditional Independence 94
4.1.2 Graph Terminology . 97
4.1.3 Separation in Graphs 100
4.1.4 Dependence and Independence Maps 102
4.1.5 Markov Properties of Graphs 106
4.1.6 Markov Equivalence of Graphs 111
4.1.7 Graphs and Decompositions 114
4.1.8 Markov Networks and Bayesian Networks 120

4.2 Evidence Propagation in Graphs 121
4.2.1 Propagation in Undirected Trees 122
4.2.2 Join Tree Propagation 128
4.2.3 Other Evidence Propagation Methods 136

5 Computing Projections 139
5.1 Databases of Sample Cases . 140
5.2 Relational and Sum Projections 141
5.3 Expectation Maximization . 143
5.4 Maximum Projections . 148

5.4.1 A Simple Example . 149
5.4.2 Computation via the Support 151
5.4.3 Computation via the Closure 152
5.4.4 Experimental Evaluation 155
5.4.5 Limitations . 156

CONTENTS vii

6 Naive Classifiers 157
6.1 Naive Bayes Classifiers . 157

6.1.1 The Basic Formula . 157
6.1.2 Relation to Bayesian Networks 160
6.1.3 A Simple Example . 161

6.2 A Naive Possibilistic Classifier 162
6.3 Classifier Simplification . 164
6.4 Experimental Evaluation . 164

7 Learning Global Structure 167
7.1 Principles of Learning Global Structure 168

7.1.1 Learning Relational Networks 168
7.1.2 Learning Probabilistic Networks 177
7.1.3 Learning Possibilistic Networks 183
7.1.4 Components of a Learning Algorithm 192

7.2 Evaluation Measures . 193
7.2.1 General Considerations 193
7.2.2 Notation and Presuppositions 197
7.2.3 Relational Evaluation Measures 199
7.2.4 Probabilistic Evaluation Measures 201
7.2.5 Possibilistic Evaluation Measures 228

7.3 Search Methods . 230
7.3.1 Exhaustive Graph Search 230
7.3.2 Greedy Search . 232
7.3.3 Guided Random Graph Search 239
7.3.4 Conditional Independence Search 247

7.4 Experimental Evaluation . 259
7.4.1 Learning Probabilistic Networks 259
7.4.2 Learning Possibilistic Networks 261

8 Learning Local Structure 265
8.1 Local Network Structure . 265
8.2 Learning Local Structure . 267
8.3 Experimental Evaluation . 271

9 Inductive Causation 273
9.1 Correlation and Causation . 273
9.2 Causal and Probabilistic Structure 274
9.3 Faithfulness and Latent Variables 276
9.4 The Inductive Causation Algorithm 278
9.5 Critique of the Underlying Assumptions 279
9.6 Evaluation . 284

viii CONTENTS

10 Visualization 287
10.1 Potentials . 288
10.2 Association Rules . 289

11 Applications 295
11.1 Diagnosis of Electrical Circuits 295

11.1.1 Iterative Proportional Fitting 296
11.1.2 Modeling Electrical Circuits 297
11.1.3 Constructing a Graphical Model 299
11.1.4 A Simple Diagnosis Example 301

11.2 Application in Telecommunications 304
11.3 Application at Volkswagen . 307
11.4 Application at DaimlerChrysler 310

A Proofs of Theorems 317
A.1 Proof of Theorem 4.1.2 . 317
A.2 Proof of Theorem 4.1.18 . 321
A.3 Proof of Theorem 4.1.20 . 322
A.4 Proof of Theorem 4.1.26 . 327
A.5 Proof of Theorem 4.1.28 . 332
A.6 Proof of Theorem 4.1.30 . 335
A.7 Proof of Theorem 4.1.31 . 337
A.8 Proof of Theorem 5.4.8 . 338
A.9 Proof of Lemma 7.2.2 . 340
A.10 Proof of Lemma 7.2.4 . 342
A.11 Proof of Lemma 7.2.6 . 344
A.12 Proof of Theorem 7.3.1 . 345
A.13 Proof of Theorem 7.3.2 . 346
A.14 Proof of Theorem 7.3.3 . 347
A.15 Proof of Theorem 7.3.5 . 350
A.16 Proof of Theorem 7.3.7 . 351

B Software Tools 353

Bibliography 359

Index 383

Preface

Although the origins of graphical models can be traced back to the beginning
of the 20th century, they have become truly popular only since the mid-
eighties, when several researchers started to use Bayesian networks in expert
systems. But as soon as this start was made, the interest in graphical models
grew rapidly and is still growing to this day. The reason is that graphical
models, due to their explicit and sound treatment of (conditional) dependences
and independences, proved to be clearly superior to naive approaches like
certainty factors attached to if-then-rules, which had been tried earlier.

Data Mining, also called Knowledge Discovery in Databases, is a another
relatively young area of research, which has emerged in response to the flood
of data we are faced with nowadays. It has taken up the challenge to de-
velop techniques that can help humans discover useful patterns in their data.
In industrial applications patterns found with these methods can often be
exploited to improve products and processes and to increase turnover.

This book is positioned at the boundary between these two highly im-
portant research areas, because it focuses on learning graphical models from
data, thus exploiting the recognized advantages of graphical models for learn-
ing and data analysis. Its special feature is that it is not restricted to proba-
bilistic models like Bayesian and Markov networks. It also explores relational
graphical models, which provide excellent didactical means to explain the
ideas underlying graphical models. In addition, possibilistic graphical models
are studied, which are worth considering if the data to analyze contains im-
precise information in the form of sets of alternatives instead of unique values.

Looking back, this book has become longer than originally intended. How-
ever, although it is true that, as C.F. von Weizsäcker remarked in a lecture,
anything ultimately understood can be said briefly, it is also evident that
anything said too briefly is likely to be incomprehensible to anyone who has
not yet understood completely. Since our main aim was comprehensibility, we
hope that a reader is remunerated for the length of this book by an exposition
that is clear and self-contained and thus easy to read.

Christian Borgelt, Matthias Steinbrecher, Rudolf Kruse
Oviedo and Magdeburg, March 2009

Chapter 1

Introduction

Due to modern information technology, which produces ever more power-
ful computers and faster networks every year, it is possible today to collect,
transfer, combine, and store huge amounts of data at very low costs. Thus an
ever-increasing number of companies and scientific and governmental institu-
tions can afford to compile huge archives of tables, documents, images, and
sounds in electronic form. The thought is compelling that if you only have
enough data, you can solve any problem—at least in principle.

A closer examination reveals though, that data alone, however volumi-
nous, are not sufficient. We may say that in large databases we cannot see
the wood for the trees. Although any single bit of information can be retrieved
and simple aggregations can be computed (for example, the average monthly
sales in the Frankfurt area), general patterns, structures, and regularities usu-
ally go undetected. However, often these patterns are especially valuable, for
example, because they can easily be exploited to increase turnover. For in-
stance, if a supermarket discovers that certain products are frequently bought
together, the number of items sold can sometimes be increased by appropri-
ately arranging these products on the shelves of the market (they may, for
example, be placed adjacent to each other in order to invite even more cus-
tomers to buy them together, or they may be offered as a bundle).

However, to find these patterns and thus to exploit more of the information
contained in the available data turns out to be fairly difficult. In contrast to
the abundance of data there is a lack of tools to transform these data into
useful knowledge. As John Naisbett remarked [Fayyad et al. 1996]:

We are drowning in information, but starving for knowledge.

As a consequence a new area of research has emerged, which has been named
Knowledge Discovery in Databases (KDD) or Data Mining (DM) and which
has taken up the challenge to develop techniques that can help humans to
discover useful patterns and regularities in their data.

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

2 CHAPTER 1. INTRODUCTION

In this introductory chapter we provide a brief overview on knowledge
discovery in databases and data mining, which is intended to show the context
of this book. In a first step, we try to capture the difference between ‘‘data’’
and ‘‘knowledge’’ in order to attain precise notions by which it can be made
clear why it does not suffice just to gather data and why we must strive to
turn them into knowledge. As an illustration we will discuss and interpret
a well-known example from the history of science. Secondly, we explain the
process of discovering knowledge in databases (the KDD process), of which
data mining is just one, though very important, step. We characterize the
standard data mining tasks and position the work of this book by pointing
out for which tasks the discussed methods are well suited.

1.1 Data and Knowledge

In this book we distinguish between data and knowledge. Statements like
‘‘Columbus discovered America in 1492’’ or ‘‘Mrs Jones owns a VW Golf’’ are
data. For these statements to qualify as data, we consider it to be irrelevant
whether we already know them, whether we need these specific pieces of
information at this moment, etc. For our discussion, the essential property
of these statements is that they refer to single events, cases, objects, persons,
etc., in general, to single instances. Therefore, even if they are true, their
range of validity is very restricted and thus is their usefulness.

In contrast to the above, knowledge consists of statements like ‘‘All masses
attract each other.’’ or ‘‘Every day at 17:00 hours there runs an InterCity
(a specific type of train of German Rail) from Magdeburg to Braunschweig.’’
Again we neglect the relevance of the statement for our current situation and
whether we already know it. The essential property is that these statements do
not refer to single instances, but are general laws or rules. Therefore, provided
they are true, they have a wide range of validity, and, above all else, they
allow us to make predictions and thus they are very useful.

It has to be admitted, though, that in daily life statements like ‘‘Colum-
bus discovered America in 1492.’’ are also called knowledge. However, we
disregard this way of using the term ‘‘knowledge’’, regretting that full consis-
tency of terminology with daily life language cannot be achieved. Collections
of statements about single instances do not qualify as knowledge.

Summarizing, data and knowledge can be characterized as follows:

Data

• refer to single instances
(single objects, persons, events, points in time, etc.)

• describe individual properties

• are often available in huge amounts
(databases, archives)

1.1. DATA AND KNOWLEDGE 3

• are usually easy to collect or to obtain
(for example cash registers with scanners in supermarkets, Internet)

• do not allow us to make predictions

Knowledge

• refers to classes of instances
(sets of objects, persons, events, points in time, etc.)

• describes general patterns, structures, laws, principles, etc.

• consists of as few statements as possible
(this is an objective, see below)

• is usually hard to find or to obtain
(for example natural laws, education)

• allows us to make predictions

From these characterizations we can clearly see that usually knowledge is
much more valuable than (raw) data. It is mainly the generality of the state-
ments and the possibility to make predictions about the behavior and the
properties of new cases that constitute its superiority.

However, not just any kind of knowledge is as valuable as any other.
Not all general statements are equally important, equally substantial, equally
useful. Therefore knowledge must be evaluated and assessed. The following
list, which we do not claim to be complete, names some important criteria:

Criteria to Assess Knowledge

• correctness (probability, success in tests)

• generality (range of validity, conditions for validity)

• usefulness (relevance, predictive power)

• comprehensibility (simplicity, clarity, parsimony)

• novelty (previously unknown, unexpected)

In science correctness, generality, and simplicity (parsimony) are at the focus
of attention: One way to characterize science is to say that it is the search for
a minimal correct description of the world. In business and industry greater
emphasis is placed on usefulness, comprehensibility, and novelty: the main
goal is to get a competitive edge and thus to achieve higher profit. Neverthe-
less, none of the two areas can afford to neglect the other criteria.

Tycho Brahe and Johannes Kepler

Tycho Brahe (1546–1601) was a Danish nobleman and astronomer, who in
1576 and in 1584, with the financial support of Frederic II, King of Denmark
and Norway, built two observatories on the island of Sen, about 32 km to

4 CHAPTER 1. INTRODUCTION

the north-east of Copenhagen. Using the best equipment of his time (tele-
scopes were unavailable then—they were used only later by Galileo Galilei
(1564–1642) and Johannes Kepler (see below) for celestial observations) he
determined the positions of the sun, the moon, and the planets with a preci-
sion of less than one minute of arc, thus surpassing by far the exactitude of
all measurements carried out earlier. He achieved in practice the theoretical
limit for observations with the unaided eye. Carefully he recorded the motions
of the celestial bodies over several years [Greiner 1989, Zey 1997].

Tycho Brahe gathered data about our planetary system. Huge amounts
of data—at least from a 16th century point of view. However, he could not
discern the underlying structure. He could not combine his data into a con-
sistent scheme—to some extent, because be adhered to the geocentric system.
He could tell exactly in what position Mars had been on a specific day in 1585,
but he could not relate the positions on different days in such a way as to
fit his highly accurate observational data. All his hypotheses were fruitless.
He developed the so-called Tychonic planetary model, according to which the
sun and the moon revolve around the earth, but all other planets revolve
around the sun, but this model, though popular in the 17th century, did not
stand the test of time. Today we may say that Tycho Brahe had a ‘‘data
mining’’ or ‘‘knowledge discovery’’ problem. He had the necessary data, but
he could not extract the knowledge contained in it.

Johannes Kepler (1571–1630) was a German astronomer and mathemati-
cian and assistant to Tycho Brahe. He advocated the Copernican planetary
model, and during his whole life he endeavored to find the laws that govern
the motions of the celestial bodies. He strove to find a mathematical descrip-
tion, which, in his time, was a virtually radical approach. His starting point
were the catalogs of data Tycho Brahe had compiled and which he continued
in later years. After several unsuccessful trials and long and tedious calcula-
tions, Johannes Kepler finally managed to condense Tycho Brahe’s data into
three simple laws, which have been named after him. Having discovered in
1604 that the course of Mars is an ellipse, he published the first two laws in
‘‘Astronomia Nova’’ in 1609, the third ten years later in his principal work
‘‘Harmonica Mundi’’ [Feynman et al. 1963, Greiner 1989, Zey 1997].

1. Each planet moves around the sun on an elliptical course, with the sun
at one focus of the ellipse.

2. The radius vector from the sun to the planet sweeps out equal areas in
equal intervals of time.

3. The squares of the periods of any two planets are proportional to the
cubes of the semi-major axes of their respective orbits: T ∼ a

3
2 .

Tycho Brahe had collected a large amount of celestial data, Johannes Kepler
found the laws by which they can be explained. He discovered the hidden
knowledge and thus became one of the most famous ‘‘data miners’’ in history.

1.2. KNOWLEDGE DISCOVERY AND DATA MINING 5

Today the works of Tycho Brahe are almost forgotten. His catalogs are
merely of historical value. No textbook on astronomy contains extracts from
his measurements. His observations and minute recordings are raw data and
thus suffer from a decisive disadvantage: They do not provide us with any
insight into the underlying mechanisms and therefore they do not allow us
to make predictions. Kepler’s laws, however, are treated in all textbooks on
astronomy and physics, because they state the principles that govern the mo-
tions of planets as well as comets. They combine all of Brahe’s measurements
into three fairly simple statements. In addition, they allow us to make predic-
tions: If we know the position and the velocity of a planet at a given moment,
we can compute, using Kepler’s laws, its future course.

1.2 Knowledge Discovery and Data Mining

How did Johannes Kepler discover his laws? How did he manage to extract
from Tycho Brahe’s long tables and voluminous catalogs those simple laws
that revolutionized astronomy? We know only fairly little about this. He
must have tested a large number of hypotheses, most of them failing. He
must have carried out long and complicated computations. Presumably, out-
standing mathematical talent, tenacious work, and a considerable amount of
good luck finally led to success. We may safely guess that he did not know
any universal method to discover physical or astronomical laws.

Today we still do not know such a method. It is still much simpler to
gather data, by which we are virtually swamped in today’s ‘‘information so-
ciety’’ (whatever that means), than to obtain knowledge. We even need not
work diligently and perseveringly any more, as Tycho Brahe did, in order to
collect data. Automatic measurement devices, scanners, digital cameras, and
computers have taken this load from us. Modern database technology enables
us to store an ever-increasing amount of data. It is indeed as John Naisbett
remarked: We are drowning in information, but starving for knowledge.

If it took such a distinguished mind like Johannes Kepler several years
to evaluate the data gathered by Tycho Brahe, which today seem to be neg-
ligibly few and from which he even selected only the data on the course of
Mars, how can we hope to cope with the huge amounts of data available
today? ‘‘Manual’’ analysis has long ceased to be feasible. Simple aids like,
for example, representations of data in charts and diagrams soon reach their
limits. If we refuse to simply surrender to the flood of data, we are forced
to look for intelligent computerized methods by which data analysis can be
automated at least partially. These are the methods that are sought for in
the research areas called Knowledge Discovery in Databases (KDD) and Data
Mining (DM). It is true, these methods are still very far from replacing people
like Johannes Kepler, but it is not entirely implausible that he, if supported
by these methods, would have reached his goal a little sooner.

6 CHAPTER 1. INTRODUCTION

Often the terms Knowledge Discovery and Data Mining are used inter-
changeably. However, we distinguish them here. By Knowledge Discovery in
Databases (KDD) we mean a process consisting of several steps, which is
usually characterized as follows [Fayyad et al. 1996]:

Knowledge discovery in databases is the nontrivial process of iden-
tifying valid, novel, potentially useful, and ultimately understand-
able patterns in data.

One step of this process, though definitely one of the most important, is Data
Mining. In this step modeling and discovery techniques are applied.

1.2.1 The KDD Process

In this section we structure the KDD process into two preliminary and five
main steps or phases. However, the structure we discuss here is by no means
binding: it has proven difficult to find a single scheme that everyone in the
scientific community can agree on. However, an influential suggestion and
detailed exposition of the KDD process, which is close to the scheme presented
here and which has had considerable impact, because it is backed by several
large companies like NCR and DaimlerChrysler, is the CRISP-DM model
(CRoss Industry Standard Process for Data Mining) [Chapman et al. 1999].

Preliminary Steps

• estimation of potential benefit

• definition of goals, feasibility study

Main Steps

• check data availability, data selection, if necessary, data collection

• preprocessing (usually 60–90% of total overhead)

– unification and transformation of data formats
– data cleaning

(error correction, outlier detection, imputation of missing values)
– reduction / focusing

(sample drawing, feature selection, prototype generation)

• Data Mining (using a variety of methods)

• visualization
(also in parallel to preprocessing, data mining, and interpretation)

• interpretation, evaluation, and test of results

• deployment and documentation

1.2. KNOWLEDGE DISCOVERY AND DATA MINING 7

The preliminary steps mainly serve the purpose to decide whether the main
steps should be carried out. Only if the potential benefit is high enough and
the demands can be met by data mining methods, can it be expected that
some profit results from the usually expensive main steps.

In the main steps the data to be analyzed for hidden knowledge are first
collected (if necessary), appropriate subsets are selected, and they are trans-
formed into a unique format that is suitable for applying data mining tech-
niques. Then they are cleaned and reduced to improve the performance of the
algorithms to be applied later. These preprocessing steps usually consume the
greater part of the total costs. Depending on the data mining task that was
identified in the goal definition step (see below for a list), data mining meth-
ods are applied (see farther below for a list), the results of which, in order to
interpret and evaluate them, can be visualized. Since the desired goal is rarely
achieved in the first go, usually several steps of the preprocessing phase (for
example feature selection) and the application of data mining methods have to
be reiterated in order to improve the result. If it has not been obvious before,
it is clear now that KDD is an interactive process, rather than completely
automated. A user has to evaluate the results, check them for plausibility,
and test them against hold-out data. If necessary, he/she modifies the course
of the process to make it meet his/her requirements.

1.2.2 Data Mining Tasks

In the course of time typical tasks have been identified, which data mining
methods should be able to solve (although, of course, not every single method
is required to be able to solve all of them—it is the combination of meth-
ods that makes them powerful). Among these are especially those named in
the—surely incomplete—list below. We tried to characterize them not only
by their name, but also by a typical question [Nakhaeizadeh 1998b].

• classification
Is this customer credit-worthy?

• segmentation, clustering
What groups of customers do I have?

• concept description
Which properties characterize fault-prone vehicles?

• prediction, trend analysis
What will the exchange rate of the dollar be tomorrow?

• dependence/association analysis
Which products are frequently bought together?

• deviation analysis
Are there seasonal or regional variations in turnover?

8 CHAPTER 1. INTRODUCTION

Classification and prediction are by far the most frequent tasks, since their
solution can have a direct effect, for instance, on the turnover and the profit of
a company. Dependence and association analysis come next, because they can
be used, for example, to do shopping basket analysis, that is, to discover which
products are frequently bought together, and are therefore also of considerable
commercial interest. Clustering and segmentation are also not infrequent.

1.2.3 Data Mining Methods

Research in data mining is highly interdisciplinary. Methods to tackle the
tasks listed in the preceding section have been developed in a large variety
of research areas including—to name only the most important—statistics,
artificial intelligence, machine learning, and soft computing. As a consequence
there is an arsenal of methods, based on a wide range of ideas, and thus there
is no longer such a lack of tools. To give an overview, we list some of the more
prominent data mining methods. Each list entry refers to a few publications
on the method and points out for which data mining tasks the method is
especially suited. Of course, this list is far from being complete. The references
are necessarily incomplete and may not always be the best ones possible, since
we are clearly not experts for all of these methods and since, obviously, we
cannot name everyone who has contributed to the one or the other.

• classical statistics (discriminant analysis, time series analysis, etc.)
[Larsen and Marx 2005, Everitt 2006, Witte and Witte 2006]
[Freedman et al. 2007]
classification, prediction, trend analysis

• decision/classification and regression trees
[Breiman et al. 1984, Quinlan 1993, Rokach and Maimon 2008]
classification, prediction

• naive Bayes classifiers
[Good 1965, Duda and Hart 1973, Domingos and Pazzani 1997]
classification, prediction

• probabilistic networks (Bayesian networks/Markov networks)
[Lauritzen and Spiegelhalter 1988, Pearl 1988, Jensen and Nielsen 2007]
classification, dependence analysis

• artificial neural networks
[Anderson 1995, Bishop 1996, Rojas 1996, Haykin 2008]
classification, prediction, clustering (Kohonen feature maps)

• support vector machines and kernel methods
[Cristianini and Shawe-Taylor 2000, Schölkopf and Smola 2001]
[Shawe-Taylor and Cristianini 2004, Abe 2005]
classification, prediction

1.2. KNOWLEDGE DISCOVERY AND DATA MINING 9

• k-nearest neighbor/case-based reasoning
[Kolodner 1993, Shakhnarovich et al. 2006, Hüllermeier 2007]
classification, prediction

• inductive logic programming
[Muggleton 1992, Bergadano and Gunetti 1995, de Raedt et al. 2007]
classification, association analysis, concept description

• association rules
[Agrawal and Srikant 1994, Agrawal et al. 1996, Zhang and Zhang 2002]
association analysis

• hierarchical and probabilistic cluster analysis
[Bock 1974, Everitt 1981, Cheeseman et al. 1988, Xu and Wunsch 2008]
segmentation, clustering

• fuzzy cluster analysis
[Bezdek et al. 1999, Höppner et al. 1999, Miyamoto et al. 2008]
segmentation, clustering

• neuro-fuzzy rule induction
[Wang and Mendel 1992, Nauck and Kruse 1997, Nauck et al. 1997]
classification, prediction

• and many more

Although for each data mining task there are several reliable methods to solve
it, there is, as already indicated above, no single method that can solve all
tasks. Most methods are tailored to solve a specific task and each of them ex-
hibits different strengths and weaknesses. In addition, usually several methods
must be combined in order to achieve good results. Therefore commercial data
mining products like, for instance, Clementine (SPSS Inc., Chicago, IL, USA),
SAS Enterprise Miner (SAS Institute Inc., Cary, NC, USA), DB2 Intelligent
Miner (IBM Inc., Armonk, NY, USA), or free platforms like KNIME (Kon-
stanz Information Miner, http://www.knime.org/) offer several of the above
methods under an easy to use graphical interface. However, as far as we know
there is still no tool that contains all of the methods mentioned above.

A compilation of a large number of data mining suites and individual
programs for specific data mining tasks can be found at:

http://www.kdnuggets.com/software/index.html

Generally, the KDnuggets web site at

http://www.kdnuggets.com/

is a valuable source of information for basically all topics related to data
mining and knowledge discovery in databases. Another web site well worth
visiting for information about data mining and knowledge discovery is:

http://www.dmoz.org/Computers/Software/Databases/Data Mining/

10 CHAPTER 1. INTRODUCTION

1.3 Graphical Models

This book deals with two data mining tasks, namely dependence analysis and
classification. These tasks are, of course, closely related, since classification
can be seen as a special case of dependence analysis: it concentrates on specific
dependences, namely on those between a distinguished attribute—the class
attribute—and other, descriptive attributes. It then tries to exploit these de-
pendences to classify new cases. Within the set of methods that can be used
to solve these tasks, we focus on techniques to induce graphical models or, as
we will also call them, inference networks from data.

The ideas of graphical models can be traced back to three origins (accord-
ing to [Lauritzen 1996]), namely statistical mechanics [Gibbs 1902], genetics
[Wright 1921], and the analysis of contingency tables [Bartlett 1935]. Origi-
nally, they were developed as means to build models of a domain of interest.
The rationale underlying such models is that, since high-dimensional domains
tend to be unmanageable as a whole (and the more so if imprecision and un-
certainty are involved), it is necessary to decompose the available information.
In graphical modeling [Whittaker 1990, Kruse et al. 1991, Lauritzen 1996] such
a decomposition exploits (conditional) dependence and independence relations
between the attributes used to describe the domain under consideration. The
structure of these relations is represented as a network or graph (hence the
names graphical model and inference network), often called a conditional in-
dependence graph. In such a graph each node stands for an attribute and each
edge for a direct dependence between two attributes.

However, such a conditional independence graph turns out to be not only
a convenient way to represent the content of a model. It can also be used to
facilitate reasoning in high-dimensional domains, since it allows us to draw
inferences by computations in lower-dimensional subspaces. Propagating ev-
idence about the values of observed attributes to unobserved ones can be
implemented by locally communicating node processors and therefore can be
made very efficient. As a consequence, graphical models were quickly adopted
for use in expert and decision support systems [Neapolitan 1990, Kruse et
al. 1991, Cowell 1992, Castillo et al. 1997, Jensen 2001]. In such a context,
that is, if graphical models are used to draw inferences, we prefer to call them
inference networks in order to emphasize this objective.

Using inference networks to facilitate reasoning in high-dimensional do-
mains has originated in the probabilistic setting. Bayesian networks [Pearl
1986, Pearl 1988, Jensen 1996, Jensen 2001, Gamez et al. 2004, Jensen and
Nielsen 2007], which are based on directed conditional independence graphs,
and Markov networks [Isham 1981, Lauritzen and Spiegelhalter 1988, Pearl
1988, Lauritzen 1996, Wainwright and Jordan 2008], which are based on undi-
rected graphs, are the most prominent examples. Early efficient implementa-
tions include HUGIN [Andersen et al. 1989] and PATHFINDER [Heckerman
1991], and early applications include the interpretation of electromyographic

1.3. GRAPHICAL MODELS 11

findings (MUNIN) [Andreassen et al. 1987], blood group determination of
Danish Jersey cattle for parentage verification (BOBLO) [Rasmussen 1992],
and troubleshooting non-functioning devices like printers and photocopiers
[Heckerman et al. 1994]. Nowadays, successful applications of graphical mod-
els, in particular in the form of Bayesian network classifiers, can be found in
an abundance of areas, including, for example, domains as diverse as man-
ufacturing [Agosta 2004], finance (risk assessment) [Neil et al. 2005], steel
production [Pernkopf 2004], telecommunication network diagnosis [Khanafar
et al. 2008], handwriting recognition [Cho and Kim 2003], object recognition
in images [Schneiderman 2004], articulatory feature recognition [Frankel et
al. 2007], gene expression analysis [Kim et al. 2004], protein structure identi-
fication [Robles et al 2004], and pneumonia diagnosis [Charitos et al. 2007].

However, fairly early on graphical modeling was also generalized to be us-
able with uncertainty calculi other than probability theory [Shafer and Shenoy
1988, Shenoy 1992b, Shenoy 1993], for instance in the so-called valuation-
based networks [Shenoy 1992a], and was implemented, for example, in PUL-
CINELLA [Saffiotti and Umkehrer 1991]. Due to their connection to fuzzy
systems, which in the past have successfully been applied to solve control
problems and to represent imperfect knowledge, possibilistic networks gained
attention too. They can be based on the context model interpretation of a de-
gree of possibility, which focuses on imprecision [Gebhardt and Kruse 1993a,
Gebhardt and Kruse 1993b], and were implemented, for example, in POSS-
INFER [Gebhardt and Kruse 1996a, Kruse et al. 1994].

Initially the standard approach to construct a graphical model was to let
a human domain expert specify the dependences in the domain under consid-
eration. This provided the network structure. Then the human domain expert
had to estimate the necessary conditional or marginal distribution functions
that represent the quantitative information about the domain. This approach,
however, can be tedious and time consuming, especially if the domain under
consideration is large. In some situations it may even be impossible to carry
out, because no, or only vague, expert knowledge is available about the (con-
ditional) dependence and independence relations that hold in the considered
domain, or the needed distribution functions cannot be estimated reliably.

As a consequence, learning graphical models from databases of sample
cases became a main focus of attention in the 1990s (cf., for example, [Her-
skovits and Cooper 1990, Cooper and Herskovits 1992, Singh and Valtorta
1993, Buntine 1994, Heckerman et al. 1995, Cheng et al. 1997, Jordan 1998] for
learning probabilistic networks and [Gebhardt and Kruse 1995, Gebhardt and
Kruse 1996b, Gebhardt and Kruse 1996c, Borgelt and Kruse 1997a, Borgelt
and Kruse 1997b, Borgelt and Gebhardt 1997] for learning possibilistic net-
works), and thus graphical models entered the realm of data mining methods.
Due to its considerable success, this research direction continued to attract
a lot of interest after the turn of the century (cf., for instance, [Steck 2001,
Chickering 2002, Cheng et al. 2002, Neapolitan 2004, Grossman and Domingos

12 CHAPTER 1. INTRODUCTION

2004, Taskar et al. 2004, Roos et al. 2005, Niculescu et al. 2006, Tsamardinos
et al. 2006, Jakulin and Rish 2006, Castillo 2008]).

This success does not come as a surprise: graphical models have several
advantages when applied to knowledge discovery and data mining problems.
In the first place, as already pointed out, the network representation provides
a comprehensible qualitative (network structure) and quantitative descrip-
tion (associated distribution functions) of the domain under consideration, so
that the learning result can be checked for plausibility against the intuition
of human experts. Secondly, learning algorithms for inference networks can
fairly easily be extended to incorporate the background knowledge of human
experts. In the simplest case a human domain expert specifies the dependence
structure of the domain to be modeled and automatic learning is used only to
determine the distribution functions from a database of sample cases. More
sophisticated approaches take a prior model of the domain and modify it (add
or remove edges, change the distribution functions) w.r.t. the evidence pro-
vided by a database of sample cases [Heckerman et al. 1995]. Finally, although
fairly early on the learning task was shown to be NP-complete in the general
case [Chickering et al. 1994, Chickering 1995], there are several good heuristic
approaches that have proven to be successful in practice and that lead to very
efficient learning algorithms.

In addition to these practical advantages, graphical models provide a
framework for some of the data mining methods named above: Naive Bayes
classifiers are probabilistic networks with a special, star-like structure (cf.
Chapter 6). Decision trees can be seen as a special type of probabilistic net-
work in which there is only one child attribute and the emphasis is on learning
the local structure of the network (cf. Chapter 8). Furthermore there are some
interesting connections to fuzzy clustering [Borgelt et al. 2001] and neuro-
fuzzy rule induction [Nürnberger et al. 1999] through naive Bayes classifiers,
which may lead to powerful hybrid systems.

1.4 Outline of this Book

This book covers three types of graphical models: relational, probabilistic,
and possibilistic networks. Relational networks are mainly discussed to pro-
vide more comprehensible analogies, but also to connect graphical models to
database theory. The main focus, however, is on probabilistic and possibilistic
networks. In the following we give a brief outline of the chapters.

In Chapter 2 we review very briefly relational and probabilistic reasoning
(in order to provide all fundamental notions) and then concentrate on possi-
bility theory, for which we provide a detailed semantical introduction based
on the context model. In this chapter we clarify and at some points modify
the context model interpretation of a degree of possibility where we found its
foundations to be weak or not spelt out clearly enough.

1.4. OUTLINE OF THIS BOOK 13

In Chapter 3 we study how relations as well as probability and possibility
distributions, under certain conditions, can be decomposed into distributions
on lower-dimensional subspaces. By starting from the simple case of rela-
tional networks, which, sadly, are usually neglected entirely in introductions
to graphical modeling, we try to make the theory of graphical models and rea-
soning in graphical models more easily accessible. In addition, by developing
a peculiar formalization of relational networks a very strong formal similarity
can be achieved to possibilistic networks. In this way possibilistic networks
can be introduced as simple ‘‘fuzzyfications’’ of relational networks.

In Chapter 4 we explain the connection of decompositions of distributions
to graphs, as it is brought about by the notion of conditional independence.
In addition we briefly review two of the best-known propagation algorithms
for inference networks. However, although we provide a derivation of the
evidence propagation formula for undirected trees and a brief review of join
tree propagation, this chapter does not contain a full exposition of evidence
propagation. This topic has been covered extensively in other books, and thus
we only focus on those components that we need for later chapters.

With Chapter 5 we turn to learning graphical models from data. We study
a fundamental learning operation, namely how to estimate projections (that
is, marginal distributions) from a database of sample cases. Although trivial
for the relational and the probabilistic case, this operation is a severe problem
in the possibilistic case (not formally, but in terms of efficiency). Therefore
we explain and formally justify an efficient method for computing maximum
projections of database-induced possibility distributions.

In Chapter 6 we study naive Bayes classifiers and derive a naive possi-
bilistic classifier in direct analogy to a naive Bayes classifier.

In Chapter 7 we proceed to qualitative or structural learning. That is, we
study how to induce a graph structure from a database of sample cases. Fol-
lowing an introduction to the principles of global structure learning, which is
intended to provide an intuitive background (like the greater part of Chap-
ter 3), we discuss several evaluation measures (or scoring functions) for learn-
ing relational, probabilistic, and possibilistic networks. By working out the
underlying principles as clearly as possible, we try to convey a deep under-
standing of these measures and strive to reveal the connections between them.
Furthermore, we review several search methods, which are the second core
ingredient of a learning algorithm for graphical models: they specify which
graph structures are explored in order to find the most suitable one.

In Chapter 8 we extend qualitative network induction to learning local
structure. We explain the connection to decision trees and decision graphs and
suggest study approaches to local structure learning for Bayesian networks.

In Chapter 9 we study the causal interpretation of learned Bayesian net-
works and in particular the so-called inductive causation algorithm, which is
claimed to be able to uncover, at least partially, the causal dependence struc-
ture underlying a domain of interest. We carefully study the assumptions

14 CHAPTER 1. INTRODUCTION

underlying this approach and reach the conclusion that such strong claims
cannot be justified, although the algorithm is a useful heuristic method.

In Chapter 10 visualization methods for probability functions are studied.
In particular, we discuss a visualization approach that draws on the formal
similarity of conditional probability distributions to association rules.

In Chapter 11 we show how graphical models can be used to derive a
diagnostic procedure for (analog) electrical circuits that is able to detect so-
called soft faults. In addition, we report about some successful applications of
graphical models in the telecommunications and automotive industry.

Software and additional material that is related to the contents of this
book can be found at the following URL:

http://www.borgelt.net/books/gm/

Chapter 2

Imprecision and
Uncertainty

Since this book is about graphical models and reasoning with them, we start
by saying a few words about reasoning in general, with a focus on inferences
under imprecision and uncertainty and the calculi to model such inferences
(cf. [Borgelt et al. 1998a]). The standard calculus to model imprecision is,
of course, relational algebra and its special case (multidimensional) interval
arithmetics . However, these calculi neglect that the available information
may be uncertain. On the other hand, the standard calculi to model uncer-
tainty for decision making purposes are probability theory and its extension
utility theory. However, these calculi cannot deal very well with imprecise
information—seen as set-valued information—in the absence of knowledge
about the certainty of the possible alternatives. Therefore, in this chapter, we
also provide an introduction to possibility theory in a specific interpretation
that is based on the context model [Gebhardt and Kruse 1992, Gebhardt and
Kruse 1993a, Gebhardt and Kruse 1993b]. In this interpretation possibility
theory can handle imprecise as well as uncertain information.

2.1 Modeling Inferences

The essential feature of any kind of inference is that a certain type of knowl-
edge—for example, knowledge about truth, probability, (degree of) possibility,
utility, stability, etc.—is transferred from given propositions, events, states,
etc. to other propositions, events, states, etc. For instance, in a logical argu-
ment the knowledge about the truth of the premise or of multiple premises is
transferred to the conclusion; in probabilistic inference the knowledge about
the probability of one or more events is used to calculate the probability of
other, related events and is thus transferred to these events.

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

16 CHAPTER 2. IMPRECISION AND UNCERTAINTY

For the transfer carried out in an inference three things are necessary:
knowledge to start from (for instance, the knowledge that a given proposition
is true), knowledge that provides a path for the transfer (for example, an
implication), and a mechanism to follow the path (for instance, the inference
rule of modus ponens to establish the truth of the consequent of an impli-
cation, of which the antecedent is known to be true). Only if all three are
given and fit together, an inference can be carried out. Of course, the transfer
need not always be direct. In logic, for example, arguments can be chained
by using the conclusion of one as the premise for another, and several such
steps may be necessary to arrive at a desired conclusion.

From this description the main problems of modeling inferences are obvi-
ous. They consist in finding the paths along which knowledge can be trans-
ferred and in providing the proper mechanisms for following them. (In contrast
to this, the knowledge to start from is usually readily available, for example
from observations.) Indeed, it is well known that automatic theorem provers
spend most of their time searching for a path from the given facts to the de-
sired conclusion. The idea underlying graphical models or inference networks
is to structure the paths along which knowledge can be transferred or propa-
gated as a network or a graph in order to simplify and, of course, to speed up
the reasoning process. Such a representation can usually be achieved if the
knowledge about the modeled domain can be decomposed, with the network
or graph representing the decomposition.

Definitely symbolic logic (see, for example, [Reichenbach 1947, Carnap
1958, Salmon 1963]) is one of the most prominent calculi to represent knowl-
edge and to draw inferences. Its standard method to decompose knowledge
is to identify (universally or existentially quantified) propositions consisting
of only a few atomic propositions or predicates. These propositions can of-
ten be organized as a graph, which reflects possible chains of arguments that
can be formed using these propositions and observed facts. However, classical
symbolic logic is not always the best calculus to represent knowledge and to
model inferences. If we confine ourselves to a specific reasoning task and if we
have to deal with imprecision, it is often more convenient to use a different
calculus. If we have to deal with uncertainty, it is necessary.

The specific reasoning task we confine ourselves to here is to identify the
true state ω0 of a given section of the world within a set Ω of possible states.
The set Ω of all possible states we call the frame of discernment or the universe
of discourse. Throughout this book we assume that possible states ω ∈ Ω of
the domain under consideration can be described by stating the values of a
finite set of attributes. Often we identify the description of a state ω by a
tuple of attribute values with the state ω itself, since its description is usually
the only way by which we can refer to a specific state ω.

The task to identify the true state ω0 consists in combining prior or generic
knowledge about the relations between the values of different attributes (de-
rived from background expert knowledge or from databases of sample cases)

2.2. IMPRECISION AND RELATIONAL ALGEBRA 17

and evidence about the current values of some of the attributes (obtained,
for instance, from observations).1 The goal is to find a description of the true
state ω0 that is as specific as possible, that is, a description which restricts
the set of possible states as much as possible.

As an example consider medical diagnosis. Here the true state ω0 is the
current state of health of a given patient. All possible states can be described
by attributes describing properties of patients (like sex or age) or symptoms
(like fever or high blood pressure) or the presence or absence of diseases.
The generic knowledge reflects the medical competence of a physician, who
knows about the relations between symptoms and diseases in the context of
other properties of the patient. It may be gathered from medical textbooks
or reports. The evidence is obtained from medical examination and answers
given by the patient, which, for example, reveal that she is 42 years old and
has a temperature of 39oC. The goal is to derive a full description of her state
of health in order to determine which disease or diseases she suffers from.

2.2 Imprecision and Relational Algebra

Statements like ‘‘This ball is green or blue or turquoise.’’ or ‘‘The velocity
of the car was between 50 and 60 km/h.’’ we call imprecise. What makes
them imprecise is that they do not state one value for a property, but a set
of possible alternatives. In contrast to this, a statement that names only a
single possible value for a property we call precise. An example of a precise
statement is ‘‘The patient has a temperature of 39.3oC.’’2

Imprecision enters our considerations for two reasons. In the first place
the generic knowledge about the dependences between attributes can be rela-
tional rather than functional, so that knowing exact values for the observed
attributes does not allow us to infer exact values for the other attributes, but
only sets of possible values. For example, in medical diagnosis a given body
temperature is compatible with several physiological states.

Secondly, the available information about the observed attributes can it-
self be imprecise. That is, it may not enable us to fix a specific value, but
only a set of alternatives. For example, we may have a measurement device
that can determine the value of an attribute only with a fixed error bound,
so that all values within the interval determined by the error bound have to
be considered possible. In such situations we can only infer that the current
state ω0 lies within a set of alternative states, but without further information
we cannot single out the true state ω0 from this set.

1Instead of “evidence” often the term “evidential knowledge” is used to complement the
term “generic knowledge”. However, this clashes with our distinction of data and knowledge.

2Of course, there is also what may be called an implicit imprecision due to the fact
that the temperature is stated with a finite precision, that is, actually all values between
39.25oC and 39.35oC are possible. However, we neglect such subtleties here.

18 CHAPTER 2. IMPRECISION AND UNCERTAINTY

It is obvious that imprecision, interpreted as set-valued information, can
easily be handled by symbolic logic: for finite sets of alternatives we can simply
write a disjunction of predicate expressions (for example, ‘‘color(ball) = blue
∨ color(ball) = green ∨ color(ball) = turquoise’’ to represent the first exam-
ple statement given above). For intervals, we may introduce a predicate to
compare values (for example, the predicate ≤ in ‘‘50 km/h ≤ velocity(car)
∧ velocity(car) ≤ 60 km/h’’ to represent the second example statement).
In other words: we can either list all alternatives in a disjunction or we can
use a conjunction of predicates to bound the alternatives.

Trivially, since imprecise statements can be represented in symbolic logic,
we can draw inferences using the mechanisms of symbolic logic. However,
w.r.t. the specific reasoning task we consider here, it is often more convenient
to use relational algebra for inferences with imprecise statements. The reason
is that the operations of relational algebra can be seen as a special case of
logical inference rules that draw several inferences in one step.

Consider a set of geometrical objects about which we know the rules

∀x : color(x) = green → shape(x) = triangle,
∀x : color(x) = red → shape(x) = circle,
∀x : color(x) = blue → shape(x) = circle,
∀x : color(x) = yellow → shape(x) = square.

In addition, suppose that any object must be either green, red, blue, or yellow
and that it must be either a triangle, a circle, or a square. That is, we know the
domains of the attributes ‘‘color’’ and ‘‘shape’’. All these pieces of information
together form the generic knowledge.

Suppose also that we know that the object o is red, blue, or yellow, that
is, color(o) = red∨color(o) = blue∨color(o) = yellow. This is the evidence. If
we combine it with the generic knowledge above, we can infer that the object
must be a circle or a square, that is, shape(o) = circle ∨ shape(o) = square.
However, it takes several steps to arrive at this conclusion.

In relational algebra (see, for example, [Ullman 1988]) the generic knowl-
edge as well as the evidence is represented as relations, namely:

color shape

Generic green triangle
Knowledge: red circle

blue circle
yellow square

color

Evidence: red
blue
yellow

Each tuple is seen as a conjunction, each term of which corresponds to an
attribute (represented by a column) and asserts that the attribute has the
value stated in the tuple. The tuples of a relation form a disjunction. For
the evidence this is obvious. For the generic knowledge this becomes clear by

2.3. UNCERTAINTY AND PROBABILITY THEORY 19

realizing that from the available generic knowledge we can infer

∀x : (color(x) = green ∧ shape(x) = triangle)
∨ (color(x) = red ∧ shape(x) = circle)
∨ (color(x) = blue ∧ shape(x) = circle)
∨ (color(x) = yellow ∧ shape(x) = square).

That is, the generic knowledge reflects the possible combinations of attribute
values. Note that the generic knowledge is universally quantified, whereas the
evidence refers to a single instance, namely the observed object o.

The inference is drawn by projecting the natural join of the two relations
to the column representing the shape of the object. The result is:

shape

Inferred Result: circle
square

That is, we only need two operations, independent of the number of terms in
the disjunction. The reason is that the logical inferences that need to be carried
out are similar in structure and thus they can be combined. In Section 3.2
reasoning with relations is studied in more detail.

2.3 Uncertainty and Probability Theory

In the preceding section we implicitly assumed that all statements are certain,
that is, that all alternatives not named in the statements can be excluded. For
example, we assumed that the ball in the first example is definitely not red and
that the car in the second example was definitely faster than 40 km/h. If these
alternatives cannot be excluded, then the statements are uncertain, because
they are false if one of the alternatives not named in the statement describes
the actual situation. Note that both precise and imprecise statements can
be uncertain. What makes a statement certain or uncertain is whether all
possible alternatives are listed in the statement or not.

The reason why we assumed up to now that all statements are certain
is that the inference rules of classical symbolic logic (and, consequently, the
operations of relational algebra) can be applied only if the statements they
are applied to are known to be definitely true: the indispensable prerequisite
of all logical inferences is that the premises are true.

In applications, however, we rarely find ourselves in such a favorable posi-
tion. To cite a well-known example, even the commonplace statement ‘‘If an
animal is a bird, then it can fly.’’ is not absolutely certain, because there are
exceptions like penguins, ostriches, etc. Nevertheless we would like to draw
inferences with such statements, since they are ‘‘normally’’ or ‘‘often’’ correct.

20 CHAPTER 2. IMPRECISION AND UNCERTAINTY

Table 2.1 Generic knowledge about the relation of sex and color-blindness.

sex
female male

∑
yes 0.001 0.025 0.026

color-blind no 0.499 0.475 0.974∑
0.5 0.5 1

In addition, we frequently find ourselves in the position that we cannot ex-
clude all but one alternative, but nevertheless have to decide on one. In such
a situation, of course, we would like to decide on that precise statement that
is ‘‘most likely’’ to be true. If, for example, the symptom fever is observed,
then various disorders may be its cause and usually we cannot exclude all but
one alternative. Nevertheless, in the absence of other information a physician
may prefer a severe cold as a diagnosis, because it is a fairly common disorder.

To handle uncertain statements in (formal) inferences, we need a way
to assess the certainty of a statement. This assessment may be purely com-
parative, resulting only in preferences between the alternative statements.
More sophisticated approaches quantify these preferences and assign degrees
of certainty, degrees of confidence, or degrees of possibility to the alternative
statements, which are then treated in an adequate calculus.

The most prominent approach to quantify the certainty or the possibil-
ity of statements is, of course, probability theory (see, for example, [Feller
1968]). Probabilistic reasoning usually consists in conditioning a given prob-
ability distribution, which represents the generic knowledge. The conditions
are supplied by observations made, i.e. by the evidence about the domain.

As an example consider Table 2.1, which shows a probability distribution
about the relation between the sex of a human and whether he or she is color-
blind. Suppose that we have a male patient. From Table 2.1 we can compute
that the probability that he is color-blind as

P(color-blind(x) = yes | sex(x) = male)

=
P(color-blind(x) = yes ∧ sex(x) = male)

P(sex(x) = male)
=

0.025
0.5

= 0.05.

Often the generic knowledge is not given as a joint distribution, but as
marginal and conditional distributions. For example, we may know that the
two sexes are equally likely and that the probabilities for a female and a male
to be color-blind are 0.002 and 0.05, respectively. In this case the result of the
inference considered above can be read directly from the generic knowledge.

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 21

If, however, we know that a person is color-blind, we have to compute the
probability that the person is male using Bayes’ rule:

P(sex(x) = male | color-blind(x) = yes)

=
P(color-blind(x) = yes | sex(x) = male) · P(sex(x) = male)

P(color-blind(x) = yes)

=
0.05 · 0.5

0.026
≈ 0.96,

where P(color-blind = yes) is computed as

P(color-blind(x) = yes)
= P(color-blind(x) = yes | sex(x) = female) · P(sex(x) = female)
+ P(color-blind(x) = yes | sex(x) = male) · P(sex(x) = male)
= 0.002 · 0.5 + 0.05 · 5 = 0.026.

This is, of course, a very simple example. In Section 3.3 such reasoning with
(multivariate) probability distributions is studied in more detail.

As a final remark let us point out that with a quantitative assessment
of certainty, certainty and precision are usually complementary properties.
A statement can often be made more certain by making it less precise and
making a statement more precise usually renders it less certain.

2.4 Possibility Theory and the Context Model

Relational algebra and probability theory are well-known calculi, so we re-
frained from providing an introduction and confined ourselves to recalling
what it means to draw inferences in these calculi. The case of possibility the-
ory, however, is different. Although it has been aired for quite some time now,
it is much less well known than probability theory. In addition, there is still
an ongoing discussion about its interpretation. Therefore this section provides
an introduction to possibility theory that focuses on the interpretation of its
key concept, namely a degree of possibility.

In colloquial language the notion (or, to be more precise, the modality,
cf. modal logic) ‘‘possibility’’, like ‘‘truth’’, is two-valued: either an event, a
circumstance, etc. is possible or it is impossible. However, to define degrees
of possibility, we need a quantitative notion. Thus our intuition, exemplified
by how the word ‘‘possible’’ is used in colloquial language, does not help us
much if we want to understand what may be meant by a degree of possibility.
Unfortunately, this fact is often treated too lightly in publications on possi-
bility theory. It is rarely easy to pin down the exact meaning that is given
to a degree of possibility. To avoid such problems, we explain in detail a spe-
cific interpretation that is based on the context model [Gebhardt and Kruse

22 CHAPTER 2. IMPRECISION AND UNCERTAINTY

tetrahedron hexahedron octahedron icosahedron dodecahedron

Figure 2.1 Five dice with different ranges of possible numbers.

1992, Gebhardt and Kruse 1993a, Gebhardt and Kruse 1993b]. In doing so,
we distinguish carefully between a degree of possibility and the related notion
of a probability, both of which can be seen as quantifications of possibility.
Of course, there are also several other interpretations of degrees of possibility,
like the epistemic interpretation of fuzzy sets [Zadeh 1978], the theory of epis-
temic states [Spohn 1990], and the theory of likelihoods [Dubois et al. 1993],
but these are beyond the scope of this book.

2.4.1 Experiments with Dice

As a first example, consider five dice shakers containing different kinds of
dice as indicated in Table 2.2. The dice, which are Platonic bodies, are shown
in Figure 2.1. Shaker 1 contains a tetrahedron (a regular four-faced body)
with its faces labeled with the numbers 1 through 4 (when rolling the die, the
number on the face that the tetrahedron lies on counts). Shaker 2 contains
a hexahedron (a regular six-faced body, usually called a cube) with its faces
labeled with the numbers 1 through 6. Shaker 3 contains an octahedron (a
regular eight-faced body) the faces of which are labeled with the numbers 1
through 8. Shaker 4 contains an icosahedron (a regular twenty-faced body).
On this die, opposite faces are labeled with the same number, so that the die
shows the numbers 1 through 10. Finally, shaker 5 contains a dodecahedron (a
regular twelve-faced body) with its faces labeled with the numbers 1 through
12.3 In addition to the dice in the shakers there is another icosahedron on
which groups of four faces are labeled with the same number, so that the die
shows the numbers 1 through 5. Suppose the following random experiment
is carried out: first the additional icosahedron is rolled. The number it shows
indicates the shaker to be used in a second step. The number rolled with the
die from this shaker is the result of the experiment.

Let us consider the possibility that a certain number is the result of this ex-
periment. Obviously, before the shaker is fixed, any of the numbers 1 through
12 is possible. Although smaller numbers are more probable (see below), it is
not impossible that the number 5 is rolled in the first step, which enables us

3Dice as these are not as unusual as one may think. They are commonly used in fantasy
role games and can be bought at many major department stores.

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 23

Table 2.2 The five dice shown in Figure 2.1 in five shakers.

shaker 1 shaker 2 shaker 3 shaker 4 shaker 5

tetrahedron hexahedron octahedron icosahedron dodecahedron
1–4 1–6 1–8 1–10 1–12

Table 2.3 Degrees of possibility in the first dice example.

numbers degree of possibility normalized to sum 1

1–4 1
5 + 1

5 + 1
5 + 1

5 + 1
5 = 1 1

8 = 0.125

5–6 1
5 + 1

5 + 1
5 + 1

5 = 4
5

4
40 = 0.1

7–8 1
5 + 1

5 + 1
5 = 3

5
3
40 = 0.075

9–10 1
5 + 1

5 = 2
5

2
40 = 0.05

11–12 1
5 = 1

5
1
40 = 0.025

to use the dodecahedron in the second. However, if the additional icosahedron
has already been rolled and thus the shaker is fixed, certain results may no
longer be possible. For example, if the number 2 has been rolled, we have to
use the hexahedron (that is, the cube) and thus only the numbers 1 through
6 are possible. Because of this restriction of the set of possible outcomes by
the result of the first step, it is reasonable in this setting to define as the
degree of possibility of a number the probability that it is still possible after
the additional icosahedron has been rolled.

Obviously, we have to distinguish five cases, namely those associated with
the five possible results of rolling the additional icosahedron. The numbers 11
and 12 are only possible as the final result if we roll the number 5 in the
first step. The probability of this event is 1

5 . Therefore the probability of
their possibility, that is, their degree of possibility, is 1

5 . The numbers 9 and
10 are possible if rolling the additional tetrahedron resulted in one of the
numbers 4 or 5. It follows that their degree of possibility is 2

5 . Analogously
we can determine the degrees of possibility of the numbers 7 and 8 to be 3

5 ,
those of the numbers 5 and 6 to be 4

5 , and those of the numbers 1 through 4
to be 1, since the latter are possible regardless of the outcome of rolling the
additional icosahedron. The degrees of possibility determined in this way are
listed in the center column of Table 2.3.

24 CHAPTER 2. IMPRECISION AND UNCERTAINTY

The function that assigns a degree of possibility to each elementary event
of a given sample space (in this case to the twelve possible outcomes of the
described experiment) is often called a possibility distribution and the degree
of possibility it assigns to an elementary event E is written π(E). However,
if this definition of a possibility distribution is checked against the axiomatic
approach to possibility theory [Dubois and Prade 1988], which is directly
analogous to the axiomatic approach to probability theory4, it turns out that
it leads to several conceptual and formal problems. The main reasons are that
in the axiomatic approach a possibility distribution is defined for a random
variable, but as yet we only have a sample space, and that there are, of course,
random variables for which the possibility distribution is not an assignment
of degrees of possibility to the elementary events of the underlying sample
space. Therefore we deviate from the terminology mentioned above and call
the function that assigns a degree of possibility to each elementary event of
a sample space the basic or elementary possibility assignment. Analogously,
we speak of a basic or elementary probability assignment. This deviation in
terminology goes less far, though, than one might think at first sight, since a
basic possibility or probability assignment is, obviously, identical to a specific
possibility or probability distribution, namely the one of the random vari-
able that has the sample space as its range of values. Therefore we keep the
notation π(E) for the degree of possibility that is assigned to an elementary
event E by a basic possibility assignment. In analogy to this, we use the no-
tation p(E) for the probability that is assigned to an elementary event by a
basic probability assignment (note the lowercase p).

The function that assigns a degree of possibility to all (general) events,
that is, to all subsets of the sample space, is called a possibility measure. This
term, fortunately, is compatible with the axiomatic approach to possibility
theory and thus no change of terminology is necessary here. A possibility
measure is usually denoted by a Π, that is, by an uppercase π. This is directly
analogous to a probability measure, which is usually denoted by a P.

In the following we demonstrate, using the simple dice experiment, the dif-
ference between a degree of possibility and a probability in two steps. In the
first step we compute the probabilities of the numbers for the dice experiment
and compare them to the degrees of possibility. Here the most striking dif-
ference is the way in which the degree of possibility of (general) events—that
is, sets of elementary events—is computed. In the second step we modify the
dice experiment in such a way that the basic probability assignment changes
significantly, whereas the basic possibility assignment stays the same. This
shows that the two concepts are not very strongly related to each other.

The probabilities of the outcomes of the dice experiment are easily com-
puted using the product rule of probability P(A ∩ B) = P(A |B)P(B) where

4This axiomatic approach is developed for binary possibility measures in Section 3.2.5
and can be carried over directly to general possibility measures.

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 25

Table 2.4 Probabilities in the first dice example.

numbers probability

1–4 1
5 · (1

4 + 1
6 + 1

8 + 1
10 + 1

12) = 29
200 = 0.145

5–6 1
5 · (1

6 + 1
8 + 1

10 + 1
12) = 19

200 = 0.095

7–8 1
5 · (1

8 + 1
10 + 1

12) = 37
600 = 0.0616

9–10 1
5 · (1

10 + 1
12) = 11

300 = 0.036

11–12 1
5 · (1

12) = 1
60 = 0.016

A and B are events. Let Oi, i = 1, . . . , 12, be the events that the final outcome
of the dice experiment is the number i and let Sj , j = 1, . . . , 5, be the event
that the shaker j was selected in the first step. Then

P(Oi) =
5∑

j=1

P(Oi ∧ Sj) =
5∑

j=1

P(Oi | Sj)P(Sj).

Since we determine the shaker by rolling the additional icosahedron, we have
P(Sj) = 1

5 , independent of the number j of the shaker. Hence

P(Oi | Sj) =

⎧⎪⎨
⎪⎩

1
2j + 2

, if 1 ≤ i ≤ 2j + 2,

0, otherwise.

The reason is that shaker j contains a die labeled with the numbers 1 through
2j+2. The resulting probabilities are listed in Table 2.4. The difference from
the degrees of possibility of Table 2.3 is evident.

However, one may conjecture that the difference results from the fact that
a basic probability assignment is normalized to sum 1 (since 4 · 29

200 +2 · 19
200 +

2 · 37
600 + 2 · 11

600 + 2 · 1
60 = 1) and that the difference vanishes if the basic

possibility assignment is normalized by dividing each degree of possibility by
s = 4 · 1 +2 · 4

5 + 2 · 3
5 + 2 · 2

5 +2 · 1
5 = 8. The right column of Table 2.3 shows,

though, that this is not the case, although the differences are not very large.
In addition, such a normalization is not meaningful—at least from the point
of view adopted above. The normalized numbers can no longer be interpreted
as the probabilities of the possibility of events.

The difference between the two concepts becomes even more noticeable if
we consider the probability and the degree of possibility of (general) events,
that is, of sets of elementary events. For instance, we may consider the event
‘‘The final outcome of the experiment is a 5 or a 6.’’ Probabilities are additive

26 CHAPTER 2. IMPRECISION AND UNCERTAINTY

Table 2.5 Probabilities in the second dice example.

number probability

1 1
5 · (1

16 + 1
36 + 1

64 + 1
100 + 1

144) = 1769
72000 ≈ 0.0246

2 3
5 · (1

16 + 1
36 + 1

64 + 1
100 + 1

144) = 1769
24000 ≈ 0.0737

3 5
5 · (1

16 + 1
36 + 1

64 + 1
100 + 1

144) = 1769
14400 ≈ 0.1228

4 7
5 · (1

16 + 1
36 + 1

64 + 1
100 + 1

144) = 12383
72000 ≈ 0.1720

5 9
5 · (1

36 + 1
64 + 1

100 + 1
144) = 869

8000 ≈ 0.1086

6 11
5 · (1

36 + 1
64 + 1

100 + 1
144) = 9559

72000 ≈ 0.1328

7 13
5 · (1

64 + 1
100 + 1

144) = 6097
72000 ≈ 0.0847

8 15
5 · (1

64 + 1
100 + 1

144) = 469
4800 ≈ 0.0977

9 17
5 · (1

100 + 1
144) = 1037

18000 ≈ 0.0576

10 19
5 · (1

100 + 1
144) = 1159

18000 ≈ 0.0644

11 21
5 · (1

144) = 7
240 ≈ 0.0292

12 23
5 · (1

144) = 23
720 ≈ 0.0319

in this case (cf. Kolmogorov’s axioms), and thus the probability of the above
event is P(O5 ∪ O6) = P(O5) + P(O6) = 38

200 = 0.19. A degree of possibility,
on the other hand, behaves in an entirely different way. According to the
interpretation we laid down above, one has to ask: what is the probability
that after rolling the additional icosahedron it is still possible to get a 5 or
a 6 as the final outcome? Obviously, a 5 or a 6 are still possible, if rolling
the additional icosahedron resulted in a 2, 3, 4, or 5. Therefore the degree of
possibility is Π(O5 ∪ O6) = 4

5 and thus the same as the degree of possibility
of each of the two elementary events alone, and not their sum.

It is easy to verify that in the dice example the degree of possibility of a
set of elementary events is always the maximum of the degrees of possibility
of the elementary events contained in it. However, the reason for this lies in
the specific structure of this experiment. In general, this need not be the case.
When discussing measures of possibility in more detail below, we show what
conditions have to hold for this to be the case.

In the following second step we slightly modify the experiment to demon-
strate the relative independence of a basic probability and a basic possibility
assignment. Suppose that instead of only one die, there are now two dice
in each of the shakers, but two dice of the same kind. It is laid down that
the higher number rolled counts. Of course, with this arrangement we get a

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 27

different basic probability assignment, because we now have

P(Oi | Sj) =

{
2i−1

(2j+2)2 , if 1 ≤ i ≤ 2j + 2,

0, otherwise.

To see this, notice that there are 2i− 1 pairs (r, s) with 1 ≤ r, s ≤ 2j + 2 and
max{r, s} = i, and that in all there are (2j+2)2 pairs, all of which are equally
likely. The resulting basic probability assignment is shown in Table 2.5. The
basic possibility assignment, on the other hand, remains unchanged (cf. Ta-
ble 2.3). This is not surprising, because the two dice in each shaker are of the
same kind and thus the same range of numbers is possible as in the original
experiment. From this example it should be clear that the basic possibility
assignment entirely disregards any information about the shakers that goes
beyond the range of possible numbers.

If we compare the probabilities and the degrees of possibility in Tables 2.3,
2.4, and 2.5, we can see the following interesting fact: whereas in the first
experiment the rankings of the outcomes are the same for the basic prob-
ability and the basic possibility assignment, they differ significantly for the
second experiment. Although the number with the highest probability (the
number 4) is still among those having the highest degree of possibility (num-
bers 1, 2, 3, and 4), the number with the lowest probability (the number 1)
is—surprisingly enough—also among them. It follows that from a high degree
of possibility one cannot infer a high probability.

It is intuitively clear, though, that the degree of possibility of an event, in
the interpretation adopted here, can never be less than its probability. The
reason is that computing a degree of possibility can also be seen as neglecting
the conditional probability of an event given the context. Therefore a degree of
possibility of an event can be seen as an upper bound for the probability of this
event [Dubois and Prade 1992], which is derived by distinguishing a certain
set of cases. In other words, we have at least the converse of the statement
found to be invalid above, namely that from a low degree of possibility we can
infer a low probability. However, beyond this weak statement no generally
valid conclusions can be drawn.

2.4.2 The Context Model

It is obvious that the degree of possibility assigned to an event depends on the
set of cases or contexts that are distinguished. These contexts are responsible
for the name of the previously mentioned context model [Gebhardt and Kruse
1992, Gebhardt and Kruse 1993a, Gebhardt and Kruse 1993b]. In this model
the degree of possibility of an event is the probability of the set of those
contexts in which it is possible—in accordance to the interpretation used
above: it is the probability of the possibility of an event.

28 CHAPTER 2. IMPRECISION AND UNCERTAINTY

Table 2.6 Degrees of possibility derived from grouped dice.

numbers degree of possibility

1–6 1
5 + 3

5 + 1
5 = 1

7–10 3
5 + 1

5 = 4
5

11–12 1
5 = 1

5

In the above example we chose the shakers as contexts. However, we
may choose differently, relying on some other aspect of the experiment. For
example, three of the Platonic bodies—tetrahedron, octahedron, and icosahe-
dron—have triangular faces, so we may decide to group them, whereas each
of the other two forms a context by itself. Thus we have three contexts, with
the group of tetrahedron, octahedron, and icosahedron having probability 3

5
and each of the other two contexts having probability 1

5 . The resulting ba-
sic possibility assignment is shown in Table 2.6. This choice of contexts also
shows that the contexts need not be equally likely. As a third alternative we
could use the initial situation as the only context and thus assign a degree of
possibility of 1 to all numbers 1 through 12.

It follows that it is very important to specify which contexts are used to
compute the degrees of possibility. Different sets of contexts lead, in general,
to different basic possibility assignments. Of course, if the choice of the con-
texts is so important, the question arises how the contexts should be chosen.
From the examples just discussed, it is plausible that we should make the
contexts as fine-grained as possible to preserve as much information as pos-
sible. If the contexts are coarse, as with the grouped dice, fewer distinctions
are possible between the elementary events and thus information is lost. This
can be seen clearly from Tables 2.3 and 2.6 where the former allows us to
distinguish between a larger number of different situations.

From these considerations it becomes clear that we actually cheated a
bit (for didactical reasons) by choosing the shakers as contexts. With the
available information, it is possible to define a much more fine-grained set of
contexts. Indeed, since we have full information, each possible course of the
experiment can be made its own context. That is, we can have one context
for the selection of shaker 1 and the roll of a 1 with the die from this shaker,
a second context for the selection of shaker 1 and the roll of a 2, and so
on, then a context for the selection of shaker 2 and the roll of a 1 etc. We
can choose these contexts, because with the available information they can
easily be distinguished and assigned a probability (cf. the formulae used to
compute Table 2.4). It is obvious that with this set of contexts the resulting

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 29

basic possibility assignment coincides with the basic probability assignment,
because there is only one possible outcome per context.

These considerations illustrate in more detail the fact that the degree of
possibility of an event can also be seen as an upper bound for the probabil-
ity of this event, derived from a distinction of cases. Obviously, the bound
is tighter if the sets of possible values per context are smaller. In the limit,
for one possible value per context, it reaches the underlying basic probability
assignment. They also show that degrees of possibility essentially model neg-
ative information: our knowledge about the underlying unknown probability
gets more precise the more values can be excluded per context, whereas the
possible values do not convey any information (indeed: we already know from
the domain definition that they are possible). Therefore, we must strive to
exclude as many values as possible in the contexts to make the induced bound
on the underlying probability as tight as possible.

As just argued, the basic possibility assignment coincides with the basic
probability assignment if we use a set of contexts that is sufficiently fine-
grained, so that there is only one possible value per context. If we use a
coarser set instead, so that several values are possible per context, the result-
ing basic possibility assignment gets less specific (is only a loose bound on the
probability) and the basic probability assignment is clearly to be preferred.
This is most obvious if we compare Tables 2.3 and 2.5, where the ranking of
the degrees of possibility actually misleads us. So why bother about degrees of
possibility in the first place? Would we not be better off by sticking to prob-
ability theory? A superficial evaluation of the above considerations suggests
that the answer must be a definite ‘‘yes’’.

However, we have to admit that we could compute the probabilities in the
dice example only, because we had full information about the experimental
setup. In applications, we rarely find ourselves in such a favorable position.
Therefore let us consider an experiment in which we do not have full infor-
mation. Suppose that we still have five shakers, one of which is selected by
rolling an icosahedron. Let us assume that we know about the kind of the
dice that are contained in each shaker, that is, tetrahedrons in shaker 1, hex-
ahedrons in shaker 2 and so on. However, let it be unknown how many dice
there are in each shaker and what the rule is, by which the final outcome is
determined, that is, whether the maximum number counts, or the minimum,
or whether the outcome is computed as an average rounded to the nearest
integer number, or whether it is determined in some other, more complicated
way. Let it only be known that the rule is such that the outcome is in the
range of numbers present on the faces of the dice.

With this state of information, we can no longer compute a basic prob-
ability assignment on the set of possible outcomes, because we do not have
an essential piece of information needed in these computations, namely the
conditional probabilities of the outcomes given the shaker. However, since we
know the possible outcomes, we can compute a basic possibility assignment

30 CHAPTER 2. IMPRECISION AND UNCERTAINTY

if we choose the shakers as contexts (cf. Table 2.3 on page 23). Note that in
this case choosing the shakers as contexts is the best we can do. We cannot
choose a more fine-grained set of contexts, because we lack the necessary in-
formation. Of course, the basic possibility assignment is less specific than the
best one for the original experiment, but this is not surprising, since we have
much less information about the experimental setup.

2.4.3 The Insufficient Reason Principle

We said above that we cannot compute a basic probability assignment with
the state of information we assumed in the modified dice example. A more
precise formulation is, of course, that we cannot compute a basic probability
assignment without adding information about the setup. It is clear that we
can always define conditional probabilities for the outcomes given the shaker
and thus place ourselves in a position in which we have all that is needed
to compute a basic probability assignment. The problem with this approach
is, obviously, that the conditional probabilities we lay down appear out of
the blue. In contrast to this, basic possibility assignments can be computed
without inventing information (but at the price of being less specific).

It has to be admitted, though, that for the probabilistic setting there
is a well-known principle, namely the so-called insufficient reason principle,
which prescribes a specific way of fixing the conditional probabilities within
the contexts and for which a very strong case can be made. The insufficient
reason principle states that if you can specify neither probabilities (quantita-
tive information) nor preferences (comparative information) for a given set of
(mutually exclusive) events, then you should assign equal probabilities to the
events in the set, because you have insufficient reasons to assign to one event
a higher probability than to another. Hence the conditional probabilities of
the events possible in a context should be the same.

A standard argument in favor of the insufficient reason principle is the
permutation invariance argument: in the absence of any information about the
(relative) probability of a given set of (mutually exclusive) events, permuting
the event labels should not change anything. However, the only assignment of
probabilities that remains unchanged under such a permutation is the uniform
assignment (that is, all events are assigned the same probability).

Note that the structure of the permutation invariance argument is the
same as the structure of the argument by which we usually convince our-
selves that the probability of an ace when rolling a (normal, i.e. cube-shaped)
die is 1

6 . We argue that the die is symmetric and thus permuting the numbers
should not change the probabilities of the numbers. This structural equiva-
lence is the basis for the persuasiveness of the insufficient reason principle.
However, it should be noted that the two situations are fundamentally differ-
ent. In the case of the die we consider the physical parameters that influence
the probability of the outcomes and find them to be invariant under a per-

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 31

mutation of the face labels. In the case of the insufficient reason principle
we consider, as we may say, our ignorance about the obtaining situation and
find that it stays the same if we permute the event labels. That is, in the
former case, we conclude from the presence of (physical) information that the
probabilities must be the same, in the latter we conclude from the absence of
information, that equal probabilities are the best choice.5

Of course, this does not invalidate the insufficient reason principle, but
it warns us against an unreflected application. Note also that the permuta-
tion invariance argument assumes that probabilities reflect our knowledge
about a situation and are not ‘‘physical’’ parameters, that is, it presupposes
a subjective or personalistic interpretation of probability. Hence it may be
unacceptable to an empirical or frequentist interpretation of probability.6

Although an approach based on this principle is the toughest competitor of
a possibilistic approach, we do not consider the insufficient reason princi-
ple much further. The reason is that whether the methods discussed in this
book are useful or not does not depend on the answer given to the question
whether an insufficient reason principle approach or a possibilistic approach
is to be preferred. Although we study possibilistic networks, we argue that
the decomposition and propagation operations used in these networks can be
justified for a purely probabilistic approach as well. However, we take up the
insufficient reason principle again in Section 2.4.12, in which we point out
open problems in connection with a possibilistic approach.

2.4.4 Overlapping Contexts

The examples discussed up to now may have conveyed the idea that the con-
texts must be (physically) disjoint, because the selection of a shaker excludes
all events associated with another shaker. (Note that we should not be de-
ceived by the fact that the same outcome can be produced with two different
shakers. In this case only the outcome is the same, but the courses of the
experiment leading to it are different.) However, this is not necessary. In or-
der to illustrate what we mean by non disjoint or overlapping contexts, we
consider yet another modification of the dice experiment.

Suppose that the shakers are marked with colors. On each shaker there
are two colored spots: one on the front and one on the back. There are five
colors: red, green, yellow, blue, and white, each of which has been used twice.
The full assignment of colors to the shakers is shown in Table 2.7. Obviously,
in connection with a red or a green spot all numbers in the range 1 through

5Note, however, that in the case of the die the theoretically introduced probability is,
strictly speaking, only a hypothesis that has to be verified empirically, since there is no a
priori knowledge about reality [Reichenbach 1944].

6For a brief comparison of the three major interpretations of probability—logical, em-
pirical (or frequentist), and subjective (or personalistic)—see, for instance [Savage 1954]
and [von Weizsäcker 1992].

32 CHAPTER 2. IMPRECISION AND UNCERTAINTY

Table 2.7 The shakers marked with colors.

shaker 1 2 3 4 5

front red white blue yellow green
back green yellow white blue red

Table 2.8 The probabilities of all possible sets of colors.

event P

red 2
5

green 2
5

yellow 2
5

blue 2
5

white 2
5

any four 1

all five 1

event P

red or green 2
5

red or yellow 4
5

red or blue 4
5

red or white 4
5

green or yellow 4
5

green or blue 4
5

green or white 4
5

yellow or blue 3
5

yellow or white 3
5

blue or white 3
5

event P

red or green or yellow 4
5

red or green or blue 4
5

red or green or white 4
5

red or yellow or blue 1

red or yellow or white 1

red or blue or white 1

green or yellow or blue 1

green or yellow or white 1

green or blue or white 1

yellow or blue or white 3
5

Table 2.9 Degrees of possibility in the example with color-marked shakers.

numbers degree of possibility

1–8 1

9–10 4
5

11–12 2
5

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 33

Table 2.10 Another possible color assignment.

shaker 1 2 3 4 5

front blue red white yellow green
back green white yellow blue red

12 are possible, whereas in connection with a yellow or a blue spot only
the numbers 1 through 10 are possible, and in connection with a white spot
only the numbers 1 through 8 are possible. Let us assume that we do not
know about the shakers and how they are selected, but that we do know the
probabilities that can be derived from the selection process for sets of colors.
These probabilities are shown in Table 2.8.

In this situation we should choose the colors as contexts, because they
provide the finest-grained distinction of cases that is available to us. Apart
from this the only difference is that we can no longer compute the degree
of possibility of an outcome as the sum of the probabilities of the contexts
in which it is possible. Instead, we have to look up the probability of this
set of contexts in the table of probabilities. The resulting basic possibility
assignment is shown in Table 2.9. Note that this basic possibility assignment
is less specific than the one shown in Table 2.6 (it is less restrictive for the
numbers 7 and 8 and the numbers 11 and 12), which reflects that we have
less specific information about the experimental setup.

Although in the previous example we could handle overlapping contexts,
this example points out a problem. If the contexts overlap and we do not
know the full probability measure on the set of contexts, but only, say, the
probability of single contexts, we can no longer compute the degree of pos-
sibility of an outcome. Suppose, for instance, that w.r.t. the connection of
colors and outcomes we have the same information as in the previous exam-
ple, but of the probability measure on the set of colors we only know that
each color has a probability of 2

5 . Unfortunately, there is an assignment of
colors to the shakers that is consistent with this information, but in which the
contexts overlap in a different way, so that the probability measure on the set
of colors differs. This assignment is shown in Table 2.10, the corresponding
probabilities of sets of colors are shown in Table 2.11. The resulting basic
possibility assignment is shown in Table 2.12. (Note, however, that we could
compute this basic possibility asignment only if we knew the probabilities of
the sets of colors shown in Table 2.11, which we assume not to know.)

A simple way to cope with the problem that we do not know the prob-
abilities of sets of colors is the following: If we know the probabilities of the
contexts, we can compute upper bounds for the probabilities of sets of con-

34 CHAPTER 2. IMPRECISION AND UNCERTAINTY

Table 2.11 The probabilities of all possible sets of colors as they can be derived
from the second possible color assignment.

event P

red 2
5

green 2
5

yellow 2
5

blue 2
5

white 2
5

any four 1

all five 1

event P

red or green 3
5

red or yellow 4
5

red or blue 4
5

red or white 3
5

green or yellow 4
5

green or blue 3
5

green or white 4
5

yellow or blue 3
5

yellow or white 3
5

blue or white 4
5

event P

red or green or yellow 1

red or green or blue 4
5

red or green or white 4
5

red or yellow or blue 1

red or yellow or white 4
5

red or blue or white 1

green or yellow or blue 4
5

green or yellow or white 1

green or blue or white 1

yellow or blue or white 4
5

Table 2.12 Degrees of possibility in the second example with color-marked
shakers.

numbers degree of possibility

1–10 1

11–12 3
5

Table 2.13 Degrees of possibility computed from upper bounds on context
probabilities.

numbers degree of possibility

1–10 1

11–12 4
5

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 35

text using P(A ∪ B) ≤ P(A) + P(B). That is, we may use the sum of the
probabilities of the contexts in a set (bounded by 1, of course) instead of the
(unknown) probability of the set. However, in this case we have to reinterpret
a degree of possibility as an upper bound on the probability of the possibility
of an event. This is acceptable, since a degree of possibility can be seen as an
upper bound for the probability of an event anyway (see above) and using an
upper bound for the probability of a context only loosens the bound. In the
example at hand such a computation of the degrees of possibilities leads to
the basic possibility assignment shown in Table 2.13. Of course, due to the
simplicity of the example and the scarcity of the information left, which is
not sufficient to derive strong restrictions, this basic possibility assignment is
highly unspecific and thus almost useless. In more complex situations the ba-
sic possibility assignment resulting from such an approach may still be useful,
though, because more information may be left to base a decision on.

In the following we do not consider the approach using upper bounds
any further, but assume that the contexts are disjoint or that the probability
measure on the set of contexts is known. For the domains of application we are
concerned with in this book, this is usually a reasonable assumption, so that
we can spare ourselves the formal and semantical complications that would
result from an approach that includes the possibility of such upper bounds.
Note, by the way, that the situation just described cannot be handled by the
insufficient reason principle alone, since the missing information about the
probabilities of sets of contexts cannot be filled in using it.

2.4.5 Mathematical Formalization

The context model interpretation of a degree of possibility we adopted in the
above examples can be formalized by the notion of a random set [Nguyen
1978, Hestir et al. 1991]. A random set is simply a set-valued random vari-
able: in analogy to a standard, usually real-valued random variable, which
maps elementary events to numbers, a random set maps elementary events
to subsets of a given reference set. Applied to the dice experiments this means:
The sample space consists of five elementary events, namely the five shakers.
Each of them is mapped by a random set to the set of numbers that can be
rolled with the die or dice contained in it. Formally, a random set can be
defined as follows [Nguyen 1978, Nguyen 1984, Kruse et al. 1994]:

Definition 2.4.1 Let (C, 2C , P) be a finite probability space and let Ω be a
nonempty set. A set-valued mapping Γ : C → 2Ω is called a random set.7

The sets Γ(c), c ∈ C, are called the focal sets of Γ.

7For reasons unknown to us a random set is often defined as the pair (P, Γ) whereas a
standard random variable is identified with the mapping. However, a random set is merely
a set-valued random variable, so there seems to be no need for a distinction. Therefore we
identify a random set with the set-valued mapping.

36 CHAPTER 2. IMPRECISION AND UNCERTAINTY

The set C, i.e. the sample space of the finite probability space (C, 2C , P),
is intended to model the contexts that are distinguishd. The focal set Γ(c)
contains the values that are possible in context c. It is often useful to require
the focal set Γ(c) to be nonempty for all contexts c.

A context c may be defined, as illustrated above, by physical or observa-
tional frame conditions. It may also be, for example, an observer or a mea-
surement device. The probability P can state the probability of the occurrence
(how often shaker i is used) or the probability of the selection of a context
(how often a certain color is chosen to accompany the outcome), or a com-
bination of both. An interpretation that is less bound to probability theory
may also choose to see in the probability measure P a kind of quantification of
the relative importance or reliability of observers or other information sources
[Gebhardt and Kruse 1998].

Note that this definition implicitly assumes that the contexts are disjoint,
since they are made the elementary events of a probability space. At first
sight, this seems to prevent us from using overlapping contexts, like those
of the color-marked shakers example. However, it should be noted that over-
lapping contexts can always be handled by introducing artificial contexts,
combinations of which then form the actual contexts. These artificial con-
texts are only a mathematical device to get the probability arithmetic right.
For example, in the color-marked shakers example, we may introduce five
contexts c1 to c5, each having a probability of 1

5 , and then define that the
contexts ‘‘red’’ and ‘‘green’’ both correspond to the set {c1, c5}, ‘‘yellow’’ cor-
responds to {c2, c4}, ‘‘blue’’ corresponds to {c3, c4}, and ‘‘white’’ corresponds
to {c2, c3}. Actually, with these assignments, the contexts c1 to c5 can be
interpreted as the shakers 1 to 5. However, it is clear that they can also be
constructed without knowing about the shakers as a mathematical tool. In
the same way, appropriate focal sets can be found.

A basic possibility assignment is formally derived from a random set by
computing the contour function [Shafer 1976] or the falling shadow [Wang
1983a] of a random set on the set Ω. That is, to each element ω ∈ Ω the
probability of the set of those contexts is assigned that are mapped by Γ to
a set containing ω [Kruse et al. 1994].

Definition 2.4.2 Let Γ : C → 2Ω be a random set. The basic possibility
assignment induced by Γ is the mapping

π : Ω → [0, 1],
ω �→ P({c ∈ C | ω ∈ Γ(c)}).

With this definition the informal definition given above is made formally
precise: the degree of possibility of an event is the probability of the possibility
of the event, that is, the probability of the contexts in which it is possible.

In the following we will consider mainly basic possibility assignments on
finite sets Ω to avoid some technical complications.

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 37

2.4.6 Normalization and Consistency

Often it is required that a basic possibility assignment is normalized, where
normalization is defined as follows:

Definition 2.4.3 A basic possibility assignment is called normalized iff

∃ω ∈ Ω : π(ω) = 1.

The reason for this requirement can be seen from the corresponding require-
ment for the underlying random set [Kruse et al. 1994]:

Definition 2.4.4 A random set Γ : C → 2Ω is called consistent iff⋂
c∈C

Γ(c) = ∅.

That is, a random set is consistent if there is at least one element of Ω that is
contained in all focal sets. Obviously, the basic possibility assignment induced
by a random set is normalized if and only if the random set is consistent. With
an inconsistent random set no element of Ω can have a degree of possibility
of 1, because each element is excluded from at least one context.

What is the intention underlying these requirements? Let us consider a
simple example: two observers, which form the contexts, are asked to estimate
the value of some measure, say, a length. Observer A replies that the value lies
in the interval [a, b], whereas observer B replies that it lies in the interval [c, d].
If a < b < c < d, then there is no value that is considered to be possible by
both observers, that is, the two observers contradict each other. We can infer
directly from the structure of the available information—without knowing the
true value of the measure—that (at least) one observer must be wrong. Hence
requiring consistency is meant to ensure the compatibility of the information
available in the different observation contexts.

However, the question arises whether this is always reasonable. In the
first place, it should be noted that requiring consistency is plausible only if
the contexts are observers or measurement devices or other sources of infor-
mation. All of these contexts should also refer to the same underlying physical
situation, in order to make it reasonable to assume that there is one fixed true
value for the considered measure, which, at least, can be expected to be con-
sidered as possible in all contexts. Otherwise it would not be clear why it is a
contradiction if no element of Ω is contained in all focal sets. For example, if
the contexts are determined by physical frame conditions, we may face a situ-
ation in which under certain circumstances (of which we do not know whether
they obtain) one set of values is possible, whereas under other circumstances
(which we also have to take into account) a different set of values is possible.
In this case there is no contradiction if the two sets are disjoint. The situation
is rather that of an either/or of two possibilities.

38 CHAPTER 2. IMPRECISION AND UNCERTAINTY

Table 2.14 Degrees of possibility of an inconsistent random set.

numbers degree of possibility

1–4 1
5 + 1

5 + 1
5 + 1

5 = 4
5

5–6 1
5 + 1

5 + 1
5 = 3

5

7–8 1
5 + 1

5 = 2
5

9–10 1
5 + 1

5 = 2
5

11–12 1
5 = 1

5

To make this more precise, let us consider yet another version of the dice
experiment. Suppose that we have the usual five shakers with an unknown
number of tetrahedrons in the first, hexahedrons in the second, and so on, but
with the dodecahedrons in the fifth shaker replaced by tetrahedrons. These
tetrahedrons differ, though, from those in shaker 1 as their faces are labeled
with the numbers 9 through 12. From this information we can compute the
basic possibility assignment shown in Table 2.14.

Since there is no outcome that is possible independent of the shaker that
gets selected, the corresponding random set is inconsistent. However, it is
not clear where there is a contradiction in this case. The ‘‘inconsistency’’
only reflects that for each outcome there is at least one context in which it
is impossible. But this is not surprising, since the contexts are defined by
physical frame conditions. The events that are considered in each context are
entirely unrelated. Under these conditions it would actually be more surprising
if there were an outcome that is possible in all cases.

However, even if we restrict the requirement of a normalized basic pos-
sibility assignment and a consistent random set to observations and mea-
surements, they are semantically dubious. Although the intention to avoid
contradictions—if the contexts are observers that refer to the same physi-
cal situation, we actually have a contradiction—is understandable, we should
check what is achieved by these requirements. In symbolic logic contradic-
tions are avoided, because contradictions point out errors in the theory. On
the other hand, if there are no contradictions, the theory is correct—at least
formally. Can we say the same about a consistent random set?

To answer this question, let us reconsider the simple example of the two
observers who gave the intervals [a, b] and [c, d] as sets of possible values for
some measure. Let a < c < b < d. Since both observers consider it to be pos-
sible that the value of the measure lies in the interval [c, b], the corresponding
random set is consistent. However, it is immediately clear that this does not

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 39

exclude errors. If the actual value lies in the interval [a, c), then observer 1
was right and observer 2 erred. If the actual value lies in the interval (b, d], it
is the other way round. In addition, if we do not explicitly rule out this possi-
bility, both observers could be wrong. The fact that errors are still possible is
not important, though. A consistent theory can also be proven wrong, namely
if it turns out that it does not fit the experimental facts (obviously, formal
correctness does not imply factual correctness). Likewise, a consistently esti-
mating set of observers may be proven (partly) wrong by reality.

The important point to notice here is that by using basic possibility assign-
ments we always expect such errors. Why do we assign a degree of possibility
greater than zero to the intervals [a, c) and (b, d], although one observer must
have been wrong if the actual value lies within these intervals? Obviously,
because we are not sure that neither made a mistake. If we were sure of
their reliability, we could intersect the two intervals and thus restrict our
considerations to the interval [c, b]. Actually, by the probabilities we assign
to the observers we model their reliability, that is, we state the probability
with which we expect their estimates to be correct. However, if we always
expect errors to be found, it is not clear why we try to exclude those cases
in which we know from the structure of the available information that there
must be a (hidden) error. The ways in which we have to deal with this case
and with those cases in which there is no structural indication of an error—at
least not right from the start—should not be so different. Thus, in this re-
spect, the normalization and consistency requirements turn out to be highly
dubious. Therefore, and since we use contexts mainly to distinguish between
physical frame conditions, we disregard these requirements and work with
non-normalized basic possibility assignments (cf. also Chapter 5, in which we
use the context model to define database-induced possibility distributions).

2.4.7 Possibility Measures

Up to now we have considered mainly degrees of possibility for elementary
events, which are combined in a basic possibility assignment. However, in
order to draw inferences with degrees of possibility a possibility measure is
needed, which assigns degrees of possibility to (general) events, that is, to
sets of elementary events. From the definition of a degree of possibility we
have adopted, namely that it is the probability of the possibility of an event,
it is clear what values we have to assign. In direct analogy to the definition of
a basic possibility assignment (see Definition 2.4.2 on page 36) we can make
the following definition:

Definition 2.4.5 Let Γ : C → 2Ω be a random set. The possibility measure
induced by Γ is the mapping

Π : 2Ω → [0, 1],
E �→ P({c ∈ C | E ∩ Γ(c) = ∅}).

40 CHAPTER 2. IMPRECISION AND UNCERTAINTY

That is, a possibility measure is simply the extension of a basic possibility
assignment to the powerset of the set Ω and, conversely, a basic possibility
assignment is a possibility measure restricted to single element sets.

In probability theory the most interesting thing about a basic probability
assignment and the accompanying probability measure is that the measure
can be constructed from the assignment. That is, we need not store all prob-
abilities that are assigned to (general) events, but it suffices to store the
probabilities of the elementary events. From these the probabilities of any
event E can be recovered by a simple application of Kolmogorov’s axioms,
which prescribe to add the probabilities of all elementary events contained
in the event E. Therefore the question arises whether similar circumstances
obtain for possibility measures and basic possibility assignments.

Unfortunately, w.r.t. the above definition, this is not the case. Although
in standard possibility theory it is defined that [Zadeh 1978]

Π(E) = max
ω∈E

Π({ω}) = max
ω∈E

π(ω),

where E is a (general) event, and, indeed, this equation is valid in the first
dice experiment we discussed on page 22, it is easy to see that it need not
be true for general random sets: reconsider the dice experiment discussed
on page 37, in which the dodecahedrons of the fifth shaker are replaced by
tetrahedrons labeled with the numbers 9 to 12 (that is, the experiment by
which we illustrated inconsistent random sets). Let us compute the degree
of possibility of the event E = {O7, O11}, where Oi is the elementary event
that the outcome of the experiment is the number i. To compute the degree
of possibility of this event, we have to ask: what is the probability of the
set of contexts in which at least one of the outcomes 7 and 11 is possible?
Obviously, there are three contexts in which at least one of the numbers
is possible, namely the third and the fourth shaker (here the 7 is possible)
and the fifth shaker (here the 11 is possible). Since the three contexts are
disjoint and have a probability of 1

5 each, the answer is Π(E) = 3
5 . However,

max{π(O7), π(O11)} = max{ 2
5 , 1

5} = 2
5 (cf. Table 2.14 on page 38).

Note that the failure of the above equation is not due to the fact that the
considered random set is inconsistent. Requiring a random set to be consistent
is not sufficient to make the above equation hold in general. To prove this, let
us relabel the faces of the tetrahedrons of the fifth shaker, so that they show
the numbers 1, 10, 11, and 12. In this case the corresponding random set is
consistent, since the outcome 1 is now possible in all contexts. However, the
degree of possibility of the event E is still 3

5 and the maximum of the degrees
of possibility of the elementary events contained in E is still 2

5 .
As can easily be verified, a condition that is necessary and sufficient to

make π(E)= maxω∈E π(ω) hold for all events E is that the focal sets of the
random set are consonant, which is defined as follows [Kruse et al. 1994]:

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 41

Definition 2.4.6 Let Γ : C → 2Ω be a random set with C = {c1, . . . , cn}. The
focal sets Γ(ci), 1 ≤ i ≤ n, are called consonant iff there exists a sequence
ci1 , ci2 , . . . , cin

, 1 ≤ i1, . . . , in ≤ n, ∀1 ≤ j < k ≤ n : ij = ik, so that

Γ(ci1) ⊆ Γ(ci2) ⊆ . . . ⊆ Γ(cin
).

Intuitively, it must be possible to arrange the focal sets so that they form a
‘‘(stair) pyramid’’ or a ‘‘(stair) cone’’ of ‘‘possibility mass’’ on Ω (with the fo-
cal sets corresponding to horizontal ‘‘slices’’, the thickness of which represents
their probability). With this picture in mind it is easy to see that requiring
consonant focal sets is sufficient for ∀E ⊆ Ω : Π(E) = maxω∈E π(ω). In ad-
dition, it is immediately clear that a random set with consonant nonempty
focal sets must be consistent, because all elements of the first focal set in
the inclusion sequence are possible in all contexts. (The opposite, however, is
not true, as shown above.) On the other hand, with non-consonant focal sets
only ‘‘pyramids’’ or ‘‘cones’’ with ‘‘holes’’ can be formed, and using the ele-
mentary event underlying such a ‘‘hole’’ and an appropriately selected other
elementary event it is always possible to construct a counterexample. (Com-
pare Table 2.14 on page 38 and consider how the counterexample discussed
above is constructed from it.)

For possibility measures induced by general random sets, we only have

∀E ⊆ Ω : max
ω∈E

π(ω) ≤ Π(E) ≤ min
{

1,
∑
ω∈E

π(ω)
}

.

On the one hand, Π(E) is equal to the left hand side if there is an elementary
event ω ∈ E, such that no elementary event in E is possible in a context in
which ω is impossible. Formally,

∃ω ∈ E : ∀ρ ∈ E : ∀c ∈ C : ρ ∈ Γ(c) ⇒ ω ∈ Γ(c).

On the other hand, Π(E) is equal to the right hand side if no two elementary
events contained in E are possible in the same context, or formally,

∀ω, ρ ∈ E : ∀c ∈ C : (ω ∈ Γ(c) ∧ ρ ∈ Γ(c)) ⇒ ω = ρ.

If we are given a basic possibility assignment, but not the underlying ran-
dom set, we only know the inequality stated above. However, this inequal-
ity only restricts π(E) to a range of values. Therefore it is not possible in
general to compute the degree of possibility of a (general) event from a ba-
sic possibility assignment. The reason is that computing a contour function
(cf. the paragraph preceding Definition 2.4.2 on page 36) loses information.
(Euphemistically, we may also say that a basic possibility assignment is an
information-compressed representation of a random set.) This is illustrated
in Table 2.15. It shows two random sets over Ω = {1, 2, 3, 4, 5}, both of which
lead to the same basic possibility assignment. However, with the left random

42 CHAPTER 2. IMPRECISION AND UNCERTAINTY

Table 2.15 Two random sets that induce the same basic possibility assign-
ment. The numbers marked with a • are possible in the contexts.

1 2 3 4 5

c1 : 1
4 • • • •

c2 : 1
4 • • • •

c3 : 1
2 • •

π 1
4

1
2 1 3

4
1
2

1 2 3 4 5

c1 : 1
4 • • •

c2 : 1
4 • • •

c3 : 1
2 • • •

π 1
4

1
2 1 3

4
1
2

set, Π({1, 5}) = 1
2 (maximum of the degrees of possibility of the elementary

events), but with the right random set, Π({1, 5}) = 3
4 (sum of the degrees of

possibility of the elementary events).
The considerations of this section leave us in an unfortunate position. As

it seems, we have to choose between two alternatives, both of which have
serious drawbacks. (Note that approaches like storing the possibility measure
instead of the basic possibility assignment—which is the approach underlying
the so-called Dempster–Shafer theory [Dempster 1967, Dempster 1968, Shafer
1976]—or trying to represent the contexts explicitly are clearly out of the ques-
tion, because both approaches require too much storage space for problems in
the real world.) In the first place, we could try to stick to the standard way of
completing a possibility measure from a basic possibility assignment, namely
by taking the maximum over the elementary events. However, this seems
to force us to accept the requirement that the focal sets of the random set
must be consonant. In our opinion this requirement is entirely unacceptable.
We cannot think of an application in which this requirement is actually met.
(Symmetric confidence levels on statistically estimated parameters may be the
only exception, but to handle these, statistical methods should be preferred.)
Nevertheless, this is the approach underlying the so-called mass assignment
theory [Baldwin et al. 1995], which we discuss briefly in the next section, and
which has been fairly popular.

In passing we mention that a very simple argument put forth in favor of
the maximum operation in [Gebhardt 1997], namely that we should choose it
because it is the most pessimistic choice possible, is hardly acceptable. This
argument overlooks that a possibility measure in the interpretation of the
context model is an upper bound on the underlying probability measure and
that degrees of possibility model negative information. That is, the more we
know about the experimental setup, the tighter the bound on the probabil-
ity will be (see above). But by choosing the maximum operation, we make

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 43

the bound tighter than the information available from the basic possibility
assignment permits us to. It is even possible that by choosing the maximum
we go below the probability and thus make the bound lower than it can be
made. Therefore choosing the maximum operation is obviously not the most
pessimistic, but, contrariwise, the most optimistic choice.

On the other hand, we could accept the weak upper bound given by the
right hand side of the above inequality, i.e. Π(E) ≤ min

{
1,

∑
ω∈E π(ω)

}
(which actually is the most pessimistic choice), thus seeking refuge in an ap-
proach already mentioned in a different context above, namely to redefine a
degree of possibility as an upper bound on the probability of the possibility
of an event. Although this bound is usually greater than necessary, we can
maintain the interpretation that a degree of possibility is an upper bound for
the probability of an event. However, for this bound to be useful, there must
be very few contexts with more than one possible value, to keep the sum
below the cutoff value 1. Clearly, if the cutoff value 1 is reached for too many
sets, the measure is useless, since it conveys too little information. This will
become clearer in the next chapter where we consider multidimensional pos-
sibility distributions. In our opinion this drawback disqualifies this approach,
because it practically eliminates the capability of possibility theory to handle
situations with imprecise, that is, set-valued information.

Nevertheless, there is a (surprisingly simple) way out of this dilemma,
which we discuss in the next but one section. It involves a reinterpretation of
a degree of possibility for general, non-elementary events while keeping the
adopted interpretation for elementary events.

2.4.8 Mass Assignment Theory

Although we already indicated above that we reject the assumption of conso-
nant focal sets, we have to admit that a basic possibility assignment induced
by a random set with consonant nonempty focal sets has an important ad-
vantage, namely that from it we can recover all relevant properties of the
inducing random set by computing a so-called mass assignment.

Definition 2.4.7 The mass assignment induced by a basic possibility as-
signment π is the mapping

m : 2Ω → [0, 1],
E �→ min

ω∈E
π(ω) − max

ω∈Ω−E
π(ω).

This mapping is easily understood if one recalls the intuitive picture described
above, namely that for a random set having consonant nonempty focal sets
we can imagine the possibility mass as a ‘‘(stair) pyramid’’ or a ‘‘(stair) cone’’
on Ω. Then the formula in the above definition simply measures the ‘‘height’’
of the step that corresponds to the event E.

44 CHAPTER 2. IMPRECISION AND UNCERTAINTY

A mass assignment, restricted to those sets E ⊆ Ω for which m(E) > 0, can
be seen as a representation of some kind of standardized random set, which
results if for a given random set we merge all contexts with identical focal sets.
That is, a mass assignment can be computed from a random set Γ : C → 2Ω

having consonant nonempty focal sets as

m : 2Ω → [0, 1],
E �→ P({c ∈ C | Γ(c) = E}).

It is evident that no information is lost if contexts with identical focal sets
are merged: w.r.t. the values that can be excluded, they are equivalent and
thus do not provide any information to distinguish between the values in
their focal sets. The masses of a mass assignment are the probabilities of the
merged contexts. Mass assignments are often used to compute a so-called least
prejudiced basic probability assignment by applying the insufficient reason
principle (cf. Section 2.4.3) to all sets E ⊆ Ω with |E| > 1 and m(E) > 0 (see,
for example, [Baldwin et al. 1995]).

The mass assignment theory is based, as discussed above, on the assump-
tion that the focal sets of the random set underlying a given basic possibility
assignment are consonant. In [Baldwin et al. 1995] the following argument is
put forward in favor of this assumption: consider a set of observers (which
corresponds to the set of contexts we use), each of which states some set of
values (for a symbolic or a discrete attribute) or an interval (for a continuous
attribute). It is plausible that there are some observers who boldly state a
small interval or a small set of values and some who are more cautious and
thus state a larger interval or a larger set of values. If there is one true un-
derlying value, then it is plausible that the different estimates given by the
observers can be arranged into an inclusion sequence.

However, in our opinion, this voting model (as we may say that each
observer ‘‘votes’’ for an interval or a set of values and the degree of possibility
measures the number of votes that fall to a value) is not convincing. It only
establishes that usually there will be smaller and larger focal sets resulting
from observers who boldly or cautiously estimate a given measure. It cannot
justify the assumption that the focal sets are consonant. The reason is that
it is not clear why two observers must not state intervals [a, b] and [c, d]
with, for instance, a < c and b < d. Obviously, in such a situation the two
observers only express differing expectations: one states that the true value of
the measure is, in his opinion, likely to be smaller, whereas the other assumes
that it is likely to be larger. Whether they estimate boldly or cautiously
does not influence this. That there is one true value can lead at most to the
requirement that [a, b] ∩ [c, d] = ∅, although with degrees of possibility even
this weak requirement is hard to accept (cf. Section 2.4.6).

To establish the consonance of the sets voted for, we need strong assump-
tions about how the observers arrive at their estimates. We could, for example,
assume that all observers use the same estimation method, which depends

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 45

only on the available information and some kind of ‘‘cautiousness parame-
ter’’. One such method (actually the only plausible one known to us) is the
statistical estimation of a confidence interval with the additional requirement
that it must be symmetric for numeric attributes and it must be greedy for
symbolic attributes (that is, the most probable values must be selected first),
where the ‘‘cautiousness parameter’’ is the accepted error bound. However,
confidence intervals should be handled with the proper statistical methods.
On the other hand, even if one accepts this approach, it is not clear why one
should make such strong assumptions about the behavior of the observers,
since in applications these almost never hold.

As a consequence, we conclude that the voting model does not suffice to
establish the consonance of a random set. The additional assumptions needed
are hard to accept, though. In addition, the voting model cannot be applied
to situations where the contexts are formed by physical frame conditions,
because—as shown above—in such situations it is not even reasonable to re-
quire a basic possibility assignment to be normalized, let alone the underlying
random set to have consonant focal sets.

2.4.9 Degrees of Possibility for Decision Making

Since we rejected the approaches that suggest themselves immediately, we
face the task to provide an alternative. There actually is one and it is sur-
prisingly simple [Borgelt 1995]. The rationale underlying it is that in most
applications calculi to handle imprecision and uncertainty are employed to
support decision making. That is, it is often the goal to decide on one course
of action and to decide in such a way as to optimize the expected benefit.
The best course of action, obviously, depends on the obtaining situation, but
usually there is only imperfect (that is, incomplete or uncertain) knowledge,
so that the obtaining situation cannot be identified with certainty.

In a probabilistic setting it is plausible that we should decide on that action
that corresponds to the most probable situation—at least, if each situation
requires a different course of action and if all costs are equal—because this
decision strategy guarantees that in the long run we make the smallest number
of mistakes (and thus incur the lowest costs). In the possibilistic setting the
commonly used decision rule is directly analogous, namely to decide on that
course of action that corresponds to the situation with the highest degree
of possibility. It may be argued that this situation can be ‘‘least excluded’’,
since the probability of those contexts in which it can be excluded is smallest.
However, this possibilistic decision rule is open to criticism, especially, if the
decision is compared to one derived from the basic probability assignment
computed by applying the insufficient reason principle (cf. Section 2.4.3). In
Section 2.4.12, in which we discuss open problems, we briefly consider possible
points of criticism. For the other parts of this book, however, we accept this
decision rule, although we share most doubts whether it is reasonable.

46 CHAPTER 2. IMPRECISION AND UNCERTAINTY

If we take the goal to make a decision into account right from the start,
it modifies our view of the modeling and reasoning process and thus leads
to different demands on a measure assigned to sets of elementary events.
The reason is that with this goal in mind we no longer care about, say, the
probability of a set of elementary events, because in the end we have to decide
on one (at least under certain circumstances, for example, if no two events
require the same course of action). We only care about the probability of the
most probable elementary event contained in the set. As a consequence, if
we want to rank two (general) events, we rank them according to the best
decision we can make by selecting an elementary event contained in them.
Thus it is reasonable to assign to a (general) event the maximum of the
measures assigned to the elementary events contained in it, since it directly
reflects the best decision possible (or at least the best decision w.r.t. the
uncertainty measure used), if we are constrained to select from this event.

As a consequence, we immediately get the formula to compute the degrees
of possibility of a (general) event E, namely

Π(E) = max
ω∈E

Π({ω}) = max
ω∈E

π(ω).

Thus we have the following redefinition that replaces Definition 2.4.5:

Definition 2.4.8 Let Γ : C → 2Ω be a random set. The possibility measure
induced by Γ is the mapping

π : 2Ω → [0, 1],
E �→ max

ω∈E
P({c ∈ C | ω ∈ Γ(c)}).

Note that the interpretation we adopt here is not restricted to possibility the-
ory. It is perfectly reasonable for probability theory too, since it is justified
by the goal of the reasoning process, namely to identify the true state ω0 of
a section of the world, and not by the underlying calculus. This is very im-
portant, because it decouples the methods examined in the following chapters
in connection with possibility theory from whether one considers possibility
theory to be a reasonable uncertainty calculus or not and thus makes them
noteworthy even for those who reject possibility theory.

A question that remains, though, is why anyone should bother about the
degrees of possibility of (general) events defined in this way, that is, as the
maximum over the degrees of possibility of the contained elementary events.
Actually, for one-dimensional problems they are quite useless, since we can
work with the basic possibility assignment and need not consider any sets.
However, if we have multidimensional possibility (or probability) distribu-
tions, which we need to decompose in order to handle them, they turn out to
be useful—at least on certain sets. This is considered in more detail in the next
chapter, in which we discuss decompositions of relations and of multivariate
probability and possibility distributions.

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 47

2.4.10 Conditional Degrees of Possibility

Possibilistic reasoning is directly analogous to probabilistic reasoning. It con-
sists in conditioning a given (multivariate) possibility distribution on a set Ω
of possible states (or events), which represents the generic knowledge about
the considered domain. The conditions are supplied by observations made,
that is, by the evidence about the domain.

A conditional degree of possibility is defined as follows:

Definition 2.4.9 Let Π be a possibility measure on Ω and E1, E2 ⊆ Ω. Then

Π(E1 | E2) = Π(E1 ∩ E2)

is called the conditional degree of possibility of E1 given E2.

The reason for this definition will become clear in the next chapter, where
possibilistic reasoning is studied in more detail in Section 3.4.

Note, however, that this definition of a conditional degree of possibility
is not the only one that has been suggested. Others include the approach by
[Hisdal 1978] that is based on the equation

Π(E1 ∩ E2) = min{Π(E1 | E2), Π(E2)}.

A definition of a conditional degree of possibility is derived from this equation
by choosing its greatest solution:

Π(E1 | E2) =
{

1, if Π(E1 ∩ E2) = Π(E2),
Π(E1 ∩ E2), otherwise.

Obviously the difference to the above definition consists only in the first case,
which ensures the normalization condition. Since we rejected the normaliza-
tion condition in Section 2.4.6 and thus need not make sure that it is satisfied,
we do not consider this definition any further.

Another approach simply defines a conditional degree of possibility in
direct analogy to a conditional probability, namely as

Π(E1 | E2) =
Π(E1 ∩ E2)

Π(E2)
,

provided that Π(E2) > 0. This definition leads, obviously, to an entirely
different theory, since it involves a renormalization of the degrees of possibility
(due to the division by Π(E2)), whereas Definition 2.4.9 leaves the degrees of
possibility unchanged by the conditioning operation.

The renormalization, however, poses problems. As it seems, it can be jus-
tified on the basis of the context model only if the focal sets of the random
set underlying a possibility distribution are required to be consonant (cf. Def-
inition 2.4.6 on page 41). In this case the probability-oriented definition is

48 CHAPTER 2. IMPRECISION AND UNCERTAINTY

perfectly sound semantically, because it takes care of the reduction of the
number of contexts with nonempty focal sets that is brought about by the
conditioning on E2. However, if one rejects the requirement for consonant
focal sets—as we did in Section 2.4.8 on page 43—then it is very difficult to
justify renormalization, if possible at all. Therefore we do not go into the de-
tails of this approach, but focus on the approach underlying Definition 2.4.9.

2.4.11 Imprecision and Uncertainty

From the description of the context model we gave in the preceding sections
it should be clear that possibility theory, if it is based on this model, can
handle imprecise as well as uncertain information: the focal set of each context
represents an imprecise (that is, set-valued) statement about what values
are possible in this context. The probability measure on the set of contexts
captures the uncertainty about which context is the one to choose if one wants
to describe the obtaining situation.

The reason for this division—imprecision within contexts, uncertainty
about the obtaining context—is that ‘‘pure’’ imprecision is obviously a se-
vere hindrance to decision making: if we do not have any preferences between
the possible alternatives, we do not have any indicator which decision may be
the best. However, we often face situations in which we cannot avoid ‘‘pure’’
imprecision. With the context model we try to make the best of such an un-
favorable situation by ‘‘encapsulating’’ the imprecision and making the set of
contexts as fine-grained as the available information allows us to.

From this point of view it is not surprising that both relational algebra and
probability theory can be seen as special cases of possibility theory: if there
is only one context, no uncertainty information is represented and we have
a purely relational model. On the other hand, as already indicated above, if
there is only one possible value per context, we have a precise model and the
basic possibility assignment coincides with the basic probability assignment.
This also explains what is meant by saying that relational algebra can handle
imprecise, but certain information, whereas probability theory can handle
uncertain, but precise information: Since there must be only one context for
relational algebra, the information may be imprecise, but must be certain,
and since there must be exactly one possible value per context for probability
theory, the information may be uncertain, but must be precise.

2.4.12 Open Problems

Possibility theory (in the interpretation considered here) is intended to pro-
vide means to deal with imprecision, seen as set-valued data, under uncer-
tainty. However, as already discussed above, possibility theory is not the only
approach to handle imprecision in such cases. If we accept the context model
as a starting point, its toughest competitor is the insufficient reason principle

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 49

Focal Sets:
{(a1, b1)}
{(a1, b1)}
{(a3, b1), (a3, b2), (a3, b3)}
{(a1, b3), (a2, b3), (a3, b3)}
{(a2, b2), (a2, b3), (a3, b2), (a3, b3)}

a1 a2 a3

b1

b2

b3

π

12
60

24
60

36
60

− 12
60

24
60

24
60

− 12
60

a1 a2 a3

b1

b2

b3

P

4
60

7
60

11
60

− 3
60

7
60

24
60

− 4
60

Figure 2.2 Possibility versus probability computed using the insufficient rea-
son principle. In this example they lead to different decisions.

(cf. Section 2.4.3), which is often seen as superior to a possibilistic approach.
To see why, consider the simple set of (two-dimensional) focal sets shown in
Figure 3.17, which are defined over two attributes A and B, with respective
domains dom(A) = {a1, a2, a3} and dom(B) = {b1, b2, b3}.

If we compute the degrees of possibility according to the context model
(assuming that each context has the same weight), we get the possibility
distribution shown in the middle of Figure 2.2. For example, a degree of
possibility of 2

5 = 24
60 is assigned to the point (a3, b2), because this point is

covered by two of the five focal sets (the third and the fifth). Alternatively,
we may use the insufficient reason principle to distribute the probability mass
of a context uniformly to the points in dom(A)×dom(B) covered by its focal
set. In this way a probability mass of 1

4 is assigned to each of the four points
covered by the fifth focal set. Thus we arrive at the probability distribution
on the right of Figure 2.2. For example, to the point (a3, b2) the probability
1
3 ·

1
5 + 1

4 ·
1
5 = 7

60 is assigned, because it is covered by the third focal set, which
covers three points in all, and the fourth focal set, which covers four points
in all. For simplicity, we call this probability distribution the IRP probability
distribution (for ‘‘insufficient reason principle’’).

Suppose now that the focal sets and the distributions computed from them
represent your knowledge about some domain and that you have to decide
on a point of the domain—without being able to gather further information
about the obtaining state. You could base your decision on the possibility
distribution, which suggests the point (a3, b3), or on the IRP probability dis-
tribution, which suggests the point (a1, b1). We believe that in this example
most people would agree that the point (a1, b1) is the better choice, because
there is evidence of two contexts, in which the point (a1, b1) definitely is the
correct description of the prevailing state. In contrast to this, the point (a3, b3)
is covered by the focal sets of three contexts, but in all of them it is only pos-
sible among others. Although it is possible that the point (a3, b3) is the correct
one for all three contexts, we usually consider this to be unlikely and therefore
decide against it. As a consequence in this situation the insufficient reason
principle approach seems to be superior to the possibilistic one.

50 CHAPTER 2. IMPRECISION AND UNCERTAINTY

On the other hand, consider the set of focal sets shown in Figure 2.2 with
the first focal set replaced by {(a1, b2)}. This only changes the values in the
two lower left squares in both the possibility distribution and IRP probability
distribution tables from 24

60 or 0, respectively, to 12
60 . Still the possibility distri-

bution suggests to decide on the point (a3, b3), whereas the IRP probability
distribution still expresses a preference (though reduced) for the point (a1, b1).
However, with this modification it is less clear that the decision based on the
IRP probability distribution is actually better than the one based on the IRP
probability distribution. The reason seems to be that the upper bound esti-
mate for the probability of the point (a3, b3) (which is identical to its degree
of possibility) is so much higher than the IRP probability estimate. Maybe
intuitively we take this into account by (too optimistically?) ‘‘correcting’’
the relative values of the probability estimates, so that the point (a3, b3) is
preferred to the point (a1, b1), for which the upper bound estimate coincides
with the IRP probability estimate.

It is clear that one can easily make the situation more extreme by con-
sidering more contexts with focal sets overlapping on a specific point of the
joint domain. To make the IRP probability distribution prefer a point for
which there was only one example, we only have to make the overlapping
focal sets sufficiently large (this can easily be achieved by adding values to
the domains of the attributes A and B, or, more naturally, by considering
additional attributes). We expect that there is a point at which one rejects
the decision suggested by the IRP probability distribution.

We are not sure, though, whether this is an argument in favor of possi-
bility theory (in the interpretation considered here). In the first place, there
are several situations in which the decision based on the IRP probability es-
timates is clearly better (see above). Secondly, even if it could be shown that
on average people would prefer the decision resulting from possibility the-
ory in cases as the one discussed, this would not prove that this decision is
reasonable. Several examples are known in which the involved probabilities
are precisely defined and hence the insufficient reason principle need not be
called upon, and nevertheless people on average decide in a way that does
not maximize their utility. Hence one may argue that this only points out
a(nother) deficiency in commonsense reasoning.

Another open problem that is connected to the above considerations re-
sults from the fact that possibility distributions (in the interpretation consid-
ered here) essentially model negative information. The reason is that in each
context it is not important which values are possible (this we know from the
domain definitions of the attributes), but which values are impossible, that
is, can definitely be excluded. As a consequence, a possibility distribution is
some kind of upper bound for the probability (cf. Sections 2.4.1 and 2.4.2).
It would be worthwhile to consider whether this negative information can be
complemented by positive information, which could take the form of a ne-
cessity distribution. Of course, this idea is not new. Research on possibility

2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 51

theory has already come up with a definition of a necessity measure. However,
it is usually defined as N(E) = 1 − Π(E) and this definition depends heavily
on the underlying possibility distribution being normalized—a prerequisite we
rejected in Section 2.4.6.

In contrast to this, we prefer to rely on the context model, which directly
suggests an idea for a necessity distribution: Assign to each elementary event
the sum of the weights of all contexts in which it is the only possible event,
i.e. in which it necessary. The natural extension operation to sets of elemen-
tary events would be the minimum, the natural interpretation a lower bound
for the probability. However, if the focal sets are sufficiently imprecise—it
suffices if there is no single element set among them—then the necessity dis-
tribution defined in this way will simply be zero everywhere and thus entirely
useless. What is missing is a consistent way to take into account the amount
of imprecision that is present in the contexts. Obviously, this amount of im-
precision can easily be measured as the number of events that are possible in
a given context. This points directly to the insufficient reason principle, which
distributes the probability mass of a context equally on the events possible in
it, thus providing a direct account of the ‘‘extent’’ of the imprecision.

However, relying exclusively on the insufficient reason principle suffers
from the drawback that any information about the possible variance in the
probability of an elementary event is lost. To mitigate this drawback it may be
worthwhile to study a hybrid model that employs three types of distributions:
possibility, necessity, and IRP probability distributions. In this model the
IRP probability distributions would model the ‘‘best’’ expectation, while the
possibility and necessity distributions provide information on the probability
bounds, which in certain situations may change the decision made (compare
the example we provided above). Maybe these considerations indicate some
paths for future research, especially since one can draw on already existing
work on upper and lower probabilities (for example [Walley 1991]).

Chapter 3

Decomposition

In this and the next chapter we introduce the basic ideas underlying inference
networks. Since at least probabilistic inference networks, especially Bayesian
networks and Markov networks, have been well known for some time now,
such an introduction may appear to be superfluous or at least should be kept
brief. However, there are several approaches to the theory of graphical models
and inference networks and not all of them are equally well suited as a basis
for the later chapters of this book. In addition, we feel that in some existing
introductions the intuitive background is somewhat neglected.1

By this we do not mean that these introductions do not provide illustrative
examples—of course they do. But in our opinion these examples fail to create
a well-founded intuition of the formal mechanisms underlying decompositions
and reasoning with decompositions. We believe that this failure is mainly due
to two reasons: in the first place, the exposition often starts immediately with
the probabilistic case, in which the numbers (which are unavoidable in this
case) can disguise the simplicity of the underlying ideas, although relational
networks provide means to explain the basic ideas without this disguise. Sec-
ondly, introductions to probabilistic networks often do not distinguish clearly
between causal and stochastic dependence, deriving their examples from a
causal model of some domain. This is understandable, since causal real-world
structures are much easier to comprehend than abstract formal structures.
In addition, if probabilistic networks are constructed ‘‘manually’’, one often
starts from a causal model. However, such an approach bears the danger
that assumptions about causality, which have nothing to do with the idea of
decomposition and reasoning, unjustifiably enter our thinking about the mat-
ter. Therefore we have tried to provide an introduction that does not refer to
causality in any way, but is, we hope, nevertheless easy to understand.

1We use the term “intuitive background” in the same way as it is used in the rightly
praised book on probability theory by [Feller 1968], who carefully distinguishes three aspects
of a theory: the formal logical content, the intuitive background, and the applications.

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

54 CHAPTER 3. DECOMPOSITION

3.1 Decomposition and Reasoning

Stated as concisely as possible, the basic ideas underlying inference networks
are these: under certain conditions a distribution δ on a multidimensional do-
main (for example a probability distribution), which encodes prior or generic
knowledge about this domain, can be decomposed into a set {δ1, . . . , δs} of
(usually overlapping) distributions on lower-dimensional subspaces. If such
a decomposition is possible, it is sufficient to know the distributions on the
subspaces to draw all inferences in the domain under consideration that can
be drawn using the original distribution δ. Since such a decomposition can
be represented as a network or graph and since it is used to draw inferences,
we call it an inference network. Another popular name is graphical model,
indicating that it is based on a graph in the sense of graph theory.

Although this description of the ideas underlying inference networks men-
tions all essential ingredients, it is—necessarily—too condensed to be easily
comprehensible, so let us explain first in a little more detail the main notions
used in it. Later we will provide some illustrative examples.

By multidimensional domain we mean that each state of the section of
the world to be modeled can be described by stating the values of a set of
attributes (cf. page 16). For example, if we want to describe cars, we may
choose to state the manufacturer, the model, the color, whether the car has
certain special equipment items or not, etc. Each such attribute—or, more
precisely, the set of its possible values—forms a dimension of the domain.
Of course, to form a dimension, the possible values have to be exhaustive
and mutually exclusive. That is, for instance, there must be for each car one
and only one manufacturer, one and only one model name, etc. With these
restrictions each state of the world section to be modeled (in the example:
each car) corresponds to a single point of the multidimensional domain.

Of course, there may be several cars that correspond to the same point—
simply because they have the same values for all attributes (same manufac-
turer, color, etc.). On the other hand, there may be points to which no existing
car corresponds—for example, because some special equipment items are not
available for a certain model. Such information is represented by a distribu-
tion on the multidimensional domain. A distribution δ assigns to each point
of the domain a number, usually in the interval [0, 1], which indicates the
possibility or measures the (prior) probability that the modeled section of the
world is in a state corresponding to that point. These numbers are usually
estimated by human domain experts or computed by a statistical analysis
of available data. In the car example they may simply indicate the relative
number of cars of a certain type that have been sold.

By decomposition we mean that the distribution δ on the domain as a
whole can be reconstructed from the distributions {δ1, . . . , δs} on subspaces.
Such a decomposition has several advantages, the most important being that
it can usually be stored much more efficiently and with less redundancy than

3.2. RELATIONAL DECOMPOSITION 55

the original distribution. These advantages are the main motive for studying
decompositions of relations in database theory [Maier 1983, Date 1986, Ullman
1988]. Therefore it is not surprising that database theory is closely connected
to the theory of inference networks. The only difference is that the theory
of inference networks focuses on reasoning, while database theory focuses on
storing, maintaining, and retrieving data.

However, being able to store a distribution more efficiently would not be
of much use for reasoning tasks, were it not for the possibility of drawing
inferences in the underlying domain using only the distributions {δ1, . . . , δs}
on the subspaces without having to reconstruct the original distribution δ. The
basic idea is to pass information from subspace distribution to subspace dis-
tribution until all have been updated. This process is usually called evidence
propagation. How it works is probably explained best by a simple example,
which we present in the relational setting first. Later we study the probabilis-
tic and finally the possibilistic case. There are, of course, even more types of
inference networks—for example, Dempster–Shafer networks—based on other
calculi. However, these types are beyond the scope of this book.

3.2 Relational Decomposition

In relational decomposition and relational networks [Dechter 1990, Kruse and
Schwecke 1990, Dechter and Pearl 1992, Kruse et al. 1994] one distinguishes
only between possible and impossible states of the world. In other words, one
confines oneself to distributions that assign to each point of the underlying
domain either a 1 (if it is possible) or a 0 (if it is impossible). This is made
formally precise below, after the simple example we are going to discuss has
provided the intuitive background.

3.2.1 A Simple Example

Consider three attributes, A, B, and C, with respective domains dom(A) =
{a1, a2, a3, a4}, dom(B) = {b1, b2, b3}, and dom(C) = {c1, c2, c3}. Thus the
underlying joint domain of this example is the Cartesian product dom(A) ×
dom(B)×dom(C) or, abbreviated, the three-dimensional space {A, B, C}, or,
even more abbreviated, ABC. Table 3.1 states prior knowledge about the
possible combinations of attribute values in the form of a relation RABC :
only the value combinations contained in RABC are possible. (This relation
is to be interpreted under the closed-world assumption, that is, all value
combinations not contained in RABC are impossible.) An interpretation of this
simple relation is shown on the left in Figure 3.1. In this interpretation each
attribute corresponds to a property of a geometrical object: attribute A is the
color/hatching, attribute B is the shape, and attribute C is the size. The table
on the right in Figure 3.1 restates the relation RABC in this interpretation.

56 CHAPTER 3. DECOMPOSITION

Table 3.1 The relation RABC states prior knowledge about the possible com-
binations of attribute values. Value combinations not contained in the above
table are considered to be impossible.

A a1 a1 a2 a2 a2 a2 a3 a4 a4 a4

B b1 b1 b1 b1 b3 b3 b2 b2 b3 b3

C c1 c2 c1 c2 c2 c3 c2 c2 c2 c3

color shape size

small

medium

small

medium

medium

large

medium

medium

medium

large

Figure 3.1 A set of geometrical objects that is an in-
terpretation of the relation RABC . Attribute A is the
color/hatching of an object, attribute B is its shape,
and attribute C is its size. The table on the right
restates the relation RABC in this interpretation.

Suppose that an object of the set shown in Figure 3.1 is selected at random
and that one of its three properties is observed, but not the other two. For
instance, suppose that this object is drawn from a box, but the box is at
some distance or may be observed only through a pane of frosted glass, so
that the color of the object can be identified, while its size and shape are too
blurred. In this situation, what can we infer about the other two properties
and how can we do so? How can we combine the evidence obtained from
our observation with the prior or generic knowledge that there are only ten
possible combinations of attribute values?

Such tasks often occur in applications—reconsider, for example, medical
diagnosis as it was described on page 17. The same holds, obviously, for any
other diagnosis problem, for example for a mechanic who faces the task to
repair a broken engine. Of course, these tasks are much more complex, be-
cause there are many more properties that have to be taken into account. In
the geometrical objects example, we could discard all objects not compatible
with the observation and scan the rest for possible shapes and sizes. How-
ever, it is obvious that such an approach is no longer feasible if the number

3.2. RELATIONAL DECOMPOSITION 57

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

Figure 3.2 The reasoning space and a graphical representation of the relation
RABC in this space. Each cube represents one tuple of the relation.

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

Figure 3.3 Reasoning in the domain as a whole.

of relevant properties is large. In this case, more sophisticated methods are
needed. Graphical models form one such method, which try to decompose the
generic knowledge by exploiting conditional independence relations. Although
this method aims at making reasoning in high-dimensional domains feasible,
its basic idea can be explained with only three attributes. Nevertheless, it
should be kept in mind that decomposition techniques, which may appear to
be superfluous in the geometrical objects example due to its simplicity, are
essential for applications in the real world.

3.2.2 Reasoning in the Simple Example

In order to understand what is meant by reasoning in the tasks indicated
above, let us take a closer look at the space in which it is carried out. The
three-dimensional reasoning space underlying the geometrical objects example
is shown on the left in Figure 3.2. Each attribute—or, more precisely, the set
of its possible values—forms a dimension of this space. Each combination
of attribute values corresponds to a small cube in this space. That only ten
combinations of values are actually possible is the prior or generic knowledge.
It is represented graphically by marking those cubes of the reasoning space
which correspond to existing objects. This is demonstrated on the right in
Figure 3.2: each cube indicates a possible value combination.

58 CHAPTER 3. DECOMPOSITION

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

Figure 3.4 Graphical representation of the relation RABC and of all three
possible projections to two-dimensional subspaces.

Suppose we observe that the object drawn has the value a4 for attribute A,
that is, that its color is grey. With the visualization shown in Figure 3.2 it is
very simple to draw inferences about the values of the other two attributes:
simply cut out the ‘‘slice’’ that corresponds to A = a4. This is demonstrated on
the left in Figure 3.3. Cutting out this ‘‘slice’’ can be seen either as intersecting
the generic knowledge and the evidence, the latter of which corresponds to all
possible cubes in the ‘‘slice’’ corresponding to A = a4, or as conditioning the
generic knowledge on the observation A = a4 by restricting it to the ‘‘slice’’
corresponding to the observation that A = a4. The values for the attributes B
and C that are compatible with the evidence A = a4 can be read from the
result by projecting it to the domains of these attributes. This is demonstrated
on the right in Figure 3.3. We thus conclude that the object drawn cannot be
a circle (b1), but must be a triangle (b2) or a square (b3), and that it cannot
be small (c1), but must be medium (c2) or large (c3).

This method of reasoning is, of course, trivial and can always be used—at
least theoretically. However, the relation RABC has an interesting property,
which allows us to derive the same result in an entirely different fashion: it can
be decomposed into two smaller relations, from which it can be reconstructed.
This is demonstrated in Figures 3.4 and 3.5. In Figure 3.4 the relation RABC

is shown together with all possible projections to two-dimensional subspaces.
These projections are the ‘‘shadows’’ thrown by the cubes if light sources
are imagined (in sufficient distance) in front of, above, and to the right of
the graphical representation of the relation RABC . The relation RABC can
be decomposed into the two projections to the subspaces {A, B} and {B, C},
both shown in the right half of Figure 3.4.

3.2. RELATIONAL DECOMPOSITION 59

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

Figure 3.5 Cylindrical extensions of two projections of the relation RABC

shown in Figure 3.4 and their intersection. Obviously the result is the original
relation (compare the top left of Figure 3.4).

That these two projections are sufficient to reconstruct the relation RABC

is demonstrated in Figure 3.5. In the top half and on the right the cylindrical
extensions of the two projections RAB and RBC to the subspaces {A, B} and
{B, C}, respectively, are shown. The cylindrical extension of a projection is
obtained by simply adding to the tuples in the projection all possible values of
the missing dimension. That is, to the tuples in the relation RAB all possible
values of the attribute C are added and to the tuples in the relation RBC all
possible values of the attribute A are added. (That this operation is called
‘‘cylindrical extension’’ is due to the common practice to sketch sets as circles
or disks: adding a dimension to a disk yields a cylinder.) In a second step
the two cylindrical extensions are intersected, by which the original relation
RABC is reconstructed, as shown on the bottom left of Figure 3.5.

Since relational networks are closely related to database theory, it is not
surprising that the decomposition property just studied is well known: if a
relation can be decomposed into projections to subspaces (that is, to subsets
of attributes), it is called join-decomposable [Maier 1983, Date 1986, Ullman
1988], because the intersection of the cylindrical extensions is identical to a
natural join of the projections. In database theory join-decomposition is stud-
ied mainly in order to avoid redundancy (which can lead to update anomalies)
and to exploit the resulting storage savings. Note that even in this very sim-
ple example some savings result: to store the three-dimensional relation, we
need 36 bits—one for each combination of attribute values in the reasoning
space, indicating whether the combination is possible or not. To store the two
projections, however, we need only 9 + 12 = 21 bits.

60 CHAPTER 3. DECOMPOSITION

a1 a2 a3 a4

A

extend

b1

b2

b3

a1 a2 a3 a4

project

B

extend

c1 c2 c3

b1

b2

b3

project

c1 c2 c3

C

Figure 3.6 Propagation of the evidence that attribute A has value a4 in the
three-dimensional relation shown in Figure 3.4 using the projections to the
subspaces {A, B} and {B, C}.

A B C

Figure 3.7 The relational propagation scheme shown in Figure 3.6 justifies a
network representation of the reasoning space. The edges indicate the projec-
tions needed for the reconstruction and the evidence propagation.

With respect to inference networks these storage savings are important,
too. However, they would be worth nothing if to draw inferences the three-
dimensional relation RABC had to be reconstructed first. Fortunately, this is
not necessary. We can draw the same inferences as in the whole reasoning
space using only the projections, each one in turn. This is demonstrated in
Figure 3.6, which illustrates relational evidence propagation:

Suppose again that from an observation we know that the attribute A has
value a4, that is, that the object drawn at random is grey. This is indicated in
Figure 3.6 by the hatched square for the value a4 in the top row. In a first step
we extend this information cylindrically to the subspace {A, B} (indicated by
the hatched column) and intersect it with the projection of the relation RABC

to this subspace (grey squares). The resulting intersection (the squares that
are grey and hatched) is then projected to the subspace that consists only of
attribute B. In this way we can infer that the object drawn cannot be a circle
(b1), but must be a triangle (b2) or a square (b3).

In a second step, the knowledge obtained about the possible values of
attribute B is extended cylindrically to the subspace {B, C} (rows of hatched
squares) and intersected with the projection of the relation RABC to this
subspace (grey squares). In analogy to the above, the resulting intersection
(the squares that are grey and hatched) is then projected to the subspace
that consists only of the attribute C. In this way we can infer that the object
drawn cannot be small (c1), but must be medium (c2) or large (c3).

3.2. RELATIONAL DECOMPOSITION 61

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

Figure 3.8 Using other projections.

Obviously these results are identical to those we obtained from project-
ing the ‘‘slice’’ of the relation RABC that corresponds to A = a4 to the
attributes B and C. It is easily verified for this example that this propagation
scheme always (that is, for all possible observations) leads to the same result
as an inference based on the original three-dimensional relation. Therefore
this propagation scheme justifies the network representation of the reasoning
space shown in Figure 3.7 in which there is a node for each attribute and an
edge for each projection used. This connection of decomposition and network
representation is studied in more detail in Chapter 4.

3.2.3 Decomposability of Relations

Having demonstrated the usefulness of relational decomposition, the next
question is whether any selection of a set of projections of a given relation
provides a decomposition. Unfortunately this is not the case as is demon-
strated in Figure 3.8. Whereas in Figure 3.5 we used the projections to the
subspaces {A, B} and {B, C}, in this figure we replaced the projection to
the subspace {A, B} by the projection to the subspace {A, C}. As in Fig-
ure 3.5 the cylindrical extensions of these two projections are determined
and intersected, which yields the relation R′

ABC shown in the bottom left of
Figure 3.8. Obviously, this relation differs considerably from the original re-
lation RABC , which is repeated in the top right of Figure 3.8: whereas RABC

contains only 10 tuples, R′
ABC contains 16 and therefore the two subspaces

{A, C} and {B, C} are an especially bad choice. Note that from this example
it is also immediately clear that the intersection of the cylindrical extension

62 CHAPTER 3. DECOMPOSITION

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

1

2

Figure 3.9 Is decomposition always possible?

of two projections can never have fewer tuples than the original relation. For
a decomposition, the number of tuples must be equal.

Another question is whether, although the projections must be chosen with
care, it is at least always possible to find a set of projections that is a decom-
position. Unfortunately this question has also to be answered in the negative.
To understand this, consider Figure 3.9: in the top left of this figure, the
relation RABC is shown with two cubes (two tuples) marked with numbers.

Consider first that the cube marked with a 1 is missing, which corresponds
to the tuple (a2, b1, c1), that is, to a small hatched circle. It is immediately
clear that without this tuple the relation is no longer decomposable into the
projections to the subspaces {A, B} and {B, C}. The reason is that removing
the tuple (a2, b1, c1) does not change these projections, because the cubes cor-
responding to the tuples (a2, b1, c2) and (a1, b1, c1) still throw ‘‘shadows’’ onto
the subspaces. Therefore the intersection of the cylindrical extensions of these
projections still contains the tuple (a2, b1, c1). However, if all three projections
to two-dimensional subspaces are used, the modified relation can be recon-
structed. This is due to the fact that removing the tuple (a2, b1, c1) changes
the projection to the subspace {A, C}. If we first intersect the cylindrical ex-
tensions of the projections to the subspaces {A, B} and then intersect the
result with the cylindrical extension of the projection to the subspace {A, C},
the tuple (a2, b1, c1) is cut away in the second intersection.

However, although it is intuitively compelling that any three-dimensional
relation can be reconstructed if all three projections to two-dimensional sub-
spaces are used (as we have experienced several times when we explained
relational networks to students), this assumption is false: suppose that the

3.2. RELATIONAL DECOMPOSITION 63

cube marked with a 2 in Figure 3.9 is missing, which corresponds to the tu-
ple (a4, b3, c2), that is, to a grey medium triangle. In this case all projections
to two-dimensional subspaces are unchanged, because in all three possible
directions there is still another cube which throws the ‘‘shadow’’. Therefore
the intersection of the cylindrical extensions of the projections still contains
the tuple (a4, b3, c2), although it is missing from the relation. It follows that,
without this tuple, the relation is not decomposable.

Unfortunately, decomposable relations are fairly rare. (The geometrical
objects example is, of course, especially constructed to be decomposable.)
However, in applications a certain loss of information is often acceptable if
it is accompanied by a reduction in complexity, which renders the problem
managable. In this case precision is traded for time and space. Thus one
may choose a set of projections, although the intersection of their cylindrical
extensions contains more tuples than the original relation, simply because
the projections are smaller and can be processed more rapidly. Note that, if
a certain loss of information is acceptable, the number of additional tuples in
the intersection of the cylindrical extensions of a set of projections provides
a direct measure of the quality of a set of projections, which can be used to
rank different sets of projections [Dechter 1990] (see also Chapter 7).

3.2.4 Tuple-Based Formalization

Up to now our explanation of relational networks has been very informal. Our
rationale was to convey a clear intuition first, without which we believe it is
very hard, if not impossible, to cope with mathematical formalism. In the
following we turn to making the notions mathematically precise, which we
introduced above in an informal way. We do so in two steps. The first step
is more oriented at the classical notions used in connection with relations.
In a second step we modify this description and use a notion of possibility
to describe relations, which can be defined in close analogy to the notion of
probability. The reason for the second step is that it simplifies the notation,
strengthens the parallelism to probabilistic networks, and provides an ideal
starting point for introducing possibilistic networks in Section 3.4.

We start by defining the basic notions, that is, the notions of a tuple and
a relation. Although these notions are trivial, we provide definitions here,
because they differ somewhat from those most commonly used.

Definition 3.2.1 Let U = {A1, . . . , An} be a (finite) set of attributes with
respective domains dom(Ai), i = 1, . . . , n. An instantiation of the attributes
in U or a tuple over U is a mapping

tU : U →
⋃

A∈U

dom(A)

satisfying ∀A ∈ U : tU (A) ∈ dom(A). The set of all tuples over U is denoted
TU . A relation RU over U is a set of tuples over U, that is, RU ⊆ TU .

64 CHAPTER 3. DECOMPOSITION

If the set of attributes is clear from the context, we drop the index U. To
indicate that U is the domain of definition of a tuple t, that is, that t is a
tuple over U, we sometimes also write dom(t) = U. We write tuples similar
to the usual vector notation. For example, a tuple t over {A, B, C} which
maps attribute A to a1, attribute B to b2, and attribute C to c2 is written
as t = (A �→ a1, B �→ b2, C �→ c2). If an implicit order is fixed, the attributes
may be omitted, that is, the tuple may then be written t = (a1, b2, c2).

At first sight the above definition of a tuple may seem a little strange. It
is more common to define a tuple as an element of the Cartesian product of
the domains of the underlying attributes. We refrain from using the standard
definition, since it causes problems if projections of tuples have to be defined:
a projection, in general, changes the position of the attributes in the Cartesian
product, because some attributes are removed. Usually this is taken care of by
index mapping functions, which can get confusing if two or more projections
have to be carried out in sequence or if two projections obtained in different
ways have to be compared. This problem instantly disappears if tuples are
defined as functions (as in the above definition). Then a projection to a subset
of attributes is simply a restriction of a function—a well-known concept in
mathematics. No index transformations are necessary and projections can
easily be compared by comparing their domains of definition and the values
they map the attributes to. In addition, the above definition can easily be
extended to imprecise tuples, which we need in Chapter 5.

Definition 3.2.2 If tX is a tuple over a set X of attributes and Y ⊆ X, then
tX |Y denotes the restriction or projection of the tuple tX to Y. That is, the
mapping tX |Y assigns values only to the attributes in Y. Hence dom(tX |Y) = Y,
that is, tX |Y is a tuple over Y.

Definition 3.2.3 Let RX be a relation over a set X of attributes and Y ⊆ X.
The projection projXY (RX) of the relation RX from X to Y is defined as

projXY (RX) def= {tY ∈ TY | ∃tX ∈ RX : tY ≡ tX |Y }.

If RX is a relation over X and Z ⊇ X, then the cylindrical extension
cextX

Y (RX) of the relation RX from X to Z is defined as

cextZ
X(RX) def= {tZ ∈ TZ | ∃tX ∈ RX : tZ |X ≡ tX}.

With this definition, we can write the two projections used in the decompo-
sition of the example relation RABC as (cf. Figure 3.4)

RAB = projABC
AB (RABC) and RBC = projABC

BC (RABC).

That these two projections are a decomposition of the relation RABC can now
be written as (cf. Figure 3.5)

RABC = cextABC
AB (RAB) ∩ cextABC

BC (RBC)

3.2. RELATIONAL DECOMPOSITION 65

if we use the cylindrical extension operator and as

RABC = RAB �� RBC

if we use the natural join operator ��, which is well known from relational
algebra. Generalizing, we can define relational decomposition as follows:

Definition 3.2.4 Let U be a set of attributes and RU a relation over U.
Furthermore, let M = {M1, . . . , Mm} ⊆ 2U be a (finite) set of nonempty (but
not necessarily disjoint) subsets of U satisfying⋃

M∈M
M = U.

RU is called decomposable w.r.t. M, iff

RU =
⋂

M∈M
cextU

M

(
projUM (RU)

)
.

If RU is decomposable w.r.t. M, the set of projections

RM =
{
projUM1

(RU), . . . , projUMm
(RU)

}
is called the decomposition of RU w.r.t. M.

Applying this definition to the example relation RABC , we can say that RABC

is decomposable w.r.t. {{A, B}, {B, C}} and that {RAB, RBC} is the corre-
sponding decomposition.

It is obvious that it is very simple to find decompositions in this sense: any
set M that contains the set U of all attributes leads to a decomposition of a
given relation RU over U. However, it is also obvious that such a decomposi-
tion would be useless, because an element of the decomposition is the relation
itself. Therefore restrictions have to be introduced in order to characterize
‘‘good’’ decompositions. It is clear that the savings result mainly from the
fact that the subspaces, to which the relation is projected, are ‘‘small’’. In
addition, there should not be any ‘‘unnecessary’’ projections.

Definition 3.2.5 Let RM be a decomposition of a relation RU over a set U
of attributes w.r.t. a set M ⊆ 2U . RM is called trivial iff U ∈ M (and
thus RU ∈ RM). RM is called irredundant iff no set of attributes in M is
contained in another set of attributes in M, i.e. iff

∀M1 ∈ M : ¬∃M2 ∈ M− {M1} : M1 ⊆ M2.

Otherwise, RM is called redundant.
Let RN be another decomposition of the relation RU w.r.t. a set N ⊆ 2U .

RM is called at least as fine as RN , written RM � RN , iff

∀M ∈ M : ∃N ∈ N : M ⊆ N.

66 CHAPTER 3. DECOMPOSITION

a1 a2

b1

b2

c1
c2

a1 a2

b1

b2

c1
c2

a1 a2

b1

b2

c1
c2

a1 a2

b1

b2

c1
c2

Figure 3.10 Minimal decompositions need not be unique.

RM is called finer than RN , written RM ≺ RN , iff

(RM � RN) ∧ ¬(RN � RM).

A decomposition RM is called minimal iff it is irredundant and there is no
irredundant decomposition that is finer than RM.

Clearly, we do not want redundant decompositions. If a set M1 ∈ M ⊆ 2U is
a subset of another set M2 ∈ M, then

cextU
M1

(projUM1
(RU)) ∩ cextU

M2
(projUM2

(RU)) = cextU
M2

(projUM2
(RU)),

so we can remove the projection to the set M1 without destroying the decom-
position property. The notions of a decomposition being finer than another
and of a decomposition being minimal serve the purpose to make the sets of
attributes defining the decomposition as small as possible. If there are two
irredundant decompositions RM and RN of a relation RU with

M ∈ M, N ∈ N and M−{M} = N− {N} and M ⊂ N,

then obviously RM ≺ RN . Hence in minimal decompositions the sets of
attributes underlying the projections are as small as possible.

It would be convenient if there was always a unique minimal decomposi-
tion, because then we could always find a single best decomposition. However,
in general there can be several minimal decompositions. This is demonstrated
in Figure 3.10, which shows a very simple relation RABC over three binary at-
tributes A, B, and C. As can easily be seen from the projections also shown in
Figure 3.10, RABC can be decomposed into {RAB, RBC}, into {RAB, RAC},
or into {RAC , RBC}, all of which are minimal.

3.2.5 Possibility-Based Formalization

In the following we turn to a characterization that uses the notion of a binary
possibility measure R to represent relations. Such a measure can be defined
as a function satisfying certain axioms—as a probability measure P is defined
as a function satisfying Kolmogorov’s axioms [Kolmogorov 1933]. This char-
acterization, as already indicated above, strengthens the connection between
relational and probabilistic networks and provides an excellent starting point
for the transition to (general) possibilistic networks.

3.2. RELATIONAL DECOMPOSITION 67

Definition 3.2.6 Let Ω be a (finite) sample space.2 A binary possibility
measure R on Ω is a function R : 2Ω → {0, 1} satisfying

1. R(∅) = 0 and

2. ∀E1, E2 ⊆ Ω : R(E1 ∪ E2) = max{R(E1), R(E2)}.

The intuitive interpretation of a binary possibility measure is obvious: if an
event E can occur (if it is possible), then R(E) = 1, otherwise (if E cannot oc-
cur/is impossible), then R(E) = 0. With this intuition the axioms are evident:
the empty event is impossible and if at least one of two events is possible,
then their union is possible. The term ‘‘binary’’ indicates that the measure can
assume only the values 0 and 1—in contrast to a general possibility measure
(defined semantically in Chapter 2 and to be defined axiomatically below),
which can assume all values in the interval [0, 1]. Note, by the way, that the
(general) possibility measure defined in Definition 2.4.8 on page 46 satisfies
these axioms if there is only one context and Ω is finite.

It is useful to note that from the above definition it follows ∀E1, E2 ⊆ Ω :

(a) R(E1) = R(E1 ∪ (E1 ∩ E2)) = max{R(E1), R(E1 ∩ E2)}
⇒ R(E1) ≥ R(E1 ∩ E2)

(b) R(E2) = R(E2 ∪ (E1 ∩ E2)) = max{R(E2), R(E1 ∩ E2)}
⇒ R(E2) ≥ R(E1 ∩ E2)

(a) + (b) ⇒ R(E1 ∩ E2) ≤ min{R(E1), R(E2)}.

In general R(E1 ∩ E2) = min{R(E1), R(E2)} does not hold, because the ele-
ments that give R(E1) and R(E2) the value 1 need not be in E1 ∩ E2.

In Definition 3.2.1 on page 63 a relation was defined over a set of at-
tributes, so we had attributes right from the start. With the above definition
of a binary possibility measure, however, attributes have to be added as a
secondary concept. As in probability theory they are defined as random vari-
ables, that is, as functions mapping from the sample space to some domain.
We use attributes in the usual way to describe events. For example, if A
is an attribute, then the statement A = a is a abbreviation for the event
{ω ∈ Ω | A(ω) = a} and thus one may write R(A = a).3

The difference between the two approaches is worth noting: in the tuple-
based approach, the attributes are represented by (mathematical) objects that
are mapped to values by tuples, which represent objects or cases or events
etc. The possibility-based approach models it the other way round: objects,

2For reasons of simplicity this definition is restricted to finite sample spaces. It is clear
that it can easily be extended to general sample spaces by replacing 2Ω by a suitable
σ-algebra, but we do not consider this extension here.

3Although this should be well known, we repeat it here, because it is easily forgotten.
Indeed, despite its fundamental character, this was an issue in a discussion about the term
“random variable” on the Uncertainty in Artificial Intelligence (UAI) mailing list in 1998.

68 CHAPTER 3. DECOMPOSITION

cases, or events are represented by (mathematical) objects that are mapped
to values by (random) variables, which represent attributes. It is, however,
nevertheless obvious that both approaches are equivalent.

With a binary possibility measure, relations can be introduced in the same
way as probability distributions are introduced based on a probability mea-
sure. For a single attribute A a probability distribution is defined as a function

p : dom(A) → [0, 1],
a �→ P({ω ∈ Ω | A(ω) = a}).

This definition is extended to sets of attributes by considering vectors, that is,
elements of the Cartesian product of the domains of the attributes. However,
using elements of a Cartesian product introduces problems if projections have
to be considered, as we have pointed out on page 64. The main difficulty is
that the standard definition associates an attribute and its value only through
the position in the argument list of a distribution function and thus, when
computing projections, index transformations are needed that keep track of
the change of positions. In Section 3.2.4 these problems made us refrain from
using the standard definition of a tuple. Thus it is not surprising that we
deviate from the standard definition of a (probability) distribution, too.

The idea underlying our definition is as follows: the binary possibility
measure R assigns a possibility to all elements of 2Ω, but because of the
axioms a binary possibility measure has to satisfy, not all of these values need
to be stored. Certain subsets are sufficient to recover the whole measure. In
particular, the subset of 2Ω that consists of all one element sets is sufficient.
Suppose we have an attribute A the domain of which is Ω. Then we can
recover the whole measure from the distribution over A (in the sense defined
above). However, this distribution is merely a restriction of the measure to
a specific set of events (cf. the notions of a basic probability assignment and
a basic possibility assignment in Section 2.4). Now, what if we defined all
distributions simply as restrictions of a measure (a probability measure or a
binary possibility measure) to certain sets of events? It turns out that this
is a very convenient definition, which avoids all problems that a definition
based on Cartesian products would introduce.

Definition 3.2.7 Let X = {A1, . . . , An} be a set of attributes defined on
a (finite) sample space Ω with respective domains dom(Ai), i = 1, . . . , n.
A relation rX over X is the restriction of a binary possibility measure R on
Ω to the set of all events that can be defined by stating values for all attributes
in X. That is, rX = R|EX

, where

EX =
{
E ∈ 2Ω

∣∣∣ ∃a1 ∈ dom(A1) : . . .∃an ∈ dom(An) :

E =̂
∧

Aj∈X

Aj = aj

}

3.2. RELATIONAL DECOMPOSITION 69

=
{
E ∈ 2Ω

∣∣∣ ∃a1 ∈ dom(A1) : . . .∃an ∈ dom(An) :

E =
{

ω ∈ Ω
∣∣∣ ∧

Aj∈X

Aj(ω) = aj

}}
.

We use the term ‘‘relation’’ instead of ‘‘binary possibility distribution’’, be-
cause the restrictions of a binary possibility measure defined above correspond
directly to the relations defined in Definition 3.2.1 on page 63. The only dif-
ference is that with Definition 3.2.1 a tuple is marked as possible by making
it a member of a set, whereas with Definition 3.2.7 it is marked as possible by
assigning the value 1 to it. Alternatively, we may say that Definition 3.2.7 de-
fines relations via their indicator function, that is, the function that assumes
the value 1 for all members of a set and the value 0 for all non-members.

Note that—deviating from Definition 3.2.1—relations are now denoted
by a lowercase r in analogy to probability distributions which are usually
denoted by a lowercase p. Note also that the events referred to by a relation
are characterized by a conjunction of conditions that explicitly name the
attributes. Since the terms of a conjunction can be reordered without changing
its meaning, projections are no longer a problem: in a projection we only have
fewer conditions in the conjunctions characterizing the events. We need not
be concerned with the position of attributes or the associations of attributes
and their values as we had to in the standard definition.

With the above definition of a relation we can redefine the notions of
decomposability and decomposition (cf. Definition 3.2.4 on page 65) based on
binary possibility measures:

Definition 3.2.8 Let U = {A1, . . . , An} be a set of attributes and rU a rela-
tion over U. Furthermore, let M = {M1, . . . , Mm} ⊆ 2U be a set of nonempty
(but not necessarily disjoint) subsets of U satisfying⋃

M∈M
M = U.

rU is called decomposable w.r.t. M, iff

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

rU

(∧
Ai∈U

Ai = ai

)
= min

M∈M

{
rM

(∧
Ai∈M

Ai = ai

)}
.

If rU is decomposable w.r.t. M, the set of relations

RM = {rM1 , . . . , rMm
} = {rM | M ∈ M}

is called the decomposition of rU .

The definitions of the properties of relational decompositions (trivial, redun-
dant, finer, minimal, etc.—cf. Definition 3.2.5 on page 65) carry over directly
from the tuple-based formalization and thus we do not repeat them here.

70 CHAPTER 3. DECOMPOSITION

3.2.6 Conditional Possibility and Independence

The most important advantage of a binary possibility measure R over the
tuple-based formalization of relations is that we can define a conditional pos-
sibility in analogy to a conditional probability.

Definition 3.2.9 Let Ω be a (finite) sample space, R a binary possibility
measure on Ω, and E1, E2 ⊆ Ω events. Then

R(E1 | E2) = R(E1 ∩ E2)

is called the conditional possibility of E1 given E2.

Note that the above definition does not require R(E2) > 0. Since R(E2) = 0
does not lead to an undefined mathematical operation, we can make the def-
inition more general, which is very convenient.

The notion of a conditional possibility is needed for the definition of con-
ditional relational independence, which is an important tool to characterize
decompositions. In order to define conditional relational independence, it is
most useful to realize first that (unconditional) relational independence is
most naturally characterized as follows:

Definition 3.2.10 Let Ω be a (finite) sample space, R a binary possibility
measure on Ω, and E1, E2 ⊆ Ω events. E1 and E2 are called relationally
independent iff

R(E1 ∩ E2) = min{R(E1), R(E2)}.

That is, if either event can occur, then it must be possible that they occur
together. In other words, neither event excludes the other, which would indi-
cate a dependence of the events. (Compare also the generally true inequality
R(E1 ∩ E2) ≤ min{R(E1), R(E2)} derived above.) Note that relational inde-
pendence differs from probabilistic independence only by the fact that it uses
the minimum instead of the product.

The above definition is easily extended to attributes:

Definition 3.2.11 Let Ω be a (finite) sample space, R a possibility measure
on Ω, and A and B attributes with respective domains dom(A) and dom(B).
A and B are called relationally independent, written A⊥⊥R B, iff

∀a ∈ dom(A) : ∀b ∈ dom(B) :
R(A = a, B = b) = min{R(A = a), R(B = b)}.

Intuitively, A and B are independent if their possible values are freely com-
binable. That is, if A can have the value a and B can have the value b, then
the combination of both (that is, the tuple (a, b)) must also be possible. Note
that relational independence is obviously symmetric, that is, from A⊥⊥R B

3.2. RELATIONAL DECOMPOSITION 71

it follows B⊥⊥R A. Note also that the definition is easily extended to sets
of attributes and hence we do not spell out the definition here.

With the notion of a conditional possibility we can now extend the notion
of relational independence to conditional relational independence:

Definition 3.2.12 Let Ω be a (finite) sample space, R a binary possibility
measure on Ω, and A, B, and C attributes with respective domains dom(A),
dom(B), and dom(C). A and C are called conditionally relationally inde-
pendent given B, written A⊥⊥R C | B, iff

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
R(A = a, C = c | B = b) = min{R(A = a | B = b), R(C = c | B = b)}.

The intuitive interpretation is the same as above, namely that given the value
of attribute C, the values that are possible for the attributes A and B under
this condition are freely combinable. Obviously, conditional relational inde-
pendence is also symmetric, that is, from A⊥⊥R B | C it follows B⊥⊥R A | C.

The connection of conditional relational independence to decomposition
can be seen directly if we replace the conditional possibilities in the above
equation by their definition:

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
R(A = a, B = b, C = c) = min{R(A = a, B = b), R(B = b, C = c)}.

We thus arrive at the decomposition formula for the geometrical objects ex-
ample discussed above. In other words, the relation RABC of the geometrical
objects example is decomposable into the relations RAB and RBC , because
in RABC the attributes A and C are conditionally relationally independent
given the attribute B. This can easily be checked in Figure 3.2 on page 57: In
each horizontal ‘‘slice’’ (corresponding to a value of the attribute B) the val-
ues of the attributes A and C possible in that ‘‘slice’’ are freely combinable.
Conditional independence and its connection to network representations of
decompositions is studied in more detail in Chapter 4.

Another advantage of the definition of a conditional possibility is that
with it we are finally in a position to formally justify the evidence propaga-
tion scheme used in Figure 3.6 on page 60 for the geometrical objects example,
because this scheme basically computes conditional possibilities given the ob-
servations. It does so in two steps, one for each unobserved attribute.

In the first step, we have to compute the conditional possibilities for the
values of attribute B given the observation that attribute A has the value aobs.
That is, we have to compute ∀b ∈ dom(B) :

R(B = b | A = aobs)

= R
(∨

a∈dom(A)

A = a, B = b,
∨

c∈dom(C)

C = c
∣∣∣ A = aobs

)

72 CHAPTER 3. DECOMPOSITION

(1)
= max

a∈dom(A)
{ max

c∈dom(C)
{R(A = a, B = b, C = c | A = aobs)}}

(2)
= max

a∈dom(A)
{ max

c∈dom(C)
{min{R(A = a, B = b, C = c),

R(A = a | A = aobs)}}}

(3)
= max

a∈dom(A)
{ max

c∈dom(C)
{min{R(A = a, B = b), R(B = b, C = c),

R(A = a | A = aobs)}}}

= max
a∈dom(A)

{min{R(A = a, B = b), R(A = a | A = aobs),

max
c∈dom(C)

{R(B = b, C = c)}︸ ︷︷ ︸
=R(B=b)≥R(A=a,B=b)

}}

(4)
= R(A = aobs, B = b).

Here (1) holds because of the second axiom a binary possibility measure has
to satisfy. (2) holds, because in the first place

R(A = a, B = b, C = c | A = aobs)

= R(A = a, B = b, C = c, A = aobs)

=
{

R(A = a, B = b, C = c), if a = aobs,
0, otherwise,

and secondly

R(A = a | A = aobs) = R(A = a, A = aobs)

=
{

R(A = a), if a = aobs,
0, otherwise,

and therefore, since trivially R(A = a) ≥ R(A = a, B = b, C = c),

R(A = a, B = b, C = c | A = aobs)

= min{R(A = a, B = b, C = c), R(A = a | A = aobs)}.

(3) holds because of the fact that the relation RABC can be decomposed w.r.t.
the set M = {{A, B}, {B, C}} according to the decomposition formula stated
above. Finally, (4) exploits that R(A = a | A = aobs) = 0 unless a = aobs.

It is obvious that the left part of Figure 3.6 is a graphical representation,
for each possible value of attribute B, of the above formula for computing the
conditional possibility R(B = b | A = aobs).

In the second step, we have to compute the conditional possibilities for the
values of attribute C given the observation that attribute A has the value aobs.
That is, we have to compute ∀c ∈ dom(C) :

3.2. RELATIONAL DECOMPOSITION 73

R(C = c | A = aobs)

= R
(∨

a∈dom(A)

A = a,
∨

b∈dom(B)

B = b, C = c
∣∣∣ A = aobs

)
(1)
= max

a∈dom(A)
{ max

b∈dom(B)
{R(A = a, B = b, C = c | A = aobs)}}

(2)
= max

a∈dom(A)
{ max

b∈dom(B)
{min{R(A = a, B = b, C = c),

R(A = a | A = aobs)}}}

(3)
= max

a∈dom(A)
{ max

b∈dom(B)
{min{R(A = a, B = b), R(B = b, C = c),

R(A = a | A = aobs)}}}

= max
b∈dom(B)

{min{R(B = b, C = c),

max
a∈dom(A)

{min{R(A = a, B = b), R(A = a | A = aobs)}}︸ ︷︷ ︸
=R(B=b|A=aobs)

}

(4)
= max

b∈dom(B)
{min{R(B = b, C = c), R(B = b | A = aobs)}}.

Here (1), (2), and (3) hold for the same reasons as before, while (4) exploits
the result obtained above. It is obvious that the right part of Figure 3.6 is a
graphical representation, for each possible value of attribute C, of the above
formula for computing the conditional possibility R(C = c | A = aobs).

In the same fashion as above we can also compute the influence of observa-
tions of more than one attribute. Suppose, for example, that the values of the
attributes A and C have both been observed and found to be aobs and cobs,
respectively. To compute the resulting conditional possibilities for the values
of attribute B given these observations, we have to compute ∀b ∈ dom(B) :

R(B = b | A = aobs, C = cobs)

= R
(∨

a∈dom(A)

A = a, B = b,
∨

c∈dom(C)

C = c
∣∣∣ A = aobs, C = cobs

)
(1)
= max

a∈dom(A)
{ max

c∈dom(C)
{R(A = a, B = b, C = c | A = aobs, C = cobs)}}

(2)
= max

a∈dom(A)
{ max

c∈dom(C)
{min{R(A = a, B = b, C = c),

R(A = a | A = aobs), R(C = c | C = cobs)}}}

(3)
= max

a∈dom(A)
{ max

c∈dom(C)
{min{R(A = a, B = b), R(B = b, C = c),

R(A = a | A = aobs), R(C = c | C = cobs)}}}

74 CHAPTER 3. DECOMPOSITION

= min{ max
a∈dom(A)

{min{R(A = a, B = b), R(A = a | A = aobs)},

max
c∈dom(C)

{min{R(B = b, C = c), R(C = c | C = cobs)}}

(4)
= min{R(A = aobs, B = b), R(B = b, C = cobs)}.

Here (1), (2), (3), and (4) hold for similar/same reasons as above. Again the
evidence propagation process can easily be depicted in the style of Figure 3.6.

Note that from the basic principle applied to derive the above formulae,
namely exploiting the decomposition property and shifting the maximum op-
erators so that terms independent of their index variable are moved out of
their range, generalizes easily to more than three attributes. How the terms
can be reorganized, however, depends on the decomposition formula. Clearly,
a decomposition into small terms, that is, possibility distributions on sub-
spaces spanned by few attributes, is desirable, because this facilitates the
reorganization and leads to simple propagation operations.

Seen from the point of view of the formulae derived above, the network
representation of the decomposition indicated in Figure 3.7 on page 60 can
also be interpreted as the result of some kind of pre-execution of the first
steps in the above derivations. The network structure pre-executes some of
the computations that have to be carried out to compute conditional possi-
bilities by exploiting the decomposition formula and shifting the aggregation
(maximum) operators. This interpretation is discussed in more detail in Chap-
ter 4, in particular in Section 4.2.1.

3.3 Probabilistic Decomposition

The method of decomposing a relation can easily be transferred to probability
distributions. Only the definitions of projection, cylindrical extension, and
intersection have to be modified. Projection now consists in calculating the
marginal distribution on a subspace. Extension and intersection are combined
and consist in multiplying the prior distribution with the quotient of posterior
and prior marginal probability.

3.3.1 A Simple Example

The idea of probabilistic decomposition is best explained by a simple example.
Figure 3.11 shows a probability distribution on the joint domain of the three
attributes A, B, and C together with its marginal distributions (sums over
rows/columns). It is closely related to the example of the preceding section,
since in this distribution those value combinations that were contained in the
relation RABC (were possible) have a high probability, while those that were
missing from RABC (were impossible) have a low probability. The probabilities

3.3. PROBABILISTIC DECOMPOSITION 75

all numbers in
parts per 1000

a1

a1

a2

a2

a3

a3

a4

a4

b1

b1

b2

b2

b3

b3

b1

c1

b2

c2

b3

c3

b1

c1

b2

c2

b3

c3

a1

c1

a2

c2

a3

c3

a4

20 90 10 80

2 1 20 17

28 24 5 3

18 81 9 72

8 4 80 68

56 48 10 6

2 9 1 8

2 1 20 17

84 72 15 9

40 180 20 160

12 6 120 102

168 144 30 18

50 115 35 100

82 133 99 146

88 82 36 34

20 180 200

40 160 40

180 120 60

220 330 170 280

400

240

360

240

460

300

Figure 3.11 A three-dimensional probability distribution with its marginal dis-
tributions (sums over rows/columns). It can be decomposed into the marginal
distributions on the subspaces {A, B} and {B, C}.

could, for example, state the relative frequencies of the objects in the box that
one of them is drawn from.

Like the relation RABC could be decomposed into the relations RAB and
RBC , the probability distribution in Figure 3.11 can be decomposed into
the two marginal distributions on the subspaces {A, B} and {B, C}. This is
possible, because it can be reconstructed using the formula

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

P(A = a, B = b, C = c) =
P(A = a, B = b) · P(B = b, C = c)

P(B = b)
.

This formula is the direct analog of the decomposition formula

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

R(A = a, B = b, C = c) = min{R(A = a, B = b), R(B = b, C = c)}

for the relational case (cf. Figure 3.5 on page 59 and the formula on page 71).
Note that in the probabilistic formula the minimum is replaced by the prod-
uct, that there is an additional factor 1

P (B=b) , and that (because of this factor)
P(B = b) must be positive.

76 CHAPTER 3. DECOMPOSITION

all numbers in
parts per 1000

a1

a1

a2

a2

a3

a3

a4

a4

b1

b1

b2

b2

b3

b3

b1

c1

b2

c2

b3

c3

b1

c1

b2

c2

b3

c3

a1

c1

a2

c2

a3

c3

a4

0 0 0 286

0 0 0 61

0 0 0 11

0 0 0 257

0 0 0 242

0 0 0 21

0 0 0 29

0 0 0 61

0 0 0 32

0 0 0 572

0 0 0 364

0 0 0 64

0 0 0 358

0 0 0 531

0 0 0 111

29 257 286

61 242 61

32 21 11

0 0 0 1000

572

364

64

122

520

358

Figure 3.12 Reasoning in the domain as a whole.

3.3.2 Reasoning in the Simple Example

Let us assume—as in the relational example—that we know that attribute A
has value a4. Obviously the corresponding probability distributions for B and
C can be determined from the three-dimensional distribution by restricting it
to the ‘‘slice’’ that corresponds to A = a4, i.e. by conditioning it on A = a4,
and computing the marginal distributions of that ‘‘slice’’. This is demon-
strated in Figure 3.12. Note that all numbers in the ‘‘slices’’ corresponding to
other values of attribute A are set to zero, because now these are known to
be impossible. Note also that the probabilities in the ‘‘slice’’ corresponding to
A = a4 have been renormalized by multiplying them by 1

P (A=a4)
= 1000

280 in
order to make them sum up to 1 (as required for a probability distribution).

However—as in the relational example—distributions on two-dimensional
subspaces are also sufficient to draw this inference; see Figure 3.13. The infor-
mation A = a4 is extended to the subspace {A, B} by multiplying the joint
probabilities by the quotient of posterior and prior probability of A = ai,
i = 1, 2, 3, 4. Then the marginal distribution on B is determined by summing
over the rows. In the same way the information of the new probability distri-
bution on B is propagated to C: the joint distribution on {B, C} is multiplied
with the quotient of prior and posterior probability of B = bj , j = 1, 2, 3, and
the marginal distribution on C is computed by summing over the columns.
It is easy to check that the results obtained in this way are the same as those
of corresponding computations on the three-dimensional domain.

3.3. PROBABILISTIC DECOMPOSITION 77

a1 a2 a3 a4

new

old
A

a1

b1

a2

b2

a3

b3

a3

new old
B

c1

b1

c2

b2

c3

b3

c1 c2 c3

old
new

C
0 0 0 1000

220 330 170 280

·new
old

��40
0
��180

0
��20

0
��160
572

��12
0
��6

0
��120

0
��102
364

��168
0
��144

0
��30

0
��18

64

∑
row

572 400

364 240

64 360

·new
old

��20
29
��180
257
��200
286

��40
61
��160
242
��40

61

��180
32
��120

21
��60

11

∑
column

240 460 300

122 520 358

Figure 3.13 Propagation of the evidence that attribute A has value a4 in
the three-dimensional probability distribution shown in Figure 3.11 using the
marginal probability distributions on the subspaces {A, B} and {B, C}.

3.3.3 Factorization of Probability Distributions

Generalizing from the simple example discussed above, probabilistic decom-
position can be defined in close analogy to the relational case. This leads to
the following well-known definition [Castillo et al. 1997]:

Definition 3.3.1 Let U = {A1, . . . , An} be a set of attributes and pU a prob-
ability distribution over U. Furthermore, let M = {M1, . . . , Mm} ⊆ 2U be a
set of nonempty (but not necessarily disjoint) subsets of U satisfying⋃

M∈M
M = U.

pU is called decomposable or factorizable w.r.t. M iff it can be written as
a product of m nonnegative functions φM : EM → IR+

0 , M ∈ M, i.e. iff

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

pU

(∧
Ai∈U

Ai = ai

)
=

∏
M∈M

φM

(∧
Ai∈M

Ai = ai

)
.

If pU is decomposable w.r.t. M the set of functions

ΦM = {φM1 , . . . , φMm
} = {φM | M ∈ M}

is called the decomposition or the factorization of pU . The functions in
ΦM are called the factor potentials of pU .

In the simple example discussed above, in which the three-dimensional prob-
ability distribution on the joint domain {A, B, C} can be decomposed into the

78 CHAPTER 3. DECOMPOSITION

marginal distributions on the subspaces {A, B} and {B, C}, we may choose,
for instance, two functions φAB and φBC in such a way that

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

φAB(A = a, B = b) = P(A = a, B = b) and

φBC(B = b, C = c) =
{

P(C = c | B = b), if P(B = b) �= 0,
0, otherwise.

Note that using factor potentials instead of marginal probability distributions
(which would be directly analogous to the relational case) is necessary, since
we have to take care of the factor 1

P (B=b) , which has to be incorporated into
at least one factor potential of the decomposition.

The definitions of the properties of decompositions (trivial, redundant,
finer, minimal, etc.—cf. Definition 3.2.5 on page 65) carry over directly from
the relational case if we replace the set RM of relations by the set ΦM of
factor potentials. However, an important difference to the relational case is
that for strictly positive probability distributions the minimal decomposition
is unique w.r.t. the sets of attributes the factor potentials are defined on
(cf. the notion of a minimal independence map in, for example, [Pearl 1988,
Castillo et al. 1997]). The exact definition of the factor potentials may still
differ, though, as can already be seen from the decomposition formula of the
geometrical objects example: the factor 1

P (B=b) may be included in one factor
potential or may be distributed to both, for example as 1√

P (B=b)
.

3.3.4 Conditional Probability and Independence

As stated above, the three-dimensional probability distribution shown in Fig-
ure 3.11 on page 75 can be reconstructed from the marginal distributions on
the subspaces {A, B} and {B, C} using the formula

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

P(A = a, B = b, C = c) =
P(A = a, B = b) P(B = b, C = c)

P(B = b)
.

Drawing on the notion of a conditional probability, this formula can be derived
from the (generally true) formula

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
P(A = a, B = b, C = c) = P(A = a | B = b, C = c) P(B = b, C = c)

by noting that in the probability distribution of the example A is conditionally
independent of C given B, written A⊥⊥P C | B. That is,

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

P(A = a | B = b, C = c) = P(A = a | B = b) =
P(A = a, B = b)

P(B = b)
,

3.3. PROBABILISTIC DECOMPOSITION 79

that is, if the value of attribute B is known, the probabilities of the values of
attribute A do not depend on the value of attribute C. Note that conditional
independence is symmetric: if A⊥⊥P C | B, then

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

P(C = c | B = b, A = a) = P(C = c | B = b) =
P(C = c, B = b)

P(B = b)
,

also holds. In other words, A⊥⊥P C | B entails C⊥⊥P A | B. This becomes most
obvious if we state conditional probabilistic independence in its most common
form, which is directly analogous to the standard definition of (unconditional)
probabilistic independence, namely as

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
P(A = a, C = c | B = b) = P(A = a | B = b) P(C = c | B = b).

The notion of conditional probabilistic independence is often used to derive a
factorization formula for a multivariate probability distribution that is more
explicit about the factors than Definition 3.3.1. The idea is to start from the
(generally true) chain rule of probability

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

P
(∧n

i=1
Ai = ai

)
=

n∏
i=1

P
(
Ai = ai

∣∣∣ ∧i−1

j=1
Aj = aj

)

and to simplify the factors on the right by exploiting conditional indepen-
dences. As can be seen from the three attribute example above, conditional
independences allow us to cancel some of the attributes appearing in the con-
ditions of the conditional probabilities. In this way the factors refer to fewer
conditional probability distributions and thus may be stored more efficiently.
Since this type of factorization is based on the chain rule of probability, it is
often called chain rule factorization (cf. [Castillo et al. 1997]).

The notion of a conditional probability also provides a justification of the
reasoning scheme outlined in Section 3.3.2, which can be developed in direct
analogy to the relational case (recall from Chapter 2 that probabilistic reason-
ing consists in computing conditional probabilities given some observations).
In the first step we have to compute the conditional probabilities of all values
of attribute B given the observation that the attribute A has the value aobs.
That is, we have to compute ∀b ∈ dom(B) :

P(B = b | A = aobs)

= P
(∨

a∈dom(A)

A = a, B = b,
∨

c∈dom(C)

C = c
∣∣∣ A = aobs

)

80 CHAPTER 3. DECOMPOSITION

(1)
=

∑
a∈dom(A)

∑
c∈dom(C)

P(A = a, B = b, C = c | A = aobs)

(2)
=

∑
a∈dom(A)

∑
c∈dom(C)

P(A = a, B = b, C = c) · P(A = a | A = aobs)
P(A = ai)

(3)
=

∑
a∈dom(A)

∑
c∈dom(C)

P(A = a, B = b)P(B = b, C = c)
P(B = b)

· P(A = a | A = aobs)
P(A = a)

=
∑

a∈dom(A)

P(A = a, B = b) · P(A = a | A = aobs)
P(A = a)

·
∑

c∈dom(C)

P(C = c | B = b)

︸ ︷︷ ︸
=1

(4)
=

P(A = aobs, B = b)
P(A = aobs)

.

Here (1) holds because of Kolmogorov’s axioms and (3) holds because of the
conditional probabilistic independence of A and C given B, which allows us to
decompose the joint probability distribution PABC according to the formula
stated above. (2) holds, because in the first place

P(A = a, B = b, C = c | A = aobs)

=
P(A = a, B = b, C = c, A = aobs)

P(A = aobs)

=

⎧⎨
⎩

P(A = a, B = b, C = c)
P(A = aobs)

, if a = aobs,

0, otherwise,

and secondly (which also justifies (4))

P(A = a | A = aobs) =
{

1, if a = aobs,
0, otherwise,

and therefore

P(A = a, B = b, C = c | A = aobs)

= P(A = a, B = b, C = c) · P(A = a | A = aobs)
P(A = a)

.

It is obvious that the left part of Figure 3.13 on page 77 is only a graphical
representation, for each possible value of attribute B, of the above formula.

3.3. PROBABILISTIC DECOMPOSITION 81

Note that this propagation formula is directly analogous to the formula for
the relational case (cf. page 71 in Section 3.2.6). The only difference (apart
from the factor 1

P (A=a)) is that the probabilistic formula uses the sum instead
of the maximum and the product instead of the minimum.

In the second step of the propagation, we have to determine the condi-
tional probabilities of the values of attribute C given the observation that the
attribute A has the value aobs. That is, we have to compute ∀c ∈ dom(C) :

P(C = c | A = aobs)

= P
(∨

a∈dom(A)

A = a,
∨

b∈dom(B)

B = b, C = c
∣∣∣ A = aobs

)
(1)
=

∑
a∈dom(A)

∑
b∈dom(B)

P(A = a, B = b, C = c | A = aobs)

(2)
=

∑
a∈dom(A)

∑
b∈dom(B)

P(A = a, B = b, C = c) · P(A = a | A = aobs)
P(A = a)

(3)
=

∑
a∈dom(A)

∑
b∈dom(B)

P(A = a, B = b)P(B = b, C = c)
P(B = b)

· P(A = a | A = aobs)
P(A = a)

=
∑

b∈dom(B)

P(B = b, C = c)
P(B = b)

∑
a∈dom(A)

P(A = a, B = b) · R(A = a | A = aobs)
P(A = a)︸ ︷︷ ︸

=P (B=b|A=aobs)

=
∑

b∈dom(B)

P(C = c | B = b) · P(B = b | A = aobs).

Here (1), (2), and (3) hold for the same reasons as above, while (4) exploits
the result obtained above. It is obvious that the right part of Figure 3.13
on page 77 is a graphical representation, for each value of attribute C, of
the above formula. Note that, as above, this propagation formula is directly
analogous to the formula for the relational case (cf. page 73 in Section 3.2.6).

In the same fashion as above, we can also compute the influence of obser-
vations of more than one attribute. Suppose, for example, that the values of
attributes A and C have both been observed and found to be aobs and cobs,
respectively. To compute the resulting conditional probabilities of the values
of B given these observations, we have to compute ∀b ∈ dom(B) :

82 CHAPTER 3. DECOMPOSITION

P(B = b | A = aobs, C = cobs)

= P
(∨

a∈dom(A)

A = a, B = b,
∨

c∈dom(C)

C = c
∣∣∣ A = aobs, C = cobs

)
(1)
=

∑
a∈dom(A)

∑
c∈dom(C)

P(A = a, B = b, C = c | A = aobs, C = cobs)

(2)
= α

∑
a∈dom(A)

∑
c∈dom(C)

P(A = a, B = b, C = c) · P(A = a | A = aobs)
P(A = a)

· P(C = c | C = cobs)
P(C = c)

(3)
= α

∑
a∈dom(A)

∑
c∈dom(C)

P(A = a, B = b) P(B = b, C = c)
P(B = b)

· P(A = a | A = aobs)
P(A = a)

· P(C = c | C = cobs)
P(C = c)

=
α

P(B = b)
·
(∑

a∈dom(A)

P(A = a, B = b) · P(A = a | A = aobs)
P(A = a)

)

·
(∑

c∈dom(C)

P(B = b, C = c) · P(C = c | C = cobs)
P(C = c)

)

(4)
=

α

P(B = b)
· P(B = b | A = aobs) · P(B = b | C = cobs),

where α = P (A=aobs)P (C=cobs)
P (A=aobs,C=cobs)

is a normalization factor that enables us to have
separate factors for the attributes A and C and thus to keep the propagation
scheme uniform. (Note, however, the additional factor 1

P (B=b) .) (1), (2), (3),
and (4) hold for similar/the same reasons as above. The evidence propagation
process can easily be depicted in the style of Figure 3.13.

As in the relational case, the principle applied in the above derivation,
namely shifting the sums so that terms independent of their index variable
are moved out of their range, can easily be generalized to more attributes.

3.4 Possibilistic Decomposition

The method of decomposing a relation can be transferred to possibility dis-
tributions as easily as it could be transferred to probability distributions in
Section 3.3. Again only the definitions of projection, cylindrical extension, and
intersection have to be modified. Projection now consists in computing the
maximal degrees of possibility over the dimensions removed by it. Extension
and intersection are combined and consist in calculating the minimum of the
prior joint and the posterior marginal possibility degrees.

3.4. POSSIBILISTIC DECOMPOSITION 83

3.4.1 Transfer from Relational Decomposition

Actually possibilistic decomposition is formally identical to relational decom-
position in the possibility-based formalization studied in Section 3.2.5. The
only difference is that instead of only 0 and 1 a (general) possibility measure
can assume any value in the interval [0, 1], thus quantifying the notion of
a possibility. Therefore, in analogy to the treatment of the relational case
in Section 3.2.5, we complement the semantical introduction of a possibil-
ity measure and a possibility distribution (cf. Section 2.4) by an axiomatic
approach (compare also [Dubois and Prade 1988]):

Definition 3.4.1 Let Ω be a (finite) sample space. A (general) possibility
measure Π on Ω is a function Π : 2Ω → [0, 1] satisfying

1. Π(∅) = 0 and

2. ∀E1, E2 ⊆ Ω : Π(E1 ∪ E2) = max{Π(E1), Π(E2)}.

Note that this definition differs from Definition 3.2.6 on page 67 only in the
range of values of the measure. Note also that the measure of Definition 2.4.8
on page 46 satisfies the axioms of the above definition.

By the transition to a (general) possibility measure carried out above it
is explained why there is no axiom R(Ω) = 1 for binary possibility measures:
it would have been necessary to revoke this axiom now. With degrees of
possibility, Π(Ω) = maxω∈Ω Π({ω}) need not be 1. Adding this constraint
would introduce the normalization condition (cf. Definition 2.4.3 on page 37),
which we rejected in Section 2.4.6.

Due to the close formal proximity of binary and general possibility mea-
sures there is not much left to be said. Everything developed following the
definition of a binary possibility measure in Definition 3.2.6 on page 67 car-
ries over directly to (general) possibility measures, since the fact that binary
possibility measures can assume only the values 0 and 1 was not exploited.

3.4.2 A Simple Example

Although there is a direct transfer from the relational case, it is useful to il-
lustrate the decomposition of possibility distributions with a simple example.
Figure 3.14 shows a three-dimensional possibility distribution on the joint
domain of the attributes A, B, and C and its marginal distributions (maxima
over rows/columns). In analogy to the probabilistic example it is closely re-
lated to the relational example: those value combinations that were possible
have a high degree of possibility and those that were impossible have a low
degree of possibility. This possibility distribution can be decomposed into the
marginal distributions on the subspaces {A, B} and {B, C}, because it can

84 CHAPTER 3. DECOMPOSITION

all numbers in
parts per 1000

a1

a1

a2

a2

a3

a3

a4

a4

b1

b1

b2

b2

b3

b3

b1

c1

b2

c2

b3

c3

b1

c1

b2

c2

b3

c3

a1

c1

a2

c2

a3

c3

a4

40 60 10 60

20 10 20 20

30 30 20 10

40 80 10 70

30 10 70 60

60 60 20 10

20 20 10 20

30 10 40 40

80 90 20 10

40 80 10 70

30 10 70 60

80 90 20 10

40 60 20 60

60 80 70 70

80 90 40 40

20 80 60

40 70 20

90 60 30

80 90 70 70

80

70

90

90

80

60

Figure 3.14 A three-dimensional possibility distribution with marginal distri-
butions (maxima over rows/columns).

be reconstructed using the formula

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
Π(A = a, B = b, C = c) = min

b∈dom(B)
{Π(A = a, B = b), Π(B = b, C = c)}

= min
b∈dom(B)

{ max
c∈dom(C)

Π(A = a, B = b, C = c),

max
a∈dom(A)

Π(A = a, B = b, C = c)}.

3.4.3 Reasoning in the Simple Example

Let us assume as usual that from an observation it is known that attribute A
has value a4. Obviously the corresponding (conditional) possibility distribu-
tion can be determined from the three-dimensional distribution by restricting
it to the ‘‘slice’’ corresponding to A = a4, that is, by conditioning it on
A = a4, and then computing the marginal distributions of that ‘‘slice’’. This
is demonstrated in Figure 3.15. Note that the numbers in the ‘‘slices’’ corre-
sponding to other values of attribute A have been set to zero, because these
are known now to be impossible. Note also that—in contrast to the probabilis-
tic case—the numbers in the ‘‘slice’’ corresponding to A = a4 are unchanged,
that is, in the possibilistic case no renormalization takes place.

However, as in the probabilistic case studied in Section 3.3.2, distributions
on two-dimensional subspaces are also sufficient to draw this inference; see

3.4. POSSIBILISTIC DECOMPOSITION 85

all numbers in
parts per 1000

a1

a1

a2

a2

a3

a3

a4

a4

b1

b1

b2

b2

b3

b3

b1

c1

b2

c2

b3

c3

b1

c1

b2

c2

b3

c3

a1

c1

a2

c2

a3

c3

a4

0 0 0 60

0 0 0 20

0 0 0 10

0 0 0 70

0 0 0 60

0 0 0 10

0 0 0 20

0 0 0 40

0 0 0 10

0 0 0 70

0 0 0 60

0 0 0 10

0 0 0 60

0 0 0 70

0 0 0 40

20 70 60

40 60 20

10 10 10

0 0 0 70

70

60

10

40

70

60

Figure 3.15 Reasoning in the domain as a whole.

Figure 3.16. The information that A = a4 is extended to the subspace {A, B}
by computing the minimum of the prior joint degrees of possibility and the
posterior degrees of possibility of A = ai, i = 1, 2, 3, 4. Then the marginal
distribution on B is determined by taking the maximum over the rows. In
the same way the information of the new possibility distribution on B is
propagated to C: the minimum of the prior joint distribution on {B, C} and
the posterior distribution on B is computed and projected to attribute C by
taking the maximum over the columns. It is easy to check that the results
obtained in this way are the same as those that follow from the computations
on the three-dimensional domain (see above).

3.4.4 Conditional Degrees of Possibility
and Independence

This reasoning scheme can be justified in the same way as in the relational and
in the probabilistic case by drawing on the notion of a conditional degree of
possibility (cf. Definition 3.2.9 on page 70 and Definition 2.4.9 on page 47). The
derivation is formally identical to that carried out in Section 3.2.6, pages 71ff,
since for the relational case the fact that a binary possibility measure can as-
sume only the values 0 and 1 was not exploited. This formal identity stresses
that possibilistic networks can be seen as a ‘‘fuzzyfication’’ of relational net-
works, which is achieved in the usual way: a restriction to the values 0 and 1
is removed by considering all values in the interval [0, 1] instead.

86 CHAPTER 3. DECOMPOSITION

a1 a2 a3 a4

new

old
A

a1

b1

a2

b2

a3

b3

a3

new old
B

c1

b1

c2

b2

c3

b3

c1 c2 c3

old
new

C
0 0 0 70

80 90 70 70

min
new

��40
0
��80

0
��10

0
��70

70

��30
0
��10

0
��70

0
��60

60

��80
0
��90

0
��20

0
��10

10

max
line

70 80

60 70

10 90

min
new

��20
20
��80

70
��60

60

��40
40
��70

60
��20

20

��90
10
��60

10
��30

10

max
column

90 80 60

40 70 60

Figure 3.16 Propagation of the evidence that attribute A has value a4 in
the three-dimensional possibility distribution shown in Figure 3.14 using the
projections to the subspaces {A, B} and {B, C}.

Possibilistic decomposition, as we study it here, is based on a specific
notion of conditional possibilistic independence, which is defined in direct
analogy to the relational case (cf. Definition 3.2.10 on page 70).

Definition 3.4.2 Let Ω be a (finite) sample space, Π a possibility measure
on Ω, and A, B, and C attributes with respective domains dom(A), dom(B),
and dom(C). A and C are called conditionally possibilistically indepen-
dent given B, written A⊥⊥Π C | B, iff

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
Π(A = a, C = c | B = b) = min{Π(A = a | B = b), Π(C = c | B = b)}.

Of course, this definition is easily extended to sets of attributes. This specific
notion of conditional possibilistic independence is usually called possibilistic
non-interactivity [Dubois and Prade 1988]. However, in contrast to proba-
bility theory, for which there is unanimity about the notion of conditional
probabilistic independence, for possibility theory several alternative notions
have been suggested. Discussions can be found in, for example, [Farinas del
Cerro and Herzig 1994] and [Fonck 1994].

The main problem seems to be that possibility theory is a calculus for un-
certain and imprecise reasoning, the former of which is more closely related
to probability theory, while the latter is more closely related to relational
algebra (cf. Section 2.4.11). As a consequence, there are at least two ways
to arrive at a definition of conditional possibilistic independence, namely ei-
ther uncertainty-based by a derivation from Dempster’s rule of conditioning
[Shafer 1976], or imprecision-based by a derivation from the relational setting
(which leads to possibilistic non-interactivity) [de Campos et al. 1995]. In this

3.5. POSSIBILITY VERSUS PROBABILITY 87

book we concentrate on the latter approach, because its semantical justifica-
tion is much clearer and it has the advantage to be in accordance with the
so-called extension principle [Zadeh 1975].

Note that conditional possibilistic independence can be used, in analogy
to the probabilistic case, to derive a decomposition formula for a multivariate
possibility distribution based on a chain-rule-like formula, namely

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

Π
(∧n

i=1
Ai = ai

)
= minn

i=1Π
(
Ai = ai

∣∣∣ ∧i−1

j=1
Aj = aj

)
.

Obviously, this formula holds generally, since the term for i = n in the mini-
mum on the right is equal to the term on the left. However, in order to cancel
conditions, we have to take some care, because even if A⊥⊥Π B | C, it will be
Π(A = a | B = b, C = c) �= Π(A = a | C = c) in general. Fortunately, there
is a way of writing a conditional possibilistic independence statement that is
equally useful, namely (for three attributes)

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
Π(A = a | B = b, C = c) = min{Π(A = a | C = c), Π(B = b, C = c)}.

With such formulae we can cancel conditions in the terms of the formula
above, if we proceed in the order of descending values of i. Then the un-
conditional possibility in the minimum can be neglected, because among the
remaining unprocessed terms there must be one that is equal to it or refers
to more attributes and thus restricts the degree of possibility more.

3.5 Possibility versus Probability

From the simple examples of three-dimensional probability and possibility
distributions discussed above it should be clear that the two approaches ex-
ploit entirely different properties to decompose distributions. This leads, of
course, to substantial differences in the interpretation of the reasoning re-
sults. To make this clear, we consider in this section how, in the two calculi,
the marginal distributions on single attributes relate to the joint distribution
they are derived from. This is important, because the reasoning process, as
it was outlined in this chapter, produces only marginal distributions on sin-
gle attributes (conditioned on the observations). Since the relation of these
marginal distributions to the underlying joint distribution is very different
for probability distributions compared to possibility distributions, one has to
examine whether it is actually the joint distribution one is interested in.

The difference is due to how projections, i.e. marginal distributions, are
computed in the two calculi. In probability theory the summation over the
dimensions to be removed wipes out any reference to these dimensions. In

88 CHAPTER 3. DECOMPOSITION∑

max

0

18

18

0

18

0

0

0

18

0

0

0

0

0

0

28

36

18

18

18

18

18

28

28

36

18

18

18

18

18

28

28 Figure 3.17 Possibility versus
probability w.r.t. the interpre-
tation of marginal distributions
(all numbers are percent).

the resulting marginal distribution no trace of the attributes underlying these
dimensions or their values is left: the marginal distribution refers exclusively
to the attributes spanning the subspace projected to. The reason is that all
values of the removed attributes contribute to the result of the projection
w.r.t. their relative ‘‘importance’’, expressed in their relative probability.

In possibility theory this is different. Because the maximum is taken over
the dimensions to be removed, not all values of the attributes underlying these
dimensions contribute to the result of the projection. Only the values describ-
ing the elementary event or events having the highest degree of possibility de-
termine the marginal degree of possibility. Thus not all information about the
values of the removed attributes is wiped out. These attributes are rather im-
plicitly fixed to those values describing the elementary event or events having
the highest degree of possibility. It follows that—unlike marginal probabili-
ties, which refer only to tuples over the attributes of the subspace projected
to—marginal degrees of possibility always refer to value vectors over all at-
tributes of the universe of discourse, although only the values of the attributes
of the subspace are stated explicitly in the marginal distribution.

In other words, a marginal probability distribution states: ‘‘The probabil-
ity that attribute A has value a is p.’’ This probability is aggregated over all
values of all other attributes and thus refers to a one element vector (a). A
marginal possibility distribution states instead: ‘‘The degree of possibility of a
value vector (tuple) with the highest degree of possibility of all value vectors
(tuples) in which attribute A has value a is p.’’ That is, it refers to a value
vector (tuple) over all attributes of the universe of discourse, although the
values of all attributes other than A are left implicit.

As a consequence of the difference just studied one has to ask oneself
whether one is interested in tuples instead of the value of only a single at-
tribute. To understand this, reconsider the result of the probabilistic reasoning
process shown in Figure 3.13 on page 77. It tells us that (given attribute A has
value a4, that is, the object is grey) the most probable value of attribute B
is b3, that is, that the object is most likely to be a triangle, and that the most
probable value of attribute C is c2, that is, that the object is most likely to
be of medium size. However, from this we cannot conclude that the object is

3.5. POSSIBILITY VERSUS PROBABILITY 89

max

0

40

0

0

20

0

0 40 0

40

20

40

40

20

40

Figure 3.18 Maximum projections
may also lead to an incorrect deci-
sion due to an ‘‘exclusive-or’’ effect.

most likely to be a medium grey triangle (the color we know from the observa-
tion). As can be seen from Figure 3.12 on page 76 or from the joint distribution
shown on the bottom right in Figure 3.13 on page 77, the object is most likely
to be large grey triangle, that is, in the most probable tuple attribute C has
the value c3. The reason for this difference is, obviously, that grey triangles as
well as grey squares of medium size, i.e. the tuples (a4, b2, c2) and (a4, b3, c2),
respectively, have a relatively high probability, whereas of large grey objects
(A = a4, C = c3) only triangles (B = b2) have a high probability.

An even more extreme example is shown in Figure 3.17, which, in the
center square, shows a probability distribution over the joint domain of two
attributes having four values each. The marginal distributions are shown to
the left and above this square. Here selecting the tuple containing the values
with the highest marginal probabilities decides on an impossible tuple. It
follows that in the probabilistic case we may decide incorrectly if we rely
exclusively on the marginal distributions (this is not a rare situation indeed).
To make the correct decision, we must explicitly search for a mode of the
probability distribution (where a mode is a tuple with the highest probability
among all possible tuples), rather than compute marginal probabilities.

For possibility distributions, however, the situation is different. If in each
marginal distribution on a single attribute there is only one value having the
highest degree of possibility, then the tuple containing these values is the
one having the highest degree of possibility. This is illustrated in Figure 3.17,
where marginal distributions computed by taking the maximum are shown
below and to the right of the square (recall that, according to Chapter 2,
a probability distribution is only a special possibility distribution and thus
we may use maximum projections also for probability distributions). These
marginal distributions indicate the correct tuple.

It should be noted, though, that in the possibilistic setting we may also
choose incorrectly, due to a kind of ‘‘exclusive-or’’ effect. This is illustrated
in Figure 3.18. If we decide on the first value for both attributes (we have to
choose between the first and the second value, because they have the same
marginal), we decide on an impossible tuple. Therefore, in this case, we are
forced to check the joint distribution to ensure a correct decision or to find,
in some other way, an actual mode of the distribution.

Note that the property of maximum projections just discussed provides
the justification for using the maximum to compute the degree of possibility

90 CHAPTER 3. DECOMPOSITION

of sets of elementary events, as we promised in Section 2.4.10. Computing
a marginal distribution can be seen as computing the degree of possibility
of specific sets of elementary events, namely those that can be defined using
a subset of all attributes (cf. Definition 3.2.7 and its extension to general
possibility measures). In a multidimensional domain taking the maximum to
compute the degree of possibility of sets of elementary events is useful, because
it serves the task to identify—attribute by attribute—the values of the tuple
or tuples of the joint domain that have the highest degree of possibility.

Note also that this property of maximum projections, which may appear as
an advantage at first sight, can also turn out to be a disadvantage, namely in
the case where we are not interested in a tuple over all unobserved attributes
that has the highest degree of possibility. The reason is that—as indicated
above—we cannot get rid of the implicitly fixed values of the attributes that
were projected out. If we want to neglect an attribute entirely, we have to
modify the universe of discourse and then compute the possibility distribution
and its decomposition on this modified universe.

The probabilistic setting is, in this respect, more flexible. Whereas in pos-
sibilistic networks, we can only compute the mode (the tuple with the highest
degree of possibility), probabilistic networks allow us to choose: we may com-
pute the conditional probabilities of the values of individual attributes, or
we may compute the mode of the probability distribution. That this can be
achieved with an approach that is completely analogous to the procedure that
yields conditional probabilities, can be seen by considering the simple geomet-
rical objects example, especially the computations carried out on pages 79ff.
Instead of P(B = b | A = aobs) or P(C = c | A = aobs), we now compute

∀b ∈ dom(B) : max
a∈dom(A)

max
c∈dom(C)

P(A = a, B = b, C = c | A = aobs).

However, this expression can be treated in complete analogy to

∀b ∈ dom(B) :
∑

a∈dom(A)

∑
c∈dom(C)

P(A = a, B = b, C = c | A = aobs),

which appeared as the first step in the computation of P(B = b | A = aobs).
The reason is that the only property we used for modifying the sums in this
computation was the distributive law, that is

x · y + x · z = x · (y + z).

However, basically the same equation holds for maxima, namely

∀x ≥ 0 : max{x · y, x · z} = x · max{y, z},

and therefore basically the same computations are possible. However, in order
to demonstrate this, we confine ourselves to one case, namely computing the

3.5. POSSIBILITY VERSUS PROBABILITY 91

value of attribute B in a most probable tuple under an observation of the
value of the attribute a, that is, we confine computation to

Pmax(B = b | A = aobs)

= max
a∈dom(A)

max
c∈dom(C)

P(A = a, B = b, C = c | A = aobs)

= max
a∈dom(A)

max
c∈dom(C)

P(A = a, B = b, C = c) · P(A = a | A = aobs)
P(A = ai)

= max
a∈dom(A)

max
c∈dom(C)

P(A = a, B = b)P(B = b, C = c)
P(B = b)

· P(A = a | A = aobs)
P(A = a)

= max
a∈dom(A)

P(A = a, B = b) · P(A = a | A = aobs)
P(A = a)

· max
c∈dom(C)

P(C = c | B = b)

= P(B = b | A = aobs) · max
c∈dom(C)

P(C = c | B = b).

Clearly, basically all steps are completely analogous to the computations
shown on pages 79f. The only difference is that in the last step we cannot
get rid of the factor maxc∈dom(C) P(C = c | B = b) due to the maximum
(having a sum in its place allowed us to reduce this factor to 1). Of course,
analogous computations can also be carried out for Pmax(C = c | A = aobs)
or Pmax(B = b | A = aobs, C = cobs), which would correspond to the compu-
tations on page 81 and page 82, respectively. However, we leave working out
these computations as a simple exercise for the reader.

As a final remark let us point out that both relational and possibilistic
propagation (which are formally equivalent) rely on

max{min{x, y}, min{x, z}} = min{x, max{y, z}}

to simplify the expressions in the computations on pages 71ff which nicely
complements the two distributive laws stated above for the probabilistic case.
As a consequence, we can distinguish three schemes:

• Probabilistic 1: The goal is to compute conditional probabilities given
the observations (but independent of the values of other attributes).
This is achieved by exploiting the product-sum distributive law.

• Probabilistic 2: The goal is to compute the probability (and the val-
ues) of a most probable tuple given the observations. This is achieved
by exploiting the product-maximum distributive law.

• Possibilistic: The goal is to compute the degree of possibility (and the
values) of a most possible tuple given the observations. This is achieved
by exploiting the minimum–maximum distributive law.

Chapter 4

Graphical Representation

When we discussed the simple examples of decompositions in the previous
chapter we mentioned that the idea suggests itself of representing decomposi-
tions and evidence propagation in decompositions by graphs or networks (cf.
Figure 3.7 on page 60). In these graphs there is a node for each attribute used
to describe the underlying domain of interest. The edges indicate which pro-
jections are needed in the decomposition of a distribution and thus the paths
along which evidence has to be propagated. In this chapter we study this
connection to graphs in more detail, since it is a very intuitive and powerful
way to handle decompositions of distributions.

Formally, decompositions of distributions are connected to graphs by the
notion of conditional independence, which is closely related to the notion of
separation in graphs. In Section 4.1 we study this relation w.r.t. both directed
and undirected graphs based on a qualitative description of the properties of
conditional independence by the so-called graphoid and semi-graphoid axioms
[Dawid 1979, Pearl and Paz 1987, Geiger 1990], which are also satisfied by
separation in graphs. This leads to natural definitions of conditional indepen-
dence graphs based on the so-called Markov properties of graphs [Lauritzen et
al. 1990, Whittaker 1990, Lauritzen 1996]. Finally, conditional independence
graphs are shown to be direct descriptions of decompositions.

In Section 4.2 we turn to evidence propagation in graphs, the basic ideas
of which were also indicated in the previous chapter. We review briefly two
simple evidence propagation methods, namely propagation in undirected trees
and the join tree propagation method [Lauritzen and Spiegelhalter 1988].
For the former we provide a simple, but detailed derivation, while for the
latter we confine ourselves to outlining the core ingredients. Of course, since
propagation has been an area of intensive research in recent years, there
are also several other methods for drawing inferences with decompositions of
distributions. However, discussing these in detail is beyond the scope of this
book, which focuses on learning from data, and thus they are only mentioned.

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

94 CHAPTER 4. GRAPHICAL REPRESENTATION

4.1 Conditional Independence Graphs

In Chapter 3 we indicated that the decomposition of distributions can be
based on a notion of conditional independence of (sets of) attributes. To study
this notion independent of the imprecision or uncertainty calculus, it is conve-
nient to have a qualitative characterization of its properties that does not refer
to numerical equalities. Such a characterization is achieved by the so-called
graphoid and semi-graphoid axioms (cf. Section 4.1.1). At least the latter are
satisfied by probabilistic as well as possibilistic conditional independence, but
also by separation in graphs (cf. Section 4.1.3). Hence separation in graphs
can be used to represent conditional independence (although isomorphism
cannot be achieved in general), which leads to the definition of a (minimal)
conditional independence graph (cf. Section 4.1.4). However, this definition is
based on a global criterion, which is inconvenient to test. To cope with this
problem the so-called Markov properties of graphs are examined and shown
to be equivalent under certain conditions (cf. Section 4.1.5). Finally, the con-
nection of conditional independence graphs and decompositions is established
by showing that the latter can be read from the former (cf. Section 4.1.7).

4.1.1 Axioms of Conditional Independence

Axioms for conditional independence were stated first by [Dawid 1979], but
were also independently suggested later by [Pearl and Paz 1987].

Definition 4.1.1 Let U be a set of (mathematical) objects and (· ⊥⊥ · | ·) a
three-place relation of subsets of U. Furthermore, let W, X, Y, and Z be four
disjoint subsets of U. The four statements

symmetry: (X⊥⊥ Y | Z) ⇒ (Y⊥⊥ X | Z)

decomposition: (W ∪ X⊥⊥ Y | Z) ⇒ (W⊥⊥ Y | Z) ∧ (X⊥⊥ Y | Z)

weak union: (W ∪ X⊥⊥ Y | Z) ⇒ (X⊥⊥ Y | Z ∪ W)

contraction: (X⊥⊥ Y | Z ∪ W) ∧ (W⊥⊥ Y | Z) ⇒ (W ∪ X⊥⊥ Y | Z)

are called the semi-graphoid axioms. A three-place relation (· ⊥⊥ · | ·) that
satisfies the semi-graphoid axioms for all W, X, Y, and Z is called a semi-
graphoid. The above four statements together with

intersection: (W⊥⊥ Y | Z ∪ X) ∧ (X⊥⊥ Y | Z ∪ W) ⇒ (W ∪ X⊥⊥ Y | Z)

are called the graphoid axioms. A three-place relation (· ⊥⊥ · | ·) that satisfies
the graphoid axioms for all W, X, Y, and Z is called a graphoid.

Of course, as can be guessed from the notation, the set U is intended to be
the set of attributes used to describe the domain under consideration and the
relation (· ⊥⊥ · | ·) is intended to denote a notion of conditional independence
w.r.t. some imprecision or uncertainty calculus. With this interpretation these
axioms can be read as follows [Pearl 1988]:

4.1. CONDITIONAL INDEPENDENCE GRAPHS 95

The symmetry axiom states that in any state of knowledge Z (i.e. for any
instantiation of the attributes in Z), if X tells us nothing new about Y (i.e. if
finding out the values of the attributes in X does not change our knowledge
about the values of the attributes in Y), then Y tells us nothing new about X.
The decomposition axiom asserts that if two combined items of information
are irrelevant to X, then each separate item is irrelevant as well. The weak
union axiom states that learning irrelevant information W cannot help the
irrelevant information Y become relevant to X. The contraction axiom states
that if X is irrelevant to Y after learning some irrelevant information W, then
X must have been irrelevant before we learned W. Together the weak union
and contraction properties mean that irrelevant information should not alter
the relevance of other propositions in the system; what was relevant remains
relevant, and what was irrelevant remains irrelevant. It is plausible that any
reasonable notion of conditional independence should satisfy these axioms.

The intersection axiom states that unless W affects Y if X is held constant
or X affects Y if W is held constant, neither W nor X nor their combination can
affect Y. This axiom is less plausible than the other four. Two attributes can
be relevant to a third, although each of them is irrelevant if the other is held
constant. The reason may be a strong dependence between them, for instance,
a 1-to-1 relationship of their values. In such a case either attribute is irrelevant
if the other is known (since its value is implicitly fixed by the value of the
other), but can be relevant if the other is unknown (because then all values
may be possible). Thus it is not surprising that, in general, the intersection
axiom is satisfied neither for conditional probabilistic independence nor for
conditional possibilistic independence (see below for an example).

Nevertheless, we have the following theorem:

Theorem 4.1.2 Conditional probabilistic independence and conditional pos-
sibilistic independence satisfy the semi-graphoid axioms. If the considered joint
probability distribution is strictly positive, conditional probabilistic indepen-
dence satisfies the graphoid axioms.

Proof. The proof of this theorem is rather simple and only exploits the
definitions of conditional probabilistic and possibilistic independence, respec-
tively. It can be found in Section A.1 in the appendix.

That in general neither probabilistic nor possibilistic conditional independence
satisfies the intersection axiom can be seen from the simple relational example
shown in Figure 4.1 (a probabilistic example can be derived by assigning a
probability of 0.5 to each tuple). It is obvious that in the relation shown on
the left in Figure 4.1 A⊥⊥R B | C, A⊥⊥R C | B, and B⊥⊥R C | A hold (cf.
Figure 3.10 on page 66). From these statements A⊥⊥R BC, B⊥⊥R AC, and
C⊥⊥R AB can be inferred with the intersection axiom. Applying the decom-
position axiom to these statements yields A⊥⊥R B, A⊥⊥R C, and B⊥⊥R C, but
neither of these independences hold, as the projections on the right in Fig-

96 CHAPTER 4. GRAPHICAL REPRESENTATION

a1 a2

b1

b2

c1
c2

a1 a2

b1

b2

c1
c2

a1 a2

b1

b2

c1
c2

a1 a2

b1

b2

c1
c2

Figure 4.1 Conditional relational independence does not satisfy the intersec-
tion axiom. In the relation on the left, it is A⊥⊥R B | C and A⊥⊥R C | B.
However, the projections show that neither A⊥⊥R B nor A⊥⊥R C.

Table 4.1 In the relation shown on the left in Figure 4.1 it is A⊥�⊥R BC: The
relation contains only the tuples marked with •, but for A⊥⊥R BC to hold, at
least the tuples marked with ◦ have to be possible, too.

B = b1 B = b2rABC
C = c1 C = c2 C = c1 C = c2

A = a1 • − − ◦
A = a2 ◦ − − •

ure 4.1 demonstrate. Since the decomposition axiom holds for conditional pos-
sibilistic and thus for conditional relational independence (see Theorem 4.1.2),
it must be the intersection axiom that is not satisfied. Alternatively, one can
see directly from Table 4.1 that A⊥�⊥R BC (the other two cases are analogous).

The main advantage of the graphoid and the semi-graphoid axioms is that
they facilitate reasoning about conditional independence. The rationale is that
if we have a set of conditional independence statements, we can easily find
implied conditional independence statements by drawing inferences based on
the graphoid and the semi-graphoid axioms.

This situation parallels the situation in symbolic logic, where we try to find
inference rules that allow us to derive syntactically the semantical implications
of a set of formulae. In the case of conditional independence the graphoid and
semi-graphoid axioms are the syntactical inference rules. On the other hand,
a conditional independence statement I is implied semantically by a set I of
conditional independence statements if I holds in all distributions satisfying
all statements in I. Consequently, in analogy to symbolic logic, the question
arises whether the syntactical rules are sound and complete, that is, whether
they yield only semantically correct conclusions and whether all semantical
conclusions can be derived with them.

The soundness is ensured by Theorem 4.1.2. It was conjectured by [Pearl
1988] that the semi-graphoid axioms are also complete for general (that is, not

4.1. CONDITIONAL INDEPENDENCE GRAPHS 97

only strictly positive) probability distributions. However, this conjecture was
shown to be false [Studený 1992]. Whether they are complete for conditional
possibilistic independence seems to be an open problem still.

4.1.2 Graph Terminology

Before we define separation in graphs in the next section, it is convenient to
review some basic notions used in connection with graphs (although most of
them are well known) and, more importantly, to introduce our notation.

Definition 4.1.3 A graph is a pair G = (V, E), where V is a (finite) set of
vertices or nodes and E ⊆ V × V is a (finite) set of edges, links, or arcs.
It is understood that there are no loops, that is, there are no edges (A, A) for
any A ∈ V. G is called undirected iff

∀A, B ∈ V : (A, B) ∈ E ⇒ (B, A) ∈ E.

That is, two ordered pairs (A, B) and (B, A) are identified and represent only
one (undirected) edge.1 G is called directed iff

∀A, B ∈ V : (A, B) ∈ E ⇒ (B, A) /∈ E.

An edge (A, B) is considered to be directed from A towards B.

Note that the graphs defined above are simple, that is, there are no multi-
ple edges between two nodes and no loops. In order to distinguish between
directed and undirected graphs, we write �G = (V, �E) for directed graphs.

The next four definitions introduce notions specific to undirected graphs.

Definition 4.1.4 Let G = (V, E) be an undirected graph. A node B ∈ V is
called adjacent to a node A ∈ V or a neighbor of A iff there is an edge
between them, i.e. iff (A, B) ∈ E. The set of all neighbors of A is

neighbors(A) = {B ∈ V | (A, B) ∈ E},

and deg(A) = | neighbors(A)| is the degree of the node A (number of incident
edges). The set neighbors(A) is sometimes also called the boundary of A. The
boundary of A together with A is called the closure of A:

closure(A) = neighbors(A) ∪ {A}.

Of course, the notions of boundary and closure can easily be extended to sets
of nodes, but we do not need this extension in this book. In the next definition
the notion of adjacency of nodes is extended to paths.

1This way of expressing that edges are undirected, that is, removing the “direction”
of the ordered pairs by requiring both directions to be present, has the advantage that it
can easily be extended to capture graphs with both directed and undirected edges: for a
directed edge only one of the two possible pairs is in E.

98 CHAPTER 4. GRAPHICAL REPRESENTATION

Definition 4.1.5 Let G = (V, E) be an undirected graph. Two distinct nodes
A, B ∈ V are called connected in G, written A ∼

G B, iff there exists a se-
quence C1, . . . , Ck, k ≥ 2, of distinct nodes, called a path, with C1 = A,
Ck = B, and ∀i, 1 ≤ i < k : (Ci, Ci+1) ∈ E.

Note that in this definition a path is defined as a sequence of nodes (instead of
a sequence of edges), because this is more convenient for our purposes. Note
also that the nodes on the path must be distinct, that is, the path must not
lead back to a node that has been visited.

An important special case of an undirected graph is the tree, in which
there is only a restricted set of paths.

Definition 4.1.6 An undirected graph is called singly connected or a tree
iff any pair of distinct nodes is connected by exactly one path.

The following notions, especially the notion of a maximal clique, are important
for the connection of decompositions and undirected graphs.

Definition 4.1.7 Let G = (V, E) be an undirected graph. An undirected
graph GX = (X, EX) is called a subgraph of G (induced by X) iff X ⊆ V
and EX = (X×X) ∩E, that is, iff it contains a subset of the nodes in G and
all corresponding edges.

An undirected graph G = (V, E) is called complete iff its set of edges is
complete, that is, iff all possible edges are present, or formally iff

E = V × V − {(A, A) | A ∈ V}.

A complete subgraph is called a clique. A clique is called maximal iff it is
not a subgraph of a larger clique, that is, a clique having more nodes.

Note that in publications on graphical models the term clique is often used for
what is called a maximal clique in the definition above, while what is called a
clique in the above definition is merely called a complete subgraph. We chose
the above definition, because it is the standard terminology used in graph
theory (see, for example, [Bodendiek and Lang 1995]).

The remaining definitions introduce notions specific to directed graphs.

Definition 4.1.8 Let �G = (V, �E) be a directed graph. A node B ∈ V is called
a parent of a node A ∈ V and, conversely, A is called the child of B iff there
is a directed edge from B to A, that is, iff (B, A) ∈ E. B is called adjacent to
A iff it is either a parent or a child of A. The set of all parents of a node A
is denoted

parents(A) = {B ∈ V | (B, A) ∈ �E}

and the set of its children is denoted

children(A) = {B ∈ V | (A, B) ∈ �E}.

4.1. CONDITIONAL INDEPENDENCE GRAPHS 99

In the next definition the notion of adjacency of nodes is extended to paths.

Definition 4.1.9 Let �G = (V, �E) be a directed graph.
Two nodes A, B ∈ V are called d-connected in �G, written A �

�G B, iff
there is a sequence C1, . . . , Ck, k ≥ 2, of distinct nodes, called a directed
path, with C1 = A, Ck = B, and ∀i, 1 ≤ i < k : (Ci, Ci+1) ∈ �E.

Two nodes A, B ∈ V are called connected in �G, written A ∼
�G B, iff there

is a sequence C1, . . . , Ck, k ≥ 2, of distinct nodes, called a path, with C1 = A,
Ck = B, and ∀i, 1 ≤ i < k : (Ci, Ci+1) ∈ �E ∨ (Ci+1, Ci) ∈ �E.

�G is called acyclic iff it does not contain a directed cycle, that is, iff for
all pairs of nodes A and B with A �

�G B it is (B, A) /∈ �E.

Note that in a path, in contrast to a directed path, the edge directions are
disregarded. Sometimes it is also called a trail in order to distinguish it from
a directed path. With directed paths we can now easily define the notions of
ancestor and descendant and the important set of all non-descendants.

Definition 4.1.10 Let �G = (V, �E) be a directed acyclic graph. A node A ∈ V
is called an ancestor of another node B ∈ V and, conversely, B is called
a descendant of A iff there is a directed path from A to B. B is called a
non-descendant of A iff it is distinct from A and not a descendant of A.
The set of all ancestors of a node A is denoted

ancestors(A) = {B ∈ V | B �
�G A},

the set of its descendants is denoted

descendants(A) = {B ∈ V | A �
�G B},

and the set of its non-descendants is denoted

nondescs(A) = V − {A} − descendants(A).

In analogy to undirected graphs there are the special cases of a tree and a
polytree, in which the set of paths is severely restricted.

Definition 4.1.11 A directed acyclic graph is called singly connected or a
polytree iff each pair of distinct nodes is connected by exactly one path.

A directed acyclic graph is called a (directed) tree iff (1) it is a polytree
and (2) exactly one node (the so-called root node) has no parents.

An important concept for directed acyclic graphs is the notion of a topological
order of the nodes of the graph. It can be used to test whether a directed graph
is acyclic, since it only exists for acyclic graphs, and is often useful to fix the
order in which the nodes of the graph are to be processed (cf. the proof of
Theorem 4.1.20 in Section A.3 in the appendix).

100 CHAPTER 4. GRAPHICAL REPRESENTATION

Definition 4.1.12 Let �G = (V, �E) be a directed acyclic graph. A numbering
of the nodes of �G, that is, a function o : V → {1, . . . , |V|} satisfying

∀A, B ∈ V : (A, B) ∈ �E ⇒ o(A) < o(B)

is called a topological order of the nodes of �G.

It is obvious that for any directed acyclic graph �G a topological order can be
constructed with the following simple recursive algorithm: select an arbitrary
childless node A in �G and assign to it the number |V|. Then remove A (and its
incident edges) from �G and find a topological order for the reduced graph. It
is also clear that for graphs with directed cycles there is no topological order,
because a directed cycle cannot be reduced by the above algorithm: it must
eventually reach a situation in which there is no childless node.

4.1.3 Separation in Graphs

As already indicated, the notion of conditional independence is strikingly
similar to the notion of separation in graphs. What is to be understood by
‘‘separation’’ depends on whether the graph is directed or undirected. If it is
undirected, separation is defined as follows:

Definition 4.1.13 Let G = (V, E) be an undirected graph and X, Y, and
Z three disjoint subsets of nodes (vertices). Z u-separates X and Y in G,
written 〈X | Z | Y〉G, iff all paths from a node in X to a node in Y contain
a node in Z. A path that contains a node in Z is called blocked (by Z),
otherwise it is called active; so separation means that all paths are blocked.

Alternatively we may say that Z u-separates X and Y in G iff after removing
the nodes in Z and their associated edges from G there is no path from a node
in X to a node in Y. That is, in the graph without the nodes in Z the nodes
in X are not connected to the nodes in Y.

If the graph is directed, a slightly more complicated criterion is used [Pearl
1988, Geiger et al. 1990, Verma and Pearl 1990]. It is less natural than u-
separation and one can clearly tell that it was defined to capture conditional
independence w.r.t. chain rule decompositions (cf. Section 4.1.7 below).

Definition 4.1.14 Let �G = (V, �E) be a directed acyclic graph and X, Y, and
Z three disjoint subsets of nodes (vertices). Z d-separates X and Y in �G,
written 〈X | Z | Y〉�G, iff there is no path from a node in X to a node in Y
along which the following two conditions hold:
1. every node with converging edges (from its predecessor and its successor

on the path) either is in Z or has a descendant in Z,
2. every other node is not in Z.
A path satisfying the conditions above is said to be active, otherwise it is said
to be blocked (by Z); so separation means that all paths are blocked.

4.1. CONDITIONAL INDEPENDENCE GRAPHS 101

decomposition: W
X Z Y ⇒ W Z Y ∧ X Z Y

weak union: W
X Z Y ⇒ W

X Z Y

contraction: W
X Z Y ∧ W Z Y ⇒ W

X Z Y

intersection: W
X Z Y ∧ W

X Z Y ⇒ W
X Z Y

Figure 4.2 Illustration of the graphoid axioms and of separation in graphs.

Both u-separation and d-separation satisfy the graphoid axioms. For u-sep-
aration this is evident from the illustration shown in Figure 4.2 [Pearl 1988]
(symmetry is trivial and thus neglected). Therefore the graphoid axioms are
sound w.r.t. inferences about u-separation in graphs. However, they are not
complete, because they are much weaker than u-separation.

To be more precise, the weak union axiom allows us only to extend the
separating set Z by specific sets of nodes, namely those for which it is known
that they are separated by Z from one of the sets X and Y (which are separated
by Z), whereas u-separation is monotonic, that is, any superset of a separating
set is also a separating set. That is, u-separation cannot be destroyed by
enlarging a separating set by any set of nodes, while the graphoid axioms do
not exclude this. A set of axioms for u-separation that has been shown to be
sound and complete [Pearl and Paz 1987] are the graphoid axioms with the
weak union axiom replaced by the following two axioms:

strong union: (X⊥⊥ Y | Z) ⇒ (X⊥⊥ Y | Z ∪ W)

transitivity: (X⊥⊥ Y | Z) ⇒ ∀A ∈ V − (X ∪ Y ∪ Z) :
({A}⊥⊥ Y | Z) ∨ (X⊥⊥ {A} | Z)

Obviously, the strong union axiom expresses the monotony of u-separation.
The transitivity axiom is easily understood by recognizing that if a node A
not in X, Y, or Z were not separated by Z from at least one of the sets X and
Y, then there must be paths from A to a node in X and from A to a node
in Y, both of which are not blocked by Z. But concatenating these two paths
yields a path from X to Y that is not blocked by Z and thus X and Y could
not have been u-separated by Z in the first place.

To verify that d-separation satisfies the graphoid axioms, the illustration
in Figure 4.2 is also helpful. However, we have to take into account that d-
separation is weaker than u-separation. In particular, d-separation does not

102 CHAPTER 4. GRAPHICAL REPRESENTATION

satisfy the strong union axiom, because a path that is blocked by a separating
set Z need not be blocked by a superset of Z: it may be blocked by Z, because a
node with converging edges is not in Z and neither are any of its descendants.
It may be active given a superset of Z, because this superset may contain the
node with converging edges or any of its descendants, thus activating a path
that was blocked before.

Nevertheless, the validity of the graphoid axioms is easily established:
decomposition obviously holds, since the set of paths connecting W and Y (or
X and Y) are a subset of the paths connecting W ∪ X and Y and since the
latter are all blocked (according to the prerequisite), so must be the former.
Weak union holds, because the nodes in W cannot activate any paths from X
to Y. Even if W contained a node with converging edges of a path from X to Y
or a descendant of such a node, the path would still be blocked, because any
path from this node to Y is blocked by Z. (Note that the separation of W and
Y by Z is essential.) Contraction is similar, only the other way round: since all
paths from W to Y are blocked by Z, we do not need the nodes in W to block
the paths from X to Y, Z is sufficient. Basically the same reasoning shows
that the intersection axiom holds. The only complication are paths from a
node in W ∪ X that zig-zag between W and X before going to a node in Y.
However, from the presuppositions of the intersection axiom it is clear that
all such paths must be blocked by Z.

Since d-separation is much weaker than u-separation, the graphoid axioms
could be complete w.r.t. inferences about d-separation. However, they are not.
Consider, for instance, four nodes A, B, C, and D and the two separation
statements 〈A | B | C〉�G and 〈A | B | D〉�G. From these two statements it
follows, simply by the definition of d-separation, that 〈A | B | C, D〉�G. (To
see this, one only has to consider the paths connecting A and C or A and D: all
of these paths must be blocked because of the two separation statements we
presupposed.) However, 〈A | B | C, D〉�G cannot be derived with the graphoid
axioms, because only the symmetry axiom is applicable to 〈A | B | C〉�G and
〈A | B | D〉�G and it does not lead us anywhere.

4.1.4 Dependence and Independence Maps

Since separation in graphs is so similar to conditional independence, the idea
suggests itself to represent a set of conditional independence statements by
a graph, and in particular all conditional independence statements that hold
in a given probability or possibility distribution. If this works out, we could
check whether two sets are conditionally independent given a third or not by
determining whether they are separated by the third in the graph.

However, this optimum, that is, an isomorphism of conditional indepen-
dence and separation, cannot be achieved in general. For undirected graphs
this is immediately clear from the fact that u-separation satisfies axioms much
stronger than the graphoid axioms (see above). In addition, probabilistic con-

4.1. CONDITIONAL INDEPENDENCE GRAPHS 103

ditional independence for not strictly positive distributions and possibilistic
conditional independence only satisfy the semi-graphoid axioms. Thus the va-
lidity of the intersection axiom for u- and d-separation already goes beyond
what can be inferred about conditional independence statements. Finally, it
is not immediately clear whether it is possible to represent simultaneously in
a graph sets of conditional independence statements which may hold simul-
taneously in a distribution if these statements are not logical consequences of
each other. Indeed, there are such sets of conditional independence statements
for both undirected and directed acyclic graphs (examples are given below).

As a consequence we have to resort to a weaker way of defining conditional
independence graphs than requiring isomorphism of conditional independence
and separation. It is sufficient, though, for the purpose of characterizing de-
compositions, because for this purpose isomorphism is certainly desirable, but
not a conditio sine qua non (i.e. an indispensable condition).

Definition 4.1.15 Let (· ⊥⊥δ · | ·) be a three-place relation representing the
set of conditional independence statements that hold in a given distribution δ
over a set U of attributes. An undirected graph G = (U, E) over U is called a
conditional dependence graph or a dependence map w.r.t. δ iff for all
disjoint subsets X, Y, Z ⊆ U of attributes

X⊥⊥δ Y | Z ⇒ 〈X | Z | Y〉G,

that is, if G captures by u-separation all (conditional) independences that
hold in δ and thus represents only valid (conditional) dependences. Similarly,
G is called a conditional independence graph or an independence map
w.r.t. δ iff for all disjoint subsets X, Y, Z ⊆ U of attributes

〈X | Z | Y〉G ⇒ X⊥⊥δ Y | Z,

that is, if G captures by u-separation only (conditional) independences that are
valid in δ. G is said to be a perfect map of the conditional (in)dependences
in δ iff it is both a dependence map and an independence map.

It is clear that the same notions can be defined for directed acyclic graphs
�G = (U, �E) in exactly the same way, so we do not provide a separate definition.

A conditional dependence graph of a distribution guarantees that (sets
of) attributes that are not separated in the graph are indeed conditionally
dependent in the distribution. It may, however, display dependent (sets of)
attributes as separated nodes (or node sets, respectively). Conversely, a condi-
tional independence graph of a distribution guarantees that (sets of) attributes
that are separated in the graph are indeed conditionally independent in the
distribution. There may be, however, (sets of) conditionally independent at-
tributes that are not separated in the graph.

It is obvious that a graph with no edges is a trivial conditional dependence
graph and that a complete graph is a trivial conditional independence graph,

104 CHAPTER 4. GRAPHICAL REPRESENTATION

A B

C

A = a1 A = a2pABC
B = b1 B = b2 B = b1 B = b2

C = c1
4/24

3/24
3/24

2/24
C = c2

2/24
3/24

3/24
4/24

Figure 4.3 Marginal independence and conditional dependence can be repre-
sented by directed graphs but not by undirected graphs.

simply because the former represents no dependences and the latter no inde-
pendences and thus obviously no false ones. However, it is also clear that these
graphs are entirely useless. Therefore we need some restriction which ensures
that a conditional dependence graph represents as many dependences as pos-
sible and a conditional independence graph represents as many independences
as possible. This is achieved with the next definition.

Definition 4.1.16 A conditional dependence graph is called maximal w.r.t.
a distribution δ (or, in other words, a maximal dependence map w.r.t. δ) iff
no edge can be added to it so that the resulting graph is still a conditional
dependence graph w.r.t. the distribution δ.

A conditional independence graph is called minimal w.r.t. a distribution δ
(or, in other words, a minimal independence map w.r.t. δ) iff no edge can be
removed from it so that the resulting graph is still a conditional independence
graph w.r.t. the distribution δ.

The fact that decompositions depend on (conditional) independences makes it
more important to truthfully record independences. If an invalid conditional
independence can be read from a separation in the graph, we may arrive at
an invalid decomposition formula (cf. Section 4.1.7 below). If, on the other
hand, a valid conditional independence is not represented by separation in
a graph, we merely suffer from the fact that we may not be able to exploit
it and thus may not find the best (i.e. finest) decomposition. However, a
suboptimal decomposition can never lead to incorrect inferences whereas an
incorrect decomposition may. Therefore we neglect conditional dependence
graphs in the following and concentrate on conditional independence graphs.

As already indicated above, the expressive power of conditional indepen-
dence graphs is limited. For both directed acyclic graphs and undirected
graphs there are sets of conditional independence statements that cannot be
represented by separation, although they may hold simultaneously in a dis-
tribution. This is most easily demonstrated by considering a directed acyclic
graph for which no equivalent undirected graph exists and an undirected
graph for which no equivalent directed acyclic graph exists. An example of the
former is shown in Figure 4.3. The directed acyclic graph on the left is a perfect

4.1. CONDITIONAL INDEPENDENCE GRAPHS 105

A

B D

C

A = a1 A = a2pABCD
B = b1 B = b2 B = b1 B = b2

D = d1
16/82

4/82
4/82

4/82C = c1
D = d2

4/82
1/82

4/82
4/82

D = d1
4/82

4/82
1/82

4/82C = c2
D = d2

4/82
4/82

4/82
16/82

Figure 4.4 Sets of conditional independence statements with certain symme-
tries can be represented by undirected graphs but not by directed graphs.

map w.r.t. the probability distribution pABC on the right: It is A⊥⊥P B, but
A⊥�⊥P B | C. That is, A and B are marginally independent, but condition-
ally dependent (given C). It is immediately clear that there is no undirected
perfect map for this probability distribution. The monotony of u-separation
prevents us from representing A⊥⊥P B, because this would entail the (here
invalid) conditional independence statement A⊥⊥P B | C.

An example of the latter, that is, of an undirected conditional indepen-
dence graph for which there is no equivalent directed acyclic graph, is shown
in Figure 4.4. As can easily be verified, the graph on the left is a perfect map
w.r.t. the probability distribution pABCD on the right: it is A⊥⊥P C | BD
and B⊥⊥P D | AC, but no other conditional independence statements hold
(except the symmetric counterparts of the above). It is clear that a directed
acyclic graph must contain at least directed counterparts of the edges of the
undirected graph. However, if we confine ourselves to these edges, an addi-
tional conditional independence statement is represented, regardless of how
the edges are directed. If another edge is added to exclude this statement, one
of the two valid conditional independences is not represented anymore.

Note that for the examples shown in Figures 4.3 and 4.4 there exist per-
fect maps, even though they do not have undirected (Figure 4.3) or directed
counterparts (Figure 4.4), so that our choice is constrained. However, there
are also distributions for which there is neither a directed nor an undirected
perfect map. This should be immediately clear from Figures 4.3 and 4.4, be-
cause if we rename A, B and C in the former to E, F and G, we can combine
the underlying domains and thus obtain a 7-dimensional domain in which we
have both: marginal independence and conditional dependence (attributes E,
F and G) as well as conditional independence statements exhibiting a sym-
metry that cannot be captured by directed graphs (attributes A to D).

One may argue, though, that in such a case one can still model the respec-
tive parts of the probability distribution with the appropriate type of graph,
thus employing mixed graphs (with both directed and undirected edges).

106 CHAPTER 4. GRAPHICAL REPRESENTATION

A

B C

A = a1 A = a2pABC
B = b1 B = b2 B = b1 B = b2

C = c1
2/12

1/12
1/12

2/12
C = c2

1/12
2/12

2/12
1/12

Figure 4.5 There are also probability distributions for which there exists nei-
ther a directed nor an undirected perfect map.

However, even introducing such an extension cannot guarantee that there
is always the possibility to find a perfect map for a given distribution.

As a simple counterexample consider the probability distribution shown
in Figure 4.5: all attributes are pairwise marginally independent, that is,
A⊥⊥P B | ∅, A⊥⊥P C | ∅ and B⊥⊥P C | ∅. These independence statements
suggest to use a (directed or undirected) graph without edges. Unfortunately,
however, such a graph (regardless of whether it is interpreted as directed
or undirected—there are no edges anyway) also expresses that A⊥⊥P B | C,
A⊥⊥P C | B and B⊥⊥P C | A, which is clearly not the case: the latter requires

P(B = b1, C = c1 | A = a1) = P(B = b1 | A = a1) · P(C = c1 | A = a1),

but it is P(b1, c1 | a1) = 1
3 and P(b1 | a1) · P(c1 | a1) = 1

2 · 1
2 = 1

4 .
As a consequence, the only undirected conditional independence graph

is the complete graph (as shown in Figure 4.5), which, however, does not
capture the marginal independences. With a directed graph we can achieve a
slightly better model: by using the graph shown in Figure 4.3 (or one of its
analogs, which has converging edges at attribute B or C), we can capture at
least one of the marginal independence statements. Nevertheless we cannot
capture, regardless of the graph we use, all three marginal independences.

4.1.5 Markov Properties of Graphs

In the previous section conditional independence graphs were defined based
on a global criterion. This makes it hard to test whether a given graph is a
conditional independence graph or not: one has to check for all separations of
node sets in the graph whether the corresponding conditional independence
statement holds. Hence the question arises whether there are simpler criteria.
Fortunately, under certain conditions simpler criteria can be found by exploit-
ing the equivalence of the so-called Markov properties of graphs. They allow
us to confine ourselves to checking a smaller set of conditional independences.

For undirected graphs the Markov properties are defined as follows [Fry-
denberg 1990, Lauritzen et al. 1990, Whittaker 1990, Lauritzen 1996]:

4.1. CONDITIONAL INDEPENDENCE GRAPHS 107

Definition 4.1.17 Let (· ⊥⊥δ · | ·) be a three-place relation representing the
set of conditional independence statements that hold in a given joint distribu-
tion δ over a set U of attributes. An undirected graph G = (U, E) is said to
have (w.r.t. the distribution δ) the:

pairwise Markov property
iff in δ any pair of attributes, which are nonadjacent in the graph, are condi-
tionally independent given all remaining attributes, that is, iff

∀A, B ∈ U, A �= B : (A, B) /∈ E ⇒ A⊥⊥δ B | U − {A, B};

local Markov property
iff in δ any attribute is conditionally independent of all remaining attributes
given its neighbors, that is, iff

∀A ∈ U : A⊥⊥δ U − closure(A) | neighbors(A);

global Markov property
iff in δ any two sets of attributes which are u-separated by a third2are condi-
tionally independent given the attributes in the third set, that is, iff

∀X, Y, Z ⊆ U : 〈X | Z | Y〉G ⇒ X⊥⊥δ Y | Z.

Definition 4.1.15 on page 103 used the global Markov property to define condi-
tional independence graphs. However, the pairwise or the local Markov prop-
erty would be much more natural and convenient. Therefore it is pleasing to
observe that, obviously, the neighbors of an attribute u-separate it from the
attributes in the remainder of the graph and thus the local Markov property
is implied by the global. Similarly, the set of all other attributes u-separates
two nonadjacent attributes and thus the pairwise Markov property is implied
by the global, too. If the relation (· ⊥⊥δ · | ·) satisfies the semi-graphoid ax-
ioms, we also have that the pairwise Markov property is implied by the local,
since it follows from an application of the weak union axiom. That is, for
semi-graphoids we have

Gglobal(δ) ⊆ Glocal(δ) ⊆ Gpairwise(δ),

where Gprop(δ) is the set of undirected graphs having the Markov prop-
erty prop w.r.t. the distribution δ.

Unfortunately, despite the above inclusions, the three Markov properties
are not equivalent in general [Lauritzen 1996]. Consider, for example, five
attributes A, B, C, D, and E with domains dom(A) = . . . = dom(E) = {0, 1},
and suppose that A = B, D = E, C = B · D, and P(A = 0) = P(E = 0) = 1

2 .
With these conditions it is easy to check that the graph shown in Figure 4.6

2It is understood that the three sets are disjoint.

108 CHAPTER 4. GRAPHICAL REPRESENTATION

A B C D E

Figure 4.6 In general, the Markov properties are not equivalent.

has the pairwise and the local Markov property w.r.t. to the joint probability
distribution of A, B, C, D, and E. However, it does not have the global
Markov property, because the distribution does not satisfy A⊥⊥P E | C.

The equivalence of the three Markov properties can be established, though,
if the relation that describes the set of conditional independence statements
holding in a given distribution δ satisfies the graphoid axioms.

Theorem 4.1.18 If a three-place relation (· ⊥⊥δ · | ·) representing the set of
conditional independence statements that hold in a given distribution δ over a
set U of attributes satisfies the graphoid axioms, then the pairwise, local, and
global Markov property of an undirected graph G = (U, E) are equivalent.

Proof. From the observations made above we know that the global Markov
property implies the local and that the local Markov property implies the pair-
wise. So all that is left to show is that, given the graphoid axioms, the pairwise
Markov property implies the global.

The idea of this proof is very simple. Consider three arbitrary nonempty
disjoint subsets X, Y, and Z of nodes such that 〈X | Z | Y〉G. We have
to show that X⊥⊥δ Y | Z follows from the pairwise conditional indepen-
dence statements referring to attributes that are not adjacent in the graph.
To do so we start from an arbitrary conditional independence statement
A⊥⊥δ B | U − {A, B} with A ∈ X and B ∈ Y, and then shift nodes from the
separating set to the separated sets, thus extending A to (a superset of) X
and B to (a superset of) Y and shrinking U−{A, B} to Z. The shifting is done
by applying the intersection axiom, drawing on other pairwise conditional
independence statements. Finally, any excess attributes in the separated sets
are removed with the help of the decomposition axiom.

Formally, the proof is carried out by backward or descending induction
[Pearl 1988, Lauritzen 1996]; see Section A.2 in the appendix.

If the above theorem applies, we can define a conditional independence graph
in the following, very natural way: an undirected graph G = (U, E) is a
conditional independence graph w.r.t. to a joint distribution δ iff

∀A, B ∈ V, A �= B : (A, B) /∈ E ⇒ A⊥⊥δ B | U − {A, B}.

In addition, both the pairwise and the local Markov property are powerful
criteria to test whether a given graph is a conditional independence graph.

Of course, the three Markov properties can be defined not only for undi-
rected, but also for directed graphs [Lauritzen 1996]:

4.1. CONDITIONAL INDEPENDENCE GRAPHS 109

Definition 4.1.19 Let (· ⊥⊥δ · | ·) be a three-place relation representing the
set of conditional independence statements that hold in a given joint distribu-
tion δ over a set U of attributes. A directed acyclic graph �G = (U, �E) is said
to have (w.r.t. the distribution δ) the:

pairwise Markov property
iff in δ any attribute is conditionally independent of any non-descendant not
among its parents given all remaining non-descendants, that is, iff

∀A, B ∈ U : B ∈ nondescs(A) − parents(A) ⇒ A⊥⊥δ B | nondescs(A) − {B};

local Markov property
iff in δ any attribute is conditionally independent of all remaining non-descen-
dants given its parents, that is, iff

∀A ∈ U : A⊥⊥δ nondescs(A) − parents(A) | parents(A);

global Markov property
iff in δ any two sets of attributes which are d-separated by a third3 are condi-
tionally independent given the attributes in the third set, that is, iff

∀X, Y, Z ⊆ U : 〈X | Z | Y〉�G ⇒ X⊥⊥δ Y | Z.

As for undirected graphs, we can make some pleasing observations: it is clear
that the parents of A d-separate A from all its non-descendants. The reason
is that a path to a non-descendant must either pass through a parent—and
then it is blocked by the set of parents—or it must pass through a descendant
of A at which it has converging edges—and then it is blocked by the fact that
neither this descendant nor any of its descendants are among the parents of A.
Hence the global Markov property implies the local. For the same reasons
the set of all remaining non-descendants d-separates a node A from a non-
descendant node B that is not among its parents. Therefore the pairwise
Markov property is also implied by the global. Finally, if the relation (· ⊥⊥δ · |
·) satisfies the semi-graphoid axioms, we also have that the pairwise Markov
property is implied by the local, since it follows from an application of the
weak union axiom. That is, for semi-graphoids we have

�Gglobal(δ) ⊆ �Glocal(δ) ⊆ �Gpairwise(δ),

where �Gprop(δ) is the set of all directed acyclic graphs that possess the Markov
property prop w.r.t. the distribution δ.

Unfortunately, despite the above inclusions, the three Markov properties
are again not equivalent in general [Lauritzen 1996]. Consider, for example,
four attributes A, B, C, and D with domains dom(A) = . . .= dom(D) = {0, 1}

3It is understood that the three sets are disjoint.

110 CHAPTER 4. GRAPHICAL REPRESENTATION

A

B

C D

Figure 4.7 In general, the pair-
wise and the local Markov prop-
erty are not equivalent.

and suppose that A = B = D, that C is independent of A, and finally that
P(A = 0) = P(C = 0) = 1

2 . With these presuppositions it is easy to check
that the graph shown in Figure 4.7 has the pairwise Markov property w.r.t.
to the joint probability distribution of A, B, C, and D, but not the local.

The equivalence of the three Markov properties can be established, though,
as for undirected graphs, if the graphoid axioms hold. However, one can also
make a somewhat stronger assertion.

Theorem 4.1.20 If a three-place relation (· ⊥⊥δ · | ·) representing the set of
conditional independence statements that hold in a given joint distribution δ
over a set U of attributes satisfies the semi-graphoid axioms, then the local
and the global Markov property of a directed acyclic graph �G = (U, �E) are
equivalent. If (· ⊥⊥δ · | ·) satisfies the graphoid axioms, then the pairwise, the
local, and the global Markov property are equivalent.

Proof. A proof of the first part of this theorem can be found, for ex-
ample, in [Verma and Pearl 1990], although this may be a little difficult
to recognize, because the meaning of certain notions has changed since the
publication of this paper. In Section A.3 in the appendix we provide our
own proof (which is similar to the one in [Verma and Pearl 1990] though).
Here we confine ourselves to making plausible why such a proof is pos-
sible for directed acyclic graphs, although it is clearly not for undirected
graphs. Let A and B be two adjacent nodes that are separated by a set Z
of nodes from a set Y of nodes. For undirected graphs, to derive the corre-
sponding conditional independence statement from local conditional indepen-
dence statements, we have to combine A⊥⊥δ U − closure(A) | neighbors(A)
and B⊥⊥δ U − closure(B) | neighbors(B) in order to obtain a statement in
which A and B appear on the same side. However, it is A ∈ neighbors(B)
and B ∈ neighbors(A) and therefore the intersection axiom is indispensable.
In contrast to this, in a directed acyclic graph it is either A ∈ parents(B)
or B ∈ parents(A), but certainly not both. Therefore the contraction ax-
iom—which is similar to, but weaker than the intersection axiom—suffices to
combine the local conditional independence statements.

Given the first part of the theorem the proof of the second part is rather
simple. We know that the local and the global Markov property are equiva-
lent and, from the observations made above, that the local Markov property
implies the pairwise. Therefore, all that is left to show is that the pairwise
Markov property implies the local. However, this is easily demonstrated: we

4.1. CONDITIONAL INDEPENDENCE GRAPHS 111

start from an arbitrary pairwise conditional independence statement for a
node and combine it step by step, using the intersection axiom, with all other
pairwise conditional independences for the same node and thus finally reach
the local conditional independence statement for the node.

As for undirected graphs this theorem allows us to define a conditional in-
dependence graph in a more natural way based on the local or the pairwise
Markov property. It is particularly convenient, though, that for a definition
based on the local Markov property we only need to know that the semi-
graphoid axioms hold (instead of the graphoid axioms, which often fail).

4.1.6 Markov Equivalence of Graphs

With the Markov properties discussed in the preceding section we have clear
notions when and how a graph can represent a set of conditional independence
statements that hold in a given distribution. We also know, from the different
examples discussed in Section 4.1.4, that sometimes a graph can represent a
set of conditional independences perfectly (cf. the notion of a perfect map,
Definition 4.1.15 on page 103), while in other circumstances it is impossible to
find a such graph (of a given type, that is directed or undirected; cf. Figures 4.3
and 4.4). What we have not considered yet is whether two distinct graphs
can represent exactly the same set of conditional independence statements.
Such a consideration is relevant for learning the structure of graphical models
from data, as we will consider it in Chapter 7, because it obviously influences
whether we can expect a unique structure as a learning result or not.

Formally, this question employs the notion of Markov equivalence:

Definition 4.1.21 Two (directed or undirected) graphs G1 = (U, E1) and
G2 = (U, E2) with the same set U of nodes are called Markov equivalent
iff they satisfy the same set of node separation statements (with d-separation
for directed graphs and u-separation for undirected graphs), or formally, iff

∀X, Y, Z ⊆ U : 〈X | Z | Y〉G1 ⇔ 〈X | Z | Y〉G2 .

Trivially, two Markov equivalent graphs represent the same set of conditional
independence statements w.r.t. some distribution over a set U of attributes,
because such statements are represented by node separation.

It should be immediately clear that no two different undirected graphs
can be Markov equivalent. The reason is that these two graphs, in order to
be different, have to differ in at least one edge. However, the graph lacking
this edge satisfies a node separation (and thus expresses a conditional inde-
pendence) that is not statisfied (expressed) by the graph possessing the edge.
Therefore the sets of satisfied node separations (and thus expressed condi-
tional independence statements) differ (at least) in this statement.

112 CHAPTER 4. GRAPHICAL REPRESENTATION

A B C
B

A C

A C

B

Figure 4.8 The two directed graphs on the left are Markov equivalent, while
the graph on the right expresses a different conditional independence.

For directed graphs, however, the situation is different. Of course, two
directed graphs are also not Markov equivalent if one possesses an edge be-
tween two nodes that are unconnected in the other. However, in order for
two directed graphs to differ, it need not be that one possesses an edge which
the other lacks. They may also differ merely in the direction of their edges.
A simple example is shown in Figure 4.8: the two graphs on the left differ
in the direction of the edge between A and B. However, they express exactly
the same conditional independence statement A⊥⊥ C | B (and, of course, its
symmetric version) and thus are Markov equivalent.

On the other hand, not all directed graphs with the same node connections
(that is, differing only in the directions of their edges) are Markov equivalent.
For example, the directed graph shown on the right in Figure 4.8 differs from
the graph on the left only in the direction of the edge between B and C.
However, it expresses a different set of conditional independences: it states
that A⊥⊥ B | ∅ holds, whereas A⊥⊥ C | B does not hold.

The reason for this asymmetry is, of course, the d-separation criterion4,
which treats a pair of converging edges (Figure 4.8 on the right) fundamentally
different from the two other possible configurations of a pair of directed edges
(Figure 4.8 on the left and in the middle). Thus it is not suprising that, apart
from whether they have the same node connections, the set of converging edge
pairs is decisive for a decision whether two graphs are Markov equivalent.
In order to capture this relation formally in a theorem, we first define the
convenient notions of a skeleton and of a v-structure.

Definition 4.1.22 Let �G = (U, �E) be a directed graph. The skeleton of �G

is the undirected graph G = (V, E) where E contains the same edges as �E, but
with their directions removed, or formally:

E = {(A, B) ∈ U × U | (A, B) ∈ �E ∨ (B, A) ∈ �E}.

Definition 4.1.23 Let �G = (U, �E) be a directed graph and A, B, C ∈ U three
nodes of �G. The triple (A, B, C) is called a v-structure of �G iff (A, B) ∈ �E

and (C, B) ∈ �E, but neither (A, C) ∈ �E nor (C, A) ∈ �E, that is, iff �G has
converging edges from A and C at B, but A and C are unconnected.

4The d-separation criterion was defined in Definition 4.1.14 on page 100.

4.1. CONDITIONAL INDEPENDENCE GRAPHS 113

A

B C

D

A

B C

D

Figure 4.9 Graphs with the same skeleton, but converging edges at different
nodes, which start from connected nodes, can be Markov equivalent.

A

B C

D

A

B C

D

Figure 4.10 Of several edges that converge at a node only a subset may
actually represent a v-structure. This v-structure, however, is relevant.

Theorem 4.1.24 Let �G1 = (U, �E1) and �G2 = (U, �E2) be two directed acyclic
graphs with the same node set U. The graphs �G1 and �G2 are Markov equivalent
iff they possess the same skeleton and the same set of v-structures.

Proof. The proof of this theorem follows immediately from the definitions
of the notions of d-separation, skeleton and v-structure. One merely has to
consider how paths5 in a directed acyclic graph are rendered blocked or active
by the d-separation criterion given a set of nodes.

As an illustration consider the graphs shown in Figure 4.8 again: all have the
same skeleton, but the graph on the right possesses the v-structure (A, B, C),
while the other two graphs do not possess any v-structure.

Note that it is vital for the notion of a v-structure that the two nodes,
from which the converging edges start, are not connected by an edge. If the
converging edges start from nodes that are adjacent in the graph (that is,
are connected by an edge of any direction), then the converging edges do
not represent a v-structure.6 The reason is that two graphs with the same
skeleton, which differ in the location of converging edges that start from
connected nodes—that is, differ in the location of converging edges that do
not qualify as v-structures—can very well be Markov equivalent.

An example of such a situation is shown in Figure 4.9: both graphs have
the same skeleton, but in the graph on the left edges converge at the node D,
while in the graph on the right they converge at the node C. Nevertheless these

5The notion of a path in a directed graph was defined in Definition 4.1.9 on page 99.
6Note that the name “v-structure” directly reminds us of this fact: the two arms of the

letter “v” are not connected at the top, hence there should not be a connecting edge.

114 CHAPTER 4. GRAPHICAL REPRESENTATION

two graphs represent the same set of conditional independence statements.
The reason is that the distinguishing characteristic of converging edges in the
notion of d-separation has no effect in this case: by instantiating the node at
which the edges converge (or one of its descendants), the path between the
nodes the converging edges start from would be activated. However, these
two nodes are dependent in any case, because they are connected by an edge.

Note, however, a special situation like the one shown in Figure 4.10: here
the different location of the converging edges matters, because the graph on
the left contains the v-structure (B, D, C), while the graph on the right does
not contain any v-structure. This demonstrates that only a subset of the edges
converging at a node may be relevant for the Markov properties of a graph.

4.1.7 Graphs and Decompositions

The preceding sections were devoted to how conditional independence state-
ments can be captured in a graphical representation. However, representing
conditional independences is not a goal in itself, but only a pathway to finding
a decomposition of a given distribution. To determine a conditional indepen-
dence graph for a given distribution is equivalent to determining what terms
are needed in a decomposition of the distribution, because they can be read di-
rectly from the graph, and finding a minimal conditional independence graph
is tantamount to discovering the ‘‘best’’ decomposition, that is, a decompo-
sition into smallest terms. Formally, this connection is brought about by the
theorems of this section. We study undirected graphs first.

Definition 4.1.25 A probability distribution pU over a set U of attributes is
called decomposable or factorizable w.r.t. an undirected graph G =
(U, E) iff it can be written as a product of nonnegative functions on the maxi-
mal cliques of G. That is, let M be a family of subsets of attributes, such that
the subgraphs of G induced by the sets M ∈ M are the maximal cliques of G.
Then there must exist functions φM : EM → IR+

0 , M ∈ M,

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

pU

(∧
Ai∈U

Ai = ai

)
=

∏
M∈M

φM

(∧
Ai∈M

Ai = ai

)
.

Similarly, a possibility distribution πU over U is called decomposable w.r.t.
an undirected graph G = (U, E) iff it can be written as the minimum of
the marginal possibility distributions on the maximal cliques of G, that is, iff

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

πU

(∧
Ai∈U

Ai = ai

)
= min

M∈M
πM

(∧
Ai∈M

Ai = ai

)
.

4.1. CONDITIONAL INDEPENDENCE GRAPHS 115

A1 A2

A3 A4

A5 A6

Figure 4.11 A simple undirected graph
that represents a decomposition / fac-
torization into four terms correspond-
ing to the four maximal cliques.

Note that the decomposition formulae are the same as in Definition 3.3.1
on page 77 and in Definition 3.2.8 on page 69, respectively. The undirected
graph G only fixes the set M of subsets of nodes in a specific way.

A simple example is shown in Figure 4.11. This graph has four maximal
cliques, namely those induced by the four sets {A1, A2, A3}, {A3, A5, A6},
{A2, A4}, and {A4, A6}. Therefore, in the probabilistic case, this graph rep-
resents a factorization into four factors:

∀a1 ∈ dom(A1) : . . .∀a6 ∈ dom(A6) :

pU (A1 = a1, . . . , A6 = a6) = φA1A2A3(A1 = a1, A2 = a2, A3 = a3)

· φA3A5A6(A3 = a3, A5 = a5, A6 = a6)

· φA2A4(A2 = a2, A4 = a4)

· φA4A6(A4 = a4, A6 = a6).

The following theorem connects undirected conditional independence graphs
to decompositions. It is usually attributed to [Hammersley and Clifford 1971],
who proved it for the discrete case (to which we will confine ourselves, too),
although (according to [Lauritzen 1996]) this result seems to have been dis-
covered in various forms by several authors.

Theorem 4.1.26 Let pU be a strictly positive probability distribution on a
set U of (discrete) attributes. An undirected graph G = (U, E) is a conditional
independence graph w.r.t. pU iff pU is factorizable w.r.t. G.

Proof. The full proof, which is somewhat technical, can be found in Sec-
tion A.4 in the appendix. In its first part it is shown that, if pU is factorizable
w.r.t. an undirected graph G, then G has the global Markov property w.r.t.
conditional independence in pU . This part exploits that two attributes which
are u-separated in G cannot be in the same clique. Therefore, for any three
disjoint subsets X, Y, and Z of attributes such that 〈X | Z | Y〉G the maximal
cliques can be divided into two sets and the functions φM can be combined
into a corresponding product of two functions from which the desired condi-
tional independence X⊥⊥pU

Y | Z follows. It is worth noting that the validity
of this part of the proof is not restricted to strictly positive distributions pU .

116 CHAPTER 4. GRAPHICAL REPRESENTATION

In the second part of the proof it is shown that pU is factorizable w.r.t.
a conditional independence graph G. This part is constructive, that is, it
provides a method to determine nonnegative functions φM from the joint
distribution pU , so that pU can be written as a product of these functions.

The above theorem can be extended to more general distributions, for exam-
ple, to distributions on real-valued attributes, provided they have a positive
and continuous density [Lauritzen 1996]. However, since in this book we con-
fine ourselves almost entirely to the discrete case, we do not discuss this
extension here. Not surprisingly, a possibilistic analog of the above theorem
also holds and was proven first in [Gebhardt 1997]. However, it is less gen-
eral than its probabilistic counterpart. To show the desired equivalence of
decomposition and representation of conditional independence, the permissi-
ble graphs have to be restricted to a certain subset. The graphs in this subset
are characterized by the so-called running intersection property of the family
of attribute sets that induce their maximal cliques.

Definition 4.1.27 Let M be a finite family of subsets of a finite set U and let
m = |M|. M is said to have the running intersection property iff there
is an ordering M1, . . . , Mm of the sets in M, such that

∀i ∈ {2, . . . , m} : ∃k ∈ {1, . . . , i − 1} : Mi ∩
(⋃

1≤j<i

Mj

)
⊆ Mk

If all pairs of nodes of an undirected graph G are connected in G and the
family M of the node sets that induce the maximal cliques of G has the running
intersection property, then G is said to have hypertree structure.

The basic idea underlying the notion of a hypertree structure is as follows:
in normal graphs an edge can connect only two nodes. However, we may
drop this restriction and introduce so-called hypergraphs, in which we have
hyperedges that can connect any number of nodes. It is very natural to use
a hyperedge to connect the nodes of a maximal clique, because by doing so
we can make these cliques easier to recognize. (Note that the connectivity
of the graph is unharmed if all edges of its maximal cliques are replaced by
hyperedges, and therefore we do not loose anything by this operation.) If the
sets of nodes that are connected by hyperedges have the running intersection
property, then the hypergraph is, in a certain sense, acyclic (cf. Section 4.2.2).
Since acyclic undirected normal graphs are usually called trees, the idea sug-
gests itself to call such hypergraphs hypertrees. Therefore an undirected graph
which becomes a hypertree, if the edges of its maximal cliques are replaced
by hyperedges, is said to have hypertree structure.

For graphs with hypertree structure a possibilistic analog of the above
theorem can be proven [Gebhardt 1997], although the hypertree structure of
the conditional independence graph is only needed for one direction of the
theorem, namely to guarantee the existence of a factorization.

4.1. CONDITIONAL INDEPENDENCE GRAPHS 117

AB

C D

A B C D

a1 b1 c1 d2

a1 b1 c2 d1

a2 b2 c1 d1

Figure 4.12 The possibilistic de-
composition theorem cannot be
generalized to arbitrary graphs.

Theorem 4.1.28 Let πU be a possibility distribution on a set U of (discrete)
attributes and let G = (U, E) be an undirected graph over U. If πU is decom-
posable w.r.t. G, then G is a conditional independence graph w.r.t. πU . If G is
a conditional independence graph w.r.t. πU and if it has hypertree structure,
then πU is decomposable w.r.t. G.

Proof. The full proof can be found in Section A.5 in the appendix. The
first part of the theorem can be proven in direct analogy to the corresponding
part of the proof of the probabilistic counterpart of the above theorem. Again
it is exploited that two attributes that are u-separated cannot be in the same
clique and therefore the maximal cliques can be divided into two sets. Note
that this part of the theorem does not require that the graph has hypertree
structure and thus it is valid for arbitrary undirected graphs.

For the second part of the theorem the hypertree structure of G is essential,
because it allows an induction on a construction sequence for the graph G
that exploits the global Markov property of G. The construction sequence
is derived from the ordering of the maximal cliques that results from the
ordering underlying the running intersection property.

Unfortunately, the above theorem cannot be generalized to arbitrary graphs
as the following example demonstrates (this is a slightly modified version of
an example given in [Gebhardt 1997]). Consider the undirected graph and
the simple relation shown in Figure 4.12 (and recall that a relation is only
a special possibility distribution). It is easy to check that the graph is a
conditional independence graph of the relation, since both conditional inde-
pendence statements that can be read from it, namely A⊥⊥R C | {B, D} and
B⊥⊥R D | {A, C}, hold in the relation. However, it does not have hypertree
structure, because the set of its four maximal cliques does not have the run-
ning intersection property, and, indeed, the relation is not decomposable w.r.t.
the graph. If it were decomposable, then we would have

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀C ∈ dom(C) : ∀d ∈ dom(D) :
R(a, b, c, d) = min{R(a, b), R(b, c), R(c, d), R(d, a)},

where R(a, b) is an abbreviation of R(A = a, B = b) etc. However, it is
R(a1, b1, c1, d1) = 0 (since this tuple is not contained in the relation), but
R(a1, b1) = 1 (because of the first or the second tuple), R(b1, c1) = 1 (first

118 CHAPTER 4. GRAPHICAL REPRESENTATION

tuple), R(c1, d1) = 1 (third tuple), and R(d1, a1) = 1 (second tuple) and there-
fore min{R(a1, b1), R(b1, c1), R(c1, d1), R(d1, a1)} = 1. Note, however, that a
multivariate possibility distribution may be decomposable w.r.t. a conditional
independence graph that does not have hypertree structure. The restriction
is only that it cannot be guaranteed that it is decomposable.

In the following we turn to directed graphs. The connection of directed
acyclic graphs and decompositions, in this case chain rule decompositions,
is achieved in a similar way as for undirected graphs.

Definition 4.1.29 A probability distribution pU over a set U of attributes
is called decomposable or factorizable w.r.t. a directed acyclic graph
�G = (U, �E) iff it can be written as a product of the conditional probabilities of
the attributes given their parents in �G, that is, iff

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

pU

(∧
Ai∈U

Ai = ai

)
=

∏
Ai∈U

P
(
Ai = ai

∣∣∣ ∧
Aj∈parents�G(Ai)

Aj = aj

)
.

Similarly, a possibility distribution πU over U is called decomposable w.r.t.
a directed acyclic graph �G = (U, �E) iff it can be written as the minimum
of conditional degrees of possibility of the attributes given their parents in �G,
that is, iff

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

πU

(∧
Ai∈U

Ai = ai

)
= min

Ai∈U
Π

(
Ai = ai

∣∣∣ ∧
Aj∈parents�G Ai

Aj = aj

)
.

Note that the decomposition formulae are the same as the chain rule decom-
position formulae on page 79 and page 87, respectively. The directed acyclic
graph G only fixes the conditions of the conditional probabilities or condi-
tional degrees of possibility in a specific way.

A simple example graph is shown in Figure 4.13. In the probabilistic case
this graph represents the factorization

∀a1 ∈ dom(A1) : . . .∀a7 ∈ dom(A7) :
pU (A1 = a1, . . . , A7 = a7)

= P(A1 = a1) · P(A2 = a2 | A1 = a1) · P(A3 = a3)
· P(A4 = a4 | A1 = a1, A2 = a2) · P(A5 = a5 | A2 = a2, A3 = a3)
· P(A6 = a6 | A4 = a4, A5 = a5) · P(A7 = a7 | A5 = a5).

We have similar theorems for directed graphs as for undirected graphs relating
factorization and representation of conditional independence.

Theorem 4.1.30 Let pU be a probability distribution on a set U of (discrete)
attributes. A directed acyclic graph �G = (U, �E) is a conditional independence
graph w.r.t. pU iff pU is factorizable w.r.t. �G.

4.1. CONDITIONAL INDEPENDENCE GRAPHS 119

A1 A2 A3

A4 A5

A6 A7

Figure 4.13 A simple directed acyclic
graph that represents a decomposi-
tion/factorization into terms with at
most two conditions.

Proof. The proof, which exploits the equivalence of the global and the
local Markov property, the latter of which is directly connected to the factor-
ization formula, can be found in Section A.6 in the appendix.

As for undirected graphs, there is only an incomplete possibilistic analog,
only that here it is the other direction that does not hold in general.

Theorem 4.1.31 Let πU be a possibility distribution on a set U of (discrete)
attributes. If a directed acyclic graph �G = (U, �E) is a conditional independence
graph w.r.t. πU , then πU is decomposable w.r.t. �G.

Proof. The proof, which can be found in Section A.7 in the appendix, is
analogous to the proof of the corresponding part of the probabilistic case.
As usual when going from probabilities to degrees of possibility, one has to
replace the sum by the maximum and the product by the minimum.

Note that the converse of the above theorem, that is, that a directed acyclic
graph �G is a conditional independence graph of a possibility distribution πU

if πU is decomposable w.r.t. �G, does not hold. To see this, consider the simple
relation rABC shown on the left in Figure 4.14 (and recall that a relation is
a special possibility distribution). Trivially, rABC is decomposable w.r.t. the
directed acyclic graph shown on the right in Figure 4.14, because

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
rABC(A = a, B = b, C = c)

= min{R(A = a), R(B = b), R(C = c | A = a, B = b)}
= min{R(A = a), R(B = b), R(C = c, A = a, B = b)}

In the graph �G the attributes A and B are d-separated given the empty set
(that is, 〈A | ∅ | B〉�G) and thus the global Markov property would imply
A⊥⊥rABC

B. However, this is not the case, as the projection of rABC shown
in the center of Figure 4.14 demonstrates.

Whether the set of graphs can be restricted to an easily characterizable
subset (like the undirected graphs with hypertree structure) in order to make
the converse of the above theorem hold, appears to be an open problem.

120 CHAPTER 4. GRAPHICAL REPRESENTATION

a1 a2

b1

b2

c1
c2

a1 a2

b1

b2

c1
c2

A B

C

Figure 4.14 Relational and possibilistic decompositions w.r.t. a directed
acyclic graph do not imply the global Markov property of the graph.

4.1.8 Markov Networks and Bayesian Networks

Since conditional independence graphs and decompositions of distributions
are so intimately connected (as shown in the preceding section), the idea sug-
gests itself to combine them in one structure. In such a structure qualitative
information is available about the conditional (in)dependences between at-
tributes in the form of a conditional independence graph, which also indicates
the paths along which evidence about the values of observed attributes has to
be transferred to the remaining unobserved attributes. In addition, the terms
of the decompositions provide quantitative information about the precise ef-
fects that different pieces of evidence have on the probability or degree of
possibility of the unobserved attributes.

The combination of a conditional independence graph and the decompo-
sition of a distribution it describes finally leads us to the well-known notions
of a Markov network and a Bayesian network.

Definition 4.1.32 A Markov network (sometimes also called a Markov
Random Field) is an undirected conditional independence graph of a prob-
ability distribution pU together with the family of nonnegative functions φM

of the factorization induced by the graph.

Definition 4.1.33 A Bayesian network (sometimes also simply called a
Bayes net) is a directed conditional independence graph of a probability dis-
tribution pU together with the family of conditional probabilities of the (chain
rule) factorization induced by the graph.

We call both Markov networks and Bayesian networks probabilistic networks.
Note that sometimes only networks that are based on minimal conditional
independence graphs are called Markov networks or Bayesian networks. Al-
though minimal conditional independence graphs are certainly desirable, in
our opinion this is an unnecessary restriction, because, for example, the prop-
agation algorithms for the two network types work just as well for networks
based on non-minimal conditional independence graphs. The only drawback
is that, since not all obtaining conditional independence statements are repre-
sented, there may be a certain loss of efficiency in the evidence propagation.
The correctness of the propagation results, however, is unaffected.

4.2. EVIDENCE PROPAGATION IN GRAPHS 121

Notions analogous to Markov network or Bayesian network can, of course,
be defined for the possibilistic case too, although there seem to be no special
names for them. Therefore we simply call the analog of a Markov network an
undirected possibilistic network and the analog of a Bayesian network a
directed possibilistic network. Note that for undirected possibilistic net-
works we need not require that the conditional independence graph has hy-
pertree structure, although this is needed to guarantee that a decomposition
w.r.t. the graph exists. Clearly, even if it is not guaranteed to exist, it may
exist for a given graph and a given distribution, and if it does, there is no
reason why we should not use the corresponding network.

4.2 Evidence Propagation in Graphs

We have mentioned that conditional independence graphs not only provide
a way to find a decomposition of a given multidimensional distribution (as
shown in the preceding section), they can also be used as a framework for
the implementation of evidence propagation methods. The basic idea is that
the edges of the graph indicate the paths along which evidence has to be
transmitted. This is reasonable, because if two attributes are separated by a
set S of other attributes, then there should not be any transfer of information
from the one to the other if the attributes in S are instantiated. However, if all
information is transmitted along the edges of the graph, this would necessarily
be the result (at least for undirected graphs), provided we make sure that the
information cannot permeate instantiated attributes. (For directed graphs, of
course, we have to take special precautions due to the peculiar properties of
nodes with converging edges, cf. the definition of d-separation on page 100.)

In this section we briefly review a fairly popular approach to evidence
propagation, which is based on a message passing scheme in trees. We first
consider evidence propagation in simple trees (that is, undirected conditional
independence graphs with tree structure, Section 4.2.1) in order to develop the
core ideas of the propagation scheme. Then we consider how general graphs
can be handled with join tree propagation, which involves turning the graphs
into a special tree structure called a join or junction tree in a preprocessing
step (Section 4.2.2). Since these propagation methods were developed in the
probabilistic setting, we confine ourselves to explaining them for probabilistic
networks. However, it should be clear that (and how) the ideas underlying
these methods can be transferred directly to the possibilistic setting.

It is worth noting that join tree propagation underlies the evidence prop-
agation in the commercial Bayesian network tool HUGIN7 and that its possi-
bilistic counterpart was first implemented in POSSINFER [Kruse et al. 1994,
Gebhardt and Kruse 1996a]. In addition, the methods were generalized to
other uncertainty calculi like belief functions [Shafer and Shenoy 1988, Shenoy

7HUGIN Expert S/A, Aalborg, Denmark, http://www.hugin.com/

122 CHAPTER 4. GRAPHICAL REPRESENTATION

A

B

μB→A

μA→B

Figure 4.15 Node processors com-
municating by message passing.
The messages represent informa-
tion collected in the corresponding
subgraphs.

1992b, Shenoy 1993] in the so-called valuation-based networks [Shenoy 1992a],
thus demonstrating their wide range of applicability. Such a generalized ver-
sion was implemented in PULCINELLA [Saffiotti and Umkehrer 1991].

Since we look back on several years of research, it should be immediately
clear that the mentioned methods, which rely fundamentally on tree struc-
tures, are not the only possible ones. However, it is also clear that in this
book we cannot provide an exhaustive treatment of evidence propagation.
Therefore we only mention some other methods in Section 4.2.3.

4.2.1 Propagation in Undirected Trees

The oldest exact probabilistic evidence propagation method was developed in
[Pearl 1986] and works on directed polytrees (cf. Definition 4.1.11 on page 99).
It exploits that a polytree is singly connected, that is, that there is only one
path from a node to any other. Thus there is no choice of how to transmit
the evidence in the network. Here we follow the same basic idea, but consider
undirected trees (cf. Definition 4.1.6 on page 98), which are a simpler setting
and thus allow us to avoid some of the complications occurring with polytrees.
In the next section we will then consider how general graphs (both directed
and undirected, and including directed polytrees) can be handled by turning
them into special undirected trees with a preprocessing method.

The basic idea of the propagation scheme is to use node processors that
exchange messages with their neighbors (see Figure 4.15 for a sketch). Suppose
we consider an attribute A and one of its neighbors B. Intuitively, a message
passed from A to B along the edge connecting them represents the (influence
of the) information collected in the subgraph that can be reached from A if the
way to B is barred, and a message passed from B to A represents the (influence
of the) information collected in the subgraph that can be reached from B if
the way to A is barred. The fact that we consider a conditional independence
graph that is an (undirected) tree ensures that these two subgraphs are indeed
disjoint and thus that no multiple transmission and incorporation of the same
information occurs.

In order to derive the propagation formula for the probabilistic case, that
is, for a tree-structured Markov network, we assume first that no evidence
has been added, that is, that no attributes have been instantiated yet. This
simplifies the notation and the derivations considerably. Later we will indicate
how instantiated attributes change the obtained results.

4.2. EVIDENCE PROPAGATION IN GRAPHS 123

The idea of the derivation is the same as for the simple example in Chap-
ter 3, cf. pages 79ff, although we momentarily neglect the evidence: we start
from the definition of the marginal probability of an attribute. Then we ex-
ploit the factorization formula and move terms that are independent of a
summation variable out of the corresponding sum. By comparing the results
for attributes that are adjacent in the graph we finally arrive at the actual
propagation formula, that is, at a formula that states how the outgoing mes-
sages can be computed from the incoming messages.

In the discrete case, to which we confine ourselves here, the marginal
probability of an attribute is computed from a joint distribution by

P(Ag = ag) =
∀Ak∈U−{Ag}:∑
ak∈dom(Ak)

P
(∧

Ai∈U

Ai = ai

)
,

where the somewhat sloppy notation w.r.t. the sum is intended to indicate
that the sum is to be taken over all values of all attributes in U except Ag.
The index g was chosen to indicate that Ag is the current ‘‘goal’’ attribute.
(In the following we need quite a lot of different indices, so it is convenient to
choose at least some of them mnemonically.) In the first step it is exploited
that the distribution is factorizable w.r.t. the conditional independence graph
G = (U, E) of the Markov network (cf. Definition 4.1.25 on page 114):

P(Ag = ag) =
∀Ak∈U−{Ag}:∑
ak∈dom(Ak)

∏
(Ai,Aj)∈E

φAiAj
(ai, aj).

That the factorization refers to factor potentials, all of which have only two
arguments, is, of course, due to the fact that we deal with a tree: the maximal
cliques of a tree are simply its edges, because there are no cycles, not even of
length three. Hence there cannot be cliques with more than two nodes.

However, the fact that the conditional independence graph we consider is
a tree, that is, a singly connected structure, has still another advantage: such
a graph has the convenient property that by removing an edge it is split into
two disconnected subgraphs. In order to be able to refer to such subgraphs,
it is helpful to define a notation for the sets of nodes underlying them. Let

UA
B = {A} ∪ {C ∈ U | A ∼

G′ C, G′ = (U, E − {(A, B), (B, A)})},

that is, let UA
B be the set of those attributes that can still be reached from

the attribute A if the edge A−B is removed from the graph. Similarly, we
introduce a notation for the edges in these subgraphs, namely

EA
B = E ∩ (UA

B × UA
B).

Thus GA
B = (UA

B, EA
B) is the subgraph containing all attributes that can be

reached from the attribute B through its neighbor A (including A itself).

124 CHAPTER 4. GRAPHICAL REPRESENTATION

In the next step we split the product over all edges into individual fac-
tors w.r.t. the neighbors of the goal attribute: we write one factor for each
neighbor. Each of these factors captures the part of the factorization that
refers to the subgraph consisting of the attributes that can be reached from
the goal attribute through this neighbor, including the factor potential of the
edge that connects the neighbor to the goal attribute. That is, we write:

P(Ag = ag)

=
∀Ak∈U−{Ag}:∑
ak∈dom(Ak)

∏
Ah∈neighbors(Ag)

(
φAgAh

(ag, ah)
∏

(Ai,Aj)∈E
Ah
Ag

φAiAj
(ai, aj)

)
.

Note that indeed each factor of the outer product in the above formula refers
only to attributes in the subgraph that can be reached from the attribute Ag

through the neighbor attribute Ah defining the factor.
In the third step it is exploited that terms that are independent of a

summation variable can be moved out of the corresponding sum (application
of the distributive law, cf. page 90). In addition we make use of∑

i

∑
j

aibj =
(∑

i

ai

)(∑
j

bj

)
.

This yields a decomposition of the expression for P(Ag = ag) into factors:

P(Ag = ag)

=
∏

Ah∈neighbors(Ag)

(∀Ak∈U
Ah
Ag

:∑
ak∈dom(Ak)

φAgAh
(ag, ah)

∏
(Ai,Aj)∈E

Ah
Ag

φAiAj
(ai, aj)

)

=
∏

Ah∈neighbors(Ag)

μAh→Ag
(Ag = ag).

Each factor represents the probabilistic influence of the subgraph that can be
reached through the corresponding neighbor Ah ∈ neighbors(Ag). Therefore
it can be interpreted as a message about this influence sent from Ah to Ag.

With this formula the propagation formula can now easily be derived. The
key is to consider a single factor of the above product and to compare it to
the expression for P(Ah = ah) for the corresponding neighbor Ah, that is, to

P(Ah = ah) =
∀Ak∈U−{Ah}:∑
ak∈dom(Ak)

∏
(Ai,Aj)∈E

φAiAj
(ai, aj).

Note that this formula is completely analogous to the formula for P(Ag = ag)
after the first step, that is, after the application of the factorization formula,
with the only difference that this formula refers to Ah instead of Ag.

4.2. EVIDENCE PROPAGATION IN GRAPHS 125

Exploiting that obviously U = UAh

Ag
∪U

Ag

Ah
and drawing on the distributive

law again, we can easily rewrite this expression as a product with two factors:

P(Ah = ah) =

(∀Ak∈U
Ah
Ag

−{Ah}:∑
ak∈dom(Ak)

∏
(Ai,Aj)∈E

Ah
Ag

φAiAj
(ai, aj)

)

·
(∀Ak∈U

Ag
Ah

:∑
ak∈dom(Ak)

φAgAh
(ag, ah)

∏
(Ai,Aj)∈E

Ag
Ah

φAiAj
(ai, aj)

)

︸ ︷︷ ︸
= μAg→Ah

(Ah = ah)

.

As a consequence, we obtain the simple expression

μAh→Ag
(Ag = ag)

=
∑

ah∈dom(Ah)

(
φAgAh

(ag, ah) · P(Ah = ah)
μAg→Ah

(Ah = ah)

)

=
∑

ah∈dom(Ah)

(
φAgAh

(ag, ah)
∏

Ai∈neighbors(Ah)−{Ag}
μAi→Ah

(Ah = ah)

)
.

This formula is very intuitive: in the upper form it says that all information
collected at Ak (expressed as P(Ak = ak)) should be transferred to Ag, with
the exception of the information that was received from Ag. Indeed, we do
not want to send this information back, because it is already available at Ag

and by sending it back it would be used twice, leading to an incorrect result.
In the lower form the formula says that everything coming in through edges
other than Ag−Ak has to be combined and then passed on to Ag. Indeed,
these messages represent the total of information collected in the subgraph
that can be reached from Ag through Ak and thus has to be passed on to Ag.

The second form of this formula also provides us with a means to start the
message computations. Obviously, the value of the message μAh→Ag

(Ag = ag)
can immediately be computed if Ah is a leaf node of the tree, that is, if the
attribute Ag is the only neighbor of the attribute Ah. In this case the product
has no factors and thus the equation reduces to

μAh→Ag
(Ag = ag) =

∑
ah∈dom(Ah)

φAgAh
(ag, ah).

After all leaves have computed these messages, there must be at least one
node in the tree, for which messages from all but one neighbor are known.
This enables this node to compute the message to the neighbor it did not
receive a message from (because the message to that neighbor only depends

126 CHAPTER 4. GRAPHICAL REPRESENTATION

on the factor potential of the edge to this neighbor and on the messages from
all other neighbors). After that, there must again be at least one node, which
has received messages from all but one neighbor. Hence it can send a message
and so on, until all messages have been computed.

Up to now we have assumed that no evidence has been added to the
network, that is, that no attributes have been instantiated. However, if at-
tributes are instantiated, the formulae change only slightly. We have to add
to the joint probability distribution an evidence factor for each instantiated
attribute: if Uobs is the set of observed (instantiated) attributes, we compute

P
(
Ag = ag

∣∣∣ ∧
Ao∈Uobs

Ao = a(obs)
o

)

= α

∀Ak∈U−{Ag}:∑
ak∈dom(Ak)

P
(∧

Ai∈U

Ai = ai

) ∏
Ao∈Uobs

evidence factor for Ao︷ ︸︸ ︷
P
(
Ao = ao

∣∣ Ao = a
(obs)
o

)
P(Ao = ao)

,

where the a
(obs)
o are the observed values and α is a normalization constant,

α = β ·
∏

Aj∈Uobs

P
(
Aj = a

(obs)
j

)
with β = P

(∧
Aj∈Uobs

Aj = a
(obs)
j

)−1

.

The justification for this formula is analogous to the justification for the
introduction of similar evidence factors for the observed attributes in the
simple three-attribute example discussed in Chapter 3 (cf. page 80):

P
(∧

Ai∈U

Ai = ai

∣∣∣ ∧
Ao∈Uobs

Ao = a(obs)
o

)

= β P
(∧

Ai∈U

Ai = ai,
∧

Ao∈Uobs

Ao = a(obs)
o

)

=
{

β P
(∧

Ai∈U Ai = ai

)
, if ∀Ai ∈ Uobs : ai = a

(obs)
i ,

0, otherwise,

with β as defined above. In addition, it is clear that

∀Aj ∈ Uobs : P
(
Aj = aj

∣∣∣ Aj = a
(obs)
j

)
=

{
1, if aj = a

(obs)
j ,

0, otherwise,

and therefore

∏
Aj∈Uobs

P
(
Aj = aj

∣∣∣ Aj = a
(obs)
j

)
=

{
1, if ∀Aj ∈ Uobs : aj = a

(obs)
j ,

0, otherwise.

Combining these equations, we arrive at the formula stated above.

4.2. EVIDENCE PROPAGATION IN GRAPHS 127

Note that we can neglect the normalization factor α, because it can always
be recovered from the fact that a probability distribution, whether marginal
or conditional, must be normalized. That is, instead of trying to determine α

beforehand in order to compute P
(
Ag = ag |

∧
Ao∈Uobs

Ao = a
(obs)
o

)
directly,

we confine ourselves to computing 1
αP

(
Ag = ag |

∧
Ao∈Uobs

Ao = a
(obs)
o

)
for

all ag ∈ dom(Ag) and then determine α indirectly with the equation∑
ag∈dom(Ag)

P
(
Ag = ag

∣∣∣ ∧
Ao∈Uobs

Ao = a(obs)
o

)
= 1.

In other words, the computed values 1
αP

(
Ag = ag |

∧
Ao∈Uobs

Ao = a
(obs)
o

)
are

simply normalized to sum 1 to compute the desired probabilities.
It is easy to see that, if the derivation of the propagation formula is re-

done with the modified initial formula for the probability of a value of some
goal attribute Ag, the evidence factors P

(
Ao = ao | Ao = a

(obs)
o

)
/P(Ao = ao)

directly influence only the formula for the messages that are sent out from
the instantiated attributes: in the derivation each such factor accompanies the
conditional probability for the same attribute. Therefore we obtain the follow-
ing formula for the messages that are sent from an instantiated attribute Ao:

μAo→Ai
(Ai = ai)

=
∑

ao∈dom(Ao)

(
φAiAo

(ai, ao)
P(Ao = ao)

μAi→Ao
(Ao = ao)

)
P
(
Ao = ao

∣∣∣ Ao = a
(obs)
o

)
P(Ao = ao)

=

{
γ · φAiAo

(
ai, a

(obs)
o

)
, if ao = a

(obs)
o ,

0, otherwise,

where γ = 1 / μAi→Ao

(
Ao = a

(obs)
o

)
. This formula is again very intuitive:

in an undirected tree, any attribute Ao u-separates all attributes in a subgraph
reached through one of its neighbors from all attributes in a subgraph reached
through any other of its neighbors. Consequently, if Ao is instantiated, all
paths through Ao are blocked and thus no information should be passed from
one neighbor to any other. Note that in an implementation we can neglect γ,
because it is the same for all values ai ∈ dom(Ai). Hence it can be implicitly
incorporated into the normalization constant α introduced above.

The above formulae are all written in terms of single values of attributes.
However, we obviously need to determine the probability of all values of
the goal attribute and we have to evaluate, even in the above formulae, the
messages for all values of the attributes that are message arguments. Therefore
it is convenient to write the equations in vector form, with a vector for each
attribute that has as many elements as the attribute has values. The factor
potentials can then be represented as matrices. Rewriting the formulae is
straightforward, though, and therefore we do not restate them here.

128 CHAPTER 4. GRAPHICAL REPRESENTATION

Clearly, with these formulae, especially in vector form, the propagation of
evidence can easily be implemented by locally communicating node proces-
sors. Each node receives messages from and sends messages to its neighbors.
From these messages each node can also compute the marginal probability of
the values of its associated attribute, conditioned on the available evidence.
The node recomputes the marginal probabilities and recomputes and resends
messages whenever it receives a new message from any of its neighbors.

It is important to note that, as the above explanations should have made
clear, evidence propagation consists in computing (conditioned) marginal
probability distributions for single attributes. Usually the most probable value
vector for several attributes cannot be found by selecting the most probable
value for each attribute (recall the explanations of Section 3.5). However,
as we also pointed out in Section 3.5, the propagation scheme can be easily
adapted to find (at least) the most probable value vector overall (that is, for
all attributes), namely by replacing the sums with taking maxima.

4.2.2 Join Tree Propagation

Undirected graphs are not necessarily trees: there can be more than one path
connecting two nodes. At first sight it may seem to be possible to apply
the same method as for trees if a graph is multiply connected. However, such
situations can be harmful, because evidence can travel on more than one route
from one node to another, namely if more than one path is active given the set
of instantiated attributes. Since probabilistic update is not idempotent—that
is, incorporating the same evidence twice may invalidate the result—cycles
must be avoided or dealt with in special ways.

Possibilistic evidence propagation is less sensitive to such situations, be-
cause the possibilistic update operation is idempotent (it does not matter how
many times a degree of possibility is restricted to the same upper bound by
the minimum operation) and thus the same evidence can be incorporated sev-
eral times without invalidating the result. Nevertheless it is beneficial to avoid
multiply connected graphs in possibilistic reasoning, because situations can
arise where a cycle must be traversed many times to reach the reasoning result
[Kruse et al. 1994]. Hence in possibilistic reasoning it is merely desirable to
avoid cycles for reasons of efficiency, whereas in probabilistic reasoning they
must be avoided in order to ensure the correctness of the inference results.

Multiply connected networks can be handled in several ways. One method
is to temporarily fix selected unobserved attributes in order to ‘‘cut open’’ all
cycles, so that the normal tree propagation algorithm can be applied. The
available evidence is then propagated for each combination of values of the
fixed attributes and the respective results are averaged, weighted with the
probabilities of the value combinations [Pearl 1988]. This procedure can also
be seen as introducing artificial evidence to make the propagation feasible and
then to remove it again (by computing the weighted sum).

4.2. EVIDENCE PROPAGATION IN GRAPHS 129

A

B C

D

⇒

A

BC

D

Figure 4.16 Merging attributes can
make the polytree algorithm applica-
ble in multiply connected networks.

Another way to approach the cycle problem is to merge attributes lying
‘‘opposite’’ to each other in a cycle into one pseudo-attribute in order to
‘‘flatten’’ the cycle to a string of attributes. A very simple example is shown
in Figure 4.16. Combining the attributes B and C into one pseudo-attribute
removes the cycle. In principle all cycles can be removed in this way and thus
one finally reaches a situation in which the tree propagation algorithm can
be applied. Of course, if stated in this way, this is only a heuristic method,
since it does not provide us with exact criteria for which nodes should be
merged. However, it indicates a key principle that underlies several methods
to handle cycles, namely to transform a given network in such a way that
a singly connected structure is obtained. For the resulting singly connected
structure a propagation scheme can then easily be derived in analogy to the
tree propagation method described in the preceding section.

The join tree propagation method [Lauritzen and Spiegelhalter 1988] that
we are going to discuss in this section is based on a fairly sophisticated ver-
sion of the node merging approach. Its basic idea is to add edges to a given
conditional independence graph so that it finally has hypertree structure.8

As mentioned in Section 4.1.7, a graph with hypertree structure is, in a cer-
tain sense, acyclic. As a consequence of this property each maximal clique
of the resulting graph can be made a node of a so-called join tree, which
is a singly connected structure and thus can be used to propagate evidence
correctly. We do not give this method a full formal treatment though, but
confine ourselves to explaining it w.r.t. a simple example, namely the appli-
cation of a Bayesian network for blood group determination of Danish Jersey
cattle in the F-blood group system, also known as the BOBLO (for BOvine
BLOod) network. The primary purpose of this Bayesian network is parent-
age verification for pedigree registration [Rasmussen 1992]. This example also
serves as an illustration of the more theoretical results of the first section of
this chapter. A more detailed treatment of join tree propagation can be found
in [Jensen 1996, Castillo et al. 1997, Jensen 2001, Jensen and Nielsen 2007].

The section of the world modeled by the Danish Jersey cattle network is
described by 21 attributes, eight of which are observable. The size of the do-
mains of these attributes ranges from two to eight values. The total frame of
discernment has 26 · 310 · 6 · 84 = 92 876 046 336 possible states. This number
makes it obvious that the knowledge about this domain must be decomposed

8The notion of a hypertree structure was defined in Definition 4.1.27 on page 116.

130 CHAPTER 4. GRAPHICAL REPRESENTATION

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

21 attributes: 11 – offspring ph.gr. 1
1 – dam correct? 12 – offspring ph.gr. 2
2 – sire correct? 13 – offspring genotype
3 – stated dam ph.gr. 1 14 – factor 40
4 – stated dam ph.gr. 2 15 – factor 41
5 – stated sire ph.gr. 1 16 – factor 42
6 – stated sire ph.gr. 2 17 – factor 43
7 – true dam ph.gr. 1 18 – lysis 40
8 – true dam ph.gr. 2 19 – lysis 41
9 – true sire ph.gr. 1 20 – lysis 42

10 – true sire ph.gr. 2 21 – lysis 43

The grey nodes correspond to observable attributes.

Figure 4.17 Domain expert designed network for the Danish Jersey cattle
blood type determination example. (‘‘ph.gr.’’ stands for ‘‘phenogroup’’.)

sire true sire stated sire ph.gr. 1
correct ph.gr. 1 F1 V1 V2

yes F1 1 0 0
yes V1 0 1 0
yes V2 0 0 1
no F1 0.58 0.10 0.32
no V1 0.58 0.10 0.32
no V2 0.58 0.10 0.32

Table 4.2 A small fraction of
the quantitative part of the
Bayesian network, the condi-
tional independence graph of
which is shown in Figure 4.17:
Conditional probability distri-
butions for the phenogroup 1
of the stated sire.

in order to make reasoning feasible, since it is clearly impossible to store a
probability for each state. Figure 4.17 lists the attributes and shows the con-
ditional independence graph, which was designed by human domain experts.
The grey nodes correspond to the observable (and measurable) attributes.
This graph is the qualitative part of the Bayesian network.9

According to Theorem 4.1.26 (cf. page 115), a conditional independence
graph enables us to factorize the joint probability distribution into a product
of conditional probabilities with one factor for each attribute, in which it is
conditioned on its parents. In the Danish Jersey cattle example, this factor-
ization leads to a considerable simplification. Instead of having to determine

9Actually, the original Bayesian network has an additional attribute “parent correct?”,
which has “dam correct?” and “sire correct?” as its children, so that in all there are 22 at-
tributes. We decided to discard this attribute, since it does not carry real information and
without it the join tree construction is much simpler.

4.2. EVIDENCE PROPAGATION IN GRAPHS 131

the probability of each of the 92 876 046 336 elements of the 21-dimensional
space Ω of this domain, only 308 conditional probabilities need to be spec-
ified. An example of a conditional probability table, which is part of the
factorization, is shown in Table 4.2. It states the conditional probabilities
of the phenogroup 1 of the stated sire of a given calf conditioned on the
phenogroup 1 of the true sire of the calf and whether the sire was correctly
identified. The numbers in this table are derived from statistical data and the
experience of human domain experts. The set of all 21 conditional probability
tables is the quantitative part of the Bayesian network for this example.

After the Bayesian network is constructed, we would like to draw inferences
with it. In the Danish Jersey cattle example, for instance, the phenogroups of
the stated dam and the stated sire can be determined and the lysis values of the
calf can be measured (grey nodes in Figure 4.17). From the latter information
we would like to infer the genotype of the calf and thus wish to assess whether
the stated parents of the calf are the true parents. However, the conditional
independence graph of this example is not a tree, even if we neglect the direc-
tions of the edges, and hence the algorithm described in the previous section
cannot be applied. Therefore we preprocess the graph, so that it gets hypertree
structure. This transformation is carried out in two steps: in the first step the
so-called moral graph of the conditional independence graph is constructed,
and in the second step this moral graph is triangulated.

A moral graph (this somewhat strange, but actually very mnemonic
name was invented by [Lauritzen and Spiegelhalter 1988]) is constructed from
a directed acyclic graph by ‘‘marrying’’ the parents of each attribute (hence
the name ‘‘moral graph’’). This is done by adding undirected edges between
all pairs of parents and by discarding the directions of all other edges (the
edges themselves are kept, though). In general a moral graph represents only a
subset of the independence relations of the underlying directed acyclic graph,
so that this transformation may result in a loss of independence information.
The reason for this was explained w.r.t. the simple example of Figure 4.3 on
page 104: in an undirected graph we cannot represent a situation of marginal
independence, but conditional dependence, because u-separation is monotonic.
Therefore edges must be added between the parents of an attribute, because
these parents will become dependent if the child attribute (or any of its de-
scendants) is instantiated. Marrying the parents already adds this dependence
and thus makes the set of conditional independences monotonic, so that it can
be represented by an undirected graph. As a consequence, the moral graph
can be chosen as the conditional independence graph of a Markov network for
the same domain. Hence, if we have a Markov network right from the start,
the join tree propagation method can also be applied. We only have to skip
the first step of the transformation.

The moral graph for the Danish Jersey Cattle example is shown on the left
in Figure 4.18. The edges that were added when parents were ‘‘married’’ are
indicated by dotted lines, and the directions of all other edges are removed.

132 CHAPTER 4. GRAPHICAL REPRESENTATION

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

3 1
7

1 4
8

5 2
9

2 6
10

1
7 8

2
9 10

7 8
11

9 10
12

11 12
13

13 13 13 13
14 15 16 17

14
18

15
19

16
20

17
21

Figure 4.18 Triangulated moral graph (left) and join tree (right) for the con-
ditional independence graph shown in Figure 4.17. The dotted lines are the
edges added when parents were ‘‘married’’. The nodes of the join tree corre-
spond to the maximal cliques of the triangulated moral graph.

In the second step, the moral graph is triangulated. An undirected graph
is called triangulated or chordal if all cycles with four or more nodes have a
chord, where a chord is an edge that connects two nodes that are nonadjacent
w.r.t. the cycle. If this condition is satisfied, all cycles in the graph can be built
up from cycles consisting of three nodes (in other words: from triangles—hence
the name ‘‘triangulation’’). To achieve triangulation, it may be necessary to
add edges, which may result in a (further) loss of independence information.
A simple, though not optimal algorithm to test whether a given undirected
graph is triangulated and to triangulate it (by adding edges), if it is not, is
the following [Tarjan and Yannakakis 1984, Pearl 1988, Castillo et al. 1997]:

Algorithm 4.2.1 (graph triangulation)
Input: An undirected graph G = (V, E).
Output: A triangulated undirected graph G′ = (V, E′) with E′ ⊇ E.

1. Compute an ordering of the nodes of the graph using maximum cardinality
search. That is, number the nodes from 1 to n = |V|, in increasing order,
always assigning the next number to the node having the largest set of
previously numbered neighbors (breaking ties arbitrarily).

2. From i = n = |V| to i = 1 recursively fill in edges between any nonadjacent
neighbors of the node numbered i that have lower ranks than i (including
neighbors linked to the node numbered i in previous steps). If no edges are
added to the graph G, then the original graph G is triangulated; otherwise
the new graph (with the added edges) is triangulated.

4.2. EVIDENCE PROPAGATION IN GRAPHS 133

Note that this algorithm does not necessarily add the smallest possible num-
ber of edges (which is an NP-hard problem [Castillo et al. 1997]). This can lead
to unnecessarily large maximal cliques (large in terms of the number of vari-
ables or the number of states in the space spanned by these variables), thus
degrading the performance of evidence propagation in the resulting structure.
Better results can often be obtained with the more sophisticated algorithms
that were suggested in [Kjaerulff 1990] and [Becker and Geiger 2001].

Note also that the triangulated graph is still a conditional independence
graph of the domain under consideration, because it only represents fewer
conditional independence statements (due to it having more edges). For the
Danish Jersey cattle example the moral graph shown on the left in Figure 4.18
is already triangulated, so no new edges need to be introduced.

A triangulated graph is guaranteed to have hypertree structure10 and
hence it can be turned into a join tree [Lauritzen and Spiegelhalter 1988]
(also called a junction tree), which reflects this property. In a join tree
there is one node for each maximal clique of the triangulated graph and its
edges connect nodes that represent cliques having attributes in common. In
addition, any attribute that is contained in two nodes must also be contained
in all nodes on the path between them. (Note that in general, despite this
strong requirement, a join tree for a given triangulated graph is not unique.)

Algorithms to construct a join tree can exploit that it is a maximal span-
ning tree of the so called join graph (also called junction graph) of the
triangulated graph [Jensen and Jensen 1994]. In a join graph there is a node
for each maximal clique of the triangulated graph and an edge between any
pair of maximal cliques that have nodes in common.

Algorithm 4.2.2 (join tree construction)
Input: A triangulated undirected graph G = (V, E).
Output: A join tree G′ = (V′, E′) for G.

1. Find all maximal cliques C1, . . . , Ck of the input graph G and thus form
the set V′ of vertices of the graph G′ (each maximal clique is a node).

2. Form the set E∗ = {(Ci, Cj) | Ci ∩ Cj �= ∅} of candidate edges and assign
to each edge the size of the intersection of the connected maximal cliques
as a weight, that is, set w((Ci, Cj)) = |Ci ∩ Cj |.

3. Form a maximum spanning tree from the edges in E∗ w.r.t. the weight w,
using, for example, the algorithms proposed by [Kruskal 1956, Prim 1957].
The edges of this maximum spanning tree are the edges in E′.

With a join tree we finally have a singly connected structure. A join tree for
the Danish Jersey cattle example is shown on the right in Figure 4.18. The
join graph it is constructed from has additional edges between the first and
second and between the third and fourth node in the top row.

10The notion of hypertree structure was defined in Definition 4.1.27 on page 116.

134 CHAPTER 4. GRAPHICAL REPRESENTATION

3 1
7

1 4
8

5 2
9

2 6
10

1
7 8

2
9 10

7 8
11

9 10
12

11 12
13

13 13 13 13
14 15 16 17

14
18

15
19

16
20

17
21

7 1 1 8 9 2 2 10

7 8 9 10

11 12

13 13 13 13

14 15 16 17

3 4 5 6

1 7 8 1 2 9 10 2

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

Figure 4.19 Join tree with separator sets (left) and a tree for evidence prop-
agation (right) for the conditional independence graph shown in Figure 4.17.

The intersection of two maximal cliques that are connected by an edge in
a join tree is called a separator set (or simply a separator). As these sets
are important not only for constructing a join tree (their sizes provide the
edge weights, see above), but also for evidence propagation in it, the edges of
a join tree are often labeled with these sets. A join tree for the Danish Jersey
cattle example enhanced by separators is shown on the left in Figure 4.19. To
distinguish them from the nodes, the separators are shown as rectangles.

With this (enhanced) join tree we are very close to the setting we ex-
plored in Section 4.2.1. Technically, we can get even closer by turning the
separators into (a second kind of) nodes and merging separators on adjacent
edges if they are identical. Furthermore, we add nodes (similar to separators)
for all attributes that are not contained in any separator. These additional
nodes are connected to the clique the represented attribute is contained in. Fi-
nally, we turn the clique nodes into hyperedges. With the additional nodes we
added to the graph it is no longer necessary to explicitly keep the attributes
of the cliques: they can simply be recovered as the union of the attributes
in the incident nodes (separators and additional nodes). Thus we end up,
for the Danish Jersey cattle example, with the graph shown on the right in
Figure 4.19. Even though this graph contains nodes representing more than
one attribute and its edges are hyperedges, it should be clear that this graph
can be treated in a way that is analogous to the treatment of the undirected
trees in Section 4.2.1. Again we arrive at a message passing scheme that can
be implemented by locally communicating node and edge processors.

4.2. EVIDENCE PROPAGATION IN GRAPHS 135

Note that the special property of a join tree, namely that any attribute con-
tained in two nodes must also be contained in all nodes on the path between
them, is important for evidence propagation with this scheme: it ensures that
we have to incorporate evidence about the value of an attribute into only one
node containing this attribute. Since all nodes containing the attribute are
connected, the evidence is properly spread, without passing through a node
not containing the attribute. Without this property, however, it may be nec-
essary to incorporate the evidence into more than one node, which could lead
to the same update anomalies as the cycles of the original graph: the same
information could be used twice to update the probabilities of the values of
some other attribute, thus invalidating the inference result.

However, a join tree is only the qualitative framework for evidence prop-
agation. The quantitative part of the original network also has to be trans-
formed before we can draw inferences. For this we observe that, according to
Definition 4.1.25, it suffices to know factor potentials for the maximal cliques
of the triangulated graphs, which are then associated with the nodes of the
join tree. With a join tree representation enhanced by separators, we can even
be more explicit: the joint probability distribution factorizes according to

P
(∧

Ai∈U

Ai = ai

)
=

∏
C∈C P

(∧
Ai∈C Ai = ai

)
∏

S∈S P
(∧

Ai∈S Ai = ai

) ,

where C is the set of all cliques in the triangulated graph (and thus the set
of nodes in the join tree) and S is the set of all separators. Note, however,
that in this formula a separator must appear several times if it is assigned
to multiple edges. An example of such a case is the separator {13}, which
appears four times in the join tree on the left in Figure 4.19. Therefore the
corresponding factor has to appear four times in the denominator of the above
equation. Note also that in the representation in Figure 4.19 on the right this
multiplicity is kept in the degree of the nodes (actually degree minus one).

That this factorization actually holds can easily be seen from the fact that
the graph in this representation (that is, as in Figure 4.19 on the right) can
be turned into a Bayesian network by choosing an arbitrary root node and
directing all edges away from this root node. Then the factorization formula
for this Bayesian network is written with spelt out conditional probabilities.

The advantage of this factorization is that it is easy to see how the nec-
essary probability distributions (one per clique/hyperedge and one per sepa-
rator) can be derived from the (conditional or marginal) distributions of the
original (Bayesian or Markov) network. For instance, in the Danish Jersey
cattle example, the probability distribution for the clique {1, 3, 7} is derived
from the marginal distribution of the attributes 1 and 7 combined with the
conditional distribution of attribute 3 given attributes 1 and 7. A more de-
tailed and formal treatment of this transformation can be found, for example,
in [Jensen 1996, Castillo et al. 1997, Jensen 2001, Jensen and Nielsen 2007].

136 CHAPTER 4. GRAPHICAL REPRESENTATION

4.2.3 Other Evidence Propagation Methods

Evidence propagation in inference networks like Bayesian networks has been
studied for quite some time now and thus it is not surprising that there is
an abundance of propagation algorithms. It is clear that we cannot treat all
of them in detail and therefore, in the preceding two sections, we confined
ourselves to studying two of them more closely. In the following paragraphs
we only mention a few other approaches by outlining their basic ideas.

Polytree propagation [Pearl 1988], which was mentioned in Section 4.2.1, is
an extension of the propagation algorithm for undirected trees, which can han-
dle directed graphs directly, provided they are polytrees (cf. Definition 4.1.11
on page 99). The main technical difficulties of deriving a propagation scheme
consist in the need to distinguish parent and child nodes and, in particular,
in the fact that in a polytree an attribute can have several parents, which
only when combined form the conditions of the conditional probability distri-
bution associated with the attribute. Nevertheless, since the structure is still
singly connected, one can easily derive propagation formula that are anal-
ogous to those derived in Section 4.2.1, with the only difference that two
types of messages are distinguished: λ-messages are sent from a child to a
parent and π-messages are send from a parent to a child. However, it is usu-
ally easier to transform the graph into a join tree, which merely turns each
attribute together with its parents into a clique, but does not add any other
edges. Note that this does not change the complexity of the distributions as
the joint distribution on a resulting clique has the same state space as the
conditional distributions of an attribute given its parents. Note also that in
the possibilistic domain there is not even a noticeable difference between the
two approaches, due to the definition of a conditional degree of possibility we
adopted for this book (see Definition 2.4.9 on page 47).

Bucket elimination [Dechter 1996, Zhang and Poole 1996] is an evidence
propagation method that is not bound to graph representations. It is based on
the idea that, given a factorization of a probability distribution, an attribute
can be eliminated (hence the name ‘‘bucket elimination’’) by summing the
product of all factors in which it appears over all values of the attribute.
By successive summations all attributes except a given goal attribute can
be eliminated, so that finally a single factor remains. It is obvious that the
efficiency of the bucket elimination algorithm depends heavily on the order of
the summations. If a bad order is chosen, the intermediate distributions can
get very large, thus rendering the process practically infeasible. A conditional
independence graph can be helpful to find a good order of the attributes,
because the summations should follow its edges. It should even be clear that
evidence propagation for undirected trees and for join trees can be seen as a
special case of bucket elimination, in which the summation order is largely
fixed by the graph structure. Furthermore, it is clear that an analog of bucket
elimination can easily be derived for possibilistic networks.

4.2. EVIDENCE PROPAGATION IN GRAPHS 137

Since the propagation formulae derived for (undirected) trees (see Sec-
tion 4.2.1) use only local information, with each node communicating only
with nodes that are adjacent to it in the graph, there is—at least in the for-
mulae—no direct reference to the fact that the graph must be acyclic. Hence
the idea suggests itself to simply apply the same propagation formulae even if
the graph contains cycles [Pearl 1988]. Since cycles are sometimes also called
loops (even though graph theory usually uses this term rather for single edges
connecting a node to itself), this approach is known as loopy (belief) prop-
agation. Note that slight adaptations of the original method are necessary
in order to deal with the fact that a graph with cycles may not allow for a
standard initialization of the messages (cf. page 125). This is usually achieved
by starting with default messages, at least for those nodes for which no exact
initial messages can be computed due to the graph structure.

In the possibilistic domain, loopy propagation is perfectly valid, regardless
of the graph structure, and may be applied without reservation. The reason
is that possibilistic evidence incorporation is idempotent (because of the min-
imum operation), and thus a piece of evidence, which traveled on more than
one path to a node and consequently is incorporated twice, cannot invalidate
the reasoning result (cf. also the remarks at the beginning of Section 4.2.2).

In the probabilistic domain, however, loopy propagation cannot be guar-
anteed to yield correct marginal probabilities and thus can only be seen as an
approximate propagation method (in contrast to the exact propagation meth-
ods we have discussed up to now). However, besides only approximating the
result, this method suffers from another drawback (in the probabilistic do-
main): the propagation formulae have to be invoked to recompute a message
whenever one of the messages changes that it depends on. As a consequence,
the update process may traverse a cycle multiple times, and it is, in general,
not guaranteed that it converges to a solution. There are networks for which
oscillations occur and thus no definite result can be computed. It is known,
however, that for graphs with only a single cycle, loopy propagation not only
converges, but also yields the correct solution [Weiss 2000]. For general graphs
several sufficient (though not necessary) conditions for achieving convergence
to a unique fixed point have been worked out [Mooij and Kappen 2007].
Nevertheless, further research is necessary in this area, in order to expand the
knowledge of convergence conditions and thus to achieve sufficient reliability.

Stochastic simulation [Pearl 1988] or the Monte Carlo method is another
technique to approximate the marginal probability distributions for the at-
tributes in a graphical model given the evidence. It consists in randomly
generating a large number of instantiations of all attributes w.r.t. to the joint
probability distribution that is represented by a probabilistic graphical model.
Of these instantiations those that are not compatible with the given evidence
are discarded. From the remaining instantiations the relative frequency of
values of the unobserved attributes is determined, which provides at least an
estimate of their marginal probability given the evidence.

138 CHAPTER 4. GRAPHICAL REPRESENTATION

The process of generating instantiations according to the probability dis-
tribution represented by a graphical model is most easily explained w.r.t. a
Bayesian network, for which it is known as ancestral sampling. First all par-
entless attributes are randomly instantiated based on their marginal probabil-
ity distributions. This fixes the values of all parents of some other attributes
(there must be at least one such attribute), thus fixing, for each of them, a
conditional probability distribution for their values. Therefore these attributes
can now be randomly instantiated. The process is repeated until all attributes
have been instantiated. Obviously, the attributes are most easily processed
w.r.t. a topological order (cf. Definition 4.1.12 on page 100), since this ensures
that all parents are instantiated when an attribute is processed.

The main drawback of stochastic simulation is that for large networks and
nontrivial evidence a huge number of instantiations may have to be generated
in order to retain enough of them after those incompatible with the given evi-
dence have been discarded. It should also be noted that stochastic simulation
can be used only in the probabilistic setting, because possibility distributions
do not allow for a random instantiation of the attributes.

Among the newest approaches to evidence propagation are so-called vari-
ational methods [Jordan et al. 1998], which employ techniques developed in
theoretical physics, especially thermodynamics. For most cases (trees and
graphs with hypertree structure are, not surprisingly, an exception) these
methods yield an approximation of the probability distribution given the ev-
idence. In order to measure the approximation quality, the Kullback–Leibler
information divergence (which we will study in detail in a different context in
Section 7.1.2, see Definition 7.1.3) is employed, which compares two probabil-
ity distributions. The core idea is then to exploit the Boltzmann distribution
law P(u) = γ e−

E(u)
kT , which connects the probability P(u), with which a sys-

tem state u occurs, to its energy E(u), where T is the absolute temperature,
k ≈ 1.38·10−23J K−1 is Boltzmann’s constant, and γ is a normalization factor.
With this law it becomes (formally) possible to rewrite a probability distri-
bution in terms of a (pseudo-)energy function. As this is only a mathematical
trick and there is no physically meaningful energy or temperature, it is sim-
ply assumed that the energy is measured in kT units, thus eliminating the
denominator. As a consequence, the difference between two probability dis-
tributions is transformed into an energy difference, which in physics is known
as ‘‘free energy’’. The inference result then corresponds to a minimum of this
free energy, which is approximated with minimization techniques, known as
variational methods (hence the name of this propagation technique), which
can be obtained from theoretical physics.

A very accessible introduction to variational methods in the context of
evidence propagation, which nicely discusses the relation to the physical back-
ground, carefully introduces their main ingredients, and demonstrates their
power, can be found in [Yedida et al. 2003]. A very extensive treatment is
offered by [Wainwright and Jordan 2008].

Chapter 5

Computing Projections

With this chapter we turn to learning graphical models from data. We start by
considering the problem of computing projections of relations and of database-
induced multivariate probability and possibility distributions to a given sub-
space of the frame of discernment. That is, we consider the problem of how
to estimate a marginal (probability or possibility) distribution w.r.t. a given
set of attributes from a database of sample cases.1

Computing such projections is obviously important, because they form
the quantitative part of a learned graphical model, that is, they are the com-
ponents of the factorization or decomposition of a multivariate distribution.
Without a method to determine them it is usually impossible to induce the
structure (that is, the qualitative part) of a graphical model, because all al-
gorithms for this task presuppose such a method in one way or the other.

It turns out that computing projections is trivial in the relational and the
probabilistic case—at least if the database is precise, that is, does not contain
missing values or set-valued information—which explains why this task is
often not considered explicitly in these cases. If the database contains missing
values, then estimating marginal probability distributions is more difficult,
but can be handled very nicely with the expectation maximization algorithm,
even though its application can turn out to be computationally expensive.

The possibilistic case, on the other hand, poses an unpleasant problem.
This is—at least to some extent—counterintuitive, because computing the
sum projections of the probabilistic case is so very simple. However, it is
not possible to use an analogous method (like simply computing the maxi-
mum), as we will demonstrate with a simple example. Fortunately, though,
the database to learn from can be preprocessed (by computing its closure un-
der tuple intersection [Borgelt and Kruse 1998c]) so that computing maximum
projections becomes simple and, for most practical problems, efficient.

1Recall the simple examples of Chapter 3, especially the relational example, in order to
understand why we call the computation of a marginal distribution a projection.

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

140 CHAPTER 5. COMPUTING PROJECTIONS

5.1 Databases of Sample Cases

Before we can state clearly the problems underlying the computation of pro-
jections from a database of sample cases, it is helpful to define formally what
we understand by ‘‘database’’. We distinguish two cases: databases with pre-
cise tuples and databases with imprecise tuples. However, since the latter are
a generalization of the former, it suffices to consider the latter case.

To define the notion of a database of imprecise tuples, we start by extend-
ing the definitions of a tuple and of a relation (cf. Definition 3.2.1 on page 63)
to capture imprecision w.r.t. the values of the attributes underlying them.

Definition 5.1.1 Let U = {A1, . . . , An} be a (finite) set of attributes with
respective domains dom(Ai), i = 1, . . . , n. A tuple over U is a mapping

tU : U →
⋃

A∈U

2 dom(A)

satisfying ∀A ∈ U : tU (A) ⊆ dom(A) and tU (A) �= ∅. The set of all tuples
over U is denoted TU . A relation RU over U is a set of tuples over U, that is,
RU ⊆ TU .

We still write tuples similar to the usual vector notation. For example, a
tuple t over {A, B, C} which maps A to {a1}, B to {b2, b4} and C to {c1, c3}
is written t = (A �→ {a1}, B �→ {b2, b4}, C �→ {c1, c3}). If an implicit order
of the attributes is fixed, the attributes may be omitted. In addition, we still
write dom(t) = X to indicate that t is a tuple over X.

With the above definition a tuple can represent imprecise (that is, set-
valued) information about the state of the modeled section of the world.
It is, however, restricted in doing so. It cannot represent arbitrary sets of
instantiations of the attributes, but only such sets that can be defined by
stating a set of values for each attribute. We chose not to use a more general
definition (which would define a tuple as an arbitrary set of instantiations of
the attributes), because the above definition is usually much more convenient
for practical purposes. It should be noted, though, that all results of this
chapter can be transferred directly to the more general case, because this
restriction of the above definition is not exploited.

We can now define the notions of a precise and of an imprecise tuple.

Definition 5.1.2 A tuple tU over a set U of attributes is called precise iff
∀A ∈ U : |tU (A)| = 1. Otherwise it is called imprecise. The set of all precise
tuples over X is denoted T

(precise)
U .

Clearly, Definition 3.2.1 on page 63 was restricted to precise tuples. Now
projections of tuples and relations are defined in analogy to the precise case
(cf. Definitions 3.2.2 and 3.2.3 on page 64).

5.2. RELATIONAL AND SUM PROJECTIONS 141

Definition 5.1.3 If tX is a tuple over a set X of attributes and Y ⊆ X, then
tX |Y denotes the restriction or projection of the tuple tX to Y. That is,
the mapping tX |Y (read: tX restricted to Y) assigns sets of values only to the
attributes in Y. Hence dom(tX |Y) = Y, that is, tX |Y is a tuple over Y.

Definition 5.1.4 Let RX be a relation over a set X of attributes and Y ⊆ X.
The projection projXY (RX) of the relation RX from X to Y is defined as

projXY (RX) def= {tY ∈ TY | ∃tX ∈ RX : tY ≡ tX |Y }.

It is clear that to describe a dataset of sample cases a simple relation does
not suffice. In a relation, as it is a set of tuples, each tuple can appear only
once. In contrast to this, in a dataset of sample cases a tuple may appear
several times, reflecting the frequency of the occurrence of the corresponding
case. Since we cannot dispense with this frequency information (we need it
for both the probabilistic and the possibilistic setting), we need a mechanism
to represent the number of occurrences of a tuple.

Definition 5.1.5 A database DU over a set U of attributes is a pair
(RU , wRU

), where RU is a relation over U and wRU
is a function mapping

each tuple in RU to a natural number, that is, wRU
: RU → IN.

If the set U of attributes is clear from the context, we drop the index U. The
function wRU

is intended to indicate the number of occurrences of a tuple
t ∈ RU in a dataset of sample cases. We call wRU

(t) the weight of tuple t.
When dealing with imprecise tuples, it is helpful to be able to speak of a

precise tuple being ‘‘contained’’ in an imprecise one or of one imprecise tuple
being ‘‘contained’’ in another (w.r.t. the set of represented instantiations of
the attributes). These terms are made formally precise by introducing the
notion of a tuple being at least as specific as another.

Definition 5.1.6 A tuple t1 over an attribute set X is called at least as
specific as a tuple t2 over X, written t1 � t2 iff ∀A ∈ X : t1(A) ⊆ t2(A).

Note that � is not a total ordering, since there are tuples that are incom-
parable. For example, t1 = ({a1}, {b1, b2}) and t2 = ({a1, a2}, {b1, b3}) are
incomparable, since neither t1 � t2 nor t2 � t1 holds. Note also that � is
obviously transitive. That is, if t1, t2, t3 are three tuples over an attribute
set X with t1 � t2 and t2 � t3, then also t1 � t3. Finally, note that � is
preserved by projection. That is, if t1 and t2 are two tuples over an attribute
set X with t1 � t2 and if Y ⊆ X, then t1|Y � t2|Y .

5.2 Relational and Sum Projections

As already said above, computing projections from a database of sample cases
is trivial in the relational and in the probabilistic setting: computing the pro-
jection of a relation of precise tuples is a standard operation of relational

142 CHAPTER 5. COMPUTING PROJECTIONS

algebra (cf. also Definition 3.2.3 on page 64). In order to deal with a rela-
tion RU of imprecise tuples, it suffices to note that such a relation can always
be replaced by a relation R′

U of precise tuples (at least formally), because
in the relational case all we are interested in is whether a (precise) tuple is
possible or not, and not in how the tuples may be grouped. This relation R′

U

contains those precise tuples that are contained in a tuple in RU , or formally

R′
U =

{
t′ ∈ T

(precise)
U

∣∣∣ ∃t ∈ RU : t′ � t
}

.

Note that this replacement need not be carried out explicitly, because � is
maintained by projection (see above). Therefore we can work directly with
the projection of a relation of imprecise tuples as defined in Definition 5.1.4,
which indicates equally well which tuples of the subspace are possible. Note
that in the relational case the tuple weights are ignored.

In the probabilistic case it is usually assumed that the given database rep-
resents a sample of independent cases, generated by some random process that
is governed by a multivariate probability distribution. With this presupposi-
tion, the relational projection operation needs to be extended only slightly,
in order to estimate a marginal probability distribution from a database of
precise tuples. All we have to do is to take the tuple weights properly into
account. This is done by summing for each precise tuple tX of the subspace
defined by the set X of attributes the weights of all tuples tU in the database
the projection of which is equal to tX (hence the name ‘‘sum projection’’).

The result of this operation is an absolute frequency distribution on the
subspace, which can be represented as a database on the subspace: the weight
function states the absolute frequency of each tuple. From this frequency dis-
tribution a marginal probability distribution is estimated using standard sta-
tistical techniques. We may, for example, use maximum likelihood estimation.
That is, we may estimate the parameters in such a way that the likelihood of
the data, that is, the probability of the data given the model and its param-
eters, is maximized. This yields [Larsen and Marx 2005]

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

p̂X

(∧
Ai∈X

Ai = ai

)
=

wX

(∧
Ai∈X Ai = ai

)
wX(ε)

,

where wX

(∧
Ai∈X Ai = ai

)
is the weight of the tuples in the database sat-

isfying
∧

Ai∈X Ai = ai (this number can be read directly from the sum pro-
jection) and wX(ε) is the total weight of all tuples.2 Alternatively, we may
use Bayesian estimation, which enables us to add a (usually uniform) prior

2We use the symbol ε in analogy to its use in the theory of formal languages, namely to
denote an empty expression, that is, an expression that does not restrict the set of tuples.

5.3. EXPECTATION MAXIMIZATION 143

expectation of the probabilities by

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

p̂X

(∧
Ai∈X

Ai = ai

)
=

wX

(∧
Ai∈X Ai = ai

)
+ w0

wX(ε) + w0

∏
Ai∈X | dom(Ai)|

,

where the term w0, which represents a uniform prior distribution, is most often
chosen to be 1.3 This uniform prior expectation also often features under the
name of Laplace correction. It is clear that, by changing the above formula
appropriately, arbitrary prior distributions can be incorporated.

5.3 Expectation Maximization

Unfortunately, in applications, databases that are complete and precise, as we
assumed to be them in the preceding section, are rare. To deal with imprecise
tuples, we may apply the insufficient reason principle (cf. Section 2.4.3), which
prescribes to distribute the weight of an imprecise tuple equally on all precise
tuples contained in it. Formally, this enables us to work with a database of
precise tuples if we remove the restriction that the weight function must as-
sign natural numbers to the tuples. (Clearly, to represent a distributed weight,
we need fractions.) Alternatively, we may preprocess the database and im-
pute precise values (for example averages or most frequent values) or we may
apply more sophisticated statistical methods like, for instance, expectation
maximization (EM) [Dempster et al. 1977, Bauer et al. 1997] and gradient as-
cent [Russel et al. 1995]. In this section we study the basics of the expectation
maximization algorithm using a simple Bayesian network as an example.

As its name indicates, the expectation maximization algorithm consists of
two steps: an expectation step and a maximization step. In the expectation
step the parameters of the probability distribution to be estimated, which may
be initialized randomly, are held constant and expected frequencies of the dif-
ferent precise tuples compatible with the imprecise tuples of the database are
computed from it, thus completing the frequency information of the database.
In the maximization step the frequencies of the tuples are held constant and
the parameters of the distribution(s) are estimated from them, maximizing
the likelihood of the data. (Due to this maximization of the likelihood of the
data in the second step, the expectation maximization algorithm may be seen
as a generalization of maximum likelihood estimation.)

Of course, the two steps of the expectation maximization algorithm are
executed not only once, but are iterated, until a stable state is reached, in
which the parameters of the distribution to be estimated do not change any

3Compare, for example, the K2 (Bayesian–Dirichlet uniform) metric discussed in Sec-
tion 7.2.4. The likelihood equivalent Bayesian–Dirichlet uniform metric, however, uses a
different value, although the prior is still uniform (cf. the same section).

144 CHAPTER 5. COMPUTING PROJECTIONS

H

A B C

H A B C w

? a0 b0 c0 14
? a0 b0 c1 11
? a0 b1 c0 20
? a0 b1 c1 20
? a1 b0 c0 5
? a1 b0 c1 5
? a1 b1 c0 11
? a1 b1 c1 14

Figure 5.1 The structure of a
Bayesian network and an impre-
cise database for this network.

more. It can be shown that, at least under certain conditions, expectation
maximization always converges to a stable state, although this state may be
only a local optimum of the likelihood of the database [Dempster et al. 1977].

To illustrate how the expectation maximization algorithm works, we con-
sider a simple example: Figure 5.1 shows on the left the graph of a Bayesian
network over four attributes. All attributes are binary, that is, each of them
has only two possible values. In addition, we have the database shown on the
right in Figure 5.1. In this database the value of H is missing for all tuples
(indicated by a question mark). That is, attribute H is a hidden or latent at-
tribute; that is, an attribute that cannot be observed. The values of the other
three attributes A, B, and C, however, are always known. The last column
of the table states the weights of the different tuples, that is, their absolute
frequencies. In all, there are 100 sample cases (sum of the tuple weights).

We consider now one iteration of the expectation maximization algorithm,
with which we want to estimate the parameters of the Bayesian network from
the dataset shown on the right in Figure 5.1. To initialize the algorithm, we
choose random initial values for the probabilities in the distributions of the
Bayesian network. That is, we fix random marginal probabilities for the two
values of the attribute H as well as random conditional probabilities for the
values of the attributes A, B, and C given the values of the attribute H. The
random initialization we will use in this example is shown in Table 5.1.

The randomly chosen probabilities complete the Bayesian network and
therefore it can be used to draw inferences (cf. Section 4.2). In particular, we
can compute the conditional probabilities of the two values of the attribute H
given an instantiation of the attributes A, B, and C. In this case, this is
especially simple, because the decomposition formula of the Bayesian network
is (cf. Section 4.1.7, especially Definition 4.1.29 on page 118)

∀a ∈ {a0, a1} : ∀b ∈ {b0, b1} : ∀c ∈ {c0, c1} : ∀h ∈ {h0, h1} :

P(H = h, A = a, B = b, C = c)
= P(H = h)P(A = a | H = h)P(B = b | H = h)P(C = c | H = h).

5.3. EXPECTATION MAXIMIZATION 145

Table 5.1 Random initial probabilities for the example execution of the ex-
pectation maximization algorithm.

pH h0 h1

0.3 0.7

pA|H h0 h1

a0 0.4 0.6
a1 0.6 0.4

pB|H h0 h1

b0 0.7 0.8
b1 0.3 0.2

pC|H h0 h1

c0 0.2 0.5
c1 0.8 0.5

Therefore the conditional probabilities of the values of the attribute H given
values of the attributes A, B, and C can be computed as

∀a ∈ {a0, a1} : ∀b ∈ {b0, b1} : ∀c ∈ {c0, c1} : ∀h ∈ {h0, h1} :

P(H = h | A = a, B = b, C = c)
= α · P(H = h)P(A = a | H = h)P(B = b | H = h)P(C = c | H = h),

where α is a normalization constant, which is to be determined so that∑
h∈{h0,h1}

P(H = h | A = a, B = b, C = c) = 1.

(See the derivation of the evidence propagation formulae in Section 4.2.1, but
also the discussion of naive Bayes classifiers in the next chapter.)

With the help of the above formula we can compute expected values for
the absolute frequencies of the two values h0 and h1 of the attribute H for the
different imprecise tuples in the database, namely by simply multiplying the
conditional probabilities with the weights of the corresponding tuples. These
expected values are shown in Table 5.2. Note that the frequencies of tuples
with the same instantiation for the attributes A, B, and C sum to the weight
of the corresponding tuple in Table 5.1.

With this computation we have executed the expectation step of the ex-
pectation maximization algorithm. We now have a completed database, from
which we can estimate the probability parameters of the Bayesian network.
For this estimation, which is the maximization step of the expectation maxi-
mization algorithm, we use maximum likelihood estimation (cf. the preceding
section). That is, we compute, for instance, P(A = a0 | H = h0) from the
relative frequency of the value a0 given H = h0 by simply ‘‘counting’’ the
corresponding tuples (or rather summing the tuple weights):

P̂(A = a0 | H = h0)

≈ 1.27 + 3.14 + 2.93 + 8.14
1.27 + 3.14 + 2.93 + 8.14 + 0.92 + 2.73 + 3.06 + 8.49

≈ 0.51.

146 CHAPTER 5. COMPUTING PROJECTIONS

Table 5.2 Expected values of the absolute tuple frequencies.

H A B C w

h0 a0 b0 c0 1.27
h0 a0 b0 c1 3.14
h0 a0 b1 c0 2.93
h0 a0 b1 c1 8.14
h0 a1 b0 c0 0.92
h0 a1 b0 c1 2.37
h0 a1 b1 c0 3.06
h0 a1 b1 c1 8.49

H A B C w

h1 a0 b0 c0 12.73
h1 a0 b0 c1 7.86
h1 a0 b1 c0 17.07
h1 a0 b1 c1 11.86
h1 a1 b0 c0 4.08
h1 a1 b0 c1 2.63
h1 a1 b1 c0 7.94
h1 a1 b1 c1 5.51

Table 5.3 Probabilities of the Bayesian network after the first step.

pH h0 h1

0.3 0.7

pA|H h0 h1

a0 0.51 0.71
a1 0.49 0.29

pB|H h0 h1

b0 0.25 0.39
b1 0.75 0.61

pC|H h0 h1

c0 0.27 0.60
c1 0.73 0.40

In this way we obtain the probabilities shown in Table 5.3 after one iteration
of the expectation maximization algorithm, that is, after one expectation and
one maximization step. With these new probability distributions we repeat
the two steps, starting with the computation of new expected frequencies for
the two values of the attribute H—exactly like we did it at the beginning with
the randomly initialized probabilities—and then we re-estimate the probabil-
ities. We repeat this procedure until we reach a stable state (convergence).
Technically we may test whether we have reached a stable state (or are at
least sufficiently close to one) by checking whether the estimated probabilities
changed no more than a predefined limit ε from one iteration of the expecta-
tion maximization algorithm to the next. In our example we eventually reach
the probability distributions that are shown in Table 5.4.

Of course, the expectation maximization algorithm is not restricted to
cases where one attribute is latent (as in this example). If the value of one or
more attributes is missing only in some cases, it may be applied just as well.
This algorithm is a very general and flexible method to estimate parameters
of probability distributions from a database with incomplete tuples.

However, a serious drawback of the expectation maximization algorithm
is that it can take a very long time to converge. Especially in the vicinity of a

5.3. EXPECTATION MAXIMIZATION 147

Table 5.4 Probabilities of the Bayesian network after convergence.

pH h0 h1

0.5 0.5

pA|H h0 h1

a0 0.5 0.8
a1 0.5 0.2

pB|H h0 h1

b0 0.2 0.5
b1 0.8 0.5

pC|H h0 h1

c0 0.4 0.6
c1 0.6 0.4

stable state convergence can be very slow. In our example, for instance, it
takes 4210 iterations if ε = 10−6 is chosen, that is, if the algorithm is ter-
minated if the probabilities of two consecutive iterations differ no more than
10−6. In this case the computed probabilities differ less than 8 · 10−4 from
those shown in Table 5.4. For ε = 10−4 the algorithm needs 687 iterations
and the result differs less than 0.025 from those shown in Table 5.4.

In order to mitigate this disadvantage, several different acceleration meth-
ods have been suggested, among them (conjugate) gradient descent [Jamshid-
ian and Jennrich 1993, Russel et al. 1995, Bauer et al. 1997] and a trans-
formation to a root finding problem, so that the Newton–Raphson method
can be applied [Jamshidian and Jennrich 1993]. Often standard expectation
maximization is applied first to approach a convergence point and then it is
switched to one of the mentioned methods to speed up convergence.

Here we do not discuss these methods in detail, but only study briefly an
approach that draw on a simple idea from (artificial) neural network training
[Anderson 1995, Bishop 1996, Rojas 1996, Haykin 2008], namely the intro-
duction of a momentum term. For this we view the change of the parameters
from one iteration of the expectation maximization algorithm to the next as
a generalized gradient.4 To this generalized gradient we add a fraction of the
change made in the previous iteration (this is the momentum term) to speed
up the gradient ascent. Formally, we update a parameter θ using the rule

θt+1 = θt + Δθt with Δθt = (θEM
t − θt) + β · Δθt−1,

where β ∈ [0, 1) is a parameter of the method and t is the number of the
iteration step. That is, θt is the estimate for θ computed in the t-th iteration
and Δθt is the value by which θt is changed from the t-th iteration to the next.
θEM

t is the estimate computed from θt (and all other parameter estimates of
step t) by an iteration of the expectation maximization algorithm.

Of course, with this scheme the resulting parameter estimate may not be
valid. If, for instance, the parameter is a probability, the value may lie outside
the interval [0,1], simply because the momentum term pushed it out of the

4This view is very intuitive, but there is also some formal justification for it [Jamshidian
and Jennrich 1993].

148 CHAPTER 5. COMPUTING PROJECTIONS

acceptable range. In order to cope with this problem the new estimate θt+1

is clamped to an interval [θmin, θmax] of acceptable values. For our simple
example we may use the interval [0.01, 0.99], since all parameters are (condi-
tional) probabilities. (Note that it may also be necessary to renormalize the
distribution if there are more than two values per attribute.)

With this simple modification of the algorithm we achieve a considerable
acceleration in our simple example. With a limit of ε = 10−6 the algorithm
terminates after 624 iterations (compared to 4210 for pure expectation maxi-
mization) with the result differing less than 2 · 10−5 from the values shown in
Table 5.4 (compared to 8 · 10−4 for pure expectation maximization). With a
limit of ε = 10−3 the algorithm terminates after 368 iterations with the result
differing less than 8 · 10−4 from the values shown in Table 5.4.

5.4 Maximum Projections

In the possibilistic case, if we rely on the context model interpretation of a
degree of possibility (cf. Section 2.4), a given database is interpreted as a
description of a random set (cf. Definition 2.4.1 on page 35). Each tuple is
identified with a context and thus the relative tuple weight is the context
weight. The sample space Ω is assumed to be the set T

(precise)
U of all precise

tuples over the set U of attributes of the database. With these presuppositions
the possibility distribution π

(D)
U that is induced by a database D over a set U

of attributes can be defined as follows:

Definition 5.4.1 Let D = (R, wR) be a nonempty database (that is, R �= ∅)
over a set U of attributes. Then

π
(D)
U : T

(precise)
U → [0, 1], π

(D)
U (t) �→

∑
s∈R,t�s wR(s)∑

s∈R wR(s)
,

is the possibility distribution over U induced by D.

That is, the degree of possibility of each precise tuple t is the relative weight
of those (imprecise) tuples that contain it (cf. Definition 2.4.2 on page 36).

Computing maximum projections for a precise database is equally simple
as computing sum projections. The only difference is, as the names indicate,
that instead of summing the tuple weights we have to determine their maxi-
mum. That this simple procedure is possible can easily be seen from the fact
that for a precise database the numerator of the fraction in the definition
above is reduced to one term. Therefore we have

∀tX ∈ TX : π
(D)
X (tX) = max

A∈U−X
π

(D)
U (tU) =

max
A∈U−X

wR(tU)∑
s∈R wR(s)

(cf. Definition 2.4.8 on page 46 and Definition 3.2.7 on page 68).

5.4. MAXIMUM PROJECTIONS 149

Database: ({a1, a2, a3}, {b3}) : 1
({a1, a2}, {b2, b3}) : 1
({a3, a4}, {b1}) : 1

Table 5.5 A very simple imprecise
database with three tuples (con-
texts), each having a weight of 1.

0

1
3

2
3

1

a1 a2 a3 a4
b1

b2
b3

0

1
3

2
3

1

a1 a2 a3 a4

0

1
3

2
3

1

b1
b2

b3

0

1
3

2
3

1

b1 b2 b3

Figure 5.2 The possibility distribution induced by the three tuples of the
database shown in Table 5.5 (vertical axis is the degree of probability).

Unfortunately this simple procedure cannot be transferred to databases
with imprecise tuples, because in the presence of imprecise tuples the sum
in the numerator has to be taken into account. This sum poses problems,
because the computation of its terms can be very expensive.

5.4.1 A Simple Example

In order to understand the problems that result from databases of imprecise
tuples it is helpful to study a simple example that clearly shows the difficulties
that arise. Consider the very simple database shown in Table 5.5 that is
defined over two attributes A and B. The possibility distribution on the joint
domain of A and B that is induced by this database is shown graphically
in Figure 5.2. This figure also shows the marginal possibility distributions
(maximum projections) for each of the two attributes.

Consider first the degree of possibility that attribute A has the value a3,
which is 1

3 . This degree of possibility can be computed by taking the maximum
over all tuples in the database in which the value a3 is possible: both such
tuples have a weight of 1. On the other hand, consider the degree of possibility
that attribute A has the value a2, which is 2

3 . To find this value, we have to
sum the weights of the tuples in which it is possible. Since both a2 and a3 are
possible in two tuples of the database, we conclude that neither the sum nor
the maximum of the tuple weights can, in general, yield the correct result.

150 CHAPTER 5. COMPUTING PROJECTIONS

Table 5.6 The maximum over tuples in the support equals the maximum over
tuples in the closure.

Database

({a1, a2, a3}, {b3}) : 1
({a1, a2}, {b2, b3}) : 1
({a3, a4}, {b1}) : 1

3 tuples

Support

(a1, b2) : 1 (a3, b1) : 1
(a1, b3) : 2 (a3, b3) : 1
(a2, b2) : 1 (a4, b1) : 1
(a2, b3) : 2

7 tuples

Closure

({a1, a2, a3}, {b3}) : 1
({a1, a2}, {b2, b3}) : 1
({a3, a4}, {b1}) : 1
({a1, a2}, {b3}) : 2

4 tuples

Note that this problem of computing maximum projections results from
the fact that we consider unrestricted random sets, that is, random sets that
may have arbitrary focal sets. After the detailed discussion we provided in
Section 2.4 and especially Sections 2.4.6 and 2.4.7, it should be clear the
problem vanishes immediately if the focal sets of the random set are required
to be consonant. In this case, summing over the tuple weights always yields
the correct result, because disjoint tuples (like the first and the third in the
database), for which taking the maximum is necessary, are excluded. However,
it is also clear that consonance of the focal sets is almost never to be had if
random sets are used to interpret databases of sample cases.

Fortunately, the simple example shown in Figure 5.2 not only illustrates
the problem that occurs w.r.t. computing maximum projections of database-
induced possibility distribution, but also provides us with a hint of how this
problem may be solved. Obviously, the problem results from the fact that the
first two tuples ‘‘intersect’’ on the precise tuples (a1, b3) and (a2, b3). If this
intersection was represented explicitly—with a tuple weight of 2—we could
always determine the correct projection by taking the maximum.

This is demonstrated in Table 5.6. The table on the left restates the
database of Table 5.5. The table in the middle lists what we call the sup-
port of the database, which is itself a database. This database consists of all
precise tuples that are contained in some tuple of the original database. The
weights assigned to these tuples are the values of the numerator of the fraction
in the definition of the database-induced possibility distribution. Obviously,
the marginal degrees of possibility of a value of any of the two attributes A
and B can be determined from this relation by computing the maximum over
all tuples that contain this value (divided, of course, by the sum of the weights
of all tuples in the original database), simply because this computation is a
direct implementation of the definition. Therefore we can always fall back on
this method of computing a maximum projection.

5.4. MAXIMUM PROJECTIONS 151

Note, however, that this method corresponds to the formal expansion of
the database, as we mentioned it for the relational case. However, in contrast
to the relational case, we have to compute the expansion explicitly in order
to determine the maximum projections. The reason is, of course, that we are
no longer contented with merely knowing whether a tuple is possible or not,
but desire to know its degree of possibility. Unfortunately, this renders this
method computationally infeasible in most cases. Even for the very simple
example we studied above, we need seven tuples in the support database,
although the original (imprecise) database contains only three. Generally, the
number of tuples in the expansion grows exponentially with the number of
imprecise attribute values. Thus, if there are many imprecisely specified at-
tribute values, the number of tuples in the expansion of an imprecise database
can be huge (cf. also the experimental results in Section 5.4.4).

Consequently a better method than the costly computation via the support
is needed. Such a method is suggested by the third column of Table 5.6.
The first three tuples in this column are the tuples of the original database.
In addition, this column contains an imprecise tuple that corresponds to the
‘‘intersection’’ of the first two tuples (defined formally below). Since this
tuple is at least as specific as both the first and the second, it is assigned
a weight of 2, the sum of the weights of the first and the second tuple. By
adding this tuple to the database, the set of tuples becomes closed under tuple
intersection, which explains the label closure of this column. That is, for any
two tuples s and t in this database, if we construct the (imprecise) tuple
that represents the set of precise tuples that are represented by both s and
t (intersection), then this tuple is also contained in the database. It is easily
verified that, at least in this example, the marginal degrees of possibility of
a value of any of the two attributes A and B can be determined from this
database by computing the maximum over all tuples that contain this value.

As a consequence, if we can establish this equality in general, then pre-
processing the database, so that it becomes closed under tuple intersection,
provides an alternative to a computation of maximum projections via the sup-
port database. This is especially desirable, because it can be expected that in
general only few tuples have to be added in order to achieve closure under
tuple intersection. In the example, for instance, only one tuple needs to be
added (cf. also the experimental results in Section 5.4.4).

5.4.2 Computation via the Support

The remainder of this chapter is devoted to introducing the technical notions
needed to prove, in a final theorem, that a computation of a maximum projec-
tion via the closure under tuple intersection is always equal to a computation
via the support of a possibility distribution (which, by definition, yields the
correct value—see above). We start by making the notions of the support of
a relation and of the support of a database formally precise.

152 CHAPTER 5. COMPUTING PROJECTIONS

Definition 5.4.2 Let R be a relation over a set U of attributes.
The support of R, written support(R), is the set of all precise tuples that are
at least as specific as a tuple in R, that is,

support(R) =
{

t ∈ T
(precise)
U

∣∣∣ ∃r ∈ R : t � r
}

.

Obviously, support(R) is also a relation over U. Using this definition we can
define the support of a database.

Definition 5.4.3 Let D = (R, wR) be a database over a set U of attributes.
The support of D is the pair support(D) = (support(R), wsupport(R)), where
support(R) is the support of the relation R and

wsupport(R) : support(R) → IN, wsupport(R)(t) �→
∑

s∈R,t�s

wR(s).

Obviously, support(D) is also a database over U. Comparing this definition
to Definition 5.4.1, we see that

π
(D)
U (t) =

{
1

w0
wsupport(R)(t), if t ∈ support(R),

0, otherwise,

where w0 =
∑

s∈R wR(s). It follows that any maximum projection of a data-
base-induced possibility distribution π

(D)
U over a set U of attributes to a set

X ⊆ U can be computed from wsupport(R) as follows (although the two pro-
jections are identical, we write π

(support(D))
X instead of π

(D)
X to indicate that

the projection is computed via the support of D):

π
(support(D))
X : T

(precise)
X → [0, 1],

π
(support(D))
X (t) �→

{
1

w0
max

s∈S(t)
wsupport(R)(s), if S(t) �= ∅,

0, otherwise,

where S(t) = {s ∈ support(R) | t � s|X} and w0 =
∑

s∈R wR(s).
It should be noted that, as mentioned above, the computation of maxi-

mum projections via the support of a database is, in general, very inefficient,
because of the usually huge number of tuples in support(R).

5.4.3 Computation via the Closure

In this section we turn to the computation of maximum projections via the
closure of a database under tuple intersection. Clearly, we must begin by
defining the notion of the intersection of two tuples.

Definition 5.4.4 Let U be a set of attributes. A tuple s over U is called the
intersection of two tuples t1 and t2 over U, written s = t1 t2 iff ∀A ∈ U :
s(A) = t1(A) ∩ t2(A).

5.4. MAXIMUM PROJECTIONS 153

Note that the intersection of two given tuples need not exist. For example,
the tuples t1 = (A �→ {a1}, B �→ {b1, b2}) and t2 = (A �→ {a2}, B �→ {b1, b3})
do not have an intersection, because t1(A) ∩ t2(A) = ∅, but a tuple may not
map an attribute to the empty set (cf. Definition 5.1.1 on page 140).

Note also that the intersection s of two tuples t1 and t2 is at least as
specific as both of them, that is, it is s � t1 and s � t2. In addition, s is the
least specific of all tuples s′ for which s′ � t1 and s′ � t2, that is,

∀s′ ∈ TU : (s′ � t1 ∧ s′ � t2) ⇒ (s′ � s ≡ t1 t2).

This is important, because it also says that any tuple that is at least as specific
as each of two given tuples is at least as specific as their intersection. (This
property is needed in the proof of Theorem 5.4.8.) Furthermore, note that
intersection is idempotent, that is, t t ≡ t. (This is needed below, where some
properties of closures are obtained.) Finally, note that the above definition
can easily be extended to the more general definition of an imprecise tuple,
in which it is defined as an arbitrary set of instantiations of the attributes.
Clearly, in this case tuple intersection reduces to simple set intersection.

From the intersection of two tuples we can proceed directly to the notions
of closed under tuple intersection and closure of a relation.

Definition 5.4.5 Let R be a relation over a set U of attributes.
R is called closed under tuple intersection iff

∀t1, t2 ∈ R : (∃s ∈ TU : s ≡ t1 t2) ⇒ s ∈ R,

that is, iff for any two tuples contained in R their intersection is also contained
in R (provided it exists).

Definition 5.4.6 Let R be a relation over a set U of attributes.
The closure of R, written closure(R), is the set

closure(R) =
{

t ∈ TU

∣∣∣ ∃S ⊆ R : t ≡
s∈S

s
}

,

that is, the relation R together with all possible intersections of tuples from R.

Note that closure(R) is, obviously, also a relation and that it is closed under
tuple intersection: if t1, t2 ∈ closure(R), then, due to the construction,

∃S1 ⊆ R : t1 =
s∈S1

s and ∃S2 ⊆ R : t2 =
s∈S2

s.

If now ∃t ∈ TU : t = t1 t2, then

t = t1 t2 =
s∈S1

s
s∈S2

s =
s∈S1∪S2

s ∈ closure(R).

(The last equality in this sequence holds, because is idempotent, see above.)

154 CHAPTER 5. COMPUTING PROJECTIONS

Note also that a direct implementation of the above definition is not the
best way to compute closure(R). A better, much more efficient way, is to
start with a relation R′ = R, to compute only intersections of pairs of tuples
taken from R′, and to add the results to R′ until no new tuples can be added.
The final relation R′ is the closure of R.

As for the support, the notion of a closure is extended to databases.

Definition 5.4.7 Let D = (R, wR) be a database over a set U of attributes.
The closure of D is the pair closure(D) = (closure(R), wclosure(R)), where
closure(R) is the closure of the relation R and

wclosure(R) : closure(R) → IN, wclosure(R)(t) �→
∑

s∈R,t�s

wR(s).

We assert (and prove in the theorem below) that any maximum projection
of π

(D)
U to a set X ⊆ U can be computed from wclosure(R) as follows (we write

π
(closure(D))
X to indicate that the projection is computed via the closure of D):

π
(closure(D))
X : T

(precise)
X → [0, 1],

π
(closure(D))
X (t) �→

{
1

w0
max

c∈C(t)
wclosure(R)(c), if C(t) �= ∅,

0, otherwise,

where C(t) = {c ∈ closure(R) | t � c|X} and w0 =
∑

s∈R wR(s).
Since, as already mentioned, closure(R) usually contains much fewer tu-

ples than support(R), a computation based on the above formula is much
more efficient. We verify our assertion that any maximum projection can be
computed in this way by the following theorem [Borgelt and Kruse 1998c]:

Theorem 5.4.8 Let D = (R, wR) be a database over a set U of attributes
and let X ⊆ U. Furthermore, let support(D) = (support(R), wsupport(R)) and
closure(D) = (closure(R), wclosure(R)) as well as π

(support(D))
X and π

(closure(D))
X

be defined as above. Then

∀t ∈ T
(precise)
X : π

(closure(D))
X (t) = π

(support(D))
X (t),

that is, computing the maximum projection of the possibility distribution π
(D)
U

induced by D to the attributes in X via the closure of D is equivalent to
computing it via the support of D.

Proof. The assertion of the theorem is proven in two steps. In the first, it
is shown that, for an arbitrary tuple t ∈ T

(precise)
X ,

π
(closure(D))
X (t) ≥ π

(support(D))
X (t),

5.4. MAXIMUM PROJECTIONS 155

Table 5.7 The number of tuples in support and closure of three databases.

dataset cases tuples in tuples in tuples in
R support(R) closure(R)

djc 500 283 712957 291
soybean 683 631 unknown 631
vote 435 342 98934 400

and in the second that

π
(closure(D))
X (t) ≤ π

(support(D))
X (t).

Both parts together obviously prove the theorem. The first part is carried out
by showing that for the (precise) tuple ŝ in support(D), which determines the
value of π

(support(D))
X (t), there must be a corresponding (imprecise) tuple in

closure(D) with a weight no less than that of ŝ. The second part is analogous.
The full proof can be found in Section A.8 in the appendix.

5.4.4 Experimental Evaluation

We tested the described projection method on three datasets, namely the
Danish Jersey cattle blood type determination dataset (djc, 500 cases), the
soybean diseases dataset (soybean, 683 cases), and the congress voting dataset
(vote, 435 cases). (The latter two datasets are well known from the UCI
Machine Learning Repository [Asuncion and Newman 2007].) Each of these
datasets contains a lot of missing values, which we treated as an imprecise
attribute value. That is, for a missing value of an attribute A we assumed
dom(A) as the set of values to which the corresponding tuple maps A. Un-
fortunately it is difficult to get hold of any real-world dataset containing
‘‘true’’ imprecise attribute values, that is, datasets with cases in which for an
attribute A a set S ⊂ dom(A) with |S| > 1 and S �= dom(A) was possible.

For each of the mentioned datasets we compared the reduction to a re-
lation (eliminating duplicates and keeping the number of occurrences in the
tuple weight), the expansion to the support of this relation, and the closure of
the relation w.r.t. tuple intersection. The results are shown in Table 5.7. The
entry ‘‘unknown’’ means that the resulting relation is too large to be com-
puted explicitly and hence we could not determine its size. It is obvious that
using the closure instead of the support of a relation to compute the maxi-
mum projections leads to a considerable reduction in complexity, or, in some
cases, makes it possible to compute a maximum projection in the first place.

156 CHAPTER 5. COMPUTING PROJECTIONS

A1 A2 · · · An w

a1,1 ? · · · ? 1
...

...
...

...
a1,m1 ? · · · ? 1

? a2,1 · · · ? 1
...

...
...

...
? a2,m2 · · · ? 1
...

...
...

...
? ? · · · an,1 1
...

...
...

...
? ? · · · an,mn

1

Table 5.8 A pathological example for
the computation of the closure under
tuple intersection. Although there are
only

∑n
i=1 mi tuples in this table, the

closure under tuple intersection con-
tains (

∏n
i=1(mi + 1)) − 1 tuples.

5.4.5 Limitations

It should be noted that, despite the promising results of the preceding section,
computing the closure under tuple intersection of a relation with imprecise
tuples does not guarantee that computing maximum projections is efficient.
To see this, consider the pathological example shown in Table 5.8. Here ai,j

is the j-th value in the domain of attribute i and mi is the number of values
of attribute Ai, i.e. mi = | dom(Ai)|. Question marks indicate missing values.

Although this table has only
∑n

i=1 | dom(Ai)| tuples, computing its closure
under tuple intersection constructs all

∏n
i=1 | dom(Ai)| possible precise tuples

over U = {A1, . . . , An} and all possible imprecise tuples with a precise value
for some and a missing value for the remaining attributes. In all there are
(
∏n

i=1(| dom(Ai)|+ 1))− 1 tuples in the closure, because for the i-th element
of a tuple there are | dom(Ai)|+1 possible entries: | dom(Ai)| attribute values
and the question mark to indicate a missing value. The only tuple that does
not occur in the closure is the one having only missing values.

To handle this database properly, an operation to merge tuples—for in-
stance, tuples that differ in the (set of) value(s) for only one attribute—is
needed. With such an operation, the above table can be reduced to a single
tuple, having unknown values for all attributes. This shows that there is some
potential for improvements of this preprocessing method. However, we found
it unneccesary to work out such improvements, because even without them
the method provided perfectly sufficient results for all cases we tested.

Chapter 6

Naive Classifiers

In this chapter we study a very popular type of classifier, which we call naive
classifiers, because they naively make very strong independence assumptions.
These classifiers can be seen as a special type of graphical model, the structure
of which is fixed by the classification task and the available data.

The best-known naive classifier is, of course, the naive Bayes classifier,
which is reviewed in Section 6.1. It can be seen as a Bayesian network with
a star-like structure. Due to the similarity of Bayesian networks and directed
possibilistic networks, the idea suggests itself to construct a possibilistic coun-
terpart of the naive Bayes classifier. This classifier, which naturally also has
a star-like structure, is discussed in Section 6.2. Although their structure is
basically fixed, there is a straightforward method to simplify both naive Bayes
and naive possibilistic classifiers, that is, to reduce the number of attributes
used to predict the class. This method, which is based on a greedy approach,
is reviewed in Section 6.3. Finally, Section 6.4 presents experimental results,
in which both naive classifiers are compared to a decision tree classifier.

6.1 Naive Bayes Classifiers

Naive Bayes classifiers [Good 1965, Duda and Hart 1973, Langley et al. 1992,
Domingos and Pazzani 1997] are an old and well-known type of classifier,
that is, of procedures that assign a class from a predefined set to an object or
case under consideration, based on the values of attributes used to describe
this object or case. They use a probabilistic approach, that is, try to compute
conditional class probabilities and then predict the most probable class.

6.1.1 The Basic Formula

We start our discussion of naive Bayes classifiers by deriving the basic formula
underlying them. Let C be a class attribute with a finite domain of m classes,

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

158 CHAPTER 6. NAIVE CLASSIFIERS

that is, let dom(C) = {c1, . . . , cm}, and let U = {A1, . . . , An} be a set of
other attributes used to describe a case or an object. These other attributes
may be symbolic, that is, dom(Ak) = {ak,1, . . . , ak,mk

}, or numeric, that is,
dom(Ak) = IR.1 If the second index of an attribute value is irrelevant, it is
dropped and we simply write ak for a value of an attribute Ak. With this
notation a case or an object can be described, as usual, by an instantiation
(a1, . . . , an) of the attributes A1, . . . , An.

For a given instantiation (a1, . . . , an) a naive Bayes classifier tries to com-
pute the conditional probability P(C = ci | A1 = a1, . . . , An = an) for all ci

and then predicts the class ci for which this probability is highest. Of course,
it is usually impossible to store all of these probabilities explicitly, so that
the most probable class can be found by a simple lookup. If there are nu-
meric attributes, this is obvious (in this case some parameterized function is
needed). But even if all attributes are symbolic, we have to store a class (or a
class probability distribution) for each point of the Cartesian product of the
attribute domains, the size of which grows exponentially with the number of
attributes. To cope with this problem, naive Bayes classifiers exploit—as their
name indicates—Bayes’ rule and a set of (naive) conditional independence as-
sumptions. With Bayes’ rule the conditional probabilities are inverted. That
is, naive Bayes classifiers consider2

P(C = ci | A1 = a1, . . . , An = an)

=
f(A1 = a1, . . . , An = an | C = ci) · P(C = ci)

f(A1 = a1, . . . , An = an)
.

Of course, for this inversion to be always possible, the probability density
function f(A1 = a1, . . . , An = an) must be strictly positive.

There are two observations to be made about this inversion. In the first
place, the denominator of the fraction on the right can be neglected, since
for a given case or object to be classified it is fixed and therefore does not
have any influence on the class ranking (which is all we are interested in). In
addition, its influence can always be restored by normalizing the distribution
on the classes (compare also page 126). That is, we can exploit

f(A1 = a1, . . . , An = an)

=
m∑

j=1

f(A1 = a1, . . . , An = an | C = cj) · P(C = cj).

Secondly, we can see that merely inverting the probabilities does not give us
any advantage, since the probability space is equally large as it was before.

1In this chapter we temporarily deviate from the restriction to finite domains, because
naive Bayes classifiers can be illustrated very well with numerical examples (see below).

2For simplicity we always use a probability density function f , although this is strictly
correct only if there is at least one numeric attribute (otherwise it should be a distribu-
tion P). The only exception is the class attribute, which must always be symbolic.

6.1. NAIVE BAYES CLASSIFIERS 159

However, here the (naive) conditional independence assumptions enter the
picture. To exploit them, we first apply the chain rule of probability to obtain

P(C = ci | A1 = a1, . . . , An = an)

=
P(C = ci)

p0
·

n∏
j=1

f
(
Aj = aj

∣∣∣ ∧
j−1
k=1Ak = ak, C = ci

)
,

where p0 is an abbreviation for f(A1 = a1, . . . , An = an). Then we make the
crucial (but naive) assumption that, given the value of the class attribute, any
attribute Aj is independent of any other. That is, we assume that knowing
the class is sufficient to determine the probability (density) for a value aj ,
and in particular, that we need not know the values of any other attributes.
Of course, this is a fairly strong assumption, which is truly ‘‘naive’’. However,
it considerably simplifies the formula stated above, since with it we can cancel
all attributes Ak appearing in the conditions. Thus we get

P(C = ci | A1 = a1, . . . , An = an) =
P(C = ci)

p0
·

n∏
j=1

f(Aj = aj | C = ci).

This is the basic formula underlying naive Bayes classifiers. For a symbolic
attribute Aj the conditional probabilities P(Aj = aj | C = ci) are stored as a
simple table. This is feasible now, since there is only one condition and hence
only m ·mj probabilities have to be stored.3 For numeric attributes it is often
assumed that the probability density is a normal distribution and hence only
the expected values μj(ci) and the variances σ2

j(ci) need to be stored in this
case. Alternatively, numeric attributes may be discretized (see, for example,
[Dougherty et al. 1995]) and then handled like symbolic attributes.

Naive Bayes classifiers can easily be induced from a dataset of preclassi-
fied sample cases. All one has to do is to estimate the conditional probabili-
ties/probability densities f(Aj = aj | C = ci) using, for instance, maximum
likelihood estimation (cf. Section 5.2). For symbolic attributes this yields

P̂(Aj = aj | C = ci) =
N(Aj = aj , C = ci)

N(C = ci)
,

where N(C = ci) is the number of sample cases that belong to class ci and
N(Aj = aj , C = ci) is the number of sample cases which in addition have
the value aj for the attribute Aj . To ensure that the probability is strictly
positive (see above), unrepresented classes are deleted. If an attribute value
does not occur given a class, it is common to either set its probability to 1

2N ,
where N is the total number of sample cases, or to add a uniform prior of

3Actually only m ·(mj −1) probabilities are really necessary. Since the probabilities have
to add up to one, one value can be discarded from each conditional distribution. However,
in implementations it is usually much more convenient to store all probabilities.

160 CHAPTER 6. NAIVE CLASSIFIERS

1
N to the estimated distribution, which is then renormalized (cf. the notion
of Laplace correction mentioned in Section 5.2). For a numeric attribute Aj

the standard maximum likelihood estimation functions for the parameters of
a normal distribution may be used, namely

μ̂j(ci) =
1

N(C = ci)

N(C=ci)∑
k=1

aj(k)

for the expected value, where aj(k) is the value of the attribute Aj in the kth
sample case belonging to class ci, while for the variance it is

σ̂2
j(ci) =

1
N(C = ci)

N(C=ci)∑
k=1

(aj(k) − μ̂j(ci))
2
.

6.1.2 Relation to Bayesian Networks

As mentioned above, a naive Bayes classifier can be seen as a special Bayesian
network. This becomes immediately clear if we rewrite the basic formula of a
naive Bayes classifier as

P(C = ci, A1 = a1, . . . , An = an) = P(C = ci | A1 = a1, . . . , An = an) · p0

= P(C = ci) ·
n∏

j=1

f(Aj = aj | C = ci),

which results from a simple multiplication by p0. Obviously, this is the fac-
torization formula of a Bayesian network with a star-like structure as shown
on the left in Figure 6.1. That is, in this Bayesian network there is a dis-
tinguished attribute, namely the class attribute. It is the only unconditioned
attribute (the only one without parents). All other attributes are conditioned
on the class attribute and on the class attribute only. It is easy to verify
that evidence propagation in this Bayesian network (cf. Section 4.2.1), if all
attributes Aj are instantiated, coincides with the computation of the condi-
tional class probabilities of a naive Bayes classifier.

Seeing a naive Bayes classifier as a special Bayesian network has the ad-
vantage that the strong independence assumptions underlying the derivation
of its basic formula can be mitigated. If there are attributes that are condi-
tionally dependent given the class, we may add edges between these attributes
to capture this dependence (as indicated on the right in Figure 6.1).

Formally, this corresponds to not canceling all attributes Ak, after the
chain rule of probability has been applied to obtain

P(C = ci | A1 = a1, . . . , An = an)

=
P(C = ci)

p0
·

n∏
j=1

f
(
Aj = aj

∣∣∣ ∧
j−1
k=1Ak = ak, C = ci

)
,

6.1. NAIVE BAYES CLASSIFIERS 161

C

A1

A2

A3

A4

· · ·
An

C

A1

A2

A3

A4

· · ·
An

Figure 6.1 A naive Bayes classifier is a Bayesian network with a star-like
structure. Additional edges can mitigate the independence assumptions.

but only those of which the attribute Aj is conditionally independent given
the class and the remaining attributes. That is, we exploit a weaker set of
conditional independence statements. Naive Bayes classifiers that had been
improved in this way where used by [Geiger 1992], [Friedman and Goldszmidt
1996], and [Sahami 1996]. The former two restrict the additional edges to a
tree, the latter studies a generalization in which each descriptive attribute
has at most k parents (where k is a parameter of the method). However,
these approaches bring us into the realm of structure learning, because the
additional edges have to be selected somehow (cf. Section 7.3.2).

6.1.3 A Simple Example

As an illustration of a naive Bayes classifier we consider the well-known iris
data [Anderson 1935, Fisher 1936, Asuncion and Newman 2007]. The classi-
fication problem is to predict the iris type (Iris setosa, Iris versicolor, or Iris
virginica) from measurements of the sepal length and width and the petal
length and width. However, we confine ourselves to the latter two measures,
which are the most informative w.r.t. a prediction of the iris type. (In addition,
we cannot visualize a four-dimensional space.) The naive Bayes classifier in-
duced from these two measures and all 150 cases (50 cases of each iris type) is
shown in Table 6.1. The conditional probability density functions used to pre-
dict the iris type are shown graphically in Figure 6.2 on the left. The ellipses
are the 2σ-boundaries of the (bivariate) normal distribution. These ellipses are
axis-parallel, which is a consequence of the strong conditional independence
assumptions underlying a naive Bayes classifier: the normal distributions are
estimated separately for each dimension and no covariance is taken into ac-
count. However, even a superficial glance at the data points reveals that the
two measures are far from independent given the iris type. Especially for Iris
versicolor the density function is a rather bad estimate. Nevertheless, the
naive Bayes classifier is successful: it misclassifies only six cases (which can
easily be made out in Figure 6.2: they are among the Iris versicolor and Iris
virginica cases close to the intersection of the upper two ellipses).

162 CHAPTER 6. NAIVE CLASSIFIERS

Table 6.1 A naive Bayes classifier for the iris data. The normal distributions
are described by μ̂ ± σ̂ (that is, expected value ± standard deviation).

iris type Iris setosa Iris versicolor Iris virginica

prior probability 0.333 0.333 0.333

petal length 1.46 ± 0.17 4.26 ± 0.46 5.55 ± 0.55

petal width 0.24 ± 0.11 1.33 ± 0.20 2.03 ± 0.27

petal length

petal width

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦
�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦
�

�

◦
�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

petal length

petal width

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦
�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦
�

�

◦
�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

�

◦

�

� Iris setosa ◦ Iris versicolor � Iris virginica

Figure 6.2 Naive Bayes density functions for the iris data (axis-parallel el-
lipses, left) and density functions that take into account the covariance of the
two measures (general ellipses, right). The ellipses are the 2σ-boundaries.

However, if we allow for an additional edge between petal length and petal
width, which is most easily implemented by estimating the covariance ma-
trix of the two measures, a much better fit to the data can be achieved (see
Figure 6.2 on the right, again the ellipses are the 2σ-boundaries of the prob-
ability density function). As a consequence the number of misclassifications
drops from six to three (which can easily be made out in Figure 6.2).

6.2 A Naive Possibilistic Classifier

Due to the structural equivalence of probabilistic and possibilistic networks,
which we pointed out in Chapters 3 and 4, the idea suggests itself to construct
a naive possibilistic classifier in strict analogy to the probabilistic case [Borgelt

6.2. A NAIVE POSSIBILISTIC CLASSIFIER 163

and Gebhardt 1999]: let π be a possibility distribution over the attributes
A1, . . . , An and C. Because of the symmetry in the definition of a conditional
degree of possibility (cf. Definition 2.4.9 on page 47), we have

π(C = ci | A1 = a1, . . . , An = an) = π(A1 = a1, . . . , An = an | C = ci).

This equation takes the place of Bayes’ rule. It has the advantage of being
much simpler than Bayes’ rule and thus we need no normalization constant.

In the next step we apply the possibilistic analog of the chain rule of
probability (cf. page 87 in Section 3.4.4) to obtain

π(C = ci | A1 = a1, . . . , An = an)

= min n
j=1 π

(
Aj = aj

∣∣∣ ∧
j−1
k=1Ak = ak, C = ci

)
.

Finally we assume, in analogy to the probabilistic conditional independence
assumptions, that given the value of the class attribute all other attributes
are independent. With this assumption we arrive at

π(C = ci | A1 = a1, . . . , An = an) = min n
j=1 π(Aj = aj | C = ci).

This is the fundamental equation underlying a naive possibilistic classifier.
Given an instantiation (a1, . . . , an) it predicts the class ci for which this equa-
tion yields the highest conditional degree of possibility. It is obvious that, as
a naive Bayes classifier is a special Bayesian network, this possibilistic classi-
fier is a special possibilistic network and, as a naive Bayes classifier, it has a
star-like structure (see the left part of Figure 6.1). It is also clear that a naive
possibilistic classifier may be improved in the same way as a naive Bayes
classifier, namely by adding edges between attributes that are conditionally
dependent given the class (see the right part of Figure 6.1).

To induce a possibilistic classifier from data, we must estimate the condi-
tional possibility distributions of the above equation. To do so, we can rely
on the database preprocessing described in Section 5.4, by exploiting

π(Aj = aj | C = ci) = π(Aj = aj , C = ci).

However, this method works only for possibility distributions over attributes
with a finite domain. If there are numeric attributes, it is not even com-
pletely clear how to define the joint possibility distribution that is induced by
a database of sample cases. The main problem is that it is difficult to deter-
mine a possibility distribution on a continuous domain if some sample cases
have precise values for the attribute under consideration (strangely enough,
for possibilistic approaches precision can pose a problem). A simple solution
would be to fix the size of a small interval to be used in such cases. However,
such considerations are beyond the scope of this book and therefore, in the
possibilistic case, we confine ourselves to attributes with finite domains.

164 CHAPTER 6. NAIVE CLASSIFIERS

6.3 Classifier Simplification

Both a naive Bayes classifier and a naive possibilistic classifier make strong in-
dependence assumptions. Because these assumptions are fairly naive, it is not
surprising that they are likely to fail. If they fail—and they are the more likely
to fail, the more attributes there are—the classifier may be worse than nec-
essary. Even though [Domingos and Pazzani 1997] showed that naive Bayes
classifiers often perform very well even though the naive independence as-
sumptions do not hold, and provided a careful analysis of the reasons for
this4, one should not take this problem too lightly. A common approach to
cope with this problem is to try to simplify the classifiers, naive Bayes as
well as possibilistic, using simple greedy attribute selection techniques. With
these procedures it can be hoped that a subset of attributes is found for which
the strong assumptions hold at least approximately. The experimental results
reported below indicate that this approach is often successful.

The attribute selection methods we used are the following: in the first
method, which as a general feature selection method is known as forward
selection, we start with a classifier that simply predicts the majority class.
That is, we start with a classifier that does not use any attribute information.
Then we add attributes one by one. In each step we select the attribute which,
if added, leads to the smallest number of misclassifications on the training
data (breaking ties arbitrarily). We stop adding attributes when adding any
of the remaining attributes does not reduce the number of errors. This greedy
approach to simplification was also used in [Langley and Sage 1994].

The second method is a reversal of the first and is known as backward
elimination in the domain of feature selection. We start with a classifier that
takes all available attributes into account and then we remove attributes
step by step. In each step we select the attribute which, if removed, leads to
the smallest number of misclassifications on the training data (breaking ties
arbitrarily). We stop removing attributes when removing any of the remaining
attributes leads to a higher number of misclassifications.

6.4 Experimental Evaluation

We implemented the possibilistic analog of the naive Bayes classifier [Borgelt
and Gebhardt 1999] together with a normal naive Bayes classifier [Borgelt
1999, Borgelt and Timm 2000] and tested both on four datasets from the
UCI Machine Learning Repository [Asuncion and Newman 2007]. In both
cases we used the greedy simplification (attribute selection) procedures de-
scribed in the preceding section. The results are shown in Table 6.2, together

4In a nutshell: a naive Bayes classifier can predict the correct class even if it computes
class probabilities that are far from correct. For example, if the correct probability of one
of two classes is 92%, but the classifier outputs 51%, the predicted class is still correct.

6.4. EXPERIMENTAL EVALUATION 165

T
ab

le
6.

2
E

xp
er

im
en

ta
lr

es
ul

ts
on

fo
ur

da
ta

se
ts

fr
om

th
e

U
C

I
M

ac
hi

ne
L
ea

rn
in

g
R

ep
os

it
or

y.

da
ta

se
t

po
ss

ib
ili

st
ic

cl
as

si
fie

r
na

iv
e

B
ay

es
cl

as
si

fie
r

de
ci

si
on

tr
ee

tu
pl

es
fo

rw
ar

d
ba

ck
w

ar
d

fo
rw

ar
d

ba
ck

w
ar

d
un

pr
un

ed
pr

un
ed

au
di

o
tr

ai
n

11
3

0(
0.

0%
)

1(
0.

9%
)

0(
0.

0%
)

0(
0.

0%
)

12
(1

0.
6%

)
13

(1
1.

5%
)

te
st

11
3

27
(2

3.
9%

)
34

(3
0.

1%
)

28
(2

4.
8%

)
32

(2
8.

3%
)

30
(2

6.
5%

)
28

(2
4.

8%
)

69
at

ts
.

se
le

ct
ed

14
17

14
63

12
10

ho
rs

e
tr

ai
n

18
4

62
(3

3.
7%

)
63

(3
4.

2%
)

45
(2

4.
5%

)
41

(2
2.

3%
)

30
(1

6.
3%

)
38

(2
0.

7%
)

te
st

18
4

63
(3

4.
2%

)
69

(3
7.

5%
)

64
(3

4.
8%

)
65

(3
5.

3%
)

66
(3

5.
9%

)
59

(3
2.

1%
)

20
at

ts
.

se
le

ct
ed

6
10

4
18

14
10

so
yb

ea
n

tr
ai

n
34

2
18

(
5.

3%
)

20
(

5.
8%

)
13

(
3.

8%
)

12
(

3.
5%

)
16

(
4.

7%
)

22
(

6.
4%

)
te

st
34

1
59

(1
7.

3%
)

57
(1

6.
7%

)
45

(1
3.

2%
)

45
(1

3.
2%

)
48

(1
4.

1%
)

42
(1

2.
3%

)
36

at
ts

.
se

le
ct

ed
15

17
14

14
20

18

vo
te

tr
ai

n
30

0
9(

3.
0%

)
8(

2.
7%

)
9(

3.
0%

)
9(

2.
7%

)
6(

2.
0%

)
7(

2.
3%

)
te

st
13

5
11

(
8.

1%
)

10
(

7.
4%

)
11

(
8.

1%
)

11
(

8.
1%

)
11

(
8.

1%
)

8(
5.

9%
)

16
at

ts
.

se
le

ct
ed

2
3

2
2

6
4

166 CHAPTER 6. NAIVE CLASSIFIERS

with the results we obtained with a decision tree classifier. The columns ‘‘for-
ward’’ contain the results obtained by stepwise adding of attributes (forward
selection), the columns ‘‘backward’’ the results obtained by stepwise removing
of attributes (backward elimination). The decision tree classifier5 is similar
to the well-known decision tree induction program C4.5 [Quinlan 1993]. The
attribute selection measure used for these experiments was information gain
ratio and the pruning method was confidence level pruning with a confidence
level of 50% (these are the default values also used in C4.5).

It can be seen that the possibilistic classifier performs equally well as
or only slightly worse than the naive Bayes classifier. This is encouraging,
since none of the datasets is well suited to demonstrate the strengths of a
possibilistic approach. Although all of the datasets contain missing values
(which can be seen as imprecise information; cf. Section 5.4.4), the relative
frequency of these missing values is rather low. None of the datasets contains
true set valued information, which to treat possibility theory was designed.

5This decision tree classifier was implemented by the first author of this book, see also
[Borgelt 1998] and [Borgelt and Timm 2000]).

Chapter 7

Learning Global Structure

In this chapter we study methods for learning the global structure of a graph-
ical model from data. By global structure we mean the structure of the graph
underlying the model. As discussed in Section 4.1.7, this graph indicates which
conditional or marginal distributions constitute the represented decomposi-
tion. In contrast to this the term local structure refers to regularities in the
individual conditional or marginal distributions of the decomposition, which
cannot be exploited to achieve a finer-grained decomposition, but may at least
be used to simplify the data structures in which the distributions are stored.
Learning such local structure, although restricted to directed graphs (that is,
conditional distributions), is the subject of the next chapter.

In analogy to Chapter 3 we introduce in Section 7.1 the general principles
of learning the global structure of a graphical model based on some simple
examples (actually the same examples as in Chapter 3 in order to achieve
a coherent exposition), which are intended to provide an intuitive and com-
prehensible background. We discuss these examples in the same order as in
Chapter 3, that is, we start with the relational case and proceed with the
probabilistic and the possibilistic cases. The rationale is, again, to emphasize
with the relational case the simplicity of the ideas, which can be disguised by
the numbers needed in the probabilistic or the possibilistic cases.

Although three major approaches can be distinguished, the structure of
all learning algorithms for the global structure of a graphical model is very
similar. Usually they consist of an evaluation measure (also called scoring
function), by which a candidate model is assessed, and a (heuristic) search
method, which determines the candidate models to be inspected. Often the
search is guided by the value of the evaluation measure, but nevertheless the
two components are relatively independent and therefore we discuss them
in two separate sections, namely 7.2 and 7.3. Only the former distinguishes
between the three cases (relational, probabilistic, and possibilistic), since the
search methods are independent of the underlying calculus.

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

168 CHAPTER 7. LEARNING GLOBAL STRUCTURE

7.1 Principles of Learning Global Structure

As indicated above, there are three main lines of approaches to learning the
global structure of a graphical model:

• Test whether a distribution is decomposable w.r.t. a given graph.

This is the most direct approach. It is not bound to a graphical repre-
sentation, but can also be carried out w.r.t. other representations of the
set of subspaces to be used to compute the (candidate) decomposition
of the given distribution.

• Find an independence map by conditional independence tests.

This approach exploits the theorems of Section 4.1.7, which connect
conditional independence graphs and graphs that represent decomposi-
tions. It has the advantage that by a single conditional independence
test, several candidate graphs can be excluded.

• Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based
on the frequently valid assumption that in a conditional independence
graph an attribute is more strongly dependent on adjacent attributes
than on attributes that are not directly connected to it.

Note that none of these methods is perfect. The first approach suffers from the
usually huge number of candidate graphs (cf. Section 7.3.1). The second often
needs the strong assumption that there is a perfect map w.r.t. the considered
distribution. In addition, if it is not restricted to certain types of graphs (for
example, polytrees), one may have to test conditional independences of high
order (that is, with a large number of conditioning attributes), which tend to
be unreliable unless the amount of data is enormous. The heuristic character
of the third approach is obvious. Examples in which it fails can easily be
found, since under certain conditions attributes that are not adjacent in a
conditional independence graph can exhibit a strong dependence.

Note also that one may argue that the Bayesian approaches to learn
Bayesian networks from data are not represented by the above list. How-
ever, we include them in the third approach, since in our view they only use
a special dependence measure, although the mathematical foundations of this
measure may be somewhat stronger than those of other measures.

7.1.1 Learning Relational Networks

For the relational case the first approach to learning the global structure of a
graphical model from data consists in computing, for the given relation, the
intersection of the cylindrical extensions of the projections to the subspaces
that are indicated by the graph to be tested (or, equivalently, the natural join

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 169

of the projections; cf. Section 3.2.4). The resulting relation is compared to the
original one and if it is identical, an appropriate graph has been found.

This is exactly what we did in Section 3.2.2 to illustrate what it means to
decompose a relation (cf. Figure 3.5 on page 59). In that section, however, we
confined ourself to the graph that actually represents a decomposition (and
one other to show that decomposition is not a trivial property; cf. Figure 3.8
on page 61). Of course, when learning the graph structure from data, we do
not know which graph is the correct one. We do not even know whether there
is a graph (other than the complete one1) that represents a decomposition of
the relation. Therefore we have to search the space of all possible graphs in
order to find out whether there is a suitable graph.

For the simple relation used in Section 3.2.1 (cf. Table 3.1 on page 56) this
search is illustrated in Figure 7.1. It shows all eight possible undirected graphs
over the three attributes A, B, and C together with the intersections of the
cylindrical extensions of the projections to the subspaces that are indicated
by these graphs. Clearly, graph 5 is the only graph (besides the complete
graph 8)2 for which the represented relation is identical to the original rela-
tion. Therefore this graph is selected as the search result.

As discussed in Section 3.2.3, the relation RABC is no longer decomposable
w.r.t. a graph other than the complete graph if the tuple (a4, b3, c2) is removed.
In such situations one either has to work with the relation as a whole (i.e. the
complete graph) or be contented with an approximation that contains some
additional tuples. Usually the latter alternative is chosen, since in applications
the former is most often impossible because of the high number of dimensions
of the world section to be modeled. Often an approximation has to be accepted
even if there is an exact decomposition, because the exact decomposition
contains one or more very large maximal cliques (that is, maximal cliques with
a large number of attributes), which cannot be handled efficiently. Therefore
the problem of decomposing a relation can be stated in the following more
general way: given a relation and a maximal size for the maximal cliques, find
an exact decomposition with maximal cliques as small as possible, or, if there
is no suitable exact decomposition, find a ‘‘good’’ approximate decomposition
of the relation, again with maximal cliques as small as possible.

Obviously, the simplest criterion for what constitutes a ‘‘good’’ approxi-
mation is the number of additional tuples in the relation corresponding to a
given graph [Dechter 1990]: this relation cannot contain fewer tuples than the

1Since a complete undirected graph consists of only one maximal clique, there is no
decomposition and thus, trivially, a complete graph can represent any relation. This also
follows from the fact that a complete graph is a trivial independence map. However, it is
clear that a complete graph is useless, because it leads to no simplification.

2Note, again, that the complete graph 8 trivially represents the relation, since it consists
of only one maximal clique. This graph does not represent the intersection of the cylindrical
extensions of the projections to all three two-dimensional subspaces (cf. Definition 4.1.25
on page 114). As demonstrated in Section 3.2.3, this intersection need not be identical to
the original relation.

170 CHAPTER 7. LEARNING GLOBAL STRUCTURE

1.

A

B C

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

2.

A

B C

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

3.

A

B C

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

4.

A

B C

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

5.

A

B C

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

6.

A

B C

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

7.

A

B C

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

8.

A

B C

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

Figure 7.1 All eight possible graphs and the corresponding relations.

original relation. Hence the number of additional tuples is an intuitive mea-
sure of the ‘‘closeness’’ of this relation to the original relation. Based on this
criterion graph 5 of Figure 7.1 would be chosen for the relation RABC with
the tuple (a4, b3, c2) removed, because the relation corresponding to this graph
contains only one additional tuple (namely the tuple (a4, b3, c2)), whereas a
relation represented by any other graph (with the exception of the complete
graph 8, of course) contains at least four additional tuples.

Note that in order to rank two graphs (that is, to decide which is better)
we need not compute the number of additional tuples, but can directly com-
pare the number of tuples in the corresponding relations, since the number of
tuples of the original relation is, obviously, the same in both cases. This sim-
plifies the assessment: find the graph among those of acceptable complexity

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 171

(w.r.t. maximal clique size) for which the corresponding relation is the small-
est among all such graphs, that is, for which it has the least number of tuples.

Let us now turn to the second approach of learning a graphical model from
data, namely finding an independence map by conditional independence tests.
As mentioned above, this approach draws on the theorems of Section 4.1.7
which state that a distribution is decomposable w.r.t. its conditional indepen-
dence graph (although for possibility distributions and thus for relations one
has to confine oneself to a restricted subset of all graphs if undirected graphs
are considered). For the simple relational example this approach leads, as does
the approach discussed above, to a selection of graph 5. The reason is that the
only conditional independence that can be read from it, namely A⊥⊥ C | B,
holds in the relation RABC (as demonstrated in Section 3.2.6). Therefore
this graph is an independence map of the relation RABC . No other graph,
however, is an independence map (except the complete graph 8, which is a
trivial independence map). For instance, graph 3 indicates that A and B are
marginally independent. However, they are clearly not, because, for example,
the values a1 and b3 are both possible, but cannot occur together. Note that
the fact that A and B are not marginally independent also excludes, without
further testing, graphs 1 and 4. That such a transfer of results to other graphs
is possible is an important advantage of this approach.

To find approximate decompositions with the conditional independence
graph approach we need a measure for the strength of (conditional) depen-
dences. With such a measure we may decide to treat two attributes (or sets
of attributes) as conditionally independent if the measure indicates only a
weak dependence. This enables us to choose a sparser graph. It should be
noted, though, that in this case the approximation is decided on ‘‘locally’’
(that is, w.r.t. a conditional independence that may involve only a subset of
all attributes) and thus need not be the ‘‘globally’’ best approximation.

In order to obtain a measure for the strength of the relational dependence
of a set of attributes, recall that two attributes are relationally independent
if their values can be combined without restriction (cf. Definition 3.2.10 on
page 70). On the other hand, they are dependent if there is at least one
combination of values which cannot occur, even though both values of this
combination can occur in combination with at least one other value. Therefore
it is plausible to measure the strength of the relational dependence of two
attributes by the number of possible value combinations: the fewer there are,
the more strongly dependent the two attributes are.

Of course, we should take into account the number of value combinations
that could be possible, that is, the size of the (sub)space spanned by the two
attributes. Otherwise the measure would generally tend to assess attributes
with only few values as more strongly dependent on each other than attributes
with many values. Therefore we define as a measure of the relational depen-
dence of a set of attributes the relative number of possible value combinations.
That is, we define it as the quotient of the number of possible value combi-

172 CHAPTER 7. LEARNING GLOBAL STRUCTURE

a1 a2 a3 a4

b1

b2

b3

Hartley information needed to determine
coordinates: log2 4 + log2 3 = log2 12 ≈ 3.58
coordinate pair: log2 6 ≈ 2.58

gain: log2 12 − log2 6 = log2 2 = 1

Figure 7.2 Computation of Hartley information gain.

nations and the size of the subspace spanned by the attributes. Clearly, the
value of this measure is one if and only if the attributes are independent, and
it is the smaller the more strongly dependent the attributes are.

This measure is closely related to the so-called Hartley information gain,
which is based on the Hartley entropy or Hartley information [Hartley 1928]
of a set of alternatives (for example, the set of values of an attribute).

Definition 7.1.1 Let S be a finite set of alternatives. The Hartley entropy
or Hartley information of S, denoted H(Hartley)(S), is the binary logarithm
of the number of alternatives in S, that is, H(Hartley)(S) = log2 |S|.

The idea underlying this measure is the following: suppose there is an oracle
that knows the ‘‘correct’’ or ‘‘obtaining’’ alternative, but which accepts only
questions that can be answered with ‘‘yes’’ or ‘‘no’’. How many questions do
we have to ask? If we proceed in the following manner, we have to ask at most
�log2 n� questions, where n is the number of alternatives: we divide the set of
alternatives into two subsets of about equal size (equal sizes if n is even, sizes
differing by one if n is odd). Then we choose one of the sets arbitrarily and ask
whether the correct alternative is contained in it. Independent of the answer,
one half of the alternatives can be excluded. The process is repeated with the
set of alternatives that were not excluded until only one alternative remains.
Obviously, the information received from the oracle is at most �log2 n� bits:
one bit per question. By a more detailed analysis and by averaging over all
alternatives, we find that the expected number of questions is about log2 n.3

The Hartley information gain is computed from the Hartley information as
demonstrated in Figure 7.2. Suppose we want to identify the values assumed
by two attributes A and B. To do so, we could determine first the value of
attribute A using the question scheme indicated above, and then the value
of attribute B. That is, we could determine the ‘‘coordinates’’ of the value
combination in the joint domain of A and B. If we apply this method to the
example shown in Figure 7.2, we need log2 12 ≈ 3.58 questions on average.

3Note that log2 n is not a precise expected value for all n. A better justification for using
log2 n is obtained by considering the problem of determining sequences of correct alterna-
tives. (See the discussion of the more general Shannon entropy or Shannon information in
Section 7.2.4, where we will elaborate this view in more detail.)

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 173

Table 7.1 The number of possible combinations relative to the size of the
subspace and the Hartley information gain for the three attribute pairs.

attributes relative number of Hartley information gain
possible value combinations

A, B 6
3·4 = 1

2 = 50% log2 3 + log2 4 − log2 6 = 1
A, C 8

3·4 = 2
3 ≈ 67% log2 3 + log2 4 − log2 8 ≈ 0.58

B, C 5
3·3 = 5

9 ≈ 56% log2 3 + log2 3 − log2 5 ≈ 0.85

However, since not all value combinations are possible, we can save questions
by determining the value combination directly, that is, the ‘‘coordinate pair’’.
Since there are six possible combinations, we need log2 6 ≈ 2.58 questions on
average with this method and thus gain one question.

Formally Hartley information gain is defined as follows:

Definition 7.1.2 Let A and B be two attributes and R a binary possibility
measure with ∃a ∈ dom(A) : ∃b ∈ dom(B) : R(A = a, B = b) = 1. Then

I
(Hartley)
gain (A, B) = log2

(∑
a∈dom(A)

R(A = a)
)

+ log2

(∑
b∈dom(B)

R(B = b)
)

− log2

(∑
a∈dom(A)

∑
b∈dom(B)

R(A = a, B = b)
)

= log2

(∑
a∈dom(A) R(A = a)

)(∑
b∈dom(B) R(B = b)

)
∑

a∈dom(A)

∑
b∈dom(B) R(A = a, B = b)

,

is called the Hartley information gain of A and B w.r.t. R.

With this definition the connection of Hartley information gain to the rela-
tive number of possible value combinations becomes obvious: it is simply the
binary logarithm of the reciprocal of this relative number. It is also clear that
this definition can easily be extended to more than two attributes by adding
factors to the product in the numerator and by extending the denominator.

Note that Hartley information gain is zero if and only if the relative num-
ber of value combinations is one. Therefore the Hartley information gain
is zero if and only if the considered attributes are relationally independent.
If the attributes are dependent, it is the greater, the more strongly dependent
the attributes are. Consequently, the Hartley information gain (or, equiva-
lently, the relative number of possible value combinations) can be used di-
rectly to test for (approximate) marginal independence. This is demonstrated

174 CHAPTER 7. LEARNING GLOBAL STRUCTURE

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

A Hartley information gain

a1 log2 1 + log2 2 − log2 2 = 0
a2 log2 2 + log2 3 − log2 4 ≈ 0.58
a3 log2 1 + log2 1 − log2 1 = 0
a4 log2 2 + log2 2 − log2 2 = 1

average: ≈ 0.40

B Hartley information gain

b1 log2 2 + log2 2 − log2 4 = 0
b2 log2 2 + log2 1 − log2 2 = 0
b3 log2 2 + log2 2 − log2 3 ≈ 0.42

average: ≈ 0.14

C Hartley information gain

c1 log2 2 + log2 1 − log2 2 = 0
c2 log2 4 + log2 3 − log2 5 ≈ 1.26
c3 log2 2 + log2 1 − log2 2 = 0

average: ≈ 0.42

Figure 7.3 An example of how one may use the Hartley information gain to
test for approximate conditional independence.

in Table 7.1, which shows the relative number of possible value combinations
and the Hartley information gain for the three attribute pairs of the sim-
ple relational example discussed above, namely the relation RABC (with or
without the tuple (a4, b3, c2), since removing this tuple does not change the
two-dimensional projections). Clearly no pair of attributes is marginally in-
dependent, not even approximately, and hence all graphs with less than two
edges can be excluded (cf. Figure 7.1, which shows all graphs).

In order to use Hartley information gain (or, equivalently, the relative
number of possible value combinations) to test for (approximate) conditional
independence, one may proceed as follows: for each possible instantiation of
the conditioning attributes the value of this measure is computed. (Note that
in this case for the size of the subspace only the values that are possible given
the instantiation of the conditions have to be considered—in contrast to a
test for marginal independence, where usually all values have to be taken into
account; cf. Definition 7.1.2.) The results are aggregated over all instantiations
of the conditions, for instance, by simply averaging them.

As an example consider the relation RABC without the tuple (a4, b3, c2),
which is shown in the top left of Figure 7.3. This figure also shows the averaged
Hartley information gain for B and C given the value of A (top right), for A
and C given the value of B (bottom left) and for A and B given the value
of C (bottom right). Obviously, since none of these averages is zero, neither
B⊥⊥ C | A nor A⊥⊥ C | B nor A⊥⊥ C | B holds. But since A and C exhibit a

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 175

rather weak conditional dependence given B, we may decide to treat them as
conditionally independent. As a consequence, graph 5 of Figure 7.1 may be
chosen to represent the relation approximately.

The notion of a measure for the strength of the dependence of two at-
tributes brings us directly to the third method of learning a graphical model
from data, namely the approach to determine a suitable graph by measuring
only the strength of (marginal) dependences. That such an approach is fea-
sible can be made plausible as follows: suppose that we choose the number
of additional tuples in the intersection of the cylindrical extensions of the
projections of a relation to the selected subspaces as a measure of the overall
quality of an (approximate) decomposition (see above). In this case, to find a
‘‘good’’ approximate decomposition, it is plausible to choose the subspaces in
such a way that the number of possible value combinations in the cylindrical
extensions of the projections to these subspaces is as small as possible. The
reason is simply that the intersection is the smaller, the smaller the cylin-
drical extensions. Obviously, the number of tuples in a cylindrical extension
depends directly on the (relative) number of possible value combinations in
the projection. Therefore it is a good heuristic method to select projections
in which the ratio of the number of possible value combinations to the size
of the subspace is small (or, equivalently, for which the Hartley information
gain—generalized to more than two attributes if necessary—is large).

Another way to justify this approach is the following: if two attributes
are conditionally independent given a third, then their marginal dependence
is ‘‘mediated’’ through other attributes (not necessarily in a causal sense).
But mediation usually weakens a dependence (cf. Section 7.3.2, where this
is discussed in detail for the probabilistic case w.r.t. to trees). Therefore at-
tributes that are conditionally independent given some (set of) attribute(s)
are often less strongly dependent than attributes that are conditionally de-
pendent given any (set of) other attribute(s). Consequently, it seems to be
a good heuristic method to choose those subspaces for which the underlying
sets of attributes are as strongly dependent as possible.

It is clear that with this approach the search method is especially im-
portant, since it determines which graphs are considered. However, for the
simple relational example, that is, the relation RABC (with or without the
tuple (a4, b3, c2)), we may simply choose to construct an optimum weight
spanning tree using, for example, the well-known Kruskal algorithm [Kruskal
1956]. As edge weights we may choose the relative number of possible value
combinations (and determine a minimum weight spanning tree) or the Hartley
information gain (and determine a maximum weight spanning tree). These
weights are shown in Table 7.1. In this way graph 5 of Figure 7.1 is con-
structed, in agreement with the results of the other two learning methods.

Note that the Kruskal algorithm always yields a spanning tree. Therefore
this search method excludes the graphs 1 to 4 of Figure 7.1. However, with
a slight modification of the algorithm these graphs can also be reached (al-

176 CHAPTER 7. LEARNING GLOBAL STRUCTURE

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

a1 a2 a3 a4

b1

c1

b2

c2

b3

c3

Figure 7.4 The Hartley information gain is only a heuristic criterion.

though this is of no importance for the example discussed). As is well known,
the Kruskal algorithm proceeds by arranging the edges in the order of de-
scending or ascending edge weights (depending on whether a maximum or a
minimum weight spanning tree is desired) and then adds edges in this order,
skipping those edges that would introduce a cycle. If we fix a lower (upper)
bound for the edge weight and terminate the algorithm if all remaining edges
have a weight less than (greater than) this bound, the algorithm may stop
with a graph having fewer edges than a spanning tree.

For the discussed example the third method is obviously the most efficient.
It involves the fewest number of computations, because one only has to mea-
sure the strength of the marginal dependences, whereas the conditional inde-
pendence method also needs to assess the strength of conditional dependences.
Furthermore, we need not search all graphs, but can construct a graph with
the Kruskal algorithm (although this can be seen as a special kind of—very
restricted—search). However, this efficiency is bought at a price. With this
method we may not find a graph that represents an exact decomposition, al-
though there is one. This is demonstrated with the simple relational example
shown in Figure 7.4. It is easy to verify that the relation shown in the top left
of this figure can be decomposed into the projections to the subspaces {A, B}
and {A, C}. That is, it can be decomposed w.r.t. the graph

B A C

No other selection of subspaces yields a decomposition. However, if an opti-
mum spanning tree is constructed with Hartley information gain as the edge
weights, the subspaces {A, B} and {B, C} are selected. That is, the graph

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 177

A B C

is constructed. Since the corresponding relation contains an additional tuple,
namely the tuple (a3, b1, c1), a suboptimal graph is chosen. But since the ap-
proximation of the relation is still rather good, one may reasonably decide to
accept this drawback of this learning method.

7.1.2 Learning Probabilistic Networks

Learning probabilistic networks is based on the same principles as learning
relational networks. The main differences consist in the criteria used to assess
the quality of an approximate decomposition and in the measures used to
assess the strength of the dependence of two or more attributes.

For the first method (that is, the direct test for decomposability w.r.t. a
given graph) suppose that we are given a multidimensional probability distri-
bution, for which we desire to find an exact decomposition. We can proceed in
the same manner as in the relational case: we compute the distribution that
is represented by the graph and compare it to the given distribution. If it is
identical, a suitable graph has been found. To compute the distribution repre-
sented by the graph we proceed as follows: for a directed graph we determine
from the given distribution the marginal and conditional distributions indi-
cated by the graph—their product is the probability distribution represented
by the graph. For an undirected graph we compute functions on the maxi-
mal cliques (as indicated in the proof of Theorem 4.1.26; cf. Section A.4 in
the appendix). Again their product is the probability distribution represented
by the graph. For the simple example discussed in Section 3.3 (Figure 3.11
on page 75) this approach leads to a selection of graph 5 of Figure 7.1 on
page 170. We refrain from illustrating the search in detail, because the figures
would consume a lot of space, but are not very instructive.

Of course, as in the relational case, there need not be an exact decompo-
sition of a given multidimensional probability distribution. In such a case, or
if the maximal cliques of a graph that represents an exact decomposition are
too large, we may decide to be contented with an approximation. A standard
measure for the quality of a given approximation of a probability distribution,
which corresponds to the number of additional tuples in the relational case,
is the Kullback–Leibler information divergence [Kullback and Leibler 1951,
Chow and Liu 1968, Whittaker 1990]. This measure is defined as follows:

Definition 7.1.3 Let p1 and p2 be two strictly positive probability distribu-
tions on the same set E of events. Then

IKLdiv(p1, p2) =
∑
E∈E

p1(E) log2

p1(E)
p2(E)

is called the Kullback–Leibler information divergence of p1 and p2.

178 CHAPTER 7. LEARNING GLOBAL STRUCTURE

It can be shown that the Kullback–Leibler information divergence is nonneg-
ative and that it is zero only if p1 ≡ p2 (cf. the proof of Lemma A.14.1 in
Section A.14 in the appendix). Therefore it is plausible that this measure can
be used to assess the approximation of a given multidimensional distribution
by the distribution that is represented by a given graph: the smaller the value
of this measure, the better the approximation.

Note that this measure does not treat the two distributions p1 and p2

equally, because it uses the values of the distribution p1 as weights in the
sum. Therefore this measure is not symmetric in general, that is, in general
it is IKLdiv(p1, p2) 	= IKLdiv(p2, p1). Consequently, one has to decide which of
p1 and p2 should be the actual distribution and which the approximation. We
may argue as follows: the quotient of the probabilities captures the difference
of the distributions w.r.t. single events E. The influence of such a ‘‘local’’
difference depends on the probability of the occurrence of the corresponding
event E. Therefore it should be weighted with the (actual) probability of this
event and hence p1 should be the actual distribution.

As an illustration of an approach based on decomposition tests, Figure 7.5
shows, for the simple three-dimensional probability distribution depicted in
Figure 3.11 on page 75, all eight candidate graphs together with the Kullback–
Leibler information divergence of the original distribution and its approxima-
tion by each of the graphs (upper numbers). This figure is the probabilistic
counterpart of Figure 7.1. Clearly, graph 5 represents an exact decomposi-
tion of the distribution, since the Kullback–Leibler information divergence is
zero for this graph. Note that, as in the relational case, the complete graph 8
always receives or shares the best assessment, since it consists of only one
maximal clique and thus represents no real decomposition.

Up to now we have assumed that the multidimensional probability distri-
bution, for which a decomposition is desired, is given. However, in applications
this is usually not the case. Instead we are given a database of sample cases.
Clearly, the direct approach to handle this situation, namely to estimate the
joint probability distribution from this database, so that we can proceed as
indicated above, is, in general, infeasible. The reason is that the available data
are rarely sufficient to make the estimation of the joint probabilities reliable,
simply because the number of dimensions is usually large and thus the num-
ber of probabilities that have to be estimated is enormous (cf., for example,
the Danish Jersey cattle example discussed in Section 4.2.2, which is, in fact,
a fairly simple application). For a reliable estimation the number of sample
cases must be a multiple of this number.

Fortunately, if we confine ourselves to a maximum likelihood estimation
approach, there is a feasible indirect method: the principle of maximum like-
lihood estimation is to choose that model or (set of) probability parameter(s)
that renders the observed data most likely. Yet, if we have a model, the prob-
ability of the database can easily be computed. Hence the idea suggests itself
to estimate from the data only the marginal or conditional distributions that

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 179

1. A

B C

0.640
−3494

2. A

B C

0.211
−3197

3. A

B C

0.429
−3348

4. A

B C

0.590
−3460

5. A

B C

0
−3051

6. A

B C

0.161
−3163

7. A

B C

0.379
−3313

8. A

B C

0
−3051

Figure 7.5 The Kullback–Leibler information divergence of the original dis-
tribution and its approximation (upper numbers) and the natural logarithms
of the probability of an example database (log-likelihood of the data, lower
numbers) for the eight possible candidate graphical models.

are indicated by a given graph. This is feasible, because these distributions are
usually of limited size, and thus even a moderate amount of data is sufficient
to estimate them reliably. With these estimated distributions we have a fully
specified graphical model, from which we can compute the probability of each
sample case (that is, its likelihood given the model). Assuming that the sam-
ple cases are independent, we may compute the probability of the database
by simply multiplying the probabilities of the individual sample cases, which
provides us with an assessment of the quality of the candidate model.

As an illustration reconsider the three-dimensional probability distribution
shown in Figure 3.11 on page 75 and assume that the numbers are the (abso-
lute) frequencies of sample cases with the corresponding value combination in
a given database. The natural logarithms of the probabilities of this database
given the eight possible graphical models, computed as outlined above, are
shown in Figure 7.5 (lower numbers). Obviously, graph 5 would be selected.

Let us now turn to the second approach to learning a graphical model from
data, namely finding an independence map by conditional independence tests.
If we assume that we are given a probability distribution and that we desire to
find an exact decomposition, it is immediately clear that the only difference
to the relational case is that we have to test for conditional probabilistic
independence instead of conditional relational independence. Therefore it is
not surprising that for the example of a probability distribution shown in
Figure 3.11 on page 75, graph 5 of Figure 7.5 is selected, because the only
conditional independence that can be read from it, namely A⊥⊥ B | C, holds
in this distribution (as demonstrated in Section 3.3.1).

180 CHAPTER 7. LEARNING GLOBAL STRUCTURE

a1 a1a2 a2a3 a3a4 a4

b1 b1

b2 b2

b3 b3

a1 a1a2 a2a3 a3a4 a4

c1 c1

c2 c2

c3 c3

b1 b1b2 b2b3 b3

c1 c1

c2 c2

c3 c3

40 180 20 160

12 6 120 102

168 144 30 18

88 132 68 112

53 79 41 67

79 119 61 101

Imut(A, B) = 0.429

50 115 35 100

82 133 99 146

88 82 36 34

66 99 51 84

101 152 78 129

53 79 41 67

Imut(A, C) = 0.050

20 180 200

40 160 40

180 120 60

96 184 120

58 110 72

86 166 108

Imut(B, C) = 0.211

Figure 7.6 Mutual information/cross entropy in the simple example.

To find approximate decompositions we need, as in the relational case, a
measure for the strength of dependences. For a strictly positive probability
distribution, such a measure can easily be derived from the Kullback–Leibler
information divergence by comparing two specific distributions, namely the
joint distribution over a set of attributes and the distribution that can be
computed from its marginal distributions under the assumption that the at-
tributes are independent. For two attributes this measure can be defined as
follows [Kullback and Leibler 1951, Chow and Liu 1968]:

Definition 7.1.4 Let A and B be two attributes and P a strictly positive
probability measure. Then

Imut(A, B) =
∑

a∈dom(A)

∑
b∈dom(B)

P(A = a, B = b) log2

P(A = a, B = b)
P(A = a) P(B = b)

,

is called the mutual (Shannon) information or the (Shannon) cross
entropy of A and B w.r.t. P.

This measure is also known from decision tree induction [Quinlan 1986, Quin-
lan 1993, Rokach and Maimon 2008], where it is usually called (Shannon)
information gain. (This name indicates a close relation to the Hartley in-
formation gain.) Mutual information can be interpreted in several different
ways, one of which is provided by the derivation from the Kullback–Leibler
information divergence. Other interpretations are discussed in Section 7.2.4.

By recalling that the Kullback–Leibler information divergence is zero if
and only if the two distributions coincide, we see that mutual information
is zero if and only if the two attributes are independent, since their joint

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 181

distribution is compared to an (assumed) independent distribution. In addi-
tion, the value of this measure is the larger the more the two distributions
differ, that is, the more strongly dependent the attributes are. Therefore this
measure can be used directly to test for (approximate) marginal independence.

This is demonstrated in Figure 7.6 for the three-dimensional example dis-
cussed above (cf. Figure 3.11 on page 75). On the left the three possible two-
dimensional marginal distributions are shown, complemented on the right
with the corresponding (assumed) independent distributions, to which they
are compared by mutual information. Clearly, none of the three pairs of at-
tributes are independent, although the dependence of A and C is rather weak.

In order to use mutual information to test for (approximate) conditional
independence, we may proceed in a similar way as with Hartley information
gain in the relational case: we compute this measure for each possible instan-
tiation of the conditioning attributes and then aggregate these values, prefer-
ably by summing them, weighted with the probability of the corresponding
instantiation. That is, for one conditioning attribute, we may compute

Imut(A, B | C)

=
∑

c∈dom(C)

P(c)
∑

a∈dom(A)

∑
b∈dom(B)

P(a, b | c) log2

P(a, b | c)
P(a | c) P(b | c)

,

where P(c) is an abbreviation of P(C = c) etc. With this measure it is easy
to detect that, in the example distribution of Figure 3.11 on page 75, the
attributes A and C are conditionally independent given the attribute B.

If we are not given a probability distribution (as we have assumed up to
now), but instead a database of sample cases, it is clear that we have to esti-
mate the conditioned joint distributions of the attributes, for which we want
to test whether they are conditionally independent. Of course, this can lead
to problems if the order of the tests is large, where the order of a conditional
independence test is the number of conditioning attributes. If the number of
conditioning attributes is large, there may be too few tuples having certain
instantiation of these attributes to estimate reliably the conditioned joint dis-
tribution of the two test attributes. Actually this is a serious drawback of this
method, although there are heuristic approaches to amend it (cf. Section 7.3),
like, for instance, fixing an upper bound for the order of the tests to be carried
out and assuming that all tests of higher order will fail if all tests with an
order up to this bound failed.

Finally, let us consider the third approach to learning a graphical model,
which is based on measuring only the strengths of (marginal) dependences. As
in the relational case, we may use the same measure as for the (approximate)
independence tests. For the simple example discussed above we may apply the
Kruskal algorithm with mutual information providing the edge weights (cf.
Figure 7.6). This leads to a construction of graph 5 of Figure 7.5, in agreement
with the results of the other two learning methods.

182 CHAPTER 7. LEARNING GLOBAL STRUCTURE

A

C D

B

A = a1 A = a2pABCD
B = b1 B = b2 B = b1 B = b2

D = d1
48/250

2/250
2/250

27/250C = c1
D = d2

12/250
8/250

8/250
18/250

D = d1
12/250

8/250
8/250

18/250C = c2
D = d2

3/250
32/250

32/250
12/250

pAB a1 a2

b1 0.3 0.2
b2 0.2 0.3

pAC a1 a2

c1 0.28 0.22
c2 0.22 0.28

pAD a1 a2

d1 0.28 0.22
d2 0.22 0.28

pCD c1 c2

d1 0.316 0.184
d2 0.184 0.316

pBC b1 b2

c1 0.28 0.22
c2 0.22 0.28

pBD b1 b2

d1 0.28 0.22
d2 0.22 0.28

Figure 7.7 Constructing a graphical model based on the strengths of marginal
dependences can lead to suboptimal results.

Note that this method can be applied as well if we are given a database
of sample cases, because we only have to estimate marginal distributions on
(usually small) subspaces, which can be made reliable even with a moderate
amount of data. Note also that in the probabilistic setting this method is even
better justified than in the relational setting, because it can be shown that if
there is a tree representing a decomposition of a given strictly positive proba-
bility distribution, then the Kruskal algorithm with either mutual information
or the χ2-measure (cf. Section 7.2.4) providing the edge weights will construct
this tree. It can even be shown that with mutual information providing the
edge weights, this approach finds the best tree-structured approximation of a
given distribution w.r.t. the Kullback–Leibler information divergence [Chow
and Liu 1968, Pearl 1988] (cf. Section 7.3.2).

If, however, the conditional independence graph is more complex than
a tree, it can still happen that a suboptimal graph gets selected. This is
demonstrated with the simple example shown in Figure 7.7. It is easy to
check that the graph shown in the top left of this figure is a perfect map
of the probability distribution shown in the top right: C⊥⊥ D | {A, B} is the
only conditional independence that holds in the distribution. Suppose that we
tried to find this conditional independence graph by the following algorithm,

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 183

which seems to be a plausible approach to learning graphical models with a
conditional independence graph that is more complex than a tree: first we
construct a maximum weight spanning tree w.r.t. mutual information with
the Kruskal algorithm. Then we enhance this skeleton graph with edges where
we find that the conditional independences indicated by the graph do not hold
in the distribution.4 Unfortunately, with this approach the only edge that is
missing in the perfect map, namely the edge C − D, is selected first, as can
easily be seen from the marginal distributions.

7.1.3 Learning Possibilistic Networks

Learning possibilistic networks is even more closely related to learning rela-
tional networks than learning probabilistic networks. The reason is that the
measures used in the relational case can be used directly to construct a corre-
sponding measure for the possibilistic case, because a possibility distribution
can be interpreted as a representation of a set of relations.

This interpretation is based on the notion of an α-cut—a notion that is
transferred from the theory of fuzzy sets [Kruse et al. 1994].

Definition 7.1.5 Let Π be a possibility measure on a sample space Ω.
The α-cut of Π, written [Π]α, is the binary possibility measure

[Π]α : 2Ω → {0, 1}, E �→
{

1, if Π(E) ≥ α,
0, otherwise.

Of course, this definition can easily be adapted to possibility distributions,
the α-cut of which is, obviously, a relation. As an example consider the three-
dimensional possibility distribution discussed in Section 3.4 (cf. Figure 3.14
on page 84). For 0.04 < α ≤ 0.06 the α-cut of this possibility distribution
coincides with the relation studied in Section 3.2 (cf. Table 3.1 on page 56
and Figure 3.2 on page 57). If α is increased, tuples are removed from the
α-cut (for example the tuple (a2, b3, c3) together with four others as the value
of α exceeds 0.06). If α is decreased, tuples are added (for example the tu-
ple (a1, b3, c2) together with three others as α falls below 0.04).

The notion of an α-cut is convenient, because it is obviously preserved by
projection, that is, by computing marginal possibility distributions. Whether
we compute a marginal distribution and then determine an α-cut of the re-
sulting marginal distribution, or whether we compute the α-cut first on the
joint distribution and then project the resulting relation does not matter: the
result is always the same. The reason is, of course, that the projection op-
eration used in the possibilistic case is the same as in the possibility-based
formalization of the relational case (cf. Sections 3.2.5 and 3.4.1). Therefore

4This approach is inspired by an algorithm by [Rebane and Pearl 1987] for learning
polytree-structured directed conditional independence graphs, which first constructs an
undirected skeleton and then directs the edges (cf. Section 7.3.2).

184 CHAPTER 7. LEARNING GLOBAL STRUCTURE

we can treat the possibilistic case by drawing on the results for the relational
case: we simply consider each α-cut in turn, which behaves exactly like a
relation, and then we integrate over all values of α.

With this general paradigm in mind let us consider the first approach to
learn a graphical model, that is, the direct test of whether a given distribution
is decomposable w.r.t. a given graph. In order to find an exact decomposition
of a given multidimensional possibility distribution we have to find a graph
w.r.t. which all α-cuts of the distribution are decomposable. Of course, this
test may also be carried out by computing the possibility distribution that is
represented by a given graph and by comparing it to the original distribution.
If the two are identical, a suitable graph has been found.

However, the fact that we can test for possibilistic decomposability by
testing for the relational decomposability of each α-cut provides an idea of
how to assess the quality of an approximate decomposition. In the relational
case the quality of an approximate decomposition may be assessed by counting
the number of additional tuples in the approximation (cf. Section 7.1.1). In
the possibilistic case we may do the same for each α-cut. Then we integrate
over all values of α. This leads to the following measure for the ‘‘closeness’’
of an approximate decomposition to the original distribution:

diff(π1, π2) =
∫ 1

0

(∑
E∈E

[π2]α(E) −
∑
E∈E

[π1]α(E)
)

dα,

where π1 is the original distribution, π2 the approximation, and E their domain
of definition. Obviously, this measure is zero if the two distributions coincide,
and it is the larger the more they differ.

It should be noted that the above measure presupposes that ∀α ∈ [0, 1] :
∀E ∈ E : [π2]α(E) ≥ [π1]α(E). Otherwise the difference in the number of tuples
would not have any significance (simply because two relations can be disjoint
and nevertheless have the same number of tuples). Therefore this measure
cannot be used to compare arbitrary possibility distributions. However, for
possibility distributions π2 that are computed from approximate decompo-
sitions we know that ∀E ∈ E : π2(E) ≥ π1(E). This obviously implies the
needed relation ∀α ∈ [0, 1] : ∀E ∈ E : [π2]α(E) ≥ [π1]α(E).

An alternative measure, which is very closely related to the above, can be
derived from the notion of the nonspecificity of a possibility distribution [Klir
and Mariano 1987], which is defined as follows:

Definition 7.1.6 Let π be a (multidimensional) possibility distribution on a
set E of events. Then

nonspec(π) =
∫ supE∈E π(E)

0

log2

(∑
E∈E

[π]α(E)
)

dα

is called the nonspecificity of the possibility distribution π.

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 185

Recalling the paradigm that a possibility distribution can be seen as a set of
relations—one for each value of α—this measure can easily be justified as a
generalization of Hartley information (cf. Definition 7.1.1 on page 172) to the
possibilistic setting [Higashi and Klir 1982, Klir and Folger 1988]. The non-
specificity of a possibility distribution π reflects the expected amount of infor-
mation (measured in bits, or in the number of questions) that has to be added
in order to identify the correct tuple within the relations [π]α of alternatives,
if we assume a uniform probability distribution on the set [0, supE∈E π(E)] of
possibility levels α [Gebhardt and Kruse 1996b].

Distributions π2 that are computed from approximate decompositions ob-
viously satisfy supE∈E π2(E) = supE∈E π1(E), where π1 is the original distri-
bution. Consequently, we may construct from the nonspecificity measure the
following measure for the ‘‘closeness’’ of an approximate decomposition to a
given possibility distribution [Gebhardt and Kruse 1996b]:

Definition 7.1.7 Let π1 and π2 be two possibility distributions on the same
set E of events with ∀E ∈ E : π2(E) ≥ π1(E). Then

Sdiv(π1, π2) =
∫ supE∈E π1(E)

0

log2

(∑
E∈E

[π2]α(E)
)
− log2

(∑
E∈E

[π1]α(E)
)

dα

is called the specificity divergence of π1 and π2.

Just like the measure discussed above, this measure is obviously zero if the
two distributions coincide, and it is the larger, the more they differ. Note that
this measure may also be written as

Sdiv(π1, π2) =
∫ supE∈E π1(E)

0

log2

∑
E∈E [π2]α(E)∑
E∈E [π1]α(E)

dα

or simply as
Sdiv(π1, π2) = nonspec(π2) − nonspec(π1),

because the integral can be split into two parts, one part for each of the two
terms in the defining equation.

The name of this measure is, of course, chosen in analogy to the Kull-
back–Leibler information divergence, which is very similar. Note, however,
that in contrast to the Kullback–Leibler information divergence, which can
be used to compare arbitrary probability distributions (on the same set E of
events), the specificity divergence presupposes ∀E ∈ E : π2(E) ≥ π1(E); oth-
erwise it is not meaningful. Note also that for a relation (which can be seen
as a special, that is, binary possibility distribution; cf. Chapter 3), this mea-
sure may also be called Hartley information divergence, because for the
relational case nonspecificity obviously coincides with Hartley information.

As an illustration reconsider the possibility distribution shown in Fig-
ure 3.14 on page 84. The specificity divergence of the original possibility dis-
tribution and the possibility distributions represented by each of the eight

186 CHAPTER 7. LEARNING GLOBAL STRUCTURE

1. A

B C

0.102
72.5

2. A

B C

0.047
60.5

3. A

B C

0.055
63.2

4. A

B C

0.076
66.0

5. A

B C

0
54.6

6. A

B C

0.028
57.3

7. A

B C

0.037
60.4

8. A

B C

0
54.6

Figure 7.8 The specificity divergence of the original distribution and the possi-
bility distributions represented by the eight possible candidate graphs (upper
numbers) and the evaluation of the eight graphs on an example database that
induces the possibility distribution (lower numbers).

possible graphs are shown in Figure 7.8 (upper numbers). Obviously, graph 5
would be selected, which is indeed the graph that represents a decomposi-
tion of the distribution (cf. Section 3.4.2). Note that, as in the relational and
the probabilistic case, the complete graph 8 always receives or shares the
best assessment, because it consists of only one clique. As a consequence, it
represents no real decomposition of the distribution.

Note also that in order to rank two graphs (that is, in order to decide
which of them is better) we need not compute the specificity divergences
explicitly, but can confine ourselves to computing the nonspecificities of the
distributions corresponding to the graphs, because the nonspecificity of the
original distribution is fixed. This simplifies the assessment: find the graph
among those of acceptable complexity (w.r.t. maximal clique size) for which
the corresponding possibility distribution is most specific.

Up to now we have assumed that the multidimensional distribution, for
which a decomposition is desired, is given. However, as in the probabilistic
setting, this is usually not the case in applications. Instead we are given a
database of sample cases. Clearly, the situation parallels the probabilistic
case: it is infeasible to estimate first the joint possibility distribution from the
database, so that we can proceed as indicated above.

In order to derive a feasible indirect method we may reason as follows:
an approximation of a given possibility distribution may be compared to this
distribution by integrating the differences in the number of tuples for each
α-cut over the possible values of α (see above). However, this formula can be

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 187

transformed as follows:

diff(π1, π2) =
∫ 1

0

(∑
E∈E

[π2]α(E) −
∑
E∈E

[π1]α(E)
)

dα

=
∫ 1

0

∑
E∈E

[π2]α(E) dα −
∫ 1

0

∑
E∈E

[π1]α(E) dα

=
∑
E∈E

∫ 1

0

[π2]α(E) dα −
∑
E∈E

∫ 1

0

[π1]α(E) dα

=
∑
E∈E

π2(E) −
∑
E∈E

π1(E).

Note, by the way, that this representation simplifies computing the value of
this measure and that in order to rank two candidate graphs, we may discard
the second sum, since it is identical for both graphs.

Unfortunately, the size of the joint domain (the size of the set E of events)
still makes it impossible to compute the measure, even in this representation.
However, we may consider restricting the set E from which this measure is
computed, so that the computation becomes efficient. If we select a proper
subset of events, the resulting ranking of different graphs may coincide with
the ranking computed from the whole set E (although, of course, this cannot
be guaranteed). A natural choice for such a subset is the set of events recorded
in the database to learn from, because from these the distribution is induced
and thus it is most important to approximate their degrees of possibility well.
In addition, we may weight the degrees of possibility for these events by their
frequency in the database in order to capture their relative importance. That
is, we may compute for a given database D = (R, wR)

Q(G) =
∑
t∈R

wR(t) · πG(t)

to measure the quality of a candidate model G [Borgelt and Kruse 1997b].
Obviously, this measure is similar to the likelihood measure we used in the
probabilistic case (cf. Section 7.1.2). Note, however, that this measure is to
be minimized whereas the likelihood measure is to be maximized.

Of course, computing the value of this measure is simple only if all tuples
in the database are precise, because only for a precise tuple can a unique
degree of possibility be determined from the graphical model to evaluate. For
an imprecise tuple some kind of approximation has to be used. We may, for
instance, compute an aggregate—for example the average or the maximum—
of the degrees of possibility of all precise tuples that are at least as specific
as5 an imprecise tuple [Borgelt and Kruse 1997b]. Since we are trying to min-
imize the value of the measure, it seems natural to choose pessimistically the

5The notion “at least as specific as” was introduced in Definition 5.1.6 on page 141.

188 CHAPTER 7. LEARNING GLOBAL STRUCTURE

A B C freq.

a1 ? c2 10
a1 b1 ? 20
a1 b2 ? 10
a1 b3 ? 10
a2 b1 ? 20
a2 b3 ? 10
a3 b1 ? 10
a3 b2 ? 10
a4 b2 ? 10
a4 b3 ? 10

Table 7.2 The imprecise tuples of the
database used to compute the lower
numbers in Figure 7.8 and their ab-
solute frequency. Stars indicate miss-
ing values. All other tuples are pre-
cise. Their frequency is such that the
degrees of possibility shown in Fig-
ure 3.14 on page 84 result.

maximum as the worst possible case. This choice has the additional advan-
tage that the maximum can be computed efficiently by simply propagating
the evidence contained in an imprecise tuple in the given graphical model
[Borgelt and Kruse 1997b], whereas other aggregates suffer from the fact that
we have to compute the degree of possibility of the compatible precise tuples
explicitly, the number of which can be very large.

As an example consider a database with 1000 cases that induces the pos-
sibility distribution shown in Figure 3.14 on page 84. Such a database may
consist of the imprecise tuples shown in Table 7.2 (question marks indicate
missing values) having the stated absolute frequencies. In addition, there are
precise tuples of suitable absolute frequencies (which can easily be computed
from the possibility distribution and the frequencies of the imprecise tuples).
If we evaluate the eight possible graphs with the procedure described above,
we arrive at the lower numbers shown in Figure 7.8 on page 186. Clearly, this
method ranks the graphs in the same way as specificity divergence. Hence the
same graph, namely graph 5, is chosen as the search result.

Let us now turn to the second approach to learning a graphical model from
data, namely finding an independence map by conditional independence tests.
Formally, there is no difference to the relational case, since (conditional) pos-
sibilistic independence coincides with (conditional) relational independence,
except that the latter is computed from a binary possibility measure. Thus
it is not surprising that for the example of a possibility distribution shown
in Figure 3.14 on page 84, graph 5 of Figure 7.8 is selected, since the only
conditional independence that can be read from it, namely A⊥⊥ B | C, holds
in the distribution (as demonstrated in Section 3.4).

To find approximate decompositions we need, as in the relational and the
probabilistic case, a measure for the strength of dependences. Drawing on the
paradigm that a possibility distribution can be seen as a set of relations, we
can construct such a measure from the Hartley information gain [Gebhardt

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 189

0.4

0.3

0.2

0.1

0

0.4

0.3

0.2

0.1

0

log2 1 + log2 1 − log2 1 = 0

log2 2 + log2 2 − log2 3 ≈ 0.42

log2 3 + log2 2 − log2 5 ≈ 0.26

log2 4 + log2 3 − log2 8 ≈ 0.58

log2 4 + log2 3 − log2 12 = 0

Figure 7.9 Illustration of the idea of specificity gain.

and Kruse 1996b]. This measure may be called specificity gain [Borgelt et
al. 1996]. The idea is illustrated in Figure 7.9 for a two-dimensional possibility
distribution. The Hartley information gain is computed for each α-cut of the
possibility distribution. These values are then aggregated by integrating over
all values of α [Borgelt and Kruse 1997a].

Definition 7.1.8 Let A and B be two attributes and Π a possibility measure.

Sgain(A, B) =
∫ sup Π

0

log2

(∑
a∈dom(A)

[Π]α(A = a)
)

+ log2

(∑
b∈dom(B)

[Π]α(B = b)
)

− log2

(∑
a∈dom(A)

∑
b∈dom(B)

[Π]α(A = a, B = b)
)

dα

is called the specificity gain of A and B w.r.t. Π.

In the example of Figure 7.9 the computation can be simplified due the fact
that the α-cuts are the same for certain intervals of values of α (this is the
case due to the finite number of tuples in the database to learn from). Hence
we can compute the specificity gain as

Sgain(A, B) = (0.1 − 0.0) · (log2 4 + log2 3 − log2 8)
+(0.2 − 0.1) · (log2 3 + log2 2 − log2 5)
+(0.3 − 0.2) · (log2 2 + log2 2 − log2 3)
+(0.4 − 0.3) · (log2 1 + log2 1 − log2 1)

≈ 0.1 · 0.58 + 0.1 · 0.26 + 0.1 · 0.42 + 0.1 · 0 = 0.126.

This simplification is useful to remember, because it can often be exploited in
implementations of learning algorithms for possibilistic graphical models.

190 CHAPTER 7. LEARNING GLOBAL STRUCTURE

a1 a1a2 a2a3 a3a4 a4

b1 b1

b2 b2

b3 b3

a1 a1a2 a2a3 a3a4 a4

c1 c1

c2 c2

c3 c3

b1 b1b2 b2b3 b3

c1 c1

c2 c2

c3 c3

40 80 10 70

30 10 70 60

80 90 20 10

80 80 70 70

70 70 70 70

80 90 70 70

Sgain(A, B) = 0.055

40 60 20 60

60 80 70 70

80 90 40 40

60 60 60 60

80 80 70 70

80 90 70 70

Sgain(A, C) = 0.025

20 80 60

40 70 20

90 60 30

80 80 60

70 70 60

90 80 60

Sgain(B, C) = 0.046

Figure 7.10 Specificity gain in the simple example.

It should be noted that the specificity gain may also be derived from the
specificity divergence in the same way as mutual (Shannon) information is
derived from the Kullback–Leibler information divergence, namely by com-
paring two special distributions: the joint distribution and an assumed inde-
pendent distribution. This is possible, because the α-cuts of the hypothetical
independent distribution can be represented as

∀a ∈ dom(A) : ∀b ∈ dom(B) :

[π(indep)
AB]α(A = a, B = b) = [Π]α(A = a) · [Π]α(B = b),

(since [Π]α(E) can assume only the values 0 and 1, the product coincides with
the minimum) and thus specificity gain may be written as

Sgain(A, B)

=
∫ sup Π

0

log2

(∑
a∈dom(A)[Π]α(A = a)

)(∑
b∈dom(B)[Π]α(B = b)

)
∑

a∈dom(A)

∑
b∈dom(B)[Π]α(A = a, B = b)

dα.

In addition, specificity gain may be written simply as

Sgain(A, B) = nonspec(πA) + nonspec(πB) − nonspec(πAB),

since the integral may be split into three parts, which refer to the three
marginal distributions πA, πB , and πAB , respectively. This form is very con-
venient, since it can be exploited for an efficient implementation.

It is obvious that the specificity gain is zero if and only if the two attributes
are independent, and that it is the larger, the more strongly dependent the

7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 191

two attributes are. Therefore this measure can be used directly to test for
(approximate) marginal independence. This is demonstrated in Figure 7.10
for the simple example discussed above (cf. Figure 3.14 on page 84). On the
left the three possible two-dimensional marginal distributions are shown, on
the right the corresponding (assumed) independent distributions, to which
they are compared by specificity gain. Clearly, none of the three pairs of
attributes are independent. This result excludes graphs 1 to 4 of Figure 7.8.

In order to use specificity gain to test for (approximate) conditional in-
dependence, we may proceed in a similar way as with Hartley information
gain in the relational case and (Shannon) information gain in the proba-
bilistic case: we compute this measure for each possible instantiation of the
conditioning attributes and then sum the results weighted with the relative
(marginal) degree of possibility of the corresponding instantiation. That is,
for one conditioning attribute, we may compute

Sgain(A, B | C)

=
∑

c∈dom(C)

Π(c)∑
c′∈dom(C) Π(c′)

∫ sup Π

0

log2

(∑
a∈dom(A)[Π]α(a|c)

)(∑
b∈dom(B)[Π]α(b|c)

)
∑

a∈dom(A)

∑
b∈dom(B)[Π]α(a, b|c) dα,

where Π(c) is an abbreviation of Π(C = c) etc. Note that Π(c) is normalized
by dividing it by the sum of the degrees of possibility for all values of the
attribute C. This is necessary, because (in contrast to the probabilistic case)
this sum may exceed 1 and may differ for different (sets of) conditioning
attributes. Hence, without normalization, it would not be possible to compare
the value of this measure for different (sets of) conditions. With this measure
it is easy to detect in the example distribution of Figure 3.14 on page 84 that
the attributes A and C are conditionally independent given the attribute B.

It is clear that this approach suffers from the same drawbacks as the cor-
responding probabilistic approach: it can be computationally infeasible if the
order of the conditional independence tests (that is, the number of condition-
ing attributes) is large. However, it is clear as well that we can also amend it
in the same way, for example, by fixing an upper bound for the order of the
tests to be carried out and assuming that all tests of higher order will fail if
all tests with an order up to this bound failed.

Finally, let us consider the third approach to learning a graphical model,
namely to determine a suitable graph by measuring only the strengths of
(marginal) dependences. As in the relational and the probabilistic case, we
may use the same measure as for the (approximate) independence tests. For
the simple example discussed above we may apply the Kruskal algorithm with
specificity gain providing the edge weights (these edge weights are shown

192 CHAPTER 7. LEARNING GLOBAL STRUCTURE

in Figure 7.10). This leads to a construction of graph 5 of Figure 7.8, in
agreement with the results of the other two learning methods.

Note that, as in the probabilistic case, this method can be applied as well
if we are given a database of sample cases, because we only have to determine
marginal possibility distributions on (usually small) subspaces. (A method to
compute these efficiently was discussed in Chapter 5.) Note also that this
approach suffers from the same drawback as the corresponding relational
approach, that is, it may not find an exact decomposition although there
is one: the relational example of Figure 7.4 on page 176 can be transferred
directly to the possibilistic case, because, as stressed several times previously,
a relation is simply a special possibility distribution.

7.1.4 Components of a Learning Algorithm

Up to now, there is no (computationally feasible) analytical method to con-
struct optimal graphical models from a database of sample cases. To some
degree this is due to the fact that there is no consensus about what con-
stitutes an ‘‘optimal’’ model, because there is, as usual, a tradeoff between
model accuracy and model simplicity. This tradeoff is hard to assess: how
much accuracy must be gained in order to make a more complex model ac-
ceptable? However, the main reason is more technical, namely the number
of candidate graphs, which is huge, unless the number of attributes is very
small, and thus makes it impossible to inspect all possible graphs (cf. Sec-
tion 7.3.1). Although there are methods by which large sets of graphs can be
excluded with single tests (cf. the conditional independence tests mentioned
in the preceding sections), the number of tests is often still too large to be
carried out exhaustively or the tests require too much data to be reliable.

Since there is no (computationally feasible) analytical method, all algo-
rithms for constructing a graphical model perform some kind of (heuristic)
search, evaluating networks or parts of networks as they go along and finally
stopping with the best network found. Therefore an algorithm for learning a
graphical model from data usually consists of:

1. an evaluation measure (to assess the quality of a given network),
2. a search method (to traverse the space of possible networks).

It should be noted, though, that restrictions of the search space introduced
by an algorithm and special properties of the evaluation measure used some-
times disguise the fact that a search through the space of possible network
structures is carried out. For example, by conditional independence tests all
graphs missing certain edges can be excluded without inspecting these graphs
explicitly. Greedy approaches try to find good edges or subnetworks and com-
bine them in order to construct an overall model and thus may not appear to
be searching the space of all graphs. Nevertheless the above characterization
is apt, since an algorithm that does not explicitly search the space of possible

7.2. EVALUATION MEASURES 193

networks usually carries out a (heuristic) search on a different level, guided by
an evaluation measure. For example, some greedy approaches search for the
best set of parents of an attribute by measuring the strength of dependence on
candidate parent attributes; conditional independence test approaches search
the space of all possible conditional independence statements also measuring
the strengths of (conditional) dependences.

Although the two components of a learning algorithm for graphical models
usually cooperate closely, since, for instance, in a greedy algorithm the search
is guided by the evaluation measure, they can be treated independently. The
reason is that most search methods and evaluation measures can be combined
freely. Therefore we focus on evaluation measures in Section 7.2, whereas
search methods are discussed in Section 7.3.

7.2 Evaluation Measures

An evaluation measure serves the purpose to assess the quality of a given
candidate graphical model w.r.t. a given database of sample cases (or w.r.t.
a given distribution), so that it can be determined which of a set of candi-
date graphical models best fits the given data. In this section we are going
to discuss systematically a large variety of evaluation measures for relational,
probabilistic, and possibilistic graphical models (although restricted to at-
tributes with a finite set of values) and the ideas underlying them.

7.2.1 General Considerations

Although the evaluation measures discussed in the following are based on
a wide range of ideas and thus are bound to differ substantially w.r.t. the
computations that have to be carried out, several of them share certain general
characteristics, especially w.r.t. how they are applied in certain situations.
Therefore it is useful to start this section with some general considerations,
so that we need not repeat them for each measure to which they apply. Most
of these considerations are based on the following distinction:

Apart from the obvious division into relational, probabilistic, and possi-
bilistic measures, evaluation measures may also be classified w.r.t. whether
they are holistic or global, that is, can be computed only for a graphical model
as a whole, or whether they are decomposable or local, that is, can be com-
puted by aggregating local assessments of subnetworks or even single edges.
Drawing on the examples of Section 7.1 as an illustration, the number of ad-
ditional tuples is a global evaluation measure for a relational graphical model,
because these tuples cannot be determined from a single subspace relation,
but only from the combination of all subspace relations of the graphical model.
In contrast to this, the mutual (Hartley or Shannon) information is a local
evaluation measure, because it can be computed for single edges.

194 CHAPTER 7. LEARNING GLOBAL STRUCTURE

It is clear that local evaluation measures are desirable, not only because
they are usually much simpler to compute, but also because their decom-
posability can be exploited, for example, by greedy search methods (cf. Sec-
tion 7.3.2). In addition, local evaluation measures are advantageous in the
probabilistic case if the database to learn from has missing values and we do
not want to employ costly methods like expectation maximization to handle
them (cf. Section 5.2). If we employ a global evaluation measure, all we can
do in such a case is to discard all incomplete tuples of the database, thus
throwing away a lot of potentially valuable information. With a local evalua-
tion measure, we only have to discard tuples selectively w.r.t. the component
of the graphical model to be evaluated. That is, for each component all tu-
ples of the database that do not miss a value for the attributes underlying the
component can be taken into account [Borgelt and Kruse 1997b].

Global evaluation measures need no further consideration, because there is
no real choice of how to apply them. All local evaluation measures, however,
share that they must be aggregated over the components they are computed
on. In addition, all of them are either derived from a measure for the strength
of the dependence of two attributes or at least can be interpreted as such a
measure. To some degree this is due to the fact that several of them were
originally devised for feature selection or for decision tree induction (as can
be seen from the references given below for these measures).

It is clear that a measure for the strength of the dependence of two at-
tributes is sufficient if we only have to evaluate single edges of a conditional
independence graph. Note, however, that we have to take care of the fact that
certainly any such measure can be used to evaluate a directed edge, but not all
are suited to evaluate an undirected edge. The reason is that for evaluating an
undirected edge it is plausible to require that the measure is symmetric. That
is, its value should remain unchanged if the two attributes are exchanged,
simply because an undirected edge does not distinguish between the two at-
tributes it connects. Hence there is no way to assign the attributes to the
measure arguments based on the properties of the edge. This is no real con-
straint, though, because any non-symmetric evaluation measure can be made
symmetric by simply averaging its value for the two possible cases.

Unfortunately, evaluating single edges is sufficient only if the graphical
model to be assessed is based on a (directed or undirected) tree, because only
in this case are the components of the decomposition associated with single
edges. If the graphical model is based on a polytree or even on a multiply
connected graph, the components of the decomposition are the conditional
distributions of a chain rule decomposition or the functions on the maxi-
mal cliques (usually represented by marginal distributions, cf. Section 4.1.7).
In such cases being able to evaluate single edges is not enough.

To see this, recall from Section 7.1 the intuition underlying the learning ap-
proach based on measuring the strengths of marginal dependences, especially,
reconsider this approach in the relational example. The rationale was to select

7.2. EVALUATION MEASURES 195

those subspaces for which the attributes spanning it are strongly dependent.
However, it is clear that three or more attributes that are strongly dependent
need not exhibit strong pairwise dependences. As an example consider the
extreme case of three binary attributes, one of which is computed as the ex-
clusive or of the other two. In this case all pairs of attributes are independent,
but all three are, of course, strongly dependent, and thus measuring only the
strengths of mutual dependences does not assess the situation correctly. Note
that in this case it does not matter whether we consider a maximal clique
with these attributes or one attribute conditioned on the other two: in either
case we have to take all three attributes into account.

Consequently, we have to be able to extend a measure for the strength of
the dependence of two attributes in two ways: (1) to a measure for the strength
of the dependence of one attribute on several others (that is, its parents in
a directed acyclic graph); and (2) to a measure for the strength of the joint
dependence of several attributes (that is, the attributes of a maximal clique of
an undirected graph). The former is always possible: we only have to combine
all conditioning attributes into one pseudo-attribute, the values of which are
all distinct instantiations of the combined attributes. Thus we reduce this
case to the two-attribute case. The latter, however, is usually much harder to
achieve, because the resulting measure must exhibit a high symmetry. That
is, it must be invariant under any permutation of the attributes, because in
a maximal clique no attribute can be distinguished from any other.

As an example of such extensions consider mutual (Shannon) information
(cf. Definition 7.1.4 on page 180) for n attributes A1, . . . , An. Combining the
attributes A2, . . . , An into one pseudo-attribute yields the formula

I
(1)
mut(A1, . . . , An)

=
∑

a1∈dom(A1)

· · ·
∑

an∈dom(An)

P(A1 = a1, . . . , An = an)

log2

P(A1 = a1, . . . , An = an)
P(A1 = a1) · P(A2 = a2, . . . , An = an)

.

On the other hand, treating all attributes equally yields

I
(2)
mut(A1, . . . , An)

=
∑

a1∈dom(A1)

· · ·
∑

an∈dom(An)

P(A1 = a1, . . . , An = an)

log2

P(A1 = a1, . . . , An = an)∏n
k=1 P(Ak = ak)

.

Obviously, the former is best suited for evaluating an attribute (here A1)
conditioned on its parent attributes (here A2, . . . , An), whereas the latter is
better suited for evaluating a maximal clique of attributes.

196 CHAPTER 7. LEARNING GLOBAL STRUCTURE

A B

C D

Figure 7.11 A simple undirected
graph with overlapping maximal
cliques.

Having seen this example, it should not be surprising that several evalua-
tion measures can be extended in the same manner. Because these extensions
are usually very easy to find, we do not consider them explicitly. In the follow-
ing we state all evaluation measures w.r.t. two attributes A and C, where C
is the child attribute if we have a directed edge and A is the parent.

After an assessment of all components of a graphical model has been com-
puted, the components have to be aggregated. Usually this is done by simply
summing them. Such a simple aggregation is, obviously, satisfactory if the
graph is a directed acyclic graph, because in this case the components of the
decomposition are clearly ‘‘separated’’ from each other by the conditioning.
Hence there can be no interaction between the evaluations of these compo-
nents. For undirected graphs, however, the situation is different. If two cliques
overlap on more than one attribute, then the dependence of the attributes in
the overlap is, in a way, ‘‘counted twice’’, because it influences the assessment
of both cliques. As a consequence the quality of the graph may be overrated.

As an example consider the simple undirected graph shown in Figure 7.11.
The maximal cliques are induced by the node sets {A, B, C} and {B, C, D},
which overlap on {B, C}. Therefore the mutual dependence of B and C is
‘‘counted twice’’. As a consequence, the graph may be overrated compared
to one in which the cliques overlap only on single attributes. In order to cope
with this problem one may consider deducing the assessments of overlaps from
the summed assessments of the maximal cliques. (Note that this may require
fairly complicated computations in case the overlap of several pairs of cliques
has a nonempty intersection, since we may have to re-add the assessment of
the intersection of overlaps etc.) Of course, this is only a heuristic approach,
since it may not be justifiable for all evaluation measures. (It can be justified,
though, for mutual (Shannon) information; see below.)

An alternative way to cope with the evaluation problem for undirected
graphs is to direct the edges and then to apply the ‘‘directed version’’ of the
chosen evaluation measure. Unfortunately, not all undirected graphs can be
turned into equivalent directed acyclic graphs (cf. Section 4.1.4). This can be
achieved, though, if the undirected graphs have hypertree structure,6 which
may be seen as another argument in favor of such graphs. (A simple algorithm
to construct the corresponding directed acyclic graph is given in Section 7.3.3.)
However, even in this case the resulting graph need not be unique and thus
the assessment may depend on the chosen edge directions.

6The notion of hypertree structure was introduced in Definition 4.1.27 on page 116.

7.2. EVALUATION MEASURES 197

Nevertheless, the idea to turn an undirected graph into a directed acyclic
one is useful, because with it one can often justify the approach mentioned
above, namely to deduce the assessments of the overlaps from the summed as-
sessments of the cliques (cf. also the factorization formula for join trees stated
on page 135, which is justified in the same way.) As an example reconsider
the simple undirected graph of Figure 7.11. If we apply the deduction method
to a mutual (Shannon) information evaluation of this graph, we get

Q1 =
∑

a∈dom(A)

∑
b∈dom(B)

∑
c∈dom(c)

P(a, b, c) log2

P(a, b, c)
P(a)P(b)P(c)

+
∑

b∈dom(B)

∑
c∈dom(C)

∑
d∈dom(D)

P(b, c, d) log2

P(b, c, d)
P(b)P(c)P(d)

−
∑

b∈dom(B)

∑
c∈dom(C)

P(b, c) log2

P(b, c)
P(b)P(c)

,

where P(a) is an abbreviation of P(A = a) etc. On the other hand, if we
turn the graph into a directed acyclic graph by directing the edges (A, B)
and (A, C) towards A, the edges (B, D) and (C, D) towards D, and the edge
(B, C) towards C (although the latter direction does not matter), we get

Q2 =
∑

b∈dom(B)

∑
c∈dom(C)

P(b, c) log2

P(b, c)
P(b)P(c)

+
∑

a∈dom(A)

∑
b∈dom(B)

∑
c∈dom(c)

P(a, b, c) log2

P(a, b, c)
P(a)P(b, c)

+
∑

b∈dom(B)

∑
c∈dom(C)

∑
d∈dom(D)

P(b, c, d) log2

P(b, c, d)
P(d)P(b, c)

.

By exploiting log2
x
y = log2 x − log2 y it is easy to verify that these two

expressions are equivalent. Hence deducing the assessment of the overlap
yields a consistent and plausible result in this case. Other measures may be
treated in a similar way, for example, specificity gain (cf. Section 7.2.5).

7.2.2 Notation and Presuppositions

Since a graphical model is usually evaluated w.r.t. a database of sample cases,
we assume that we are given a database D = (R, wR) as defined in Defini-
tion 5.1.5 on page 141 and that the values needed to compute the chosen
evaluation measure are determined from this database.

As already indicated above, we will state all local evaluation measures
w.r.t. two attributes C and A, with the attribute C taking the place of the
child, if a directed edge is to be evaluated, and attribute A taking the place

198 CHAPTER 7. LEARNING GLOBAL STRUCTURE

of the parent. The extension to more than two attributes is usually straight-
forward (see above) and thus omitted. As before we confine ourselves to at-
tributes with a finite domain: we assume that the domain of attribute A
has nA values, that is, dom(A) = {a1, . . . , anA

}, and that the domain of
attribute C has nC values, that is, dom(C) = {c1, . . . , cnC

}.
To simplify the notation, we use the following abbreviations to state local

evaluation measures for relational graphical models:

ri. Indicator of whether there is a tuple having the value ci for attribute C,
that is, ri. = 1 iff ∃t ∈ R : t(C) = ci, and ri. = 0 otherwise.

r.j Indicator of whether there is a tuple having the value aj for attribute A,
that is, r.j = 1 iff ∃t ∈ R : t(A) = aj , and r.j = 0 otherwise.

rij Indicator of whether there is a tuple having the value ci for attribute C
and the value aj for attribute A, that is, rij = 1 iff ∃t ∈ R : t(C) = ci

∧ t(A) = aj , and rij = 0 otherwise.

From the above lists it is clear that we always use the index i with values of
attribute C and index j with values of attribute A, so that knowing the index
suffices to identify the attribute referred to.

In order to state some of the evaluation measures properly, it is neces-
sary to refer to the number of sample cases in the database having certain
properties. For these we use the following abbreviations:

N.. The total number of sample cases, that is, N.. =
∑

t∈R wR(t).

Ni. Absolute frequency of the attribute value ci, that is,
Ni. =

∑
t∈{s∈R|s(C)=ci} wR(t).

N.j Absolute frequency of the attribute value aj , that is,
N.j =

∑
t∈{s∈R|s(A)=aj} wR(t).

Nij Absolute frequency of the combination of the values ci and aj , that is,
Nij =

∑
t∈{s∈R|s(C)=ci∧s(A)=aj} wR(t).

Obviously, it is Ni. =
∑nA

j=1 Nij , N.j =
∑nC

i=1 Nij , and N.. =
∑nC

i=1

∑nA

j=1 Nij .
Some evaluation measures for probabilistic graphical models are defined

directly in probabilities. Since we assume that we are given a database of
sample cases, these probabilities have to be estimated from this database.
We assume generally that maximum likelihood estimation is used, although
it is clear that other estimation methods, for example, Laplace-corrected max-
imum likelihood estimation, may also be employed (cf. Section 5.2). For these
estimated probabilities we use the following abbreviations:

pi. (Estimated) probability of the attribute value ci, that is, pi. = Ni.

N..
.

p.j (Estimated) probability of the attribute value aj , that is, p.j = N.j

N..
.

pij (Estimated) probability of the combination of the attribute values ci

and aj , that is, pij = Nij

N..
.

7.2. EVALUATION MEASURES 199

pi|j (Estimated) conditional probability of the attribute value ci given that
attribute A has the value aj , that is, pi|j = pij

p.j
= Nij

N.j
.

pj|i (Estimated) conditional probability of the attribute value aj given that
attribute C has the value ci, that is, pj|i = pij

pi.
= Nij

Ni.
.

The evaluation measures for possibilistic graphical models are usually defined
in degrees of possibility. For these we use the abbreviations:

πi. (Database-induced) degree of possibility of the attribute value ci.

π.j (Database-induced) degree of possibility of the attribute value aj .

πij (Database-induced) degree of possibility of the combination of the at-
tribute values ci and aj .

All of these degrees of possibility are assumed to be computed as described
in Section 5.4, that is, by determining the maxima of the elementary degrees
of possibility over all values of all other attributes.

7.2.3 Relational Evaluation Measures

There are only fairly few relational evaluation measures, mainly because the
information provided by a relation is so scarce, but also because relational de-
composition is usually studied by completely different means in database the-
ory, namely by exploiting known functional dependences between attributes
[Maier 1983, Date 1986, Ullman 1988]. The few there are, however, are im-
portant, because from each of them at least one evaluation measure for the
possibilistic case can be derived, for example, by drawing on the α-cut view7

of a possibility distribution (cf. Section 7.1.3).

Hartley Information Gain

Hartley information gain was already defined in Definition 7.1.2 on page 173.
Restated with the abbreviations introduced in the preceding section it reads:

I
(Hartley)
gain (C, A) = log2

(
nC∑
i=1

ri.

)
+ log2

⎛
⎝ nA∑

j=1

r.j

⎞
⎠ − log2

⎛
⎝ nC∑

i=1

nA∑
j=1

rij

⎞
⎠

= log2

(∑nC

i=1 ri.

) (∑nA

j=1 r.j

)
(∑nC

i=1

∑nA

j=1 rij

) .

The idea underlying this measure was discussed in detail in Section 7.1.1
(cf. Figure 7.2 on page 172): if the two attributes are relationally independent,
then the numerator and the denominator of the fraction are equal and hence

7The notion of an α-cut was introduced in Definition 7.1.5 on page 183.

200 CHAPTER 7. LEARNING GLOBAL STRUCTURE

the measure is 0. The more strongly dependent the two attributes are, the
smaller the denominator and thus the larger the measure. Note that Hartley
information gain may also be written as

I
(Hartley)
gain (C, A) = H(Hartley)(C) + H(Hartley)(A) − H(Hartley)(C, A)

if we define the Hartley entropy of an attribute C as

H(Hartley)(C) = log2

(
nC∑
i=1

ri.

)

(cf. Definition 7.1.1 on page 172) and provide an analogous definition for the
entropy of the combination of two attributes C and A. This indicates a di-
rect connection to Shannon information gain, which will be studied in detail
in Section 7.2.4. In that section some variants of Shannon information gain
will be considered, which were originally devised to overcome its bias towards
many-valued attributes. (This bias was discovered when Shannon information
gain was used for decision tree induction [Quinlan 1993].) If Hartley informa-
tion gain is written as above, analogous variants can be constructed. In this
way we obtain the Hartley information gain ratio

I(Hartley)
gr (C, A) =

I
(Hartley)
gain (C, A)
H(Hartley)(A)

and two versions of a symmetric Hartley information gain ratio, namely

I
(Hartley)
sgr1 (C, A) =

I
(Hartley)
gain (C, A)

H(Hartley)(C, A)
and

I
(Hartley)
sgr2 (C, A) =

I
(Hartley)
gain (C, A)

H(Hartley)(C) + H(Hartley)(A)
.

We do not provide an explicit justification of these measures here, because it
can be derived in a straightforward manner from the justification of the more
general measures based on Shannon information gain by noting that Hartley
entropy is only a special case of Shannon entropy (cf. Section 7.2.4).

Hartley information gain, as it was described above, is computed from the
joint relation of the values of the attributes C and A. However, we may also
consider computing an analogous measure from the conditional relations of
the values of attribute C given the values of attribute A, especially if we have
to evaluate a directed edge A → C. That is, we may compute

I
(Hartley)
cgain (C, A) =

1∑nA

j=1 r.j

nA∑
j=1

r.j

(
log2

(
nC∑
i=1

ri.

)
− log2

(
nC∑
i=1

rij

))

=
1∑nA

j=1 r.j

nA∑
j=1

r.j log2

∑nC

i=1 ri.∑nC

i=1 rij
.

7.2. EVALUATION MEASURES 201

This measure may be called conditional Hartley information gain, because it
is computed from conditional relations. Note that in order to emphasize in the
notation that conditional relations are considered we may write ri|j instead
of rij by exploiting Definition 3.2.9 on page 70.

Reconsidering the illustration of ordinary Hartley information gain in Fig-
ure 7.2 on page 172 (with attribute C replacing attribute B) we see that this
measure evaluates the relation ‘‘column by column’’: for each conditional rela-
tion the number of tuples is compared to the number of tuples in the marginal
relation (this comparison is done in the argument of the logarithm). If these
numbers are the same for all conditional relations, the two attributes are,
obviously, independent. The more they differ, the more strongly dependent
the two attributes are. The results of these comparisons are aggregated over
all conditional relations containing at least one tuple. (That only nonempty
relations are considered is achieved with the factor r.j .) This aggregate is
normalized by dividing it by

∑nA

j=1 r.j to make it independent of the number
of possible values of the attribute A.

Note that, in contrast to the ordinary Hartley information gain, this mea-
sure is, in general, not symmetric. Hence we cannot obtain symmetric gain
ratios as for ordinary Hartley information gain, but have to rely on

I(Hartley)
scgr (C, A) =

I
(Hartley)
cgain (C, A) + I

(Hartley)
cgain (A, C)

H(Hartley)(C) + H(Hartley)(A)
.

Number of Additional Tuples

Evaluating a given relational graphical model by simply counting the addi-
tional tuples in the relation represented by the model compared to the original
relation was discussed extensively in Section 7.1.1. Therefore we only mention
it here for reasons of completeness. Note that this measure is a global evalu-
ation measure—in contrast to the Hartley information gain and its variants,
which are all local evaluation measures.

7.2.4 Probabilistic Evaluation Measures

There is an abundance of probabilistic evaluation measures, although only a
few of them are commonly used for learning probabilistic graphical models
from data. One reason for this may be that many probabilistic evaluation
measures were originally developed either as independence tests in statistics
or for the purposes of feature selection and decision tree induction in machine
learning [Borgelt and Kruse 1998b] and that the connection to learning graph-
ical models was simply not recognized. However, since all that is required of
an evaluation measure in order to make it usable for learning graphical mod-
els is that it yields an assessment of the strength of the dependence of two
attributes, there is no reason why one should not consider using them.

202 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Shannon Information Gain

Shannon information gain was defined in Definition 7.1.4 on page 180, al-
though we emphasized the synonymous names mutual Shannon information
and Shannon cross entropy in that definition. Restated with the abbreviations
introduced in Section 7.2.2 it reads:

I
(Shannon)
gain (C, A) =

nC∑
i=1

nA∑
j=1

pij log2

pij

pi.p.j
.

In Section 7.1.2 Shannon information gain was interpreted as a measure of
the difference between the joint probability distribution (represented by pij)
and the distribution that can be computed from the marginal distributions
under the assumption that C and A are independent (represented by p.ip.j).
Clearly, if C and A are actually independent, this measure is zero. It can be
shown (see below) that this is indeed the only case in which it is zero. For all
other joint distributions this measure is greater than zero and it is the larger,
the more strongly dependent the two attributes are.

A different interpretation of this measure, which is preferred in connec-
tion to decision tree induction [Quinlan 1993], is based on the notion of the
Shannon entropy of a set of alternatives [Shannon 1948].

Definition 7.2.1 Let S = {s1, . . . , sn} be a finite set of alternatives having
positive probabilities P(si), i = 1, . . . , n, satisfying

∑n
i=1 P(si) = 1. Then

H(Shannon)(S) = −
n∑

i=1

P(si) log2 P(si)

is called the Shannon entropy or Shannon information of S.

Intuitively, Shannon entropy can be interpreted as the expected number of
yes/no questions that have to be asked in order to identify the obtaining
alternative. As an example consider the five alternatives s1, . . . , s5 with the
probabilities shown in Figure 7.12 at the top, so that the Shannon entropy
of this set of alternatives is approximately 2.15. Suppose that there is an
oracle, which knows the obtaining alternative, but which responds only if
the question can be answered with ‘‘yes’’ or ‘‘no’’. Simply asking for one
alternative after the other (cf. the top left of Figure 7.12: linear traversal) is
clearly not a good idea: we need up to 4 questions to identify an alternative
and 1P(s1) + 2P(s2) + 3P(s3) + 4P(s4) + 4P(s5) = 3.24 questions on average.

However, a better question scheme can easily be found (cf. Section 7.1.1):
we divide the alternatives into two subsets of about equal size. Then we choose
arbitrarily one of the two sets and ask whether the obtaining alternative is
contained in it. Independent of the answer, the alternatives in one of the sub-
sets can be ruled out. The other subset is divided again and the interrogation

7.2. EVALUATION MEASURES 203

P(s1) = 0.10, P(s2) = 0.15, P(s3) = 0.16, P(s4) = 0.19, P(s5) = 0.40

Shannon entropy: −
∑

i P(si) log2 P(si) = 2.15 bit/symbol

Linear Traversal

s4, s5

s3, s4, s5

s2, s3, s4, s5

s1, s2, s3, s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

1 2 3 4 4

Code length: 3.24 bit/symbol
Code efficiency: 0.664

Equal Size Subsets
s1, s2, s3, s4, s5

0.25 0.75
s1, s2 s3, s4, s5

0.59
s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

2 2 2 3 3

Code length: 2.59 bit/symbol
Code efficiency: 0.830

Shannon–Fano Coding
s1, s2, s3, s4, s5

0.25

0.41

s1, s2

s1, s2, s3

0.59
s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

3 3 2 2 2

Code length: 2.25 bit/symbol
Code efficiency: 0.955

Huffman Coding
s1, s2, s3, s4, s5

0.60
s1, s2, s3, s4

0.25 0.35
s1, s2 s3, s4

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5

3 3 3 3 1

Code length: 2.20 bit/symbol
Code efficiency: 0.977

Figure 7.12 Question/coding schemes based on a probability distribution.

proceeds in this way until only one alternative remains. With this scheme the
number of questions needed is obviously bounded by �log2 n�, where n is the
number of alternatives. That is, in our example we can determine the obtain-
ing alternative with at most �log2 5� = 3 questions. A more detailed analysis
shows that the expected number of questions is at most 2.59, even if we choose
the most disadvantageous divisions of the set of alternatives: if we divide it
into the sets {s1, s2, s3} and {s4, s5} and the first of these into {s1, s2} and
{s3} if the oracle’s answer indicates that it contains the obtaining alterna-
tive, we need 2P(s1) + 2P(s2) + 2P(s3) + 3P(s4) + 3P(s5) = 2.59 questions on
average (cf. the top right of Figure 7.12: equal size subsets).

204 CHAPTER 7. LEARNING GLOBAL STRUCTURE

It is clear that this question scheme can be improved further by exploiting
the known probabilities of the alternatives. The basic idea is that we should
strive for a question scheme with which we have to ask only few questions in
order to identify a highly probable alternative as the obtaining one, while we
accept more questions for identifying improbable alternatives. It is plausible
that in this way the average number of questions can be reduced.

The problem is, of course, how we can find a good scheme with this
property. A simple, though not optimal, method was suggested by [Shan-
non 1948] and Fano: instead of dividing the set of alternatives into two
subsets of about equal size, we first sort the alternatives w.r.t. their prob-
ability (this is the case in our example). Then we divide them into subsets
of about equal probability respecting the order of the probabilities. For the
simple example considered above the resulting question scheme is shown on
the bottom left in Figure 7.12 (Shannon–Fano coding). With this scheme we
need 3P(s1)+3P(s2)+2P(s3)+2P(s4)+2P(s5) = 2.25 questions on average.

However, this is still not the best possible method as can be guessed from
the fact that in the left branch of the division tree the two subsets differ con-
siderably w.r.t. their probabilities. A better method was found by [Huffman
1952]: instead of starting with the complete set of alternatives and recur-
sively dividing it, thus constructing the tree top-down, one-element sets are
taken as the starting point and the tree is constructed bottom-up. In each
step the two sets having the smallest probability are merged, until all alter-
natives are contained in a single set. For our simple example the resulting
question scheme is shown on the bottom right in Figure 7.12 (Huffman cod-
ing). We actually obtained a better question scheme, because with it we need
only 3P(s1) + 3P(s2) + 3P(s3) + 3P(s4) + 1P(s5) = 2.20 questions on average
(compared to 2.25 for the Shannon–Fano scheme).

[Huffman 1952] showed that his method is optimal if we have to identify
the obtaining alternative in a single instance. If, however, we are concerned
with a sequence of (independent) situations, for each of which the set of al-
ternatives and their respective probabilities are the same, even this fairly
sophisticated method can be improved upon. The idea is to process this se-
quence not instance by instance, applying Huffman’s scheme in each case,
but to combine two or more consecutive instances and to ask directly for the
combination of alternatives obtaining in such a subsequence. Although the
question tree is enlarged by this procedure, the expected number of questions
per identification is reduced. The reason is that with each interrogation the
obtaining alternative is determined not only for one, but for several situations,
and it is further reduced, the more situations are considered in combination.

However, the expected number of questions cannot be made arbitrarily
small. As [Shannon 1948] showed for the general case, there is an ultimate
lower bound for the expected number of questions. This lower bound is the
Shannon entropy, which is 2.15 questions for the simple example. Depending
on the exact probabilities, this bound may actually be reached, even in a

7.2. EVALUATION MEASURES 205

P(s1) = 1
2 , P(s2) = 1

4 , P(s3) = 1
8 , P(s4) = 1

16 , P(s5) = 1
16

Shannon entropy: −
∑

i P(si) log2 P(si) = 1.875 bit/symbol

s4, s5

s3, s4, s5

s2, s3, s4, s5

s1, s2, s3, s4, s5

1
2

1
4

1
8

1
16

1
16

s1 s2 s3 s4 s5

1 2 3 4 4

Code length: 1.875 bit/symbol
Code efficiency: 1

With the perfect question scheme
on the left, Shannon entropy can eas-
ily be interpreted as follows:

−
∑

i

P(si) log2 P(si)

=
∑

i

P(si)︸ ︷︷ ︸
occurrence
probability

· log2

1
P(si)︸ ︷︷ ︸

path length
in tree

.

Figure 7.13 Shannon entropy as the expected number of yes/no questions.

single instance identification. An example is shown in Figure 7.13: again there
are five alternatives, but their probabilities differ from those we used above.
Actually, because these probabilities are powers of two, we can find a sequence
of questions, so that the (sets of) alternatives that are separated always have
exactly the same probabilities, thus yielding a perfect question scheme.

Note that, if the probabilities of the alternatives do not allow for a perfect
question scheme (as was the case for the previous example), combining subse-
quences in a sequence of identification tasks serves the purpose to approximate
such a scheme: the more alternatives there are, the closer the Huffman scheme
usually gets to a perfect scheme. However, the Shannon entropy is still the
ultimate limit, which can be reached, but cannot be surpassed.

With respect to the following sections, especially the section on the mea-
sures based on the minimum description length principle, it is useful to note
that a question scheme can also be interpreted as a coding rule. In this case
the alternatives considered are symbols that may appear in a message, for
instance, the letters of the alphabet. Each of these symbols has a probability
of occurrence. For example, the letter ‘‘e’’ is much more frequent than the
letter ‘‘q’’. A message is coded by mapping the symbols it consists of to se-
quences of zeros and ones, which are then transmitted. Such a mapping can
easily be obtained by simply assigning a 0 to the answer ‘‘no’’ and a 1 to the
answer ‘‘yes’’. With this assignment each symbol can be coded by the sequence
of answers that would lead to its identification as the obtaining alternative.
(Note that a coded message formed by concatenating the codes for individual
symbols that were obtained in this way can easily be decoded, even if the

206 CHAPTER 7. LEARNING GLOBAL STRUCTURE

length of the code is not the same for all symbols.) The Shannon entropy is
a lower bound for the average number of bits needed to encode a symbol,
provided the symbols are independent of each other.8

Note also that Hartley entropy or Hartley information, which was studied
in Section 7.2.3, is only a special case of Shannon entropy. It results if all
probabilities are equal, that is, if ∀i ∈ {1, . . . , n} : P(si) = 1

n :

H(Shannon)(Su) = −
n∑

i=1

1
n

log2

1
n

= − log2

1
n

= log2 n = H(Hartley)(Su),

where the index u is meant to indicate that the probability distribution on S
is uniform. Hence most aspects considered w.r.t. Shannon information gain
can be transferred more or less directly to Hartley information gain.

From the definition of the Shannon entropy it is immediately clear that we
can write the Shannon information gain (in the following we drop the upper
index ‘‘(Shannon)’’, because no confusion is to be expected) as

Igain(C, A) = H(C) + H(A) − H(C, A),

if we define the Shannon entropy of an attribute C as

H(C) = −
nC∑
i=1

P(C = ci) log2 P(C = ci)

and provide an analogous definition for the Shannon entropy of the combi-
nation of two attributes C and A. (Note that we can interpret the events
underlying the conditions C = ci as the alternatives referred to in the def-
inition.) If it is written in this way, we see that Shannon information gain
measures how many questions can be saved by asking directly for the value
combination of C and A instead of asking for each of the values indepen-
dently. This is directly analogous to the intuitive interpretation of Hartley
information gain that was discussed w.r.t. Figure 7.2 on page 172.

Another way to understand Shannon information gain is to write it as

Igain(C, A) = H(C) − H(C | A), where

H(C | A) = −
nA∑
j=1

p.j

nC∑
i=1

pij

p.j
log2

pij

p.j
= −

nA∑
j=1

p.j

nC∑
i=1

pi|j log2 pi|j

is the expected (Shannon) entropy of C given A. That is, H(C | A) is the
expected value of the average number of questions we have to ask in order to
identify the value of attribute C if the value of attribute A becomes known.

8Note that this is not the case for normal texts, in which, for instance, the letter “u” is
not very likely to be followed by the overall most frequent letter “e”. If there is a dependence
on the context, the question/coding scheme can be improved upon.

7.2. EVALUATION MEASURES 207

Subtracting this number from the number of questions we need without know-
ing the value of A (or disregarding it), we get the expected reduction of the
average number of questions we have to ask. Using the interpretation of the
Shannon entropy as an average code length per symbol, we may also say that
Shannon information gain measures the expected reduction of the message
length if an ‘‘unconditional’’ coding of the values of attribute C is replaced by
a ‘‘conditional’’ coding that takes into account the value of attribute A.

It should be noted that this way of writing Shannon information gain is
directly analogous to conditional Hartley information gain. However, in con-
trast to conditional Hartley information gain, which differs from its ordinary
version, conditional Shannon information gain is identical to its ordinary ver-
sion (as a simple calculation, exploiting the rules for logarithms, reveals).

Although Shannon information gain is a well-founded measure for the
strength of the dependence of two attributes, it has an unpleasant property:
when it was used for decision tree induction, it was discovered that it is bi-
ased towards many-valued attributes [Quinlan 1993]. That is, it is likely that
Igain(C, A1) ≤ Igain(C, A2) if the attribute A2 has more possible values than
A1 and the probabilities are estimated from a database of sample cases. In
other words: w.r.t. a given database two attributes can appear to be more
strongly dependent than two others, simply because the former pair has more
possible values. The reasons for this effect are twofold: the first is that Shan-
non information gain can only increase if the number of values of an attribute
is increased, for example by splitting them. Formally this can be studied by
comparing an attribute A to the combination of A and another attribute B.

Lemma 7.2.2 Let A, B, and C be three attributes with finite domains and let
their joint probability distribution be strictly positive, that is, ∀a ∈ dom(A) :
∀b ∈ dom(B) : ∀c ∈ dom(C) : P(A = a, B = b, C = c) > 0. Then

Igain(C, AB) ≥ Igain(C, B),

with equality obtaining only if the attributes C and A are conditionally inde-
pendent given B.

Proof. The proof, which is mainly a technical task, can be found in Sec-
tion A.9 in the appendix. We provide a full proof (derived from a proof in
[Press et al. 1992] that Shannon information gain is always nonnegative),
because it is rarely spelled out clearly.

Note that with the above lemma it is easily established that Shannon infor-
mation gain is always nonnegative and zero only for independent attributes:
assume that attribute B has only one value. In this case it is Igain(C, B) = 0,
since the joint distribution on the values of the two attributes clearly coin-
cides with the distribution on the values of C. In addition, the combination of
the attributes A and B is obviously indistinguishable from A alone and thus
we get Igain(C, AB) = Igain(C, A). Consequently, we have as a corollary:

208 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Corollary 7.2.3 Let C and A be two attributes with finite domains and let
their joint probability distribution be strictly positive, that is, ∀c ∈ dom(C) :
∀a ∈ dom(A) : P(C = c, A = a) > 0. Then

Igain(C, A) ≥ 0,

with equality obtaining only if C and A are (marginally) independent.

The second reason for the bias of Shannon information gain towards many-
valued attributes is the quantization of the probabilities that is caused by
the fact that they are estimated from a database. Since the database contains
only a finite number of sample cases, the probability estimates are restricted
to a finite set of rational numbers. However, under these circumstances it is
clear that Shannon information gain can increase even if an attribute A and a
‘‘split attribute’’ B are actually independent, simply because the probabilities
needed to represent the independence are not in this set of rational numbers.
In such a case an attribute that is equivalent to the combination of A and B is
judged to be more strongly dependent on an attribute C than the attribute A
alone, merely because this attribute has more possible values.

In order to compensate the unpleasant bias towards many-valued at-
tributes, several normalized variants of Shannon information gain have been
suggested. The most widely known of these suggestions is the (Shannon) in-
formation gain ratio [Quinlan 1993], which is defined as

Igr(C, A) =
Igain(C, A)

H(A)
=

H(C) + H(A) − H(CA)
H(A)

.

The idea underlying this normalization is that an attribute with a larger
number of values not only yields a higher information gain, but also has a
higher entropy. Hence it is hoped that by dividing the information gain by
the attribute entropy the two effects cancel each other.

Note that the so-called uncertainty coefficient [Press et al. 1992] is equiv-
alent to the (Shannon) information gain, although it is defined as

U(C | A) =
H(C) − H(C | A)

H(C)
,

because it is obvious that H(C) + H(C | A) = H(A) + H(A | C) and thus
U(C | A) = Igr(A, C). Hence the only difference is the ‘‘direction’’ of the
measure (recall that for evaluating directed graphs we associate C with the
child attribute of a directed edge and A with its parent).

However, the advantage of this way of writing the measure is that we can
see that Igr(A, C) (as well as Igr(C, A)) must be less than or equal to 1: by
assuming that one of the attributes has only one value, we can easily derive from
Corollary 7.2.3 that a (conditional) entropy cannot be negative. Consequently,
the numerator of the uncertainty coefficient cannot be greater than H(C) and

7.2. EVALUATION MEASURES 209

thus the fraction cannot be greater than 1. Since from Corollary 7.2.3 we also
known that Igain(C, A) ≥ 0, we have 0 ≤ Igr(C, A) ≤ 1.

The (Shannon) information gain ratio is not symmetric, that is, in general
it is Igr(C, A) 	= Igr(A, C). Hence it is not suited to evaluate undirected edges.
The symmetric information gain ratio [Lopez de Mantaras 1991]

Isgr1(C, A) =
Igain(C, A)

H(CA)
=

H(C) + H(A) − H(CA)
H(CA)

avoids this drawback by dividing the (Shannon) information gain by the en-
tropy of the combination of the attributes A and C. With a similar argument
as above we obtain 0 ≤ Isgr1(C, A) ≤ 1.

Another symmetric normalization can be achieved by dividing by the sum
of the individual entropies [Borgelt and Kruse 1998b], that is,

Isgr2(C, A) =
Igain(C, A)

H(A) + H(C)
=

H(C) + H(A) − H(CA)
H(A) + H(C)

.

Of course, both of these normalizations compensate the bias of (Shannon)
information gain towards many-valued attributes.

Note that the second symmetric information gain ratio is almost identi-
cal to the symmetric uncertainty coefficient, which is defined as a kind of
weighted average of the uncertainty coefficients U(C | A) and U(A | C):

U(C, A) =
H(C)U(C | A) + H(A)U(A | C)

H(C) + H(A)
= 2

H(C) + H(A) − H(CA)
H(C) + H(A)

.

From the left part of this formula it is clear that 0 ≤ U(C, A) ≤ 1, since, as
shown above, 0 ≤ U(C | A) ≤ 1. Hence we have 0 ≤ Isgr2(C, A) ≤ 1

2 .

Quadratic Information Gain

As described in the preceding section, Shannon information gain can be based
on Shannon entropy. However, Shannon entropy is not the only known type
of entropy, because the concept of an entropy measure has been extended, for
example by [Daróczy 1970]. This generalized entropy is defined as follows:

H
(general)
β (S) =

2β−1

2β−1 − 1

n∑
i=1

P(si)
(
1 − P(si)β−1

)

=
2β−1

2β−1 − 1

(
1 −

n∑
i=1

P(si)β

)
.

From this generalized entropy the Shannon entropy can be derived as

H(Shannon)(S) = lim
β→1

H
(general)
β (S) = −

n∑
i=1

P(si) log2 P(si).

210 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Another often used specialized version is the quadratic entropy

H2(S) = H
(general)
β=2 = 2

n∑
i=1

P(si)(1 − P(si)) = 2 − 2
n∑

i=1

P(si)2.

An intuitive interpretation of the quadratic entropy is the following: in order
to determine the obtaining alternative we do not ask an imagined oracle
as with Shannon entropy, but we simply guess. In doing so, we respect the
known probabilities of the alternatives, that is, we choose each alternative
with its respective probability. Of course, we cannot be sure to guess the
correct alternative. But we can determine how often our guess will probably
be wrong. If our guess is the alternative si, the guess will be wrong with
probability 1−P(si), because this is the probability that an alternative other
than si is the obtaining one. Since we choose each alternative si with its
probability P(si), the probability that our guess is wrong is

P(wrong guess) =
n∑

i=1

P(si)(1 − P(si)).

The only difference of the quadratic entropy to this formula is the additional
factor 2. Therefore, since the above expression is a probability, we can infer
that it is 0 ≤ H2(S) ≤ 2. (Actually it must be strictly less than 2, because it
is impossible that the probability of a correct guess vanishes.)

It is clear that the quadratic entropy can be used in direct analogy to the
Shannon entropy to derive the quadratic information gain

I2
gain(C, A) = H2(C) + H2(A) − H2(CA).

For this measure a similar lemma holds as for Shannon information gain.

Lemma 7.2.4 Let A, B, and C be attributes with finite domains. Then

I2
gain(C, AB) ≥ I2

gain(C, B).

Proof. The proof, which is mainly a technical task (requiring only some
formal transformations), can be found in Section A.10 in the appendix.

Note that this lemma is not restricted to strictly positive distributions and
that we do not have the assertion that equality only holds if the attributes C
and A are conditionally independent given B. Indeed, as the proof of this
lemma shows, the two measures cannot be equal unless at least one of the
attributes A and C has only one value with a non-vanishing probability.

In analogy to Shannon information gain we have the following corollary if
we consider an attribute B with only one value. In this case it is H2(B) = 0,
H2(AB) = H2(A), H2(CB) = H2(C), and H2(CAB) = H2(CA).

7.2. EVALUATION MEASURES 211

Corollary 7.2.5 Let C and A be attributes with finite domains. Then it is

I2
gain(C, A) ≥ 0.

From Lemma 7.2.4 it is to be expected that quadratic information gain is
even more strongly biased towards many-valued attributes than Shannon
information gain. In order to counteract this bias normalized versions may be
considered. However, since they are defined in exact analogy to the normalized
variants of Shannon information gain, we do not state them explicitly.

Gini Index

The conditional version of Shannon information gain is identical to the ordi-
nary version, but with Hartley information gain we saw a measure for which
these two versions differed. For quadratic information gain they differ, too,
and this provides us with another measure. This measure is well known from
decision tree induction, where it is usually called the Gini index [Breiman et
al. 1984, Wehenkel 1996]. It can be defined as

Gini(C, A) =
1
2

(
H2(C) − H2(C|A)

)
= 1 −

nC∑
i=1

p2
i. −

nA∑
j=1

p.j

(
1 −

nC∑
i=1

p2
i|j

)

=
nA∑
j=1

p.j

nC∑
i=1

p2
i|j −

nC∑
i=1

p2
i..

(Note that the factor 1
2 only removes the factor 2 of the quadratic entropy.)

Drawing on the interpretation given for the quadratic entropy in the preceding
section, we may say that the Gini index measures the expected reduction of
the probability of a wrong guess as to what the obtaining alternative is.

In analogy to Shannon information gain and quadratic information gain
the Gini index may be normalized in order to remove a bias towards many-
valued attributes. We confine ourselves here to the symmetric version sug-
gested by [Zhou and Dillon 1991].

Ginisym(C, A) =
H2(C) − H2(C|A) + H2(A) − H2(A|C)

H2(C) + H2(A)

=

nC∑
i=1

pi.

nA∑
j=1

p2
j|i +

nA∑
j=1

p.j

nC∑
i=1

p2
i|j −

nC∑
i=1

p2
i. −

nA∑
j=1

p2
.j

2 −
nC∑
i=1

p2
i. −

nA∑
j=1

p2
.j

Note that the numerator is the sum of the two possible ‘‘directions’’ of the
Gini index, because in general it is Gini(C, A) 	= Gini(A, C).

212 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Another way to reduce or even eliminate a bias towards many-valued
attributes is the modified Gini index, which was suggested by [Kononenko
1994, Kononenko 1995] and which is closely related to the relief measure,
which is discussed below. The modified Gini index is defined as

Ginimod(C, A) =
nA∑
j=1

p2
.j∑nA

j=1 p2
.j

nC∑
i=1

p2
i|j −

nC∑
i=1

p2
i..

The only difference from the ordinary Gini index is that it uses

p2
.j∑nA

j=1 p2
.j

instead of
p.j∑nA

j=1 p.j
= p.j .

By squaring the probabilities of the values of the attribute A, more prob-
able values have a higher influence on the value of the measure. This also
reduces the bias towards many-valued attributes, as can be made plausible
by considering a uniform distribution on the values of the attribute A.

Relief Measure

The relief measure [Kira and Rendell 1992, Kononenko 1994, Kononenko
1995], which is closely related to the Gini index, has been devised mainly for
feature selection and decision tree induction and thus it is strongly aimed
at classification tasks. The idea underlying it is to assess a (descriptive) at-
tribute A based on how well suited it is to predict the values of the (class)
attribute C. Obviously, a good prediction can be achieved if the values of A
correspond well with single values of C. At best, each value of attribute A
occurs always in conjunction with the same value of attribute C.

The strength of such a correspondence can be measured by considering the
probability that two sample cases having different values for the attribute C
also have different values for the attribute A (this probability should be as
large as possible). In addition, we consider the probability that two sample
cases having the same value for the attribute C have different values for
the attribute A (this probability should be as small as possible). Hence, the
quality of an attribute A can be assessed by computing

Relief(C, A) = P(t1(A) 	= t2(A) | t1(C) 	= t2(C))
−P(t1(A) 	= t2(A) | t1(C) = t2(C))

= (1 − P(t1(A) = t2(A) | t1(C) 	= t2(C)))
−(1 − P(t1(A) = t2(A) | t1(C) = t2(C)))

=
P(t1(A) = t2(A) ∧ t1(C) = t2(C))

P(t1(C) = t2(C))

−P(t1(A) = t2(A)) − P(t1(A) = t2(A) ∧ t1(C) = t2(C))
1 − P(t1(C) = t2(C))

.

7.2. EVALUATION MEASURES 213

where t1 and t2 are two tuples representing two sample cases. Next we exploit

P(t1(A) = t2(A)) =
nA∑
j=1

p2
.j , P(t1(C) = t2(C)) =

nC∑
i=1

p2
i., and

P(t1(A) = t2(A) ∧ t1(C) = t2(C)) =
nC∑
i=1

nA∑
j=1

p2
ij .

These equations hold, because the probability that two sample cases have the
same value aj is clearly p2

.j . Hence the probability that they have the same
value, whichever it may be, is

∑nA

j=1 p2
.j . The two other cases are analogous.

Thus we arrive at

Relief(C, A)

=

nC∑
i=1

nA∑
j=1

p2
ij

nC∑
i=1

p2
i.

−

nA∑
j=1

p2
.j −

nC∑
i=1

nA∑
j=1

p2
ij

1 −
nC∑
i=1

p2
i.

=

nC∑
i=1

nA∑
j=1

p2
ij −

nA∑
j=1

p2
.j

nC∑
i=1

p2
i.(

nC∑
i=1

p2
i.

)(
1 −

nC∑
i=1

p2
i.

) .

Using the equation
nC∑
i=1

nA∑
j=1

p2
ij =

nA∑
j=1

p2
.j

nC∑
i=1

p2
i|j

we may also derive

Relief(C, A)

=

nA∑
j=1

p2
.j

⎛
⎝ nA∑

j=1

p2
.j∑nA

j=1 p2
.j

nC∑
i=1

p2
i|j −

nC∑
i=1

p2
i.

⎞
⎠

(
nC∑
i=1

p2
i.

)(
1 −

nC∑
i=1

p2
i.

) =

⎛
⎝ nA∑

j=1

p2
.j

⎞
⎠ Ginimod(C, A)

(
nC∑
i=1

p2
i.

)(
1 −

nC∑
i=1

p2
i.

) ,

by which the close relation to the Gini index is revealed.

Weight of Evidence

The weight of evidence [Michie 1989] was originally defined for binary at-
tributes C (that is, attributes with dom(C) = {c1, c2}) as

wEvid(ci, A) =
nA∑
j=1

p.j

∣∣∣∣log2

pi|j/(1 − pi|j)
pi./(1 − pi.)

∣∣∣∣ , i = 1, 2.

(Note that it is easy to verify that always wEvid(c1, A) = wEvid(c2, A).)

214 CHAPTER 7. LEARNING GLOBAL STRUCTURE

The idea underlying this measure is to compare the odds of a bet on a
value ci (that is, the quotient odds(p) = p/(1 − p)) if we know the value of
the attribute A to the odds of a bet if we do not know it. Obviously, the
intention is again to assess how well suited a (descriptive) attribute A is to
predict the value of a (class) attribute C. This reveals that this measure, too,
was originally devised for classification purposes. It is clear that an attribute A
is judged to be the better, the greater the value of this measure.

The weight of evidence can easily be extended to attributes C with more
than two values by defining it as [Kononenko 1995]

wEvid(C, A) =
nC∑
i=1

pi.wEvid(ci, A)

=
nC∑
i=1

pi.

nA∑
j=1

p.j

∣∣∣∣log2

pi|j/(1 − pi|j)
pi./(1 − pi.)

∣∣∣∣ ,

that is, by computing the weighted average over all values ci.

Relevance

Like the relief measure and the weight of evidence the relevance [Baim 1988]
is also a measure that was devised for classification purposes. It is defined as

R(C, A) = 1 − 1
nC − 1

nA∑
j=1

nC∑
i=1,i �=imax(j)

pij

pi.

= 1 − 1
nC − 1

nA∑
j=1

p.j

(
nC∑
i=1

pi|j
pi.

− max
i

pi|j
pi.

)
,

where cimax(j) is the value of attribute C for which pij

pi.
(or equivalently pi|j

pi.
)

is maximal given that attribute A has the value aj . This measure is based on
the same idea as the relief measure, namely that for a reliable identification
of the value of a (class) attribute C it is best if each value of a (descriptive)
attribute A uniquely indicates a value of C. Consequently, the conditional
probability pi|j of the most probable value ci of C given that the attribute A
has the value aj should be as large as possible. However, in order to avoid
giving false merits to an attribute A for a value ci with a high prior probability,
these probabilities are considered relative to the prior probability pi..

χ2 Measure

In Section 7.1.2 we interpreted Shannon information gain as a measure for
the difference of the actual joint distribution and a hypothetical independent
distribution of two attributes C and A. The χ2 measure, which is well known

7.2. EVALUATION MEASURES 215

in statistics, does the same, but instead of the pointwise quotient (as Shannon
information gain does) it computes the pointwise squared difference of the two
distributions. The χ2 measure is usually defined as

χ2(C, A) =
nC∑
i=1

nA∑
j=1

(Eij − Nij)2

Eij
where Eij =

Ni. N.j

N..

=
nC∑
i=1

nA∑
j=1

N2
..

(
Ni.

N..

N.j

N..
− Nij

N..

)2

N..
Ni.

N..

N.j

N..

= N..

nC∑
i=1

nA∑
j=1

(pi. p.j − pij)2

pi. p.j
.

With the above transformation it becomes obvious that the numerator of the
fraction is the squared difference of the actual joint distribution and the hy-
pothetical independent distribution. The denominator serves to weight these
pointwise differences. In order to render this measure independent of the num-
ber of sample cases, the factor N.. is often discarded.

For the χ2 measure we have a direct analog of Lemma 7.2.2:

Lemma 7.2.6 Let A, B, and C be three attributes with finite domains and let
their joint probability distribution be strictly positive, that is, ∀a ∈ dom(A) :
∀b ∈ dom(B) : ∀c ∈ dom(C) : P(A = a, B = b, C = c) > 0. Then

χ2(C, AB) ≥ χ2(C, B),

with equality obtaining only if the attributes C and A are conditionally inde-
pendent given B.

Proof. The proof, which is mainly a technical tasks (requiring only some
formal transformations), can be found in Section A.11 in the appendix.

Note that we need no corollary in this case, because from the definition of the
χ2 measure it is obvious that χ2(C, A) ≥ 0.

The above lemma indicates that the χ2 measure, like Shannon informa-
tion gain and quadratic information gain, is biased towards many-valued at-
tributes. However, in this case there is no simple way to eliminate this bias,
because there is no obvious normalization.

A closely related measure, which differs from the χ2 measure only in the
way in which it weights the squared differences, is

d2
weighted(C, A) =

nC∑
i=1

nA∑
j=1

pij (pi. p.j − pij)2.

Although this measure is fairly obvious and, in a way, more natural than the
χ2 measure, it seems to be neglected in the literature.

216 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Bayesian–Dirichlet Metric

The Bayesian–Dirichlet metric is the result of a Bayesian approach to learning
Bayesian networks from data, that is, an approach that is based on Bayes’
rule. It was first derived in the special form of the K2 metric by [Cooper and
Herskovits 1992] and later generalized by [Heckerman et al. 1995].

The derivation of this measure starts with a global consideration of the
probability of a directed acyclic graph (underlying a Bayesian network) given
a database of sample cases. Thus the explanation of this measure is more
complex than that of the measures discussed above and involves an extension
of the notation introduced in Section 7.2.2. However, we try to be as consistent
as possible with our usual notation in order to avoid confusion.

The basis of the K2 metric is as follows [Cooper and Herskovits 1992]: we
are given a database D of sample cases over a set of attributes, each having a
finite domain. It is assumed (1) that the process that generated the database
can be accurately modeled by a Bayesian network, (2) that given a Bayesian
network model cases occur independently, and (3) that all cases are complete,
that is, there are no missing or imprecise values. With these assumptions we
can compute from the directed acyclic graph �G and the set of conditional
probabilities Θ underlying a given Bayesian network the probability of the
database D. That is, we can compute P(D | �G, Θ); that is, the likelihood of
the database given the model (cf. Section 7.1.2). From this probability we
can determine the probability of the Bayesian network given the database
via Bayes’ rule:9

P(�G, Θ | D) =
P(D | �G, Θ) · f(�G, Θ)

P(D)
.

However, this is not exactly what we want. Since we are concerned only
with learning the structure of a Bayesian network, we should eliminate the
conditional probabilities Θ. This is done by simply integrating the above
formula over all possible choices of Θ. Thus we get

P(�G | D) =
1

P(D)

∫
Θ

P(D | �G, Θ)f(�G, Θ) dΘ.

Of course, to evaluate this formula, we need to know the prior probabili-
ties f(�G, Θ) of the Bayesian network and P(D) of the database. Fortunately,
though, the prior probability of the database can be dispensed with, because
we only need to be able to compare graph structures. For this the joint prob-
ability of the graph and the database is sufficient, since obviously

P(�G1 | D)

P(�G2 | D)
=

P(�G1, D)

P(�G2, D)
.

9Note that we need a probability density function f for the prior probability of the
Bayesian network, since the space of the conditional probabilities Θ is continuous.

7.2. EVALUATION MEASURES 217

Often this quotient, which is usually called a Bayes factor, is used explicitly
to evaluate different graphs �G1 w.r.t. a given reference structure �G2. A com-
monly used reference structure is a graph without any edges. In the following,
however, we confine ourselves to finding an expression for P(�G, D).

Starting from the formula derived above and applying the product rule of
probability theory to the density f(�G, Θ), we arrive at

P(�G, D) =
∫

Θ

P(D | �G, Θ)f(Θ | �G)P(�G) dΘ

as an assessment of the quality of a network structure �G given a database D of
sample cases. f(Θ | �G) is a density function on the space of possible conditional
probabilities and P(�G) is the prior probability of the graph �G.

In order to be able to evaluate this formula, it is assumed that all possible
graphs �G are equally likely. In addition, the density functions f(Θ | �G) are
assumed to be marginally independent for all pairs of attributes and for all
pairs of instantiations of the parents of an attribute. This enables us to write
the density function f(Θ | �G) as a product of density functions with one factor
for each attribute and each instantiation of its parents. This yields

P(�G, D) = γ
r∏

k=1

mk∏
j=1

∫
· · ·

∫
θijk

(
nk∏
i=1

θ
Nijk

ijk

)
f(θ1jk, . . . , θnkjk) dθ1jk . . .dθnkjk,

where γ is a constant that represents the identical prior probability of each
graph, r is the number of attributes used to describe the domain under con-
sideration, mk is the number of distinct instantiations of the parents of the
attribute Ak in the graph �G, and nk is the number of values of attribute Ak.
θijk is the probability that attribute Ak assumes the ith value of its domain,
given that its parents are instantiated with the jth combination of values,
and Nijk is the number of cases in the database, in which the attribute Ak

is instantiated with its ith value and its parents are instantiated with the
jth value combination. Note that the notation Nijk is consistent with the
notation introduced in Section 7.2.2, because the additional index k only dis-
tinguishes the Nij defined in that section for different child attributes. In the
following this index is dropped, since we confine ourselves to single factors
of the outermost product of the above expression. That is, we consider only
the contribution of the assessment of a single attribute and its parents in the
graph to the overall quality of the graph �G. In addition, we confine ourselves
to a child attribute C having only one parent A, since the (re)extension to
more than one parent is obvious (cf. Section 7.2.1). Thus the following con-
siderations are in line with the paradigm of the preceding sections.

In order to actually compute the factors of the above product, we need
still another assumption, namely an assumption about the probability den-
sity function f(θ1j , . . . , θnCj) on the space of the conditional probabilities. In

218 CHAPTER 7. LEARNING GLOBAL STRUCTURE

[Cooper and Herskovits 1992] a uniform distribution is assumed. That is, it
is assumed that f(θ1j , . . . , θnCj) = γj , where γj is a constant, so that∫

. . .

∫
θij

γj dθ1j . . .dθnCj = 1.

This leads to γj = (nC − 1)!. Intuitively, this result can be made plausible as
follows: since the θij are conditional probabilities, their sum must be one, that
is,

∑nC

i=1 θij = 1. Hence we only have nC − 1 free parameters. Suppose first
that nC = 2, so that there is only one free parameter. This parameter can be
chosen freely from the interval [0, 1] and thus the uniform density function
on the parameter space is f(x) ≡ 1. Suppose next that nC = 3. In this case
we have two free parameters, the choices of which can be visualized as points
in a plane. Since their sum must not exceed one, the points we may choose
are restricted to the triangle that is formed by the coordinate axes and the
line x + y = 1. This triangle clearly has an area of 1

2 and thus the uniform
distribution on the possible parameters must be f(x, y) ≡ 2. For nC = 4, and
thus three parameters, the parameter space is the pyramid formed by the
coordinate planes and the plane x + y + z = 1, which has the volume 1

6 and
thus the uniform density function is f(x, y, z) ≡ 6.

In general, the hyper-pyramid in nC − 1 dimensions that defines the pa-
rameter space has a hyper-volume of 1

(nC−1)! , and thus the density function
must have the value (nC − 1)!. A formal justification of γj = (nC − 1)! is
obtained with Dirichlet’s integral [Dirichlet 1839]

∫
. . .

∫
θij

nC∏
i=1

θ
Nij

ij dθ1j . . .dθnCj =
∏nC

i=1 Γ(Nij + 1)
Γ(N.j + nC)

,

where Γ is the well-known generalized factorial

Γ(x) =
∫ ∞

0

e−ttx−1dt, ∀n ∈ IN : Γ(n + 1) = n!,

by simply choosing Nij = 0. This integral also provides us with means to
evaluate the resulting formula. We arrive at [Cooper and Herskovits 1992]

K2(C, A) =
nA∏
j=1

∫
. . .

∫
θij

(
nC∏
i=1

θ
Nij

ij

)
(nC − 1)! dθ1j . . .dθnCj

=
nA∏
j=1

(nC − 1)!
(N.j + nC − 1)!

nC∏
i=1

Nij !.

This measure is known as the K2 metric, because it was used first in the
K2 algorithm [Cooper and Herskovits 1992]. Clearly, the greater the value of

7.2. EVALUATION MEASURES 219

this evaluation measure (that is, its product over all variables), the better the
corresponding graph �G. In order to simplify the computation, the logarithm
of the above function is often used:

log2(K2(C, A)) =
nA∑
j=1

log2

(nC − 1)!
(N.j + nC − 1)!

+
nA∑
j=1

nC∑
i=1

log2 Nij !.

In addition, since the value of this measure depends on the number of sample
cases in the database, one may consider dividing this logarithm by the total
number N.. of sample cases [Borgelt et al. 1996].

As already mentioned at the beginning of this section the K2 metric was
generalized to the Bayesian–Dirichlet metric in [Heckerman et al. 1995]. The
idea underlying this generalization is very simple. Instead of assuming a uni-
form distribution on the space of the conditional probabilities, an explicit
prior density function is used. For simplicity, this prior density function is
assumed to be representable as a Dirichlet distribution, that is, as

f(θ1j , . . . , θnCj) =
nC∏
i=1

θ
N ′

ij−1

ij

for appropriate values N′
ij . It should be noted, though, that it is possible to

justify this somewhat arbitrary choice by plausible additional assumptions
[Heckerman et al. 1995]. Inserting the above product instead of the term
(nC − 1)! into the formulae derived above, we get

BD(C, A) =
nA∏
j=1

Γ(N′
.j)

Γ(N.j + N′
.j)

nC∏
i=1

Γ(Nij + N′
ij)

Γ(N′
ij)

,

where N′
.j =

∑nC

i=1 N′
ij . Note that it is necessary to use the Γ-function, since

the N′
ij need not be integer numbers. Note also that the K2 metric is a special

case of this measure, which results for ∀i, j : N′
ij = 1.

Intuitively, the N′
ij can be seen as derived from a database (other than

the one to learn from) representing prior knowledge about the domain of
consideration. Of course, such an interpretation is consistent only if certain
conditions hold. For example, N′

.. =
∑nC

i=1

∑nA

j=1 N′
ij (or the extended version

for more than one parent) must be the same for all attributes C. Otherwise
the size of this imagined database would not be the same for all attributes.
In addition, the frequency of an attribute value must not depend on whether
the attribute is considered as a child or as a parent etc.

This consideration brings us directly to the notion of likelihood equiva-
lence. An evaluation measure is called likelihood equivalent if it assigns the
same value to all Markov equivalent graphs.10 It is clearly desirable that an

10The notion of Markov equivalence was defined in Definition 4.1.21 on page 111.

220 CHAPTER 7. LEARNING GLOBAL STRUCTURE

evaluation measure is likelihood equivalent, because we cannot distinguish
two Markov equivalent graphs with a database of sample cases: if the direc-
tion of an edge can be reversed without affecting the set of v-structures11

of the graph, the modified graph will represent the same probability distri-
bution if we reverse the corresponding conditional probability distribution.
As a consequence, the resulting model can generate the same data.

The Bayesian–Dirichlet metric is likelihood equivalent if the N′
ij can be

interpreted consistently as derived from a database representing prior infor-
mation. This can be made plausible as follows: consider two Markov equiv-
alent graphs. For each choice of the probability parameters for one of them
there is a corresponding choice for the other, because any probability distri-
bution representable by one graph must be representable by the other (see
above). Next we exploit the fact that the Bayesian–Dirichlet metric is basi-
cally the computation of the likelihood of a database of sample cases (see also
above). It is clear that the likelihood of a database must be the same for two
Bayesian networks that represent the same probability distribution, simply
because the probability of the cases is read from this distribution. Since there
is a 1-to-1 relation of the possible choices of probability parameters, it is also
clear that the integration over all possible choices cannot lead to a difference
in the assessment. Finally, since the prior probabilities of all graphs are also
assumed to be the same, the two graphs must receive the same score.

Note that the K2 metric is not likelihood equivalent, as can be seen from
the fact that the values ∀i, j : N′

ij = 1 cannot be interpreted as derived from
a database of sample cases. The reason is that the total number N′

.. depends
on the numbers of values nC and nA of the two attributes. However, this in-
sight directly provides us with an idea of how a likelihood equivalent variant
of the Bayesian–Dirichlet metric can be constructed, which nevertheless uses
an uninformative—that is, uniform—prior distribution on the space of condi-
tional probabilities. We only have to choose ∀i, j : N′

ij = N ′
..

nAnC
[Buntine 1991,

Heckerman et al. 1995], where N′
.. is a parameter called the equivalent sample

size, thus indicating that it represents the size of an imagined database. In-
tuitively, this parameter determines the strength of the uniform distribution
assumption relative to the database to learn from. The result is the so-called
BDeu metric (for Bayesian–Dirichlet, likelihood equivalent, and uniform).

Unfortunately, the BDeu metric is biased towards many-valued attributes
(cf. the discussion of Shannon information gain, which also has this property).
This bias can be made plausible as follows: the larger the N′

ij are, the weaker
is the influence of the database, simply because the distribution is ‘‘equalized’’
by the uniform prior distribution, and thus the more strongly dependent the
attributes must be in order to achieve a high score. However, the more values
there are for the attributes A and C, the smaller the N′

ij are and thus the
more strongly dependent they appear to be.

11The notion of a v-structure was defined in Definition 4.1.23 on page 112.

7.2. EVALUATION MEASURES 221

In the following we discuss an extension of the Bayesian–Dirichlet metric,
which we suggested in [Borgelt and Kruse 2001]. In order to arrive at this
extension, it is useful to start by showing that the Shannon information gain
can also be derived with a Bayesian approach. The idea is as follows: in the
derivation of the K2 metric it is assumed that the density functions on the
spaces of the conditional probabilities are uniform. However, after we have
selected a graph as the basis of a model, we no longer integrate over all
conditional probabilities. Rather we fix the structure and compute estimates
of these probabilities using, for example, maximum likelihood estimation.

Therefore the idea suggests itself to reverse these steps. That is, we could
estimate first for each graph the best assignments of conditional probabilities
and then select the best graph based on these, then fixed, assignments. For-
mally, this can be done by choosing the density functions in such a way that
the (maximum likelihood) estimated probabilities have probability 1 and all
others have probability 0. In this way we obtain

f(θ1j , . . . , θnCj) =
nC∏
i=1

δ
(
θij − pi|j

)
=

nC∏
i=1

δ

(
θij −

Nij

N.j

)
,

where δ is Dirac’s δ-function (or, more precisely, δ-distribution, because it is
not a classical function), which is defined to have the following properties:

δ(x) =
{

+∞, if x = 0,
0, if x 	= 0,

∫ +∞

−∞
δ(x) dx = 1,

∫ +∞

−∞
δ(x − y)ϕ(x) dx = ϕ(y).

Inserting this density function into the function for P(�G, D), we get as an
evaluation measure [Borgelt and Kruse 2001]:

g∞(C, A) =
nA∏
j=1

∫
. . .

∫
θij

(
nC∏
i=1

θ
Nij

ij

)(
nC∏
i=1

δ(θij − pi|j)

)
dθ1j . . .dθnCj

=
nA∏
j=1

(
nC∏
i=1

p
Nij

i|j

)
.

(The notation g∞ for this measure is explained below.) Obviously,

1
N..

log2

g∞(C, A)
g∞(C)

=
1

N..

nA∑
j=1

nC∑
i=1

Nij log2 pi|j −
nC∑
i=1

Ni. log2 pi.

=
nA∑
j=1

p.j

nC∑
i=1

pi|j log2 pi|j −
nC∑
i=1

pi. log2 pi.

= H(C) − H(C | A) = I
(Shannon)
gain (C, A),

222 CHAPTER 7. LEARNING GLOBAL STRUCTURE

where g∞(C) is the assessment of a parentless attribute C, which is obtained
formally by letting nA = 1. That is, Shannon information gain can be seen as
a Bayes factor obtained from the evaluation measure g∞.

Naturally, this derivation of Shannon information gain may be doubted,
because in it the database is, in a way, used twice, namely once directly
and once indirectly through the estimation of the parameters of the condi-
tional probability distribution. Formally this approach is not strictly correct,
because the density function over the parameter space should be a prior dis-
tribution whereas the estimate we used clearly is a posterior distribution (be-
cause it is computed from the database). However, the fact that Shannon
information gain results—a well-founded evaluation measure—is very sugges-
tive evidence that this approach is worthy of being examined.

The above derivation of the Shannon information gain assumed Dirac
pulses at the maximum likelihood estimates of the conditional probabilities.
However, we may also consider using the likelihood function directly, that is,

f(θ1j , . . . , θnCj) = β ·
nC∏
i=1

θ
Nij

ij , where β =
Γ(N.j + nC)∏nC

i=1 Γ(Nij + 1)
.

With this consideration the idea suggests itself to derive a family of evaluation
measures: first we normalize the likelihood function, so that the maximum of
this function becomes 1. This is easily achieved by dividing it by the maximum
likelihood estimate raised to the power Nij . Then we introduce an exponent α,
by which we can control the ‘‘width’’ of the density function around the
maximum likelihood estimate. Hence, if the exponent is 0, we get a constant
function, if it is 1, we get the likelihood function, and if it approaches infinity,
the density approaches Dirac pulses at the maximum likelihood estimate.
Thus we arrive at [Borgelt and Kruse 2001]

fα(θ1j , . . . , θnCj) = γ ·
((

nC∏
i=1

p
−Nij

i|j

)(
nC∏
i=1

θ
Nij

ij

))α

= γ ·
(

nC∏
i=1

p
−αNij

i|j

)(
nC∏
i=1

θ
αNij

ij

)

= γ′ ·
nC∏
i=1

θ
αNij

ij ,

where γ and γ′ are normalization factors that have to be chosen in such a way
that the integral over θ1j , . . . , θnCj is 1 (because fα is a density function).
Using the solution of Dirichlet’s integral (see above) we find that

γ′ =
Γ(αN.j + nC)∏nC

i=1 Γ(αNij + 1)
.

7.2. EVALUATION MEASURES 223

Inserting the above parameterized density into the function for the probability
P(�G, D) and evaluating the resulting formula using Dirichlet’s integral yields
the family of evaluation measures

gα(C, A) =
nA∏
j=1

Γ(αN.j + nC)
Γ((α + 1)N.j + nC)

·
nC∏
i=1

Γ((α + 1)Nij + 1)
Γ(αNij + 1)

.

From the explanations given in the course of the derivation of this family of
measures, it is clear that we have (at least) three interesting special cases:

α = 0: K2 metric
α = 1: ‘‘likelihood metric’’
α → ∞: expected entropy N..H(C | A).

Note that, of course, we may also consider generalizing this family of eval-
uation measures in the same way as the K2 metric was generalized to the
Bayesian–Dirichlet metric. This yields

BDα(C, A) =
nA∏
j=1

Γ(αN.j + N′
.j)

Γ((α + 1)N.j + N′
.j)

·
nC∏
i=1

Γ((α + 1)Nij + N′
ij)

Γ(αNij + N′
ij)

.

Note also that both families of evaluation measures may be criticized on the
grounds that, at least formally, the factor α can also be interpreted as the
assumption that we observed the database (α + 1) times, which would be
ridiculous from a strictly statistical point of view. However, in our derivation
of these families of measures we emphasized that the factor α results from a
choice of the prior distribution and it has to be admitted that the choice of
the prior distribution is, to some degree, arbitrary.

Of course, there are strong arguments in favor of a uniform prior dis-
tribution, for instance, the insufficient reason principle (cf. Section 2.4.3).
However, when learning Bayesian networks from data choosing a uniform
prior distribution introduces a tendency to select simpler network structures.
This tendency results from the fact that the size of the space of conditional
probabilities is larger for more complex structures and thus, in a way, there
are more ‘‘bad’’ choices of conditional probabilities (that is, choices that make
the database unlikely). Consequently, a more complex graph may be judged
to be worse than a simpler graph, although there is a choice of probability
parameters for which the database is much more likely than with any choice
of parameters for the simpler graph. (Another explanation, which is based on
the close formal relation of the K2 metric and a minimum description length
measure, is discussed in the next section.) It has to be admitted, though, that
such a tendency can be desirable in order to avoid overfitting the data. How-
ever, even then it is usually convenient to be able to control the strength of
this tendency. With the above families of evaluation measures such control
can be exerted via the parameter α: the greater the value of this parameter,
the weaker the tendency to select simpler structures.

224 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Reduction of Description Length

With Shannon information gain we discussed a measure that can be inter-
preted as the reduction of the expected (per symbol) coding length of a se-
quence of symbols. In addition to these direct coding costs for the values, the
minimum description length principle [Rissanen 1983, Rissanen 1987] takes
the costs for the transmission of the coding scheme into account.

Intuitively, the basic idea is the following: a sender S wants to transmit a
message to a receiver R. Since transmission is costly, the sender tries to en-
code the message in as few bits as possible. It is assumed that the receiver R
knows about the symbols that may appear in the message, but does not know
anything about their probabilities. Therefore the sender S cannot use directly,
for instance, a Huffman code for the transmission, because without the prob-
ability information the receiver R will not be able to decode it.

As a consequence, the sender must either use a simpler (and longer) code,
for which this information is not required, or he must first transmit the coding
scheme or the probabilities it is based on. If the message to be sent is long
enough, transmitting the coding scheme beforehand can be beneficial, because
the total number of bits that have to be transmitted may be lower as with a
standard coding that does not exploit the probability information.

For learning Bayesian networks in particular this situation is imagined
as follows: the aim is to transmit the database of sample cases. Both the
sender S and the receiver R know the number of attributes, their domains,
and the number of cases in the database,12 but at the beginning only the
sender knows the values the attributes are instantiated with in the sample
cases. These values are transmitted attribute by attribute, that is, in the first
step the value of the first attribute is transmitted for all sample cases, then
the value of the second attribute, and so on. In this way the transmission
may exploit dependences between the next attribute to be transmitted and
attributes already transmitted to code the values more efficiently.

This description shows that it is especially suited for Bayesian networks.
The attributes are simply transmitted in a topological order13 and the depen-
dence of an attribute on its parents is used for a more efficient coding of its
values. Of course, if we proceed in this way, we must indicate which attributes
are the parents of the next attribute to be transmitted and we must transmit
the conditional probabilities. With this information the transmitted sequence
of bits can be decoded.

12Note that a strict application of the minimum description length principle would have
to assume that these numbers are unknown to the receiver. However, since they have to be
transmitted in any case, they do not have an influence on the structure ranking and thus
are usually neglected or assumed to be known.

13The notion of a topological order was defined in Definition 4.1.12 on page 100. Note
that a strict application of the minimum description length principle requires a transmission
of the topological order. However, since the order of the attributes must be agreed upon in
any case, the costs for its transmission are usually neglected.

7.2. EVALUATION MEASURES 225

Note that the costs for the transmission of the coding scheme can also be
seen as a penalty for complex models: the more parents there are, the more
additional information has to be transmitted. If the reduction of the costs for
the transmission of the values is less than the rise in the costs for the transmis-
sion of the parents and the conditional probabilities, the simpler model (that
is, the one with fewer parent attributes) is preferred. These considerations
suggest that it is useful to compute the reduction of the message/description
length that can be achieved by using a(nother) parent attribute.

Depending on the way in which the attribute values are coded, at least
two measures can be distinguished. For the first measure it is assumed that
the values are coded based on their relative frequencies, for the second that
they are coded based on their absolute frequencies. As usual, we state both
measures w.r.t. only a single parent attribute.

With respect to a relative frequency coding the reduction of the description
length is computed as follows [Kononenko 1995]:

L
(rel)
prior(C) = log2

(N.. + nC − 1)!
N..! (nC − 1)!

+ N.. HC ,

L
(rel)
post(C, A) = log2 k +

nA∑
j=1

log2

(N.j + nC − 1)!
N.j ! (nC − 1)!

+
nA∑
j=1

N.j HC|aj
,

L
(rel)
red (C, A) = L

(rel)
prior(C) − L

(rel)
post(C, A).

L
(rel)
prior(C) is the length of a description based on coding the values of the

attribute C for all sample cases without the aid of another attribute. The first
term of this length describes the costs for transmitting the value frequencies,
which are needed for the construction of the code. It is derived as follows:
suppose there is a code book that lists all possible divisions of the N.. sample
cases on nC values, one division per page, so that we only have to transmit
the number of the page the obtaining division is printed on. We learn from
combinatorics that this code book must have (N..+nC−1)!

N..! (nC−1)! pages. Consequently,
if we assume that all divisions are equally likely, the Hartley information of the
pages (that is, the binary logarithm of the number of pages) is the number of
bits to transmit. The costs of transmitting the actual data, that is, the values
of the attribute C, are described by the second term. It is computed with the
help of Shannon entropy, which states the average number of bits per value
(cf. the section on Shannon information gain, page 202).

The length of a description with the help of an attribute A is computed in
a directly analogous way. The samples cases are divided into nA subsets w.r.t.
the value of the attribute A. For each subset the description length is deter-
mined in the same way as above and the results are summed. To this sum the
term log2 k is added, which describes the costs for identifying the attribute A
or, if there are several parents, the set of parent attributes. This term log2 k
is interpreted as above: we assume that there are k possible choices of parent

226 CHAPTER 7. LEARNING GLOBAL STRUCTURE

attributes, all of which are equally likely. We imagine a code book that lists
all of these choices, one per page, and transmit the number of the page the
actual selection of parent attributes is printed on.

Note, however, that this term is often omitted based on the following
argument: we have to indicate the parent attribute(s) if parents are used, but
we also have to indicate if no parents are used, because otherwise the message
cannot be decoded. Hence we also have to add this term to the description
length L

(rel)
prior(C), with k comprising the choice of an empty set of parents.

Finally, the reduction of the description length that results from using the
attribute A to code the values—instead of coding them directly—is computed
as the difference of the two description lengths derived above. Note that this
difference is simply Shannon information gain times N.. plus the difference in
the costs of transmitting the value frequencies.

If the coding is based on the absolute frequency of the values the reduction
of the description length is computed as follows [Kononenko 1995]:

L
(abs)
prior (C) = log2

(N.. + nC − 1)!
N..! (nC − 1)!

+ log2

N..!
N1.! · · ·NnC .!

,

L
(abs)
post (C, A) = log2 k +

nA∑
j=1

log2

(N.j + nC − 1)!
N.j ! (nC − 1)!

+
nA∑
j=1

log2

N.j !
N1j ! · · ·NnCj !

,

L
(abs)
red (C, A) = L

(abs)
prior (C) − L

(abs)
post (C, A).

The first term of the description length L
(abs)
prior is the same as for a coding based

on relative frequencies. It describes the costs for transmitting the frequency
distribution of the values of the attribute C. In this measure, however, the
second term is not based on Shannon entropy, but is derived with a similar
consideration as the first. That is, we imagine a code book that lists all pos-
sible assignments of the values of the attribute C that are compatible with
the transmitted frequency distribution of these values. It is clear that each
such assignment can be obtained as follows: first N1. cases are selected and
the value c1 is assigned to them. Then N2. of the remaining cases are selected
and the value c2 is assigned to them, and so on. Consequently, these com-
binatorics tell us that the code book must have N..!

N1.!···NnC .!
pages. As above

we assume that all possible assignments are equally likely. Thus we get the
Hartley information of the pages, that is, the binary logarithm of the number
of pages, as the number of bits needed to transmit the values of attribute C.

The length of a description with the help of an attribute A is computed
in a directly analogous way. As above, the sample cases are divided w.r.t. the
value of the attribute A and the description length for each of the subsets is
computed and summed. A term log2 k describes the costs for identifying the
parent attribute(s), although, as above, this term is often omitted.

Finally, the reduction of the description length is computed, as above,
as the difference of the two description lengths. Note that this difference is

7.2. EVALUATION MEASURES 227

closely related to a Bayes factor for the K2 metric. To be more precise,

L
(abs)
red (C, A) = log2

K2(C, A)
K2(C)

+ const.

The above explanations should have made it clear that the first term of a
description length, which describes the costs for the transmission of the value
frequencies and thus the coding scheme, can be seen as a penalty for mak-
ing the model more complex. Clearly, this penalty introduces a bias towards
simpler network structures. Therefore, in analogy to the extension of the
Bayesian–Dirichlet metric discussed in the preceding section, the idea sug-
gests itself to introduce a parameter by which we can control the strength of
this bias. This can be achieved by defining, for example,

L
(rel)
prior,α(C) =

1
α + 1

log2

(N.. + nC − 1)!
N..! (nC − 1)!

+ N.. HC

and analogously for the other description length. The penalty term is weighted
with the term 1

α+1 instead of a simple factor in order to achieve matching
ranges of values for the parameter α and the corresponding parameter of the
extended Bayesian–Dirichlet metric. For the Bayesian–Dirichlet metric the
normal behavior results for α = 1 and for α → ∞ the measure approaches
Shannon information gain. With the above form of the weighting factor we
obtain the same properties for the description length measures.

Information Criteria

The notion of an information criterion is well known in the statistical litera-
ture on model choice. It is defined generally as the log-likelihood of the data
given the model to evaluate plus a term that depends on the number of param-
eters of the model. Thus this criterion takes into account both the statistical
goodness of fit and the number of parameters that have to be estimated to
achieve this particular degree of fit, by imposing a penalty for increasing the
number of parameters [Everitt 2006]. For learning graphical models it can be
defined as

ICκ(G, Θ | D) = − 2 lnP(D | G, Θ) + κ|Θ|,
where D is the database of sample cases, G is the (directed or undirected)
graph underlying the model, Θ is the set of probability parameters associated
with this graph, and |Θ| is the number of parameters. P(D | G, Θ) is the
likelihood of the database given the (probabilistic) graphical model that is
described by G and Θ. (How this probability can be computed was discussed
for a Bayesian network in Section 7.1.2.) It is clear that for κ = 0 we get
a measure that is equivalent to a maximum likelihood approach to model
selection. However, pure maximum likelihood is usually a bad choice, because
it does not take care of the number of parameters.

228 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Important special cases of the above general form are the so-called Akaike
Information Criterion (AIC) [Akaike 1974] and the Bayesian Information
Criterion (BIC) [Schwarz 1978]. The former results for the simple choice κ = 2
and is derived from asymptotic decision theoretic considerations. The latter
has κ = ln N.., where N.. is the number of sample cases, and can be derived
with an asymptotic Bayesian argument [Heckerman 1998].

7.2.5 Possibilistic Evaluation Measures

There are much fewer possibilistic than probabilistic evaluation measures,
mainly because possibility theory is a rather young theory. The first pos-
sibilistic evaluation measures were suggested in [Gebhardt and Kruse 1995,
Gebhardt and Kruse 1996b]. Others followed in [Borgelt et al. 1996, Borgelt
and Kruse 1997a]. All of them are derived either from relational or, often by
analogy, from probabilistic evaluation measures.

Specificity Gain

The specificity gain was introduced in Definition 7.1.8 on page 189. Restated
with the abbreviations introduced in Section 7.2.2 it reads

Sgain(C, A) =
∫ sup(πij)

0

⎛
⎝log2

(
nC∑
i=1

[πi.]α

)
+ log2

(
nA∑
j=1

[π.j]α

)

− log2

(
nC∑
i=1

nA∑
j=1

[πij]α

)⎞
⎠ dα

In Section 7.1.3 this measure was justified as a generalization of Hartley in-
formation gain drawing on the α-cut view14 of a possibility distribution.

Another way of justifying this measure is via the notion of the nonspeci-
ficity of a possibility distribution, which was introduced in Definition 7.1.6
on page 184 and which plays a role in possibility theory that is similar to
the role of Shannon entropy in probability theory. By using nonspecificity in
the same way as we used Hartley entropy and Shannon entropy to derive the
corresponding information gains, we get [Borgelt et al. 1996]:

Sgain(C, A) = nonspec(πC) + nonspec(πA) − nonspec(πCA),

where πC is the possibility distribution consisting of the degrees of possibil-
ity πi. for all values i ∈ {1, . . . , nC} (cf. Section 7.1.3). This measure is iden-
tical to the evaluation measure suggested in [Gebhardt and Kruse 1996b],
although it was not called specificity gain there.

14The notion of an α-cut was introduced in Definition 7.1.5 on page 183.

7.2. EVALUATION MEASURES 229

In analogy to Hartley information gain and Shannon information gain
there are several ways in which this measure may be normalized in order to
eliminate or at least lessen a possible bias towards many-valued attributes.
This leads to the specificity gain ratio

Sgr(C, A) =
Sgain(C, A)
nonspec(πA)

=
nonspec(πC) + nonspec(πA) − nonspec(πCA)

nonspec(πA)

and two symmetric specificity gain ratios, namely

S(1)
sgr(C, A) =

Sgain(C, A)
nonspec(πCA)

and

S(2)
sgr(C, A) =

Sgain(C, A)
nonspec(πA) + nonspec(πC)

.

A conditional version of specificity gain may also be defined by drawing on
the conditional version of Hartley information gain (cf. Section 7.2.3):

Scgain(C, A) =
nA∑
j=1

∫ π.j

0

[π.j]α∑nA

j=1[π.j]α
log2

∑nC

i=1[πi.]α∑nA

j=1[πi|j]α
dα.

Possibilistic Mutual Information

In Section 7.1.3 Shannon information gain was introduced under the name of
mutual (Shannon) information as a measure that compares the actual joint
distribution and a hypothetical independent distribution by computing their
pointwise quotient. This idea can be transferred by defining

dmi(C, A) = −
nC∑
i=1

nA∑
j=1

πij log2

πij

min{πi., π.j}

as a direct analog of mutual (Shannon) information [Borgelt and Kruse 1997a].
(The index ‘‘mi’’ stands for ‘‘mutual information’’.)

Possibilistic χ2 measure

The χ2 measure, as presented in Section 7.2.4, also compares the actual joint
distribution and a hypothetical independent distribution. However, it does so
by computing the pointwise squared difference. It is clear that this idea may
as well be transferred, so that we obtain [Borgelt and Kruse 1997a]

dχ2(C, A) =
nC∑
i=1

nA∑
j=1

(min{πi., π.j} − πij)2

min{πi., π.j}
.

230 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Alternatively, one may compute the weighted sum of the squared differences
of the individual degrees of possibility, that is, one may compute

ddiff(C, A) =
nC∑
i=1

nA∑
j=1

πij(min{πi., π.j} − πij)2.

Like the corresponding alternative to the χ2 measure in the probabilistic
setting, this measure appears to be more natural.

Weighted Sum of Degrees of Possibility

As a global possibilistic evaluation measure we discussed in Section 7.1.3
the weighted sum of degrees of possibility. For a given graph G and a given
database D = (R, wR) it is defined as [Borgelt and Kruse 1997b]

Q(G) =
∑
t∈R

wR(t) · πG(t)

where πG is the possibility distribution represented by the graph G and its
associated distribution functions. Since this measure was dealt with in Sec-
tion 7.1.3 we only mention it here for completeness.

Note that the weighted sum of possibility degrees may be penalized—in
analogy to the information criteria in the possibilistic case (cf. Section 7.2.4)—
by adding a term κ|Θ|, where Θ is the number of parameters of the graphical
model and κ is a constant. However, κ should be chosen by a factor of about
103 smaller than in the probabilistic case to obtain a suitable penalty.

7.3 Search Methods

Having provided in the preceding section a variety of measures to evaluate
a given graphical model, we turn now to search methods. As indicated in
Section 7.1.4, a search method determines which graphs are explored in order
to find a good model. In Section 7.3.1 we study an exhaustive search of all
graphs, mainly to demonstrate that it is infeasible. Later we turn to heuris-
tic approaches like greedy search (Section 7.3.2) and guided random search
(Section 7.3.3). In addition, we consider the special case of a search based on
conditional independence tests (Section 7.3.4).

7.3.1 Exhaustive Graph Search

The simplest search method is, of course, an exhaustive search of the space of
possible graphs. That is, all possible candidate graphs are inspected in turn
and evaluated. The graph with the best assessment is selected as the search
result. As an illustration recall the examples of the preceding section, in which
all eight possible candidate graphs were evaluated.

7.3. SEARCH METHODS 231

Table 7.3 Some examples for the number of undirected graphs (upper row)
and the number of directed acyclic graphs (lower row) over n attributes.

n 2 3 4 5 6 7 8 10

2(n
2) 2 8 64 1024 32768 2.10 · 106 2.68 · 108 3.52 · 1013

f(n) 3 25 543 29281 3.78 · 106 2.46 · 108 7.84 · 1011 4.18 · 1018

Clearly, this approach is guaranteed to find the ‘‘best’’ graphical model—
at least w.r.t. the evaluation measure used. However, in applications it is
infeasible, because the number of candidate graphs is huge unless the number
of attributes used to describe the domain under consideration is very small.
Therefore the main purpose of this section is not to discuss this search method
as a reasonable alternative to those studied later, but to work out as clearly
as possible why heuristic search methods are indispensable.

In order to understand that the number of candidate graphs is huge, con-
sider first the number of undirected graphs over n attributes. In an undirected
graph any two attributes may either be connected by an edge or not (two
possibilities) and from n attributes

(
n
2

)
different pairs of attributes can be

selected. Therefore the number of undirected graphs over n attributes is 2(n
2).

As an illustration recall that for the three-dimensional examples studied in
the preceding section there were 2(3

2) = 23 = 8 possible undirected graphs (cf.
Figures 7.1, 7.5, and 7.8 on pages 170, 179, and 186, respectively). Some ex-
amples for other values of n are shown in Table 7.3 (upper row). Obviously,
for more than 6 or 7 attributes an exhaustive search is impossible.

Consider next the number of directed acyclic graphs over n attributes.
This number is much more difficult to determine than the number of undi-
rected graphs, because the acyclicity requirement is a somewhat inconvenient
constraint. However, a lower and an upper bound can easily be found: to de-
termine an upper bound, we may simply drop the requirement for acyclicity
and consider arbitrary directed graphs. In such a graph any two attributes
A and B may be unconnected, or connected by an edge from A to B, or
connected by an edge from B to A (three possibilities). In addition, from
n attributes

(
n
2

)
pairs of attributes can be selected (just as above). Therefore

the number of arbitrary directed graphs over n attributes is 3(n
2). To deter-

mine a lower bound, suppose that a topological order15 of the attributes has
been fixed and consider the directed acyclic graphs that are compatible with
this order. In such a graph any two attributes A and B are either uncon-
nected or connected by a directed edge from the node having the lower rank

15The notion of a topological order is defined in Definition 4.1.12 on page 100.

232 CHAPTER 7. LEARNING GLOBAL STRUCTURE

in the topological order to the node having the higher rank (two possibili-
ties). Again there are

(
n
2

)
pairs of attributes and hence there are 2(

n
2) directed

acyclic graphs over n attributes compatible with a given topological order.
We conclude that the number of all directed acyclic graphs must be between
2(n

2) and 3(n
2). An exact recursive formula for the number of directed acyclic

graphs with n nodes has been found by [Robinson 1977], namely

f(n) =
n∑

i=1

(−1)i+1
(
n
i

)
2i(n−i)f(n − i).

Some examples of the value of this function are shown in Table 7.3 (lower
row). Obviously, the situation is even worse than for undirected graphs, be-
cause the number of candidate graphs grows more rapidly, and thus an ex-
haustive search is clearly impossible for more than 5 or 6 attributes.

Of course, the mere fact that the space of candidate graphs is too large to
be searched exhaustively does not imply that there is no feasible method to
find the optimal result. For instance, the number of spanning trees over n at-
tributes is nn−2 [Bodendiek and Lang 1995] and thus it is clearly impossible to
search them exhaustively in order to find an optimum weight spanning tree
w.r.t. given edge weights. Nevertheless, the well-known Kruskal algorithm
[Kruskal 1956] is guaranteed to construct an optimum weight spanning tree
and it is clearly efficient. There is also an even more efficient algorithm for
this task, which, however, is more difficult to implement [Prim 1957].

However, no such efficient algorithm has been found yet for learning graph-
ical models from data. Even worse, some special problems that occur in con-
nection with learning graphical models are known to be NP-hard. For exam-
ple, it is known from database theory that deciding whether a given relation
is decomposable16 w.r.t. a given family of attribute sets is NP-hard [Dechter
and Pearl 1992]. Likewise, it is known to be NP-hard to find the minimal
decomposition17 of a given relation and it has been conjectured that it is NP-
hard to determine whether a given relation can be decomposed even if the
size of the attribute sets is restricted to some maximum number k [Dechter
and Pearl 1992]. Finally, the specific task of learning a Bayesian network has
been shown to be NP-hard if the Bayesian–Dirichlet metric (cf. Section 7.2.4)
is used to evaluate the networks [Chickering et al. 1994, Chickering 1995].
As a consequence, it seems to be inevitable to accept suboptimal results.

7.3.2 Greedy Search

If an exhaustive search is infeasible or very costly, a standard solution is to
use some heuristic search method, for example, greedy search. With a greedy
search method a graphical model is constructed from components, each of

16The notion of a relation being decomposable is defined in Definition 3.2.4 on page 65.
17The notion of a minimal decomposition is defined in Definition 3.2.5 on page 65.

7.3. SEARCH METHODS 233

which is selected locally. That is, each component is selected relatively inde-
pendent of other components and their interaction (although usually certain
constraints have to be taken into account), so that a given (local) evaluation
measure is optimized. Although it is clear that, in general, such an approach
cannot be guaranteed to find the best solution, it is often reasonable to expect
that it will find at least a good approximation.

The best-known greedy approach—and at the same time the oldest—is
optimum weight spanning tree construction and was suggested by [Chow and
Liu 1968]. In this algorithm all possible (undirected) edges over the set U
of attributes used to describe the domain under consideration are evaluated
with an evaluation measure ([Chow and Liu 1968] used mutual information18).
Then an optimum weight spanning tree is constructed with either the (well-
known) Kruskal algorithm [Kruskal 1956] or the (somewhat less well-known)
Prim algorithm [Prim 1957] (or any other greedy algorithm for this task). In
recognition of the inventors of this learning algorithm, it is often called the
Chow–Liu algorithm and its result a Chow–Liu tree.

An interesting aspect of this approach is that if the probability distribu-
tion, for which a graphical model is desired, has a perfect map19 that is a tree,
optimum weight spanning tree construction is guaranteed to find the perfect
map, provided the evaluation measure used has a certain property.

Theorem 7.3.1 Let m be a symmetric evaluation measure satisfying

∀A, B, C : m(C, AB) ≥ m(C, B)

with equality obtaining only if the attributes A and C are conditionally inde-
pendent given B. Furthermore, let G be a singly connected undirected perfect
map of a probability distribution p over a set U of attributes. Then construct-
ing a maximum weight spanning tree for the attributes in U with m (computed
from p) providing the edge weights uniquely identifies G.

Proof. The proof is based on the fact that with the property of the evalua-
tion measure presupposed in the theorem, any edge between two attributes C
and A that is not in the tree must have a weight less than the weight of all
edges on the path connecting C and A in the tree. The details of the proof
can be found in Section A.12 in the appendix.

From Lemma 7.2.2 and Lemma 7.2.6 we know that at least mutual informa-
tion and the χ2 measure have the property presupposed in the theorem.

It is clear that the above theorem holds also for directed trees, since any
undirected conditional independence graph that is a tree can be turned into
an equivalent directed tree by choosing an arbitrary root node and (recur-
sively) directing the edges away from this node. However, with an additional
requirement, it can also be extended to polytrees.

18Mutual information was defined in Definition 7.1.4 on page 180.
19The notion of a perfect map was defined in Definition 4.1.15 on page 103.

234 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Theorem 7.3.2 Let m be a symmetric evaluation measure satisfying

∀A, B, C : m(C, AB) ≥ m(C, B)

with equality obtaining only if the attributes A and C are conditionally inde-
pendent given B and

∀A, C : m(C, A) ≥ 0

with equality obtaining only if the attributes A and C are (marginally) inde-
pendent. Let �G be a singly connected directed perfect map of a probability
distribution p over a set U of attributes. Then constructing a maximum weight
spanning tree for the attributes in U with m (computed from p) providing the
edge weights uniquely identifies the skeleton20 of �G.

Proof. The proof is based on the same idea as the proof of the preceding
theorem. The details can be found in Section A.13 in the appendix.

Note that the above theorem is an extension of a theorem shown in [Rebane
and Pearl 1987] and [Pearl 1988], where it was proven only for mutual in-
formation providing the edge weights. However, from Lemma 7.2.6 we know
that the χ2 measure may also be used. Note also that the edges of the skeleton
found with the above approach may be directed by applying steps 2 and 3 of
Algorithm 7.3.8 [Rebane and Pearl 1987], which will be discussed below.

The above theorems only hold if there is a tree-structured perfect map of
the distribution for which a graphical model is desired. It has to be admitted,
though, that tree-structured perfect maps are not very frequent. Nevertheless
the construction of a Chow–Liu tree can be very useful. There are at least
two reasons for this. The first is that such an optimum weight spanning tree
can serve as the starting point for another algorithm that is capable of con-
structing more complex graphs. For instance, a simulated annealing approach
(cf. Section 7.3.3) may conveniently start its search with a Chow–Liu tree.
Constructing a Chow–Liu tree is also the first step (drafting) of the Cheng–
Bell–Liu algorithm (an algorithm based on conditional independence tests,
which we will consider in Section 7.3.4). A third example is discussed below.

The second reason is that, since propagation in trees and polytrees is
so very simple and efficient, we may be content with a good tree-structured
approximation of the given distribution in order to be able to exploit this sim-
plicity and efficiency. By a tree-structured approximation we mean a graphical
model that is based on a (directed21) tree and which represents a distribution
that is, in some sense, close to the original distribution. It is plausible that an
optimum weight spanning tree may be a good tree-structured approximation.
Indeed, we can show the following theorem about a Chow–Liu tree:

20The notion of a skeleton was introduced in Definition 4.1.22 on page 112.
21We may confine ourselves to directed trees, because, as mentioned above, any undirected

tree can be turned into an equivalent directed tree.

7.3. SEARCH METHODS 235

Theorem 7.3.3 [Chow and Liu 1968] Let p be a strictly positive probability
distribution over a set U of attributes. Then a best tree-structured approxi-
mation of p w.r.t. Kullback–Leibler information divergence22 is obtained by
constructing a maximum weight spanning undirected tree of U with mutual
(Shannon) information23 providing the edge weights, then directing the edges
away from an arbitrarily chosen root node, and finally computing the (condi-
tional) probability distributions associated with the edges of the resulting tree
from the given distribution p.

Proof. The proof exploits mainly the properties of the Kullback–Leibler
information divergence and is somewhat technical. It can be found in Sec-
tion A.14 in the appendix.

Because of this theorem the Chow–Liu tree is frequently used as a baseline
to assess the quality of more complex graphs. For the extension of an opti-
mum weight spanning tree skeleton to a polytree some limiting results for the
possible improvement of fit have been obtained by [Dasgupta 1999].

A straightforward generalization of the above theorem can be obtained by
using its principle to augment naive Bayes classifiers (cf. Section 6.1), so that
the strong conditional independence assumptions of naive Bayes classifiers are
mitigated [Geiger 1992]. The idea is to start from a naive Bayes classifier (that
is, a star-like Bayesian network with the class at the center) and add edges
between the descriptive attributes that form a (directed) tree. The resulting
classifier is often called a tree-augmented naive Bayes classifier (TAN) [Fried-
man and Goldszmidt 1996]. Not surprisingly, the tree-augmented naive Bayes
classifier that best approximates a given probability distribution w.r.t. Kull-
back–Leibler information divergence can be obtained in basically the same
way as the best tree-structured approximation:

Theorem 7.3.4 [Geiger 1992] Let p be a strictly positive probability distri-
bution over a set U ∪ {C} of attributes, where C is a class attribute. Then
a best tree-augmented naive Bayes classifier approximation of p w.r.t. Kull-
back–Leibler information divergence is obtained by augmenting a naive Bayes
classifier for the attribute C with a maximum weight spanning undirected tree
of U with conditional mutual (Shannon) information

I
(Shannon)
mutual (A, B | C) = H(A | C) + H(B | C) − H(A, B | C)

=
nA∑
j=1

nB∑
k=1

nC∑
i=1

P(aj, bk, ci) log2

P(aj , bk | ci)
P(aj | ci) · P(bk | ci)

providing the edge weights, then directing the edges away from an arbitrarily
chosen root node, and finally computing the (conditional) probability distribu-
tions associated with the resulting graph structure (the star of the naive Bayes
classifier plus the constructed tree) from the given distribution p.

22Kullback–Leibler information divergence was defined in Definition 7.1.3 on page 177.
23Mutual (Shannon) information was defined in Definition 7.1.4 on page 180.

236 CHAPTER 7. LEARNING GLOBAL STRUCTURE

A B

C D

Figure 7.14 The dotted edges cannot both
be the result of ‘‘marrying’’ parents in a
directed graph.

Proof. The proof of this theorem is obtained in direct analogy to the proof
of Theorem 7.3.3: all one has to do is to add the class attribute as an additional
condition in all expressions referring to the tree considered in Theorem 7.3.3.
This changes the occurring instances of mutual information to conditional
mutual information and thus provides the proof of this theorem.

Note that, unfortunately, none of the above Theorems 7.3.1–7.3.4 can be
transferred to possibilistic networks, as can be seen from the simple relational
example discussed in Section 7.1.3 (cf. Figure 7.4 on page 176). Nevertheless,
the construction of a maximum weight spanning tree is a valuable heuristic
method for learning possibilistic networks as well.

As mentioned above, an optimum weight spanning tree may also serve as
the starting point for another algorithm. In the following we suggest an algo-
rithm that can be seen as a modification of an algorithm mentioned above,
namely the one by [Rebane and Pearl 1987] for constructing a polytree. The
basic idea of this algorithm is as follows: first an (undirected) maximum
weight spanning tree is constructed. Then this tree is enhanced by edges
where a conditional independence statement implied by the tree does not
hold (cf. also Section 7.1.2). The main advantage of such an approach is that
by introducing restrictions w.r.t. to which edges may be added, we can easily
control the complexity of the resulting graph—a consideration that is usually
important for applications (cf. also Section 7.3.3).

For example, we may allow adding edges only between nodes that have
a common neighbor in the constructed optimum weight spanning tree. With
this restriction the suggested algorithm is very closely related to the algorithm
by [Rebane and Pearl 1987]: directing two edges so that they converge at a
node is equivalent to adding an edge between the source nodes of these edges
to the corresponding moral graph.24 However, our approach is slightly more
general as can be seen from Figure 7.14. The two dotted edges cannot both be
the result of ‘‘marrying’’ parents. As a consequence, it can learn undirected
graphs that are more complex than moral graphs of polytrees.

An interesting further restriction of the edges that may be added is the
following requirement: if all edges of the optimum weight spanning tree are
removed, the remaining graph must be acyclic. This condition is interesting,
because it guarantees that the resulting graph has hypertree structure and
that its maximal cliques comprise at most three nodes.

24The notion of a moral graph was introduced on page 131.

7.3. SEARCH METHODS 237

Theorem 7.3.5 If an undirected tree is extended by adding edges only be-
tween nodes with a common neighbor in the tree and if the added edges do not
form a cycle, then the resulting graph has hypertree structure and its maximal
cliques contain at most three nodes.

Proof. The proof, which exploits a simple observation about cliques with
more than three nodes and the fact that a triangulated graph has hypertree
structure, can be found in Section A.15 in the appendix.

It should be noted that this approach cannot be guaranteed to find the best
possible graph with the stated properties. This can be seen clearly from the
counterexample studied in Section 7.1.2 (cf. Figure 7.7 on page 182). Note also
that it is difficult to generalize this approach to graphs with larger maximal
cliques, because there seem to be no simple conditions by which it can be
ensured that the resulting graph has hypertree structure and that the maximal
cliques have a size at most n, n > 3. However, this approach may be used to
augment a naive Bayes classifier beyond a tree-augmented version. Then the
cliques are restricted to four nodes, but it can no longer be guaranteed that
the result is optimal w.r.t. Kullback–Leibler information divergence.

Another extension of optimum weight spanning tree construction is the so-
called K2 algorithm [Cooper and Herskovits 1992], which was mentioned in
Section 7.2.4. It is an algorithm for learning directed acyclic graphs by greed-
ily selecting parent attributes. The basic idea is as follows: in order to narrow
the search space and to ensure the acyclicity of the resulting graph a topolog-
ical order25 of the attributes is fixed. Fixing a topological order restricts the
eligible graphs, because the parents of an attribute can only be selected from
the attributes preceding it in the topological order. The topological order can
either be stated by a domain expert or can be derived automatically with the
help of conditional independence tests [Singh and Valtorta 1993] (compare
also Section 7.3.4).

As already indicated, the parent attributes are selected greedily: at the
beginning the value of an evaluation measure is computed for an attribute,
which means treating it as a parentless child attribute. Then in turn each of
the parent candidates (the attributes preceding an attribute in the topological
order) is temporarily added to the child attribute and the evaluation measure
is recomputed. The parent candidate that yields the highest value of the
evaluation measure is selected as a first parent and is added permanently.

In the third step each remaining parent candidate is added temporarily as
a second parent and again the evaluation measure is recomputed. As before,
the parent candidate that yields the highest value of the evaluation measure
is permanently added. The process stops if either no more parent candidates
are available, a given maximal number of parents is reached, or none of the
parent candidates, if added, yields a value of the evaluation measure that
exceeds the best value obtained in the preceding step.

25The notion of a topological order was introduced in Definition 4.1.12 on page 100.

238 CHAPTER 7. LEARNING GLOBAL STRUCTURE

A

C D

B

pA a1 a2

0.5 0.5

pB b1 b2

0.5 0.5

pC|AB a1b1 a1b2 a2b1 a2b2

c1 0.9 0.3 0.3 0.5
c2 0.1 0.7 0.7 0.5

pD|AB a1b1 a1b2 a2b1 a2b2

d1 0.9 0.3 0.3 0.5
d2 0.1 0.7 0.7 0.5

pAD a1 a2

d1 0.3 0.2
d2 0.2 0.3

pBD b1 b2

d1 0.3 0.2
d2 0.2 0.3

pCD c1 c2

d1 0.31 0.19
d2 0.19 0.31

The edge C → D
is selected first.

Figure 7.15 Greedy parent selection can lead to suboptimal results, if there is
more than one path connecting two attributes.

It is clear that this algorithm is equivalent to the construction of an op-
timum weight spanning tree if only one parent is selected per attribute—
provided, of course, a suitable topological order has been fixed. If more than
one parent may be selected, polytrees or general directed acyclic graphs may
be learned. From the above theorems and their proofs it is clear that if there
is a perfect map of the given distribution that is a directed tree or a polytree,
then the K2 algorithm will yield a perfect map, provided a topological order
compatible with a perfect map is fixed and an evaluation measure satisfying
the presuppositions of the above theorems is used.

For more general graphs, however, the greedy character of the algorithm
can lead to a selection of wrong parent attributes. An example illustrating
this is shown in Figure 7.15. Independent of the topological order used, a
wrong parent attribute is selected, namely either C as a parent for D or D as
a parent for C, although these two attributes are conditionally independent
given A and B. Note that from the distributions shown in Figure 7.15 it is
immediately clear that this behavior is independent of the evaluation measure.

In order to cope with this drawback one may consider adding a step in
which parent attributes are removed, again in a greedy fashion. With this
approach the failure of the K2 algorithm in the above example is amended. If,
for instance, A, B, and C have been selected as parents for the attribute D, this
second step would remove the attribute C and thus the correct graph would
be found. However, it should be noted that, in general, incorrect selections
are still possible, so the result may still be suboptimal.

7.3. SEARCH METHODS 239

Another drawback of the K2 algorithm is the requirement of a topolog-
ical order of the attributes, although this drawback is mitigated, as already
mentioned, by methods that automatically construct such an order [Singh and
Valtorta 1993]. An alternative is the following generalized version: all possible
directed edges (each of which represents the selection of a parent attribute)
are evaluated and the one receiving the highest score is selected. In each step
all candidate edges are eliminated that would lead to a directed cycle and
only the remaining ones are evaluated. The process stops if no edge that may
be added leads to an improvement of the evaluation measure. However, such
an unrestricted search suffers from the drawback that in a directed acyclic
independence graph an attribute is, obviously, strongly dependent not only
on its parents, but also on its children. In such a case the properties of the
evaluation measure—for instance, whether it yields a higher value for an edge
from an attribute having many values towards an attribute having only few
than for an edge having the opposite direction—determine the direction of
the edge, which is not (always) desirable (cf. also page 219).

7.3.3 Guided Random Graph Search

If an exhaustive search is infeasible or very costly, a standard solution is
to use some heuristic search method, for example, a guided random search.
The two best known examples of this class of search methods are simulated
annealing and genetic or evolutionary algorithms. We call these approaches
‘‘guided random search methods’’, because both involve an element of chance.
However, they are also guided by an evaluation measure.

Simulated Annealing

The basic idea of simulated annealing [Metropolis et al. 1953, Kirkpatrick
et al. 1983] is to start with a randomly generated candidate solution, which
is evaluated. Then this candidate solution is modified randomly and the re-
sulting new candidate solution is evaluated. If the new candidate solution is
better than the old, it is accepted and replaces the old solution. If it worse, it
is accepted only with a certain probability that depends on how much worse
the new candidate solution is (the worse it is, the less likely it is to be ac-
cepted). In addition, this probability is lowered in the course of time, so that
eventually only those new candidate solutions are accepted that are better
than the current. Often the best solution found so far is recorded in parallel.

The reason for accepting a new candidate solution, even though it is worse
than the current, is that without doing so the approach would be very similar
to a gradient ascent (or descent). The only difference is that the direction
of the gradient of the solution quality is not computed, but that the upward
(or downward) direction is searched for by trial and error. However, it is
well known that a gradient ascent (or descent) can easily get stuck in a local

240 CHAPTER 7. LEARNING GLOBAL STRUCTURE

optimum. Accepting worse candidate solutions, at least at the beginning of
the process, seeks to overcome this undesired behavior. Intuitively, accept-
ing worse candidate solutions makes it possible to cross the ‘‘barriers’’ that
separate local optima from the global optimum, that is, regions of the search
space where the quality of the candidate solutions is worse. Later, however,
when the probability for accepting worse candidate solutions is lowered, the
quality function is optimized locally in a gradient ascent manner.

The name ‘‘simulated annealing’’ for this approach stems from the fact
that it is analogous to the physical minimization of the energy function (more
precisely: the atom lattice energy) when a heated piece of metal is cooled down
very slowly. This process is usually called ‘‘annealing’’ and is used to soften
a metal, relieve internal stresses and instabilities, and thus make it easier to
work or machine. Physically, the thermal activity of the atoms prevents them
from settling in a configuration that is only a local minimum of the energy
function. They ‘‘jump out’’ of this configuration. Of course, the ‘‘deeper’’
the (local) energy minimum, the harder it is for the atoms to ‘‘jump out’’.
Therefore they are likely to settle finally in a configuration of very low energy,
the optimum of which is, in the case of a metal, a monocrystalline structure.
It is clear, though, that it cannot be guaranteed that the global minimum of
the energy function is reached in this process. Especially if the piece of metal
is not heated long enough, the atoms are likely to settle in a configuration that
is only a local minimum (a polycrystalline structure in the case of a metal).
Therefore it is important to lower the temperature very slowly, so that there
is a high probability that local minima, once reached, can be left again.

This energy minimization can be visualized by imagining a ball rolling
around on a curved landscape [Nauck et al. 1997]. The function to be mini-
mized is the potential energy of the ball. At the beginning the ball is endowed
with a certain kinetic energy which enables it to ‘‘climb’’ the slopes of the
landscape. But due to friction this kinetic energy is diminished in the course
of time and finally the ball comes to a rest in a valley (a minimum of the
function to be optimized). Since it takes a higher kinetic energy to leave a
deep valley than to leave a shallow one, the final resting point is likely to be
in a rather deep valley and maybe in the deepest one (the global minimum).

The thermal energy of the atoms in the annealing process or the kinetic
energy of the ball in the illustration is modeled by the decreasing probabil-
ity for accepting a worse candidate solution. Often an explicit temperature
parameter is introduced, from which the probability (parameterized by how
much worse the new candidate solution is) is computed. Since the probability
distribution of the velocities of atoms is often an exponential distribution (cf.,
for example, the Maxwell distribution, which describes the velocity distribu-
tion for an ideal gas [Greiner et al. 1987]), a function like P(accept) = ce−

dQ
T

is frequently used to compute the probability for accepting a worse solution,
where dQ is the quality difference of the current and the new candidate solu-
tion, T is the temperature parameter and c is a normalization constant.

7.3. SEARCH METHODS 241

Genetic or Evolutionary Algorithms

The idea of genetic or evolutionary algorithms [Holland 1975, Koza 1992,
Michalewicz 1998, Fogel 2006], is to employ an analog of biological evolution
[Darwin 1859, Dawkins 1976, Dawkins 1986] to optimize a given function
(here: the quality of a graphical model w.r.t. the given data). In this approach
the candidate solutions are coded into chromosomes with individual genes
representing the components of a candidate solution. For example, for learning
undirected graphical models a chromosome may be a simple bit-string in
which each bit is a gene representing one edge. If the bit is set, the edge is
present in the candidate solution described by the chromosome, otherwise it
is absent. Thus each bit-string describes an undirected graph.

A genetic or evolutionary algorithm starts by generating a random initial
population of individuals, each with its own chromosome. These individu-
als—or, to be more precise, the candidate solutions represented by their chro-
mosomes26—are evaluated by a fitness function, which is the function to be
optimized (or is derived from it by incorporating solution constraints).

From the initial population a new population is generated by two means:
the first is a simple selection process. A certain number of individuals is
selected at random, with the probability that a given individual gets selected
depending on its fitness. A simple method to achieve such a selection behavior
is so-called tournament selection: a certain number of individuals is picked
at random from the population and the one with the highest fitness among
them (the ‘‘winner of the tournament’’) is selected. It is clear that with this
selection method individuals with a high fitness have a better chance to be
passed on to the new population than those with a low fitness. Therefore only
the fittest individuals of a population ‘‘survive’’, illustrating the (somewhat
simplistic) characterization of biological evolution as the survival of the fittest.
Of course, the individuals are also randomly modified from time to time (as in
simulated annealing), thus imitating mutation, which in living beings occurs
due to errors in the chromosome copying process.

The second process that is involved in generating the new population imi-
tates sexual reproduction. Two ‘‘parent’’ individuals are chosen, again with a
probability depending on their fitness (for example, using tournament selec-
tion). Then their chromosomes are crossed-over in order to obtain two new
individuals that differ from both ‘‘parents’’.27 A very simple crossing-over
method is to fix a breakage point on the chromosomes and then to exchange

26As in biology one may distinguish between the genotype of a living being, which is its
genetic constitution, and its phenotype, which denotes its physical appearance or, in the
context of genetic algorithms, the represented candidate solution.

27The term crossing-over was chosen in analogy to the biological process with the same
name in which genetic material is exchanged between (homologous) chromosomes by break-
age and reunion. This process happens during meiosis (reduction division), that is, the
division of (homologous) chromosome pairs (of a diploid chromosome set) so that each
gamete (a sex cell, for example an egg) receives one chromosome.

242 CHAPTER 7. LEARNING GLOBAL STRUCTURE

one of the parts. The idea underlying the crossing-over of chromosomes is
that each of the ‘‘parent’’ chromosomes may already describe a good partial
solution, which accounts for their high fitness (recall that the ‘‘parents’’ are
selected with a probability depending on their fitness, so individuals with
a high fitness are more likely to become ‘‘parents’’). By crossing-over their
chromosomes there is a reasonable chance that these partial solutions are
combined and that consequently an ‘‘offspring’’ chromosome is better than
both of the ‘‘parents’’. Formalized, this plausible argument is the basis of the
schema theorem [Holland 1975], which tries to explain why evolution is much
faster with sexual reproduction than without it (that is, with mutation being
the only mechanism by which genetically new individuals can emerge).

The new population is then taken as a starting point for generating the
next and so on, until a certain number of generations has been created, or
the fitness of the best member of the population has not increased in the last
few generations, or some other termination criterion is met. The result of a
genetic algorithm is the fittest individual of the final generation or the fittest
individual that emerged during the generations (if it is kept track of).

There are several variants of genetic or evolutionary algorithms, depend-
ing on whether only ‘‘offspring’’ (obtained by mutation or crossing-over) is
allowed into the next population or whether ‘‘parents’’ are passed on, too,
whether the population is processed as a whole or split into subgroups with
‘‘mating’’ occurring only within subgroups and only rare ‘‘migrations’’ of in-
dividuals from one subpopulation to another, etc. [Michalewicz 1998].

Application to Learning Graphical Models

As an illustration of how guided random search can be used to learn graphi-
cal models from data, we consider a simulated annealing approach to learning
undirected graphs with hypertree structure28 [Borgelt and Gebhardt 1997].
That is, we consider a method that tries to find a family of sets of attributes
having the running intersection property, so that the corresponding undi-
rected graph (that is, the undirected graph, the maximal cliques of which are
induced by these attribute sets) is optimal w.r.t. a given evaluation measure.

Trying to find directly the maximal cliques of an undirected graph instead
of working with individual (directed or undirected) edges has several advan-
tages: in the first place, compared to an approach based on directed acyclic
conditional independence graphs the larger search space is avoided (cf. Sec-
tion 7.3.1). Secondly, compared to an approach based on arbitrary undirected
conditional independence graphs we need not determine the maximal cliques
of graphs—which is necessary for evaluating them, because we have to com-
pute the factor potentials on the maximal cliques (cf. Sections 3.3.3, 4.2.2,
and 5.2) or an equivalent thereof—but have them readily available. In addi-
tion, for an undirected graph with hypertree structure it is much simpler to

28The notion of a hypertree structure was defined in Definition 4.1.27 on page 116.

7.3. SEARCH METHODS 243

compute (an equivalent of) the factor potentials for the maximal cliques (see
below). Furthermore, since not all undirected graphs have hypertree struc-
ture, the search space is smaller. Finally, and this may be the most important
advantage in some applications, this approach allows us to control directly the
complexity of the learned graphical model and, especially, the complexity of
reasoning with this model, namely by limiting the size of the maximal cliques.

That the complexity of reasoning can be controlled in this way is obvious
if join tree propagation (cf. Section 4.2.2) is used to update the represented
distribution w.r.t. given evidence, but holds equally well for other propagation
methods. In order to understand why exerting such control is more difficult
with other learning approaches, recall that the preparations for join tree prop-
agation involve a triangulation step (cf. Algorithm 4.2.1 on page 132), in which
edges may be added to the graph. How many edges have to be added in this
step depends in a complex way on the structure of the graph, which makes it
practically impossible to foresee and thus to control the size of the maximal
cliques of the triangulated graph (which determine the reasoning complexity).

The main task when developing a simulated annealing approach to learn-
ing undirected graphs with hypertree structure is, obviously, to find an effi-
cient method to randomly generate and modify such graphs. In the following
we consider two alternatives and discuss their respective merits and draw-
backs. Both approaches exploit the fact that in order to ensure that a graph
has hypertree structure we only have to make sure that the family of attribute
sets underlying its maximal cliques has the running intersection property,29

which guarantees acyclicity, and that there is a path between any pair of
nodes, which guarantees connectedness (although in applications it is often
beneficial and convenient to relax the latter condition).

The first approach relies directly on the defining condition of the running
intersection property for a family M of sets, namely that there is an ordering
M1, . . . , Mm of the sets in M, so that

∀i ∈ {2, . . . , m} : ∃k ∈ {1, . . . , i − 1} : Mi ∩
(⋃

1≤j<i

Mj

)
⊆ Mk.

When referring to graphs with hypertree structure such an ordering of the
node sets underlying the maximal cliques is usually called a construction
sequence (cf. the proof of Theorem 4.1.28 in Section A.5 in the appendix).

The idea of the first approach is to select the node sets in exactly this
order: we start with a random set M1 of nodes. In step i, i ≥ 2, a set Mk,
1 ≤ k < i, is selected at random and the set Mi, which is to be added in
this step, is formed by randomly selecting nodes from Mk ∪

(
U−

⋃
1≤j<i Mj

)
making sure that at least one node from the set Mk and at least one node
not in

⋃
1≤j<i Mj is selected. This process is repeated until all nodes are

contained in at least one set Mj , 1 ≤ j ≤ i. It is clear that parameters of this

29The running intersection property was defined in Definition 4.1.27 on page 116.

244 CHAPTER 7. LEARNING GLOBAL STRUCTURE

method are the probabilities of the different set sizes and the probability with
which a node in Mk or a node in

⋃
1≤j<i Mj is selected. Convenient choices

are uniform distributions on sizes as well as on nodes.
In order to randomly modify a given undirected graph with hypertree

structure or, equivalently, the family M of node sets underlying its maximal
cliques, this approach exploits the so-called Graham reduction of this family.
Graham reduction is a simple method to test whether a family M of sets has
the running intersection property [Kruse et al. 1994]:

Algorithm 7.3.6 (Graham reduction)
Input: A finite family M of subsets of a finite set U of objects.
Output: Whether M has the running intersection property.
The family M of sets of objects is reduced by iteratively applying one of the
following two operations:
1. Remove an object that is contained in only one set M ∈ M.

2. Remove a set M1 ∈ M that is a subset of another set M2 ∈ M.
The process stops if neither operation is applicable. If all objects appearing in
the sets of the original family M could be removed, the original family M has
the running intersection property, otherwise it does not have it.

Note that this algorithm is non-deterministic, because situations may arise in
which both operations are applicable or in which one of them is applicable to
more than one object (operation 1) or more than one set (operation 2), respec-
tively. Note also that the first operation need not be implemented explicitly
if one maintains a counter for each object, which records the number of sets
in the current family M the object is contained in. The subset test is then
programmed in such a way that it takes into account only those objects for
which the counter is greater than 1. Finally, note that this algorithm yields
a construction sequence: reversing the order in which the sets M ∈ M were
removed from M obviously provides us with such a sequence.

How Graham reduction works can easily be visualized by considering a
join tree (cf. page 133) of the graph corresponding to the family M, for
example, the join tree for the Danish Jersey Cattle example (cf. Figure 4.18
on page 132). The node sets are removed by starting with those represented
by the leaves of the join tree and then working inwards.

This illustration makes it clear that Graham reduction can also be seen
as a hypertree pruning method and this provides us directly with an idea of
how to exploit it for randomly modifying graphs with hypertree structure:
we simply execute a few steps of the Graham reduction, randomly selecting
the set to be removed if more than one can be removed at the same time,
until only a certain percentage of the sets remain or only a certain percentage
of the nodes is still covered. The reduced set M is then extended again in the
same manner in which it was generated in the first place.

7.3. SEARCH METHODS 245

Unfortunately, although this approach is simple and clearly efficient, it
has a serious drawback: suppose that by accident the initial graph is a simple
chain. Then in each step only the two sets corresponding to the edges at
the ends of (the remainder of) the chain can be removed. Therefore, if only a
limited number of sets is removed, there is no or only a very small chance that
the edges in the middle of the chain are removed. Obviously, this argument is
not restricted to chain-like graphs: in general, the ‘‘inner cliques’’ of a graph
are much less likely to be removed, because certain ‘‘outer cliques’’ have to be
removed before an ‘‘inner clique’’ can be removed. Therefore the modification
of candidate solutions with this method is severely biased, which renders it
unsuited for most applications. Consequently, we should look for less biased
methods, although it was clearly necessary to consider this approach first,
because it is the one that directly suggests itself.

The second approach which we are going to discuss is the method used in
[Borgelt and Gebhardt 1997], although it was not described in detail there. It
is based on the insight that a family of node sets has the running intersection
property if it is constructed by successively adding node sets Mi to an initially
empty family according to the following two conditions:
1. Mi must contain at least one pair of nodes that are not connected in the

graph represented by {M1, . . . , Mi−1}.
2. For each maximal subset S of nodes of Mi that are connected to each

other in the graph represented by {M1, . . . , Mi−1} there must be a set Mk,
1 ≤ k < i, so that S ⊂ Mk.

It is clear that the first condition ensures that all nodes are covered after a
certain number of steps. It also provides us with a stopping criterion. The
running intersection property is ensured by the second condition alone.

Theorem 7.3.7 If a family M of subsets of objects of a given set U is con-
structed observing the two conditions stated above, then this family M has the
running intersection property.

Proof. The proof is carried out by a simple induction on the sets in M.
It can be found in Section A.16 in the appendix.

With this method, the family M is constructed by forming subfamilies of node
sets, each of which represents a connected component of the graph, that is, a
subgraph, the nodes of which are connected to each other, but not to nodes in
other subfamilies. Obviously, the main advantage of this approach is that we
can connect subfamilies of node sets, whereas with the first approach we can
only extend one family. This provides us with considerable freedom w.r.t. a
random modification of the graph represented by a family of node sets. At first
sight, it may even look as if we could select any subset of a given family of node
sets and then fill it, respecting the two conditions stated above, with randomly
generated sets to cover all nodes. However, an entirely unrestricted selection
is not possible, because, unfortunately, if a family of node sets has the running

246 CHAPTER 7. LEARNING GLOBAL STRUCTURE

intersection property, a subset of it need not have it. To see this, consider the
family M = {{A1, A2, A3}, {A2, A4, A5}, {A3, A5, A6}, {A2, A3, A5}}, which
has the running intersection property, as can easily be verified by applying
Graham reduction. Nevertheless, if the last set is removed, the property is
lost. Therefore, since the running intersection property of the subfamilies is
a prerequisite of the proof of Theorem 7.3.7, we have to be careful when
choosing subsets of a given family of node sets.

Fortunately, there is a very simple selection method which ensures that
all resulting subfamilies have the running intersection property. It consists in
shuffling the sets of the given family M into a random order and trying to add
them in this order to an initially empty family, respecting the two conditions
of the method, until a certain percentage of the sets of the original family has
been added or a certain percentage of the nodes is covered. Clearly, the above
theorem ensures that the subfamilies selected in this way have the running
intersection property. The resulting family of node sets is then filled, again
respecting the two conditions, with randomly generated node sets to cover all
nodes, which yields a randomly modified graph.

It is clear that this method to modify a given graph with hypertree struc-
ture randomly is much less biased than the method of the first approach.
It should be noted, though, that it is not completely unbiased due to the
fact that the conditions a new set has to satisfy are, in a way, too strong.
Situations can arise in which a set is rejected, although adding it would not
destroy the running intersection property of a subfamily of node sets. As
an example consider the family {{A1, A3, A4}, {A2, A4, A5}} and the new set
{A3, A4, A5, A6}. Since the nodes A3, A4, and A5 are already connected in
the graph represented by the family, but are not contained in a single set of
the family, the new set is rejected. However, as can easily be verified, if the
family were enlarged by this set, it would still have the running intersection
property.30 It is evident, though, that this bias is negligible.

Having constructed a random graph with hypertree structure, either from
scratch or by modifying a given graph, we must evaluate it. If the chosen
evaluation measure (cf. Section 7.2) is defined on maximal cliques, or if the
graphical model to be learned is an undirected possibilistic network that is to
be evaluated by summing the weighted degrees of possibility for the tuples in
the database (cf. Section 7.1.3), we only have to determine the marginal dis-
tributions on the maximal cliques. From these the network quality can easily
be computed. If, however, the chosen evaluation measure is defined on con-
ditional distributions, we have to transform the graph into a directed acyclic
graph first, so that an appropriate set of conditional distributions can be de-
termined. If we have a probabilistic graphical model that is to be evaluated by
computing the log-likelihood of the database to learn from (cf. Section 7.1.2),

30A simple way to see this is to note that this family can be constructed if the sets are
generated in a different order, for example if the set {A3, A4, A5, A6} is added first.

7.3. SEARCH METHODS 247

it is convenient to carry out this transformation, because computing the log-
likelihood of the dataset is much easier w.r.t. a Bayesian network.

A simple method to turn an undirected graph with hypertree structure
into a directed acyclic graph is the following: first we obtain a construction
sequence for the family of node sets underlying its maximal cliques. This can
be achieved, for instance, by applying Graham reduction (cf. Algorithm 7.3.6
on page 244). Then we process the node sets in this order. For each set we
divide the nodes contained in it into two subsets: those nodes that are already
processed, because they are contained in a node set preceding the current one
in the construction sequence, and those that are unprocessed. We traverse the
unprocessed nodes and assign to each of them as parents all already processed
nodes of the current node set. Of course, after a node has been processed in
this way, it is transferred to the set of processed nodes and must also be
assigned as a parent to the next unprocessed node (where applicable).

Finally, for a simulated annealing search, we must consider the probabil-
ity function for accepting a solution that is worse than the current one. The
problem here is that we usually do not know in advance the maximal quality
difference of two graphical models and hence we cannot compute the normal-
ization constant in the exponential distribution P(accept) = ce−

dQ
T . To cope

with this problem one may use an adaptive approach, which estimates the
maximal quality difference from the quality difference of the best and the
worst graphical model inspected so far. A simple choice is the unbiased esti-
mator for a uniform distribution [Larsen and Marx 2005], that is,

d̂Qmax =
n + 1

n
|Qbest − Qworst|,

where n is the number of graphical models evaluated so far, although the
uniform distribution assumption is, of course, debatable. However, it is not
very likely that the exact estimation function has a strong influence.

With these considerations we finally have all components needed for a sim-
ulated annealing approach to learning a graphical model from data. It should
be noted that, of course, these methods to randomly generate and modify an
undirected graph with hypertree structure can easily be adapted so that they
can be used in a genetic or evolutionary algorithm. Other approaches in this
direction include [Larrañaga et al. 1996, Tucker and Liu 1999, Hsu 2004].

7.3.4 Conditional Independence Search

In Section 7.1 we considered the approach to learning a graphical model from
data which is based on conditional independence tests w.r.t. an exhaustive
search of the possible graphs. However, the considerations of Section 7.3.1,
which showed that the search space is huge unless the number of attributes
is very small, render this approach infeasible for applications, at least in such

248 CHAPTER 7. LEARNING GLOBAL STRUCTURE

a direct form. Unfortunately, in contrast to the approaches based on a direct
test for decomposability or on the strengths or marginal dependences, it is
much more difficult to use conditional independence tests in a heuristic search.
The reason is that testing whether the conditional independence statements
represented by a given graph hold yields only a binary result: either the
statements hold (at least w.r.t. to some evaluation measure and a given error
bound) or they do not. However, for a heuristic search we need a gradual
measure of how much better or worse one graph is compared to another.

Of course, one may try to construct such a measure, for example, by sum-
ming the assessments (computed with an evaluation measure) of all condi-
tional independence statements represented by the graph. However, it is hard
to see how such a measure can be normalized appropriately so that two graphs
with a different structure can be compared with it. In addition, we face the
problem that the number of conditional independence statements represented
by a given graph can be very large. An extreme example is a simple undirected
chain: the two attributes at the ends of the chain must be conditionally inde-
pendent given any nonempty subset of the attributes between them (and these
are, of course, not all conditional independence statements that have to be
considered in this case). Although it may be possible to reduce the number of
conditional independence statements that have to be considered by exploiting
the equivalence of the different Markov properties of graphs (cf. Section 4.1.5)
or by simply deciding to consider only pairwise conditional independences, it
is clear that for a graph over a reasonable number of attributes there are still
far too many conditional independence statements that have to be checked.
Therefore such an approach appears to be, at best, inconvenient.

As a consequence, conditional independence tests are usually employed in
an entirely different manner to search for a suitable conditional independence
graph. The rationale underlying the best-known approach [Spirtes et al. 2001]
is the following: suppose we knew that for the domain under consideration
there is a perfect map,31 that is, a graph that represents exactly those con-
ditional independence statements that hold in the joint distribution on the
domain. Then we could infer from a conditional independence A⊥⊥ B | S,
where A and B are attributes and S is a (possibly empty) set of attributes,
that there cannot be an edge between A and B. The reason is that in a perfect
map this conditional independence statement must be represented, but would
not be, obviously, if there was an edge between A and B. Therefore, provided
that there is a perfect map of the conditional independence statements that
hold in a given distribution, we can find a perfect map (which need not be
unique) with the following straightforward algorithm [Spirtes et al. 2001]:

Algorithm 7.3.8 (find a perfect map with conditional independence tests)
Input: A distribution δ over a set U of attributes.
Output: A perfect map G = (U, E) for the distribution.

31The notion of a perfect map was defined in Definition 4.1.15 on page 103.

7.3. SEARCH METHODS 249

1. For each pair of attributes A and B, search for a set SAB ⊆ U−{A, B}, so
that A⊥⊥δ B | SAB holds, that is, so that A and B are conditionally inde-
pendent given SAB. If there is no such set SAB, connect the two attributes
by an undirected edge.

If a directed acyclic perfect map �G = (U, �E) is to be found, the following two
steps have to be carried out in order to direct the edges:
2. For each pair of nonadjacent attributes A and B with a common neigh-

bor C /∈ SAB, direct the edges towards C, that is, A → C ← B.

3. Recursively direct all undirected edges according to the rules:

• If for two adjacent attributes A and B there is a strictly directed path
from A to B not including A − B, then direct the edge towards B.

• If there are three attributes A, B, and C with A and B not adjacent,
A → C, and C − B, then direct the edge C → B.

• If neither rule is applicable, arbitrarily direct an undirected edge.

Obviously, the first step of this algorithm implements the idea stated above:
only those attributes are connected by an edge for which there is no set of
attributes that renders them conditionally independent. Note that for this
step it is crucial that a perfect map actually exists. Otherwise edges may be
omitted that are needed in an independence map (see also below).

The reasons underlying the second step of the algorithm are as follows:
if a set SAB of attributes renders two attributes A and B conditionally in-
dependent, it must block all paths from A to B in the graph (otherwise this
conditional independence statement would not be represented by the graph).
It follows that it must also block a path that runs via a common neighbor C
of A and B. However, if this common neighbor C is not in SAB, the only
way in which this path can be blocked (given SAB) is by the fact that it has
converging edges at C (cf. the definition of d-separation32).

The first rule of the third step simply exploits the fact that the resulting
graph must be acyclic. If there already is a directed path from A to B not
including the edge connecting A and B, directing the edge from B towards A
would introduce a directed cycle. Therefore it must be directed the other way.
The second rule of the third step exploits the fact that under the conditions
stated in this rule, the attribute C must be in the set SAB, because otherwise
step 2 of the algorithm would have directed the edge C−B towards C. How-
ever, if C is in SAB, the path from A to B via C can only be blocked by SAB if
it does not have converging edges at C. Consequently, the edge C − B cannot
be directed towards C, but must be directed towards B. Finally, the third rule
of the third step avoids deadlocks, when no other rule is applicable. In order
to understand why this is necessary, consider, for example, that the under-
lying perfect map is a simple (directed) chain. In this case neither step 2

32The notion of d-separation was defined in Definition 4.1.14 on page 100.

250 CHAPTER 7. LEARNING GLOBAL STRUCTURE

nor the first two rules of step 3 will direct any edges. Hence there must be a
default rule to ensure that all edges will eventually be directed.

Note that the actual learning takes place in the first two steps of this algo-
rithm. In order to understand this, recall that all Markov equivalent directed
acyclic graphs share the same skeleton33 and the same set of v-structures34

(cf. Theorem 4.1.24 on page 113). Obviously, the skeleton of the graph is
determined in the first step of the algorithm, while the second identifies the
v-structures. Therefore, after these two steps, the graph is identified up to
Markov equivalence. In the third step it is only ensured that no directed cy-
cles (first rule of the third step) and no additional v-structures are introduced
(second rule of the third step). That is, these two rules fix edge directions
that are implied by the v-structures found in the second step. Hence, if we
cancel the third rule and thus implicitly accept that the algorithm may stop
with a graph with some undirected edges, it yields a compact representation
of the class of all Markov equivalent graphs that are perfect maps.

Although this algorithm appears to be simple and convenient, there are
some problems connected with it, which we are going to discuss, together
with attempts at their solution, in the remainder of this section. The first
problem is that in order to make sure that there is no set SAB that renders
two attributes A and B conditionally independent, it is, in principle, necessary
to check all subsets of U − {A, B}, of which there are

s =
|U|−2∑
i=1

(
|U| − 2

i

)
.

Even worse, some of these sets contain a large number of attributes (unless
the number of attributes in U is small), so that the conditional independence
tests to be carried out are of high order, where the order of a conditional
independence test is simply the number of attributes in the conditioning set.
The problem with a high order conditional independence test is that we have
to execute it w.r.t. a database of sample cases by evaluating the joint distri-
bution of the two attributes for each distinct instantiation of the conditioning
attributes. However, unless the amount of available data is huge, the num-
ber of tuples with a given instantiation of a large number of conditioning
attributes will be very small (if there are such tuples at all). Consequently
the conditional independence test will not be reliable. In general: the higher
the order of the test, the less reliable the result.

Often this problem is dealt with by assuming the existence of a sparse
perfect map, that is, a perfect map with only a limited number of edges, so
that any pair of attributes can be separated by an attribute set of limited
size. With this assumption, we only have to test for conditional independence

33The notion of a skeleton was defined in Definition 4.1.22 on page 112.
34The notion of a v-structure was defined in Definition 4.1.23 on page 112.

7.3. SEARCH METHODS 251

A

B D

C

Figure 7.16 Directed acyclic graph
constructed by Algorithm 7.3.8 for
the probability distribution shown
in Figure 4.4 on page 105.

up the order that is fixed by the chosen size limit. If for two attributes A and
B all conditional independence tests with an order up to this upper bound
failed, we infer—from the assumption that the graph is sparse—that there is
no set SAB that renders them conditionally independent.

The sparsest graph, in which nevertheless each pair of attributes is con-
nected, is, of course, a tree or its directed counterpart, a polytree. Thus it is
not surprising that there are special versions of the above algorithm that are
restricted to polytrees [Huete and de Campos 1993, de Campos 1996]. If the
underlying perfect map is a polytree, the conditional independence tests can
obviously be restricted to orders 0 and 1, because for any pair of attributes
there is only one path connecting them, which can be blocked with at most
one attribute. An overview of other specialized versions that consider some-
what less restricted classes of graphs, but which are all, in one way or the
other, based on the same principle, is given in [de Campos et al. 2000].

Note that the assumption of a sparse graph is admissible, because it can
only lead to additional edges and thus the result of the algorithm must be at
least an independence map (although it may be more complex than the type
of graph assumed, for example more complex than a polytree). Nevertheless
it is, of course, a rather naive assumption that often fails in applications.

The second problem connected with Algorithm 7.3.8 is, of course, that it
is based on the assumption that there is a perfect map of the distribution.
As already discussed in Section 4.1.4, there are distributions for which there
is no perfect map, at least no perfect map of a given type. Hence the question
suggests itself, what the result of this algorithm will be if the assumption that
there is a perfect map does not hold, especially, whether it yields at least an
independence map in this case (which would be satisfactory).

Unfortunately, if the perfect map assumption does not hold, the graph
induced by Algorithm 7.3.8 can be severely distorted: consider first the induc-
tion of an undirected graph (that is, only the first step is carried out) from the
distribution shown in Figure 4.3 on page 104. Obviously, because A⊥⊥ B | ∅
holds, the result is the graph shown in the same figure—except that the edges
are not directed. However, this makes a considerable difference: whereas the
directed graph represents A⊥⊥ B | ∅ and A⊥	⊥ B | C, the undirected graph
represents just the opposite, namely A⊥	⊥ B | ∅ and A⊥⊥ B | C. Therefore
Algorithm 7.3.8 yields a result in this case that is neither a dependence map
nor an independence map of the given distribution.

252 CHAPTER 7. LEARNING GLOBAL STRUCTURE

A similar problem occurs with directed graphs: consider the induction of a
directed acyclic graph from the distribution shown in Figure 4.4 on page 105.
Algorithm 7.3.8 yields the undirected perfect map shown in this figure after its
first step. However, since the set of conditional independence statements that
hold in this distribution cannot be represented perfectly by a directed acyclic
graph (cf. Section 4.1.4), it is not surprising that an attempt to direct the
edges of this graph while preserving the represented conditional independence
statements must fail. Indeed, since the second step does not direct any edges
(as no v-structures can be identified), the default rule of the third step directs
an arbitrary edge, say, A → B. Then, by the other two rules of the third step,
all other edges are directed and thus we finally obtain the graph shown in
Figure 7.16. Since it represents the statements A⊥⊥ C | B and A⊥	⊥ C | {B, D},
whereas in the distribution it is A⊥	⊥ C | B and A⊥⊥ C | {B, D}, this graph is
neither a dependence map nor an independence map.

Note that in the process of directing the edges the need to avoid directed
cycles forced us to introduce a v-structure, by prescribing to direct the edge
A − D towards D. Alternatively, we may say that once the edges A → B,
B → C, and C → D have been directed, a conflict occurs in the third step of
Algorithm 7.3.8: the first rule prescribes to direct the edge A−D towards D
(in order to avoid a directed cycle), whereas the second rules prescribes to di-
rect it towards A (in order to avoid creating a v-structure). From this conflict
(or, if we give precedence to the first rule, from the unjustified introduction
of a v-structure) we can detect that the algorithm failed.

In order to fix this problem and to ensure that the resulting graph, whether
directed or undirected, is at least a conditional independence graph, addi-
tional edges have to be inserted. Fortunately, for directed graphs, it suffices
to apply one of the conflicting rules of the third step arbitrarily and then to
consider the additional v-structures that are introduced in this way. For these
v-structures an edge (of suitable direction) has to be added between the nodes
the converging edges start from. As this may introduce new (unjustified) v-
structures (unfortunately it is not always possible to avoid this by choosing
the direction of the edge appropriately), inserting such edges may have to be
carried out recursively. In the example discussed above (see Figure 7.16) no
new v-structures results if we only direct the inserted edge from C to A. How-
ever, even if we directed the edge from A to C no further processing would
be necessary, because the nodes A and B, from which the edges of the newly
introduced v-structure at C start, are already connected by an edge.

This procedure of correcting the result of learning a directed acyclic graph
also indicates a way to amend the failure of the algorithm in the case of
undirected graphs. All we have to do is to check, in an additional step, whether
a common neighbor C of two nonadjacent attributes A and B is in the set SAB

found in the first step. If it is not, a directed graph would have converging
edges at C and thus we have to add an edge between A and B (compare the
construction of a moral graph that was discussed in Section 4.2.2).

7.3. SEARCH METHODS 253

A B

C

A = a1 A = a2pABC
B = b1 B = b2 B = b1 B = b2

C = c1 25 5 5 15
C = c2 15 5 5 25

Figure 7.17 A database that suggests inconsistent independences.

A problem that is closely related to the one just discussed is that even
if the distribution underlying a database of sample cases has a perfect map,
the set of conditional independence statements that is determined with a
chosen test criterion (that is, an evaluation measure and an error bound or
significance level) from the database may not have one. Even worse, this set
of conditional independence statements may be inconsistent. The reason is
that a conditional independence test cannot be expected to be fully reliable
due to possible random fluctuations in the data and thus may yield wrong
results (that is, wrong w.r.t. what holds in the underlying distribution).

As an example consider the database shown in Figure 7.17 (each table en-
try indicates the number of occurrences of the respective value combination).
From this database we can compute35

Imut(A, B) ≈ 0.278, Imut(A, C) = Imut(B, C) ≈ 0.029,
Imut(A, B | C) ≈ 0.256, Imut(A, C | B) = Imut(B, C | A) ≈ 0.007,

if we compute the probabilities by maximum likelihood estimation. Clearly,
there are no exact (conditional) independences and thus Algorithm 7.3.8 yields
a complete graph. However, if we allow for some deviation from an exact con-
ditional independence in order to cope with random fluctuations, we may
decide to consider two attributes as (conditionally) independent if their (con-
ditional) mutual information is less than 0.01 bits. If we do so, we obtain
A⊥⊥ C | B and B⊥⊥ C | A. Consequently, Algorithm 7.3.8 will remove the
edge (A, C) as well as the edge (B, C), that is, the edges indicated by dotted
lines in Figure 7.17. Unfortunately, the resulting graph not only represents
the above two conditional independences, but also A⊥⊥ C | ∅ and B⊥⊥ C | ∅,
neither of which hold, at least according to the chosen criterion.

Note that the algorithm fails, because the induced set of conditional inde-
pendence statements is inconsistent: the distribution underlying the database
shown in Figure 7.17 must be strictly positive, because all value combina-
tions occur. A strictly positive probability distribution satisfies the graphoid
axioms (cf. Theorem 4.1.2 on page 95), which comprise the intersection axiom

35The mutual information Imut of two attributes was defined in Definition 7.1.4 on
page 180 and its conditional version was introduced on page 181.

254 CHAPTER 7. LEARNING GLOBAL STRUCTURE

drafting thickening thinning orienting

Figure 7.18 Illustration of the four phases of the Cheng–Bell–Liu algorithm.

(cf. Definition 4.1.1 on page 94). With the intersection axiom {A, B}⊥⊥ C | ∅
can be inferred from A⊥⊥ C | B and B⊥⊥ C | A, and from this A⊥⊥ C | ∅
and B⊥⊥ C | ∅ follow with the decomposition axiom. Therefore it is impos-
sible that the distribution underlying the database satisfies both conditional
independence statements found, but not A⊥⊥ C | ∅ and B⊥⊥ C | ∅.

An approach to cope with the problem of inconsistent sets of conditional
independence statements has been suggested by [Steck 2001]. It is based on
the idea that the situations in which Algorithm 7.3.8 removes too many edges
can be detected by associating each edge that may be removed with one or
more paths in the graph, at least one of which must remain intact if the
edge is actually to be removed (this has been called the causal path con-
dition—although we would prefer the term dependence path condition; cf.
Chapter 9). From these associations pairs of edges can be determined, which
alternatively may be removed, but one of which must be kept.

As an example reconsider the database of Figure 7.17. The result of the
augmented algorithm would be the graph shown in the same figure, but with
the dotted edges marked as alternatives, either of which may be removed,
but not both: if the edge (A, C) is removed, the path A−B−C must remain
intact to ensure A⊥	⊥ C | ∅. Likewise, if the edge (B, C) is removed, the path
B − A − C must remain intact to ensure B⊥	⊥ C | ∅.

In the rest of this section we study a modification of Algorithm 7.3.8 that
tries to mitigate the need for conditional independence tests of high order.
It works by building the graph successively, using the structure present as a
guide for which test to carry out next [Cheng et al. 1997, Cheng et al. 2002].
As for Algorithm 7.3.8, it is assumed that the given domain possesses a perfect
map. In addition, it assumes that the scoring function used for the conditional
independence tests is, in a certain sense, well-behaved. Among other things,
this means that the result of a conditional independence test coincides with
the actual situation (that is, the test succeeds if and only if the tested pair of
attributes is actually (conditionally) independent). In addition, if a condition
that is needed for the conditional independence of two attributes is removed,
the value of the measure should increase, regardless of what other attributes
are present in the conditions. For detailed discussion of the exact assumptions
and preconditions, see [Cheng et al. 2002].

7.3. SEARCH METHODS 255

The Cheng–Bell–Liu algorithm (named in recognition of the authors
of [Cheng et al. 1997]) works in four phases (see Figure 7.18 for a sketch):

Drafting A Chow–Liu tree [Chow and Liu 1968] is built as an initial graph-
ical model (cf. Section 7.3.2). The standard form of the algorithm uses mutual
information as the scoring function and an independence threshold of about
0.1 bits. Edges (identified by attribute pairs) having a score lower than this
threshold are permanently discarded from the construction process, because
the incident attributes are considered to be (marginally) independent. The
remainder form a set of candidate edges, which are weighted with the value
of the scoring function. The initial graphical model is then formed by con-
structing an optimum weight spanning tree with these edge weights.

Thickening The candidate edges that are not used for the initial graphical
model (that is, are not contained in the Chow–Liu tree) are traversed in the
order of decreasing score. For each of these edges it is tested whether it may
be needed in the graphical model. The test exploits the current graphical
model in order to find a good set of conditions, namely by selecting the set of
adjacent nodes of one attribute that lie on paths leading to the other attribute.

The rationale underlying this scheme is the so-called local Markov prop-
erty of directed conditional independence graphs.36 Of course, since the con-
structed graph is still undirected at this point we cannot determine which
attribute is a non-descendant of the other, and hence both possibilities may
have to be tried (one trial with the neighbors of one attribute, another with
the neighbors of the other). In addition, the set of adjacent nodes may not
only include parents, but also children. Children are a problem, because in
the true graphical model there may be a v-structure on the path between the
nodes (that is, there may be a node at which edges converge). Including such
a node (which may be a child) in the conditions is harmful as it activates the
path and thus hinders conditional independence.

Therefore the set of adjacent nodes is reduced iteratively and greedily. In
each step the conditioning attribute is discarded, which, if removed, lowers the
dependence score the most. This reduction continues until the score falls below
a given independence threshold or no removal of a conditioning attribute
lowers the score. In the former case, if it occurs in either of the the two trials,
the attributes of the tested edge are judged to be conditionally independent
and the edge is not added to the graphical model. Otherwise it is added.

Thinning In the thickening phase a test whether an edge is needed was
based on a graph that may have been still too sparse to reveal the conditional
independence of a pair of attributes. This is the case, because not all paths that
exist between the two attributes in the true model may have been present at
the time (even though they must all be present at the end of the thickening
phase, provided the assumptions underlying the algorithm hold [Cheng et

36The local Markov property was introduced in Definition 4.1.19 on page 109.

256 CHAPTER 7. LEARNING GLOBAL STRUCTURE

al. 2002]). Hence the edges that are present in the graph after the thickening
phase are traversed again and it is retested whether they are needed.

This test is carried out in two ways: first in the way described for the thick-
ening phase (which is the so-called ‘‘heuristic’’ form of the test). However,
there are certain degenerate cases where this test does not correctly identify
an existing conditional independence and thus a superfluous edge may not be
removed (see [Cheng et al. 2002] for an example). Hence a strict test, which
adds all neighbors of the neighbors of an attribute to the conditions (because
two adjacent nodes on a path cannot both have v-structures) before this set
is reduced, is carried out (this is called the ‘‘strict’’ form of the test).

If any of these tests reveals that two attributes are conditionally inde-
pendent, the corresponding edge is removed from the graph. It can be shown
that the resulting graph is a skeleton37 for the perfect map describing the
domain—provided, of course, the underlying assumptions hold.

Orienting In the last phase the edges of the graph are directed. This is
done in two steps: first the v-structures (converging edges) are identified
(black arrows in Figure 7.18) with the same rule as in the second step of
Algorithm 7.3.8. However, in order to be able to apply this rule, we first have
to determine a suitable set SAB for all nonadjacent nodes A and B. This is
achieved with a (strict) conditional independence test (as described above),
which determines which common neighbors of A and B are in the (maximally)
reduced set of conditions that render the attributes conditionally independent.
Afterwards the remaining edges are oriented (grey arrows in Figure 7.18),
using the same rules as in the third step of Algorithm 7.3.8.

Even though the Cheng–Bell–Liu algorithm was designed to learn directed
graphical models, it is clear that an undirected learning result can easily be
obtained by moralizing the constructed graph (cf. page 131). However, it is
also clear that with such an approach a lot of unnecessary work is done. For
example, edges are directed and then their direction is discarded again when
the graph is moralized. Tests of whether an edge is needed, try to remove
children from the condition sets even though in an undirected graph there is
no concept of a child or a parent. Finally, the ‘‘strict’’ form of a conditional
independence test has to add neighbors of neighbors of the attributes in order
to make sure that all paths are safely blocked, regardless of any possibly
existing v-structures. Even worse, this introduces a strong tendency towards
conditional independence tests of fairly high order.

As a consequence, it is desirable to devise an algorithm that removes
this unnecessary work and thus yields an undirected graphical model faster
and possibly also in a more reliable way. Such an algorithm was suggested in
[Borgelt 2007], with the explicit goal to support learning possibilistic graphical
models, for which undirected graphs are a more natural form. Like the Cheng–
Bell–Liu algorithm, it works in four phases (see Figure 7.19 for a sketch):

37The notion of a skeleton was defined in Definition 4.1.22 on page 112.

7.3. SEARCH METHODS 257

drafting thickening moralizing thinning

Figure 7.19 Illustration of the phases of the algorithm for undirected graphs.

Drafting This phase is identical to the Cheng–Bell–Liu algorithm, that is,
a Chow–Liu tree is formed (that is, an optimum weight spanning tree is
constructed from edge weights that represent dependence strengths).

Thickening As in the Cheng–Bell–Liu algorithm, the remaining candidate
edges (that is, edges with a score above the threshold, but not used in the
initial graphical model) are traversed and tested. If the test indicates that they
are needed (because the incident attributes are not conditionally independent
given the chosen conditions), they are added to the graph.

The difference to the Cheng–Bell–Liu algorithm consists in how the condi-
tional independence tests are executed. The underlying principle is analogous,
but exploits the local Markov property of undirected graphs. We may even re-
strict the set of neighbors to those lying on paths leading to the other attribute
(even though this is, strictly speaking, already the global Markov property).38

Note that there is no need for any (greedy or non-greedy) reduction of the
condition set, because we need not take care of children with v-structures.
In principle, only a single conditional independence test is needed per edge.
However, in order to improve the robustness, and also the efficiency of the
algorithm, it may be advisable to carry out the alternative test (that is, using
the neighbors of the other attribute) if it fails. The reason is that a test may
fail, because the current graph is still too sparse and thus not all neighbors
that are needed to render the attributes conditionally independent are already
present. If this is the case for one attribute, there is still a chance that the set
of neighbors of the other attribute is already complete.

Clearly, if the executed test indicates that the attributes are not condi-
tionally independent given the current graph structure, the edge is added to
the graph. Otherwise the edge is discarded.

Moralizing If one assumes that there exists an undirected perfect map
of the domain under consideration, the thinning phase (see below) already
yields the result. However, this would not be a feasible assumption. Depen-
dence structures that contain (directed) v-structures are much too frequent
in practice. Hence simply assuming that there is an undirected perfect map
would render the algorithm basically useless for practical purposes.

38The local and global Markov property were introduced in Definition 4.1.17 on page 107.

258 CHAPTER 7. LEARNING GLOBAL STRUCTURE

However, in order to take care of v-structures one only has to connect the
parents, that is, one has to moralize the graph. As a consequence, some of
the edges, which have an unconditional score below the threshold (and thus
were discarded before the initial graph was constructed) or were discarded in
the thickening phase, may be needed in the graph. However, for these tests
only edges need to be considered that have a common neighbor in the graph
constructed so far, because no other edges can connect nodes that could be
involved in a v-structure. Therefore all such edges are traversed and it is
tested whether they are needed. If the corresponding attributes are not found
to be conditionally independent given the current graph (that is, given all
neighbors of one of the attributes), the edge is added.

Thinning As for the Cheng–Bell–Liu algorithm it holds that the graph
resulting from the preceding step may contain superfluous edges, since when a
test was carried out, not all necessary edges and paths may have been present
in the graph. Hence all edges of the graph are retested and those found to
be unnecessary are removed from the graph. (Note that edges added in the
thickening step as well as edges added in the moralizing step are retested.)

Additional Thinning As a simple extension one may add a second thin-
ning phase between the thickening and the moralizing phase. The idea of such
a phase is that the graph resulting from the thinning phase may contain fewer
attribute pairs with common neighbors, so that fewer tests have to be carried
out in the moralizing phase. Furthermore, the order of the conditional inde-
pendence tests may be lower, because a lower number of edges can generally
be expected to reduce the number of neighbors that enter the condition sets.

The additional costs for such a phase are negligible, because the results
of already executed conditional independence tests are stored in a cache any-
way (to avoid redundant computations). Hence it is only for edges between
attributes that received an incident edge in the moralizing step that a new
test has to be carried out in the second thinning phase. The results of all
other tests are already present in the cache and thus can be reused basically
without costs.

In order to illustrate the difference of the above algorithm to the Cheng–Bell–
Liu algorithm, in particular w.r.t. their ability to learn undirected graphi-
cal models, let us consider once more the example shown in Figure 4.4 on
page 105. The Cheng–Bell–Liu algorithm with an added moralization step is
unable to discover this graph. It has to be admitted, though, that it yields
a proper undirected independence map, even though this map contains a su-
perfluous edge, namely either the edge A − C or the edge B − D (which
edge is selected depends on the order in which edges with the same score are
processed). (Note that the thinning phase of the Cheng–Bell–Liu algorithm
cannot remove this edge, because it is actually introduced by the moraliza-
tion step.) In contrast to this, the above algorithm, which is designed to learn
undirected graphical models, yields the correct result for this example.

7.4. EXPERIMENTAL EVALUATION 259

7.4 Experimental Evaluation

In order to illustrate the capabilities of (some of) the evaluation measures and
search methods discussed in the preceding sections we report in the follow-
ing some experimental results we obtained with a prototype implementation
called INES (Induction of NEtwork Structures), which was developed by the
first author of this book [Borgelt and Kruse 1997a, Borgelt and Kruse 1997b].
The list of results is not complete, since we have not yet implemented all
search methods discussed in Section 7.3. In addition, we selected a subset of
the large variety of evaluation measures discussed in Section 7.2. As a basis for
the experiments we chose the Danish Jersey cattle blood type determination
example [Rasmussen 1992], which was discussed in Section 4.2.2.

7.4.1 Learning Probabilistic Networks

The probabilistic learning methods were tested on ten pairs of databases with
1000 tuples each. These databases were generated by ancestral sampling from
Bayesian network for the Danish Jersey cattle blood type determination ex-
ample (cf. Figure 4.17 on page 130). The first database of each pair was
used to induce a graphical model, the second to test this model. The results
were then averaged over all ten pairs. As a baseline for comparisons we used
the original graph the databases were generated from and a graph without
any edges, that is, with independent attributes. All networks are assessed by
computing the log-likelihood of the data (natural logarithm; see, for exam-
ple, Section 7.1.2). In order to avoid problems with impossible tuples, the
probabilities were estimated with a Laplace correction39 of 1.

The results are shown in Table 7.4. In addition to the network quality this
table shows the total number of edges (parents/conditions) and the number of
(probability) parameters as a measure of the complexity of the network. For
the K2 algorithm [Cooper and Herskovits 1992], that is, the greedy selection
of parent attributes w.r.t. a topological order, the learned network is also
compared to the original one by counting the number of additional and miss-
ing edges. This is possible here, because any edge selected must have the same
direction as in the original network. Analogous numbers are not shown for the
optimum weight spanning trees or the results of simulated annealing, because
here the edges may have different directions and thus a comparison to the
original network is not that straightforward.

The results obtained for optimum weight spanning tree construction show
that this simple method achieves a very good fit of the data, which is not
surprising, since the original graph is rather sparse. These results also show
the bias of Shannon information gain I

(Shannon)
gain and the χ2 measure towards

many-valued attributes. Although the number of edges is (necessarily) iden-
tical for all trees, for these two measures the number of parameters is consid-

39The notion of Laplace correction was introduced on page 143 in Section 5.2.

260 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Table 7.4 Results of probabilistic network learning.

Baseline

network edges params. train test

indep. 0 59 −19921.2 −20087.2
orig. 22 219 −11391.0 −11506.1

Optimum Weight Spanning Tree Construction

measure edges params. train test

I
(Shannon)
gain 20.0 285.9 −12122.6 −12339.6

I
(Shannon)
sgr1 20.0 169.5 −12149.2 −12292.5

χ2 20.0 282.9 −12122.6 −12336.2

Greedy Parent Selection w.r.t. a Topological Order

measure edges add. miss. params. train test

I
(Shannon)
gain 35.0 17.1 4.1 1342.2 −11229.3 −11817.6

I
(Shannon)
gr 24.0 6.7 4.7 208.6 −11614.8 −11736.5

I
(Shannon)
sgr1 32.0 11.3 1.3 316.6 −11387.8 −11574.9

Gini 35.0 17.1 4.1 1341.6 −11233.1 −11813.4

χ2 35.0 17.3 4.3 1300.8 −11234.9 −11805.2

K2 23.3 1.4 0.1 229.9 −11385.4 −11511.5

BDeu 31.2 9.3 0.1 276.4 −11384.5 −11520.5

L
(rel)
red 22.5 0.6 0.1 219.9 −11389.5 −11508.2

Simulated Annealing

penalty edges params. train test

no 28.6 596.4 −12492.5 −12832.5
yes 27.9 391.0 −12696.2 −12960.0

7.4. EXPERIMENTAL EVALUATION 261

erably higher than for the less biased symmetric Shannon information gain
ratio I

(Shannon)
sgr1 . This behavior leads to some overfitting, as can be seen from

the fact that both Shannon information gain and the χ2 measure lead to a
better fit of the training data, but a worse fit of the test data.

For greedy parent selection, for which the maximum number of conditions
was set to 2, L

(rel)
red , that is, the reduction of the description length based on

relative frequency coding, and the K2 metric (which is equivalent to L
(abs)
red ,

that is, the reduction of the description length based on absolute frequency
coding; cf. Section 7.2.4), lead to almost perfect results. Both recover the orig-
inal structure almost exactly, with only very few additional and missing edges.
Other measures, especially the Shannon information gain I

(Shannon)
gain , the χ2

measure, and the Gini index suffer considerably from overfitting: the better
fit of the training data is more than outweighed by the worse fit of the test
data. Shannon information gain ratio I

(Shannon)
gr seems to select the ‘‘wrong’’

parents, since not even the fit of the training data is good. A notable alterna-
tive is the symmetric Shannon information gain ratio I

(Shannon)
sgr1 . Although it

tends to select too many conditions, this does not lead to strong overfitting.
The Bayesian–Dirichlet likelihood equivalent uniform metric (BDeu) performs
well, but shows a slight tendency towards selecting too many edges.

At first sight, the simulated annealing results (clique size restricted to
three attributes; for the penalized version the Akaike Information Criterion
was used to evaluate networks instead of the maximum likelihood criterion,
cf. Section 7.2.4) are somewhat disappointing, since they are worse than the
results of the simple optimum weight spanning tree construction. However,
one has to take into account that they were obtained with a ‘‘pure’’ simulated
annealing approach, that is, by starting from a randomly generated initial
network, and not from, for example a maximum weight spanning tree. If
such a starting point is chosen, better results are obtained. As indicated in
Section 7.3.3 an important advantage of random guided search approaches
like simulated annealing is that they can be used to tune a solution that
has been generated with another algorithm. Therefore these results may be
somewhat misleading w.r.t. the true powers of simulated annealing.

7.4.2 Learning Possibilistic Networks

For evaluating the learning methods for possibilistic networks we used a real-
world database for the Danish Jersey cattle blood type determination example
with 500 sample cases. This database contains a considerable number of miss-
ing values and thus is well suited for a possibilistic approach. As a baseline
for comparisons we chose, as in the probabilistic case, a graph without any
edges and the human expert designed network. However, the results obtained
with the latter are not very expressive, since it captures a different kind of
dependence, as it is based on a different uncertainty calculus.

262 CHAPTER 7. LEARNING GLOBAL STRUCTURE

All possibilistic networks were assessed by computing the weighted sum
of the degrees of possibility for the tuples in the database, which should be
as small as possible (cf. Section 7.1.3). However, since the database contains
several tuples with missing values, a precise degree of possibility cannot al-
ways be computed. To cope with this problem, we computed for a tuple with
missing values the minimum, the maximum, and the average degree of pos-
sibility of all precise tuples compatible with it. The results are then summed
separately for all tuples in the database.

We did not divide the dataset into training and test data. The main rea-
son is that it is not clear how to evaluate a possibilistic network w.r.t. test
data, since, obviously, the measure used to evaluate it w.r.t. the training data
cannot be used to evaluate it w.r.t. the test data: if the marginal possibility
distributions do not fit the test data, the weighted sum of the degrees of pos-
sibility for the test data tuples will be small, although in this case this clearly
indicates that the network is bad. This is also the reason why we did not use
artificially generated datasets. Such datasets are of little use if the learning
results cannot be evaluated on test data.

The results of learning possibilistic networks are shown in Table 7.5.
Clearly, as mentioned above, the original network is not well suited as a
baseline for comparisons. As in the probabilistic case, the optimum weight
spanning tree construction yields very good results. The possibilistic analog
of mutual information dmi seems to provide the best results in this case, since
it achieves the best fit with the smallest number of parameters. For greedy
parent selection the situation is similar. The specificity gain Sgain and dχ2 ,
the possibilistic analog of the χ2-measure, lead to graphical models that are
too complex as can be seen from the high number of parameters. Despite this
high number of parameters the model generated with specificity gain does not
even fit the data well. The specificity gain ratio seems to be too reluctant to
select parents, and thus leads to a model that is simple but does not fit the
data well. In all, as for the optimum weight spanning tree construction, dmi

provides the best results.
In contrast to the somewhat disappointing results of simulated annealing

in the probabilistic case, this approach seems to work very well in the possi-
bilistic case (clique size again restricted to three attributes; for the penalized
version κ = 0.001 was chosen; cf. Section 7.2.5). Actually, it yields the best
results of all approaches, although it was also ‘‘pure’’, that is, the search
started from a randomly generated initial network. There are two possible in-
terpretations of this result. In the first place, there may be many more ‘‘good’’
solutions in the possibilistic case, so that it is simpler to find one of them,
even with a guided random search. Alternatively, one may conjecture that the
possibilistic evaluation measures are bad and do not lead to a construction
of appropriate networks. We guess that the former is the case. However, this
problem needs further investigation.

7.4. EXPERIMENTAL EVALUATION 263

Table 7.5 Results of possibilistic network learning.

Baseline

network edges params. min. avg. max.

indep. 0 80 10.064 10.160 11.390
orig. 22 308 9.888 9.917 11.318

Optimum Weight Spanning Tree Construction

measure edges params. min. avg. max.

Sgain 20 438 8.878 8.990 10.714
Ssgr1 20 442 8.716 8.916 10.680
dχ2 20 472 8.662 8.820 10.334
dmi 20 404 8.466 8.598 10.386

Greedy Parent Selection w.r.t. a Topological Order

measure edges params. min. avg. max.

Sgain 31 1630 8.524 8.621 10.292
Sgr 18 196 9.390 9.553 11.100
Ssgr1 28 496 8.946 9.057 10.740
dχ2 35 1486 8.154 8.329 10.200
dmi 33 774 8.206 8.344 10.416

Simulated Annealing

penalty edges params. min. avg. max.

no 22.7 829.0 7.955 8.255 9.974
yes 20.2 379.9 8.170 8.465 10.126

Chapter 8

Learning Local Structure

In contrast to the global structure of a graphical model, which is the structure
of the conditional independence graph underlying it, the term local structure
refers to regularities in the (conditional) probability or possibility distribu-
tions associated with this graph. In this chapter we consider a decision graph
representation of the local structure of directed graphical models and how to
learn such local structure from data. The decision graph representation shows
that the induction of a decision tree from data can be seen as a special case
of learning a (restricted) Bayesian network with local structure.

8.1 Local Network Structure

As indicated, the term local structure refers to regularities in the (conditional)
distributions associated with the conditional independence graph underlying
a graphical model. Particularly for Bayesian networks several approaches to
exploit such regularities have been studied in order to capture additional (that
is, context-specific) independences and, as a consequence, to (potentially) en-
hance evidence propagation. Among these are similarity networks [Heckerman
1991] and the related multinets [Geiger and Heckerman 1991], probabilistic
Horn rules [Poole 1993], decision trees [Boutilier et al. 1996, Friedman and
Goldszmidt 1998] and decision graphs [Chickering et al. 1997], and finally
multi-linear functions [Darwiche 2003, Chavira and Darwiche 2005]. Here we
focus on the decision tree/decision graph approach and review it in the fol-
lowing for Bayesian networks. In doing so we confine ourselves, as usual, to
attributes that have a finite set of possible values.

As a simple example, consider the section of a Bayesian network shown
on the left in Figure 8.1 (and assume that in this network the attribute C
has no other parents than the attributes A and B). The probabilities that
have to be stored with attribute C in this case are P(C = ci | A = aj , B = bk)

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

266 CHAPTER 8. LEARNING LOCAL STRUCTURE

A B

C

parents child

A B C = c1 C = c2

a1 b1 p1 1 − p1

a1 b2 p2 1 − p2

a2 b1 p3 1 − p3

a2 b2 p4 1 − p4

a3 b1 p5 1 − p5

a3 b2 p6 1 − p6

Figure 8.1 A section of a
Bayesian network and the
corresponding conditional
probability table, which
states a probability dis-
tribution for each possible
instantiation of the par-
ent attributes.

A

B B B

C C C C C C

a1 a2
a3

b1 b1 b1b2 b2 b2

Figure 8.2 A full decision tree
for the child attribute C that
can be used to store the condi-
tional probability table shown
in Figure 8.1.

for all values ci, aj , and bk. A straightforward and very simple way to encode
these conditional probabilities is a table in which for each possible instan-
tiation of the conditioning attributes A and B there is a row stating the
corresponding conditional probability distribution on the values of the at-
tribute C. If we assume that dom(A) = {a1, a2, a3}, dom(B) = {b1, b2}, and
dom(C) = {c1, c2}, such a table may look like the one shown in Figure 8.1.

However, the same conditional probabilities can also be stored in a tree
structure in which the leaves hold the conditional probability distributions
and each level of inner nodes corresponds to a conditioning attribute (cf.
Figure 8.2). The branches of this tree are labeled with the values of the con-
ditioning attributes. In this way each path from the root to a leaf corresponds
to a possible instantiation of the conditioning attributes. Obviously such a
tree is equivalent to a decision tree [Breiman et al. 1984, Quinlan 1993] for
the attribute C with the following restrictions: all leaves have to lie on the
same level and in each level of the tree the same attribute has to be tested
on all paths. If these restrictions hold, we call the tree a full decision tree,
because it contains a complete set of test nodes for a set of variables.

Consider now a situation in which there are some regularities in the con-
ditional probability table, namely those indicated in the table on the left of
Figure 8.3. From this table it is clear that the value of the attribute B mat-
ters only if attribute A has the value a2, that is, C is independent of B given
A = a1 or A = a3. This is usually called context-specific independence. Hence

8.2. LEARNING LOCAL STRUCTURE 267

parents child

A B C = c1 C = c2

a1 b1 p1 1 − p1

a1 b2 p1 1 − p1

a2 b1 p2 1 − p2

a2 b2 p3 1 − p3

a3 b1 p4 1 − p4

a3 b2 p4 1 − p4

A

BC C

C C

a1 a2
a3

b1 b2

Figure 8.3 A conditional probability table with some regularities and a re-
duced decision tree for the child attribute C that captures them.

the tests of attribute B can be removed from the branches for the values a1

and a3, as illustrated with the tree on the right in Figure 8.3. This tree we
call a reduced decision tree, because it has a reduced set of nodes.

Unfortunately, however, decision trees are not powerful enough to capture
all possible regularities. Although a lot can be achieved by accepting changes
of the order in which the attributes are tested and by allowing binary splits
and multiple tests of the same attribute (in this case, for example, the regu-
larities in the table on the left of Figure 8.4 can be represented by the decision
tree shown on the right in the same figure), the regularities shown in the table
on the left of Figure 8.5 cannot all be represented by a decision tree.

The problem is that in a decision tree a test of an attribute splits the
rows of a conditional probability table into disjoint subsets that cannot be
brought together again. In the table shown on the left in Figure 8.5 a test
of attribute B separates rows 1 and 2 and a test of attribute A separates
rows 4 and 5. Hence either test prevents us from exploiting one of the two
cases in which distributions coincide. Fortunately, this drawback can easily
be overcome by allowing a node of the tree to have more than one parent,
that is, by using decision graphs [Chickering et al. 1997]. Thus the regularities
can easily be captured, as can be seen on the right in Figure 8.5.

8.2 Learning Local Structure

To learn a decision tree/decision graph representation from data, a simple
top-down method may be used as for standard decision tree induction: first
the split attribute at the root node is chosen based on an evaluation measure.
Then the sample cases to learn from are split w.r.t. the value they have for this
attribute and the algorithm is applied recursively to each subset. For learning
decision graphs, we must also be able to merge nodes. Thus we arrive at the

268 CHAPTER 8. LEARNING LOCAL STRUCTURE

parents child

A B C = c1 C = c2

a1 b1 p1 1 − p1

a1 b2 p1 1 − p1

a2 b1 p2 1 − p2

a2 b2 p3 1 − p3

a3 b1 p2 1 − p2

a3 b2 p4 1 − p4

A

B

A

C

C

C

C

a1 a2, a3

b1 b2

a2 a3

Figure 8.4 A conditional probability table with second kind of regularities and
a decision tree with two tests of attribute A that captures them.

parents child

A B C = c1 C = c2

a1 b1 p1 1 − p1

a1 b2 p1 1 − p1

a2 b1 p2 1 − p2

a2 b2 p3 1 − p3

a3 b1 p3 1 − p3

a3 b2 p4 1 − p4

A

C B B

C C C

a1 a2
a3

b1
b2 b1 b2

Figure 8.5 A conditional probability table with a third kind of regularities
and a decision graph that captures them.

following set of operations [Chickering et al. 1997]:

• full split: Split a leaf node w.r.t. to the values of an attribute.
• binary split: Split a leaf node so that one child corresponds to one value

of an attribute and the other child to all other values.
• merge: Merge two distinct leaf nodes.

As for decision tree induction the operation to execute is chosen greedily: all
possible operations of the types listed above are temporarily applied (wherever
possible) to an (initially empty) decision graph and the results are evaluated.
The operation that yields the greatest improvement of the evaluation measure
is carried out permanently. This greedy search is carried out until none of the
operations listed above leads to an improvement.

It is obvious that without the merge operation this algorithm is equivalent
to the well-known top-down induction algorithm for decision trees [Breiman et

8.2. LEARNING LOCAL STRUCTURE 269

al. 1984, Quinlan 1993]. Hence decision tree induction can be seen as a special
case of Bayesian network learning, namely as learning the local structure of
a Bayesian network in which there is only one child attribute, namely the
class attribute. This view provides us with another justification for using
the attribute selection measures of decision tree induction also as evaluation
measures for learning Bayesian networks (cf. Section 7.2.4).

It should be noted that the greedy algorithm described above can be seen
as a generalization of the K2 algorithm, which we discussed in Section 7.3.2.
The only difference is that the K2 algorithm is restricted to one operation,
namely to split in parallel all leaf nodes w.r.t. to the values of an attribute,
which, in addition, must be the same for all leaves. Hence the K2 algorithm
always yields a full decision tree as the local structure. In this respect it
is important that the topological order presupposed by the K2 algorithm
enables us to construct each decision graph independently of any other, since
the topological order already ensures the acyclicity. If we use the generalized
version of the K2 algorithm (cf. Section 7.3.2), the operations have to be
applied in parallel to all decision graphs that are constructed in order to
ensure that the global structure of the resulting Bayesian network, that is,
the conditional independence graph, is acyclic. All operations that may lead
to a (directed) cycle have to be eliminated.

Our own approach to learning local network structure, which we suggested
in [Borgelt and Kruse 1998d], is a only slight modification of the above algo-
rithm. It is based on the view explained in the preceding paragraph, namely
that the above algorithm can be seen as a generalization of the K2 algorithm.
This view suggests the idea to exploit the additional degree of freedom of
decision graphs compared to decision trees, namely that a node in a decision
graph can have more than one parent, not only to capture a larger set of
regularities, but also to improve the learning process. The basic idea is as fol-
lows: with decision graphs, we can always work with the complete set of inner
nodes of a full decision tree and let only leaves have more than one parent.
Even if we do not care about the order of the conditioning attributes in the
decision graph and if we require that any attribute may be tested only once
on each path, such a structure can capture all regularities in the examples
examined in the preceding section. For instance, the regularities of the table
shown on the left in Figure 8.4 are captured by the decision graph shown in
Figure 8.6. Note that the test of attribute B in the leftmost node is without
effect, since both branches lead to the same leaf node.

It is easy to see that such an approach can capture any regularities that
may be present in conditional probability tables: basically, it consists in merg-
ing arbitrary leaves of a full decision tree and this is the same as merging ar-
bitrary rows of a conditional probability table. The decision graph structure
only makes it somewhat simpler to keep track of the different instantiations
of the conditioning attributes, for which the same probability distribution on
the values of the conditioned attribute has to be adopted.

270 CHAPTER 8. LEARNING LOCAL STRUCTURE

A

B B B

C C C C

a1 a2
a3

b1 b2 b2
b1 b1 b2

Figure 8.6 A decision graph with
a full set of inner nodes that cap-
tures the regularities in the table
shown in Figure 8.4. Note that
the test of attribute B in the left-
most node is without effect.

Consequently we use only two operations [Borgelt and Kruse 1998d]:

• split: Add a new level to a decision graph, that is, split all leaves
according to the values of a new parent attribute.

• merge: Merge two distinct leaf nodes.

These operations are executed in turn. First a level is added to a decision
graph and then leaves are merged. When a new level is added, one may either
split the merged leaves of the previous step or start over from a full decision
tree. To find a good set of mergers of leaf nodes, a greedy approach suggests
itself. That is, in each step all mergers of two leaves are evaluated. Then
that leaf merger is carried out which yields the largest improvement of the
evaluation measure. Merging leaves stops when no leaf merger improves the
value of the evaluation measure. If a mechanism for re-splitting leaf nodes is
provided, simulated annealing may also be used.

At first sight this algorithm may appear to be worse than the algorithm
reviewed above, because the operation that splits all leaves seems to be more
costly than the split operations for single leaves. However, it is clear that the
algorithm by [Chickering et al. 1997] has to check all splits of leaf nodes in
order to find the best split and thus actually carries out the same operation.
Note also that our algorithm needs to access the database of sample cases
only as often as an algorithm for learning a Bayesian network without local
structure, for instance, the K2 algorithm: the conditional frequency distribu-
tions have to be recomputed only after a split operation has been executed.
The next step (that is, the step in which leaves are merged) can be carried
out without accessing the database, since all necessary information is already
available in the leaf nodes. In contrast to this, the algorithm by [Chickering
et al. 1997] has to access the database whenever two leaf nodes are merged in
order to evaluate the possible splits of the resulting node.

It should be noted that for merging leaves both algorithms can exploit
the fact that most evaluation measures (cf. Section 7.2.4) are computed from
terms that can be computed leaf by leaf. Hence, if two leaves are merged,
the decision graph need not be re-evaluated completely, but the change of
the evaluation measure can be computed locally from the distributions in the
merged leaves and the distribution in the resulting leaf.

8.3. EXPERIMENTAL EVALUATION 271

Table 8.1 Results of learning Bayesian networks with local structure.

measure edges add. miss. params. train test

I
(Shannon)
gain 35.0 17.1 4.1 1259.9 −11191.7 −11805.8

I
(Shannon)
gr 31.9 11.3 1.4 132.7 −14978.7 −15150.8

I
(Shannon)
sgr1 34.7 13.9 1.2 341.8 −11424.0 −11675.1

Gini 35.0 17.1 4.1 1253.5 −11194.8 −11801.7

χ2 35.0 17.3 4.3 1216.4 −11197.1 −11793.6

K2 26.4 4.5 0.1 194.7 −11340.5 −11506.9

BDeu 36.0 14.3 0.3 306.3 −11336.4 −11504.6

L
(rel)
red 25.1 3.8 0.7 218.8 −11349.6 −11498.1

A drawback of our algorithm, and also of the algorithm by [Chickering et
al. 1997] reviewed above, is that it can lead to a complicated structure that
may hide a simple structure of context-specific independences. The reason for
this is, of course, the greedy search algorithm, which may select the mergers in
a suboptimal order. Therefore some post-processing to simplify the structure
by changing the order of the attributes and by introducing multiple tests
along a path is advisable if the resulting structure is to be inspected by a
human domain expert in order to gain insight into the dependence structure.

8.3 Experimental Evaluation

We incorporated our algorithm for learning the local structure of a Bayesian
network into the INES program (Induction of NEtwork Structures) [Borgelt
and Kruse 1997a, Borgelt and Kruse 1997b], which was also used to obtain the
experimental results reported in Section 7.4. As a test case we chose again the
Danish Jersey cattle blood group determination example [Rasmussen 1992]
(cf. Section 4.2.2), so that the results of this section can easily be compared
to those reported in Section 7.4. The set of databases used is identical and
the networks were evaluated by the same means.

The results, which were obtained with greedy parent selection w.r.t. a
topological order, are shown in Table 8.1. The meaning of the columns is the
same as in Section 7.4 (see pages 259ff). It is worth noting that the Shannon
information gain ratio I

(Shannon)
gr fails completely and that the K2 metric and

the reduction of description length measures again perform best.

272 CHAPTER 8. LEARNING LOCAL STRUCTURE

It can also be seen that some measures tend to select more conditions
(parents), thus leading to overfitting. At first sight it is surprising that allow-
ing local structure to be learned can make the global structure more complex,
although the number of parameters can be reduced (and actually is for some
measures). But a second thought (and a closer inspection of the learned net-
works) reveals that this could have been foreseen. In a frequency distribution
determined from a database of sample cases random fluctuations are to be
expected. Usually these do not lead to additional conditions (except for mea-
sures like Shannon information gain or the χ2 measure), since the ‘‘costs’’ of
an additional level with several (approximately) equivalent leaves prevents
the selection of such a condition. But the disadvantage of (approximately)
equivalent leaves is removed by the possibility to merge these leaves, and thus
those fluctuations that show a higher deviation from the true (independent)
probability distribution are filtered out and become significant to the measure.

This effect is less pronounced for a larger dataset, but does not vanish
completely. We suspect that this is a general problem that any learning algo-
rithm for local structure has to cope with. Therefore it may be advisable not
to combine learning global and local network structure, but to learn the global
structure first, relying on the score for a full decision tree, and to simplify this
structure afterwards by learning the local structure.

Chapter 9

Inductive Causation

If A causes B, an occurrence of A should be accompanied or (closely) followed
by an occurrence of B. That causation implies conjunction or correlation is
the basis of all reasoning about causation in statistics. But is this enough to
infer causal relations from statistical data, and, if not, are there additional
assumptions that provide reasonable grounds for such an inference? These are
the questions we are going to discuss in this chapter.

In Section 9.1 we consider the connection of correlation and causation for
two variables. Since this connection turns out to be unreliable, we proceed in
Section 9.2 with the connection of causal and probabilistic structures, espe-
cially Bayesian networks. Section 9.3 is concerned with two presuppositions
of inductive causation, namely the stability assumption and the treatment of
latent variables. In Section 9.4 we describe the inductive causation algorithm
[Pearl and Verma 1991a, Pearl 2000], and criticize the assumptions underlying
it in Section 9.5. Finally, in Section 9.6, we evaluate our discussion.

9.1 Correlation and Causation

Correlation is perhaps the most frequently used concept in applied statistics.
Its standard measure is the correlation coefficient, which assesses what can
be called the intensity of linear relationship between two measures [Everitt
2006]. Correlation is closely related to probabilistic dependence, although the
two concepts are not identical, because zero correlation does not imply inde-
pendence: the dependence may be nonlinear. However, since this difference
is of no importance for our discussion, we use the term ‘‘correlation’’ in the
vernacular sense, that is, as a synonym for (probabilistic) dependence.

Note that neither in the narrower statistical nor in the wider vernacular
sense is correlation connected directly to causal relation. We usually do not
know why a correlation exists or does not exist, only that it is present or not.

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

274 CHAPTER 9. INDUCTIVE CAUSATION

Nevertheless such erroneous interpretation is tempting [Gould 1981]:

Much of the fascination of statistics lies embedded in a gut feeling—and
never trust a gut feeling—that abstract measures summarizing large ta-
bles of data must express something more real and fundamental than the
data itself. (Much professional training in statistics involves a conscious
effort to counteract this gut feeling.) The technique of correlation has been
particularly subject to such misuse because it seems to provide a path
for inferences about causality. [...] [But t]he inference of cause must come
from somewhere else, not from the simple fact of correlation—though an
unexpected correlation may lead us to search for causes so long as we
remember that we may not find them. [...] The invalid assumption that
correlation implies cause is probably among the two or three most serious
and common errors of human reasoning.

It is easily demonstrated that indeed the vast majority of all correlations are,
without doubt, noncausal. Consider, for example, the distance between the
continents America and Europe over the past twenty years. Due to continental
drift this distance increases a few centimeters every year. Consider also the
average price of Swiss cheese in the United States over the same period.1

The correlation coefficient of these two measures is close to 1, that is, even in
the narrow statistical sense they are strongly correlated. But obviously there
is no causal relationship whatsoever between them.

Of course, we could have used any other measure that increased over the
past years, for example, the distance of Halley’s comet (since its last visit in
1986) or the reader’s age. The same can be achieved with pairs of measures
that decreased. Therefore, causality may neither be inferred from correlation
with certainty (since there are counterexamples), nor even inferred with a
high probability (since causal correlations themselves are fairly rare).

According to these arguments it seems to be a futile effort to try to infer
causation from observed statistical dependences. Indeed, there is no way to
causation from a single correlation (that is, a dependence between two vari-
ables). But this does not exclude immediately the possibility to infer from a
set of (conditional) dependences and independences between several variables
something about the underlying causal influences. There could be connec-
tions between the causal and the probabilistic structure, going beyond pairs
of variables, which enable us to discover the former at least partly.

9.2 Causal and Probabilistic Structure

Our intuition of causation is perhaps best captured by a binary predicate
‘‘X (directly) causes Y’’ or ‘‘X has a (direct) causal influence on Y’’, where X

1We do not know much about the average price of Swiss cheese in the United States
over the past twenty years, but we assume that it has risen. If it has not, substitute the
price of any other consumer good that has.

9.2. CAUSAL AND PROBABILISTIC STRUCTURE 275

is the cause and Y the effect. This predicate is usually seen as antisymmetric,
that is, if ‘‘X (directly) causes Y’’ holds, then ‘‘Y (directly) causes X’’ does
not hold. Thus there is an inherent direction in causal influence, which seems
to be a characteristic property of causation. For the greater part this is due
to our intuition that a cause precedes its effect in time.

Another formal interpretation, which was advocated by Bertrand Russell
[Vollmer 1981], is that an effect is a function of its cause. But we reject this
interpretation for several reasons. The first is that it brings in an assumption
through the back door, which we want to make explicit (cf. Section 9.5).
Secondly, a function is not necessarily antisymmetric and thus cannot always
represent the direction of causation. Thirdly, if one variable is a function of
another, then there need not be a causal connection (cf. Section 9.1). Hence
functional dependence and causal influence should not be identified.

Because of the inherent direction, we can use a directed graph to repre-
sent causal influences, which we call the causal structure. In principle directed
cycles, i.e. circular causal influences, are possible. (Such cycles are often ex-
ploited for control mechanisms, for example, Watt’s conical pendulum gov-
ernor of the steam engine.) Nevertheless we do not consider circular causal
structures here, but assume that the causal influences form a directed acyclic
graph in order to make them comparable to a probabilistic structure.

We need not say much about the notion of the probabilistic structure of
a domain here, because it is simply the conditional independence graph un-
derlying a graphical model. Since we defined the causal structure of a domain
as a directed acyclic graph, the theory of Bayesian networks, which are also
based on directed acyclic graphs, suggests itself as an appropriate framework
for a discussion of the connection between the causal and the probabilistic
structure of a domain. Indeed, Bayesian networks are not only studied on
purely statistical grounds (as we did in the earlier chapters of this book),
but they are often also used to describe a causal structure. Sometimes this
is emphasized by calling them probabilistic causal networks. The reason for
this is that, since Bayesian networks are based on directed graphs, the idea
suggests itself to direct their edges in such a way that they represent causal
influences. Actually human domain experts, who want to built a Bayesian
network model, often start from a causal model of the underlying domain and
simply enhance it by conditional probability distributions.

Of course, it is perfectly acceptable to call a Bayesian network a causal
network as long as the term causal is only meant to indicate that a human
expert, who ‘‘manually’’ constructed the network, did so by starting from a
causal model of the domain under consideration. In this case the knowledge of
the human expert about the causal relations in the modeled domain ensures
that the Bayesian network represents not only statistical (in)dependences,
but also causal influences. If, however, the conditional independence graph
of a Bayesian network is learned automatically from data, calling it a causal
network seems to be questionable. What could it be that ensures in an auto-

276 CHAPTER 9. INDUCTIVE CAUSATION

matically generated network that directed edges show the directions of causal
influences (from cause to effect)? Obviously we need to establish a relation
between causal dependence and statistical dependence, since it is only statis-
tical dependence we can test for automatically. The most direct approach is,
of course, to identify the two structures, that is, to use the causal structure as
a conditional independence graph of a given domain (see above). If the causal
and a probabilistic structure of a domain are identified in this way, we should
be able to read from the causal structure, using the d-separation criterion,2

certain conditional independences that hold in the domain. This suggests the
idea to invert the procedure, that is, to identify the causal structure or at
least a part of it by conditional independence tests.

9.3 Faithfulness and Latent Variables

A fundamental problem of an approach that tries to discover the causal struc-
ture with conditional independence tests is that the d-separation criterion does
not says anything about the dependence or independence of two sets X and
Y of attributes given a third set Z if X and Y are not d-separated by Z.
This suffices if a Bayesian network is constructed for a given domain, since
for applications it is not essential to find and represent all independences (cf.
Chapter 4). However, we need more to identify a causal structure, because we
must be able to infer something about the causal structure from a conditional
independence statement, which we cannot do if we do not know whether this
statement is represented by d-separation in the causal structure or not.

In order to cope with this problem it is assumed that in a (sampled) prob-
ability distribution p of the domain under consideration there exist exactly
those (conditional) independences that can be read from the causal structure
using d-separation. This assumption is called faithfulness (also known as sta-
bility) [Pearl and Verma 1991a, Pearl 2000, Spirtes et al. 2001] and can be
formalized as (X⊥⊥p Y | Z) ⇔ (Z d-separates X and Y in the causal structure).
Obviously, the faithfulness assumption is equivalent to the assumption that
the causal structure of the domain is a (directed) perfect map3 of the (con-
ditional) independence statements that hold in this domain. Note that the
faithfulness assumption implicitly asserts that there is ‘‘no correlation with-
out causation’’ (also known as Reichenbach’s dictum), because it assumes a
(direct) causal influence between any two variables that are dependent given
any set of other variables. In addition, any correlation between two variables
is explained by a (direct or indirect) causal connection.

An important property of d-separation together with the faithfulness as-
sumption is that they distinguish a common effect of two causes on the one
hand from the mediating variable in a causal chain and the common cause of

2The notion of d-separation was defined in Definition 4.1.14 on page 100.
3The notion of a perfect map was introduced in Definition 4.1.15 on page 103.

9.3. FAITHFULNESS AND LATENT VARIABLES 277

A B C
B

A C

A C

B

Figure 9.1 Possible causal connections of three attributes.

two effects on the other. In the two structures shown on the left in Figure 9.1
A and C are independent given B, but dependent if B is not given. In contrast
to this, in the structure on the right A and C are independent uncondition-
ally, but dependent if B is given. It is this (alleged) fundamental asymmetry
of the basic causal structures, which was studied first in [Reichenbach 1956],
that makes statistical inferences about causal relations possible.4

However, even with d-separation and the faithfulness assumption there are
usually several causal structures that are compatible with the observed (condi-
tional) dependences and independences. The main reason is that d-separation
and faithfulness cannot distinguish between causal chains and common causes.
But in certain situations all compatible causal structures have a common sub-
structure. The aim of inductive causation is to find these substructures.

Furthermore, if we want to find causal relations in real world problems,
we have to take care of hidden or latent variables. To handle latent variables,
the notion of a latent structure and of a projection of a latent structure are
introduced [Pearl and Verma 1991a, Pearl 2000]. The idea is to restrict the
number and influence of latent variables while preserving all dependences and
independences. A latent structure is simply a causal structure in which some
variables are unobservable. A projection is defined as follows:

Definition 9.3.1 A latent structure L1 is a projection of another latent
structure L2, if and only if
1. Every unobservable variable in L1 is a parentless common cause of exactly

two nonadjacent observable variables.
2. For every faithful distribution p2 that can be generated by L2, there exists

a faithful distribution p1 generated by L1 such that

∀X, Y ∈ O, S ⊆ O\{X, Y} :
(X⊥⊥ Y | S holds in p2|O) ⇒ (X⊥⊥ Y | S holds in p1|O),

where O is the set of observable variables and p|O denotes the marginal
probability distribution on these variables.

(A faithful distribution satisfies the faithfulness assumption, that is, exhibits
only those independences identifiable by the d-separation criterion.)

4However, [Reichenbach 1956] did not consider this asymmetry as a means to discover
causal structure, but as a means to define the direction of time.

278 CHAPTER 9. INDUCTIVE CAUSATION

It can be shown that for every latent structure there is at least one projection
[Pearl and Verma 1991a, Pearl 2000]. Note that a projection must exhibit
only the same (in)dependence structure (w.r.t. d-separation), but need not be
able to generate the same distribution.5 In essence, the notion of a projection
is only a technical trick to be able to represent dependences that are due to
latent variables by bidirected edges (which are an intuitive representation of
a hidden common cause of exactly two variables).

9.4 The Inductive Causation Algorithm

With the ingredients listed above, we finally arrive at the following algorithm
[Pearl and Verma 1991a, Pearl 2000], which is very closely related to Algo-
rithm 7.3.8 on page 248 (the first two steps are actually identical, the third
is similar—it only does not try to direct all edges).

Algorithm 9.4.1 (Inductive Causation Algorithm)
Input: A (sampled) distribution p over a set U of attributes.
Output: A marked hybrid acyclic graph core(p).

1. For each pair of attributes A and B, search for a set SAB ⊆ U − {A, B},
so that A⊥⊥p B | SAB holds, that is, so that A and B are conditionally
independent given SAB. If there is no such set SAB, connect the attributes
by an undirected edge.

2. For each pair of nonadjacent attributes A and B with a common neighbor C
(i.e. C is adjacent to A as well as to B), check whether C ∈ SAB. If it is
not, direct the edges towards C, that is, let A → C ← B.

3. Form core(p) (the identifiable part of the causal structure) by recursively
directing edges according to the following two rules:

• If for two adjacent attributes A and B there is a strictly directed path
from A to B not including the edge connecting A and B, then direct the
edge towards B.

• If there are three attributes A, B, and C with A and B not adjacent,
either A → C or A ← C, and C − B, then direct the edge C → B.

4. For each triplet of attributes A, B, and C: If A and B are not adjacent,
C → B, and either A → C or A ← C, then mark the edge C → B.

5Otherwise a counterexample could easily be found: consider seven binary variables A,
B, C, D, E, F , and G, that is, dom(A) = dom(B) = . . . = dom(G) = {0, 1}. Let A
be hidden and E = A · B, F = A · C, and G = A · D (where · denotes multiplication).
A projection of this structure contains three latent variables connecting E and F , E and G,
and F and G, respectively. It is easy to prove that such a structure cannot generate the
distribution resulting from the functional dependences given above.

9.5. CRITIQUE OF THE UNDERLYING ASSUMPTIONS 279

Step 1 determines the attribute pairs between which there must exist a direct
causal influence or a hidden common cause, because an indirect influence
(through observable variables) should enable us to find a set SAB that renders
the two attributes independent. In step 2 the asymmetry inherent in the
d-separation criterion is exploited to direct edges towards a common effect.
Part 1 of step 3 ensures that the resulting structure is acyclic. Part 2 uses
the fact that B → C is impossible, since otherwise step 2 would have already
directed the edge in this way. Finally, step 4 marks those unidirected links
that cannot be replaced by a hidden common cause. The reason is that if the
attributes B and C named in this step were connected by a hidden common
cause, A and B would not be independent given C, which they must, because
otherwise step 2 would have directed both edges towards C.

The output graph core(p) has four kinds of edges:

1. marked unidirected edges representing genuine causal influences
(which must be direct causal influences in a projection);

2. unmarked unidirected edges representing potential causal influences
(which may be direct causal influences or indirect influences brought about
by a hidden common cause);

3. bidirected edges representing spurious associations
(which are due to a hidden common cause in a projection);

4. undirected edges representing unclassifiable relations.

9.5 Critique of the Underlying Assumptions

In this section we discuss the assumptions underlying d-separation and faith-
fulness by considering some special cases with only few variables [Borgelt
and Kruse 1999]. The simplest case is a causal chain, like the one shown on
the left in Figure 9.1. If a variable has a direct causal influence on another,
they should be dependent at least unconditionally, that is, A⊥
⊥ B | ∅ and
B⊥
⊥ C | ∅. It is also obvious that A⊥⊥ C | B. A direct cause, if fixed, should
shield the effect from any change in an indirect cause, since a change in the
indirect cause can influence the effect only by changing the direct cause. But
to decide whether B and C are dependent given A or not, we need to know
the causal influences in more detail. For instance, if B = f(A) and C = g(B),
then B⊥⊥ C | A. But if the value of A does not completely determine the value
of B, then B and C will usually be dependent. Although the former (that is,
B⊥⊥ C | A) is not uncommon, the faithfulness assumption excludes it.

The next cases are diverging or converging causal influences, as shown in
the middle and on the right in Figure 9.1 on page 277. The main problems
with these structures are whether the statements B⊥⊥ C | A (middle) and
A⊥⊥ B | C (right) hold or not. The assumptions by which d-separation and
the faithfulness assumption handle these problems are as follows:

280 CHAPTER 9. INDUCTIVE CAUSATION

A

B

C

D
Figure 9.2 Interaction of common cause
and common effect assumption.

Common Cause Assumption (Causal Markov Assumption)

Given all of their (direct or indirect) common causes, two effects are inde-
pendent, that is, in the structure in the middle of Figure 9.1 the attributes B
and C are independent given A. If B and C are still dependent given A, it
is postulated that either B has a causal influence on C or vice versa or there
is another (hidden) common cause of B and C (apart from A). That is, the
causal structure (as shown) is considered to be incomplete.

Common Effect Assumption

Given one of their (direct or indirect) common effects, two causes are depen-
dent, that is, in the structure on the right of Figure 9.1 the attributes A and
B are dependent given C. For applications of Bayesian networks this assump-
tion is not very important, since little is lost if it is assumed that A and B
are dependent given C even though they are not—only the storage savings
resulting from a possible decomposition cannot be exploited. However, for
inferring causal relations this assumption is very important.

Note that the common cause assumption necessarily holds if causation is
interpreted as functional dependence. Then it only says that fixing all the
arguments that (directly or indirectly) enter both functions associated with
the two effects renders the effects independent. But this is obvious, since any
variation still possible has to be due to independent arguments that enter
only one function. This is the main reason why we rejected the interpretation
of causation as functional dependence. It is not at all obvious that causation
should satisfy the common cause assumption (in this sense).

A situation with diverging causal influences also poses another problem:
are B and C independent unconditionally? In most situations they are not,
but if, for example, dom(A) = {0, 1, 2, 3}, dom(B) = dom(C) = {0, 1} and
B = A mod 2, C = Adiv 2, then they will be. The faithfulness assumption
rules out this not very unlikely possibility.

The two assumptions also interact and this can lead to a priority problem.
Consider, for example, the structure shown in Figure 9.2: given A as well
as D, are B and C independent? The common cause assumption affirms this,
the common effect assumption denies it. Since the faithfulness assumption
requires B and C to be dependent, it contains the assumption that in case of

9.5. CRITIQUE OF THE UNDERLYING ASSUMPTIONS 281

T

L R

?

b

Figure 9.3 Left: Y-shaped tube arrangement into which a ball is dropped.
Since it can reappear only at L or at R, but not at both, the corresponding
variables are dependent. Right: Billiard with round obstacles exhibits sensitive
dependence on the initial conditions.

a tie the common effect assumption has the upper hand. Note, by the way,
that from strict functional dependence B⊥⊥ C | {A, D} follows.

In the following we examine some of the assumptions identified above in
more detail, especially the common cause and the common effect assumption,
which are at the heart of the (alleged) asymmetry of causal relations.

Common Cause Assumption (Causal Markov Assumption)

Consider a Y-shaped arrangement of tubes like the one shown on the left in
Figure 9.3. If a ball is dropped into this arrangement, it will reappear shortly
afterwards at one of the two outlets. If we neglect the time it takes the ball
to travel through the tubes, we can define three binary variables T, L, and
R indicating whether there is a ball at the top T, at the left outlet L or
at the right outlet R. Obviously, whether there is a ball at T or not has a
causal influence on the variables L and R. But L and R are clearly dependent
given T, because the ball can reappear only at one outlet.

At first sight the common cause assumption seems to fail in this situation.
However, things are not quite as simple: we can always assume that there is
a hidden common cause, for instance, an imperfection in the ball or in the
tubes, which influences the course of the ball. If we knew the (exact) state
of this cause, the outlet at which the ball will reappear could be determined
and hence the common cause assumption would hold. Obviously, if there is
a dependence between two effects, we can always say that there must be
another hidden common cause. We did not find it, because we did not look
hard enough. Since this is a statement of existence, it cannot be disproven.
Although using statements that cannot possibly be falsified is highly dubious
(or even unacceptable) scientific methodology [Popper 1934], we have even
better grounds on which to reject such an explanation.

The idea that, in principle, we could discover the causes that determine
the course of the ball is deeply rooted in the mechanistic paradigm of physics,

282 CHAPTER 9. INDUCTIVE CAUSATION

which is perhaps best symbolized by Laplace’s demon.6 But quantum theory
suggests that such a view is wrong [von Neumann 1932, Feynman et al. 1965]:
It may very well be that even if we look hard enough, we will not be able to
find a hidden common cause to explain the dependence.

To elaborate a little: among the fundamental statements of quantum
mechanics are Heisenberg’s uncertainty relations. One of them states that
�x · �px ≥ h̄

2 . That is, in more understandable terms: we cannot measure
both the location x and the momentum px of a particle with arbitrary preci-
sion in such a way that we can predict its exact trajectory. There is a finite
upper bound to the precision due to the unavoidable interaction with the ob-
served particle. However, in our example we may need to predict the exact
trajectory of the ball in order to determine the outlet with certainty.

The objection may be raised that h̄
2 ≈ 5.27 ·10−35m2 kg s−1 is too small to

have any observable influence. To refute this, we could add to our example an
‘‘uncertainty amplifier’’ based on the ideas studied in chaos theory, that is, a
system that exhibits a sensitive dependence on the initial conditions. A simple
example is billiard with round obstacles [Ruelle 1993], as shown on the right
in Figure 9.3. The two trajectories of the billiard ball b, which at the beginning
differ only by about 1

100 degree, differ by about 100 degrees after only four
collisions. (This is a precisely computed example, not a sketch.) Therefore, if
we add a wider tube containing spheres or semi-spheres in front of the inlet T,
it is plausible that even a tiny change of the position or the momentum of the
ball at the new inlet may change the outlet at which the ball will reappear.
Therefore quantum mechanical uncertainty cannot be neglected.

Another objection is that there could be ‘‘hidden parameters’’, which,
if discovered, would remove the statistical nature of quantum mechanics.
However, as [von Neumann 1932] has shown,7 this is tantamount to claiming
that quantum mechanics is false—a claim for which we do not have any
convincing evidence, since quantum mechanics is a well-confirmed theory and
there is currently no alternative theory with the same explanatory power.

6Laplace wrote [Kline 1980]: “We may regard the present state of the universe as the
effect of its past and the cause of its future. An intellect which at any given moment knew
all the forces that animate nature and the mutual positions of the beings that compose
it, if this intellect were vast enough to submit the data to analysis, could condense into a
single formula the movement of the greatest bodies of the universe and that of the lightest
atom: for such an intellect nothing would be uncertain; and the future just like the past
would be present before its eyes.”

7von Neumann wrote: “[...] the established results of quantum mechanics can never be
re-derived with their [the hidden parameters’] help. In fact, we have even ascertained that
it is impossible that the same physical quantities exist with the same function connections
[...], if other variables (i.e. “hidden parameters”) should exist in addition to the wave func-
tions. Nor would it help if there existed other, as yet undiscovered physical quantities, [...],
because the relations assumed by quantum mechanics [...] would have to fail already for the
known quantities [...] It is therefore not, as often assumed, a question of a re-interpretation
of quantum mechanics, —the present system of quantum mechanics would have to be objec-
tively false, in order that another description of the elementary processes than the statistical
one be possible.”

9.5. CRITIQUE OF THE UNDERLYING ASSUMPTIONS 283

sentence
murderer death other

∑
black 59 2448 2507
white 72 2185 2257∑

131 4633 4764

Table 9.1 Death sentencing and
race in Florida 1973–1979. The hy-
pothesis that the two attributes are
independent can be rejected only
with an error probability greater
than 7.8% (according to a χ2 test).

victim murderer death other

black black 11 2209
white 0 111

white black 48 239
white 72 2074

Table 9.2 Death sentencing and
race in Florida 1973–1979, full ta-
ble. For white victims the hypoth-
esis that the two other attributes
are independent can be rejected
with an error probability less than
0.01% (according to a χ2 test).

M V S
Figure 9.4 Core inferred by the inductive
causation algorithm for the above data.

Common Effect Assumption

According to [Salmon 1984], it seems to be difficult to come up with an
example in which the common effect assumption does not hold. A substantial
part of the problem to find such an example seems to be that most macroscopic
phenomena are described by continuous real-valued functions, but there is no
continuous n-ary function, n ≥ 2, which is injective. (Such a function would
be a simple, though not the only possible counterexample.)

However, there are real-world examples that come very close, for instance,
statistical data concerning death sentencing and race in Florida 1973–1979
(according to [Krippendorf 1986] as cited in [Whittaker 1990]). From Ta-
ble 9.1 it is plausible to assume that murderer and sentence are independent.
Splitting the data w.r.t. victim shows that they are strongly dependent given
this variable (see Table 9.2). Hence the inductive causation algorithm yields
the causal structure shown in Figure 9.4. But this is not acceptable: a direct
causal influence of sentence on victim is obviously impossible (since the sen-
tence follows the murder in time), while a common cause is hardly imaginable.
The most natural explanation of the data, namely that victim has a causal
influence on sentence, is explicitly ruled out by the algorithm.

This example shows that an argument mentioned in [Pearl and Verma
1991a, Pearl 2000] in favor of the faithfulness assumption is not convincing.
It refers to [Spirtes et al. 1989], where it is shown that if the parameters of

284 CHAPTER 9. INDUCTIVE CAUSATION

S
A
B

S
C
D

0
x
y

0
x
y

1
x
y

1
y
x

S 0 0 0 0 1 1 1 1

A 0 0 1 1 0 0 1 1

B 0 1 0 1 0 1 0 1

C 0 0 1 1 0 1 0 1

D 0 1 0 1 0 0 1 1

Figure 9.5 The Fredkin gate [Fredkin and Toffoli 1982].

a distribution are chosen at random from any reasonable distribution, then
any unfaithful distribution has measure zero. But the problem is that this is
not the correct set of distributions to look at. When trying to infer causal in-
fluence, we have to take into account all distributions that could be mistaken
for an unfaithful distribution. Indeed, the true probability distribution in our
example may very well be faithful, that is, murderer and sentence may actu-
ally be marginally dependent. But the distribution in the sample is so close
to an independent distribution that it may very well be confused with one.

In addition, the special parameter assignments leading to unfaithful dis-
tributions may have high probability. For example, it would be reasonable to
assume that two variables are governed by the same probability distribution
if they were the results of structurally equivalent processes—like two identical
clocks, which always show the same time, even if they run independently. Yet
such an assumption can lead to an unfaithful distribution, especially in a sit-
uation in which common cause and common effect assumption interact. For
instance, for a Fredkin gate [Fredkin and Toffoli 1982] (a universal gate for
computations in conservative logic, see Figure 9.5), the two outputs C and D
are independent if the two inputs A and B assume the value 1 with the same
probability. In this case, as one can easily verify, the causal direction assigned
to the connection A—C depends on whether the variables A, B, and C or the
variables A, C, and D are observable.

9.6 Evaluation

The discussion of the assumptions underlying the inductive causation algo-
rithm showed that at least some of them can be reasonably doubted. In addi-
tion, the inductive causation algorithm cannot deal adequately with acciden-
tal correlations. But we saw in Section 9.1 that we sometimes reject a causal
explanation in spite of the statistical data supporting such a claim. In our
opinion it is very important for an adequate theory of causation to explain

9.6. EVALUATION 285

such a rejection.8 In summary, when planning to apply this algorithm, one
should carefully check whether the assumptions can be accepted and whether
the underlying interpretation of causality is adequate for the problem at hand.

A related question is: given a causal relation between two variables, we are
usually much more confident in an inference from the state of one of them to
the state of the other than we would be if our reasoning was based only on a
number of similar cases we observed in the past. But the inductive causation
algorithm infers causation from a set of past observations, namely a sampled
probability distribution. If the result is not substantiated by other means,
in particular, by a model of the underlying mechanism, can we be any more
confident in our reasoning than we would be if we based it directly on the
observed correlations? It seems to be obvious that we can not. Hence the ques-
tion arises whether the inductive causation algorithm is more than a heuristic
method to point out possible causal connections, which then have to be fur-
ther investigated. Of course, this does not discredit the inductive causation
algorithm, since good heuristics are a very valuable thing to have. However,
it warns against high expectations and emphasizes that this algorithm should
not be seen as the ultima ratio for inferences about causality.

8An approach to causation that does not suffer from this deficiency was suggested by
K. Lorenz and later developed, for example, in [Vollmer 1981]. It models causal connections
as a transfer of energy. [Lemmer 1996] suggests a closely related model.

Chapter 10

Visualization

In Chapters 7 and 8 we thoroughly investigated the induction of the struc-
tural component of graphical models, that is, the underlying (in)dependence
structure encoded as a directed or undirected graph. Given a database and a
graphical structure, the parameters of the model (that is, the—conditional or
marginal—probabilities or degrees of possibility of the decomposition imposed
by the graph) can be easily estimated as discussed in Chapter 5.

Clearly, the network structure conveys merely qualitative information.
Consider a car manufacturer1 that stores the configuration of every car that
leaves the production plant. Whenever a failure or minor problem occurs,
the corresponding database entry is updated. Assume that after learning the
network structure, the failure variable has the variables ‘‘air conditioning’’
and ‘‘engine’’ as its direct parents. (That is, we are dealing with a Bayesian
network as in the rest of this chapter.) An engineer surely has now more
information than before, because there is—at least statistical—evidence that
the type of air conditioning and engine have some impact on the class variable.
However, it is impossible to answer questions of the following kind:

‘‘Which specific combination of types of air conditioning and
engine have what kind of impact on which class value?’’

This information, though, is indispensable for a well-founded treatment of the
underlying problem. It is quantitatively encoded in the local structure of a
graphical model, that is, in its parameters. It can be made accessible with an
appropriate visualization method that will be introduced in this chapter.

In Section 10.1, we introduce the notation of what we call potential ta-
bles of a Bayesian network. Section 10.2 discusses the analogy of conditional
probabilities to association rules and suggests an intuitive visualization.

1We actually developed a real-world application in this setting in a cooperation with
DaimlerChrysler. See Section 11.4 on page 310 for details.

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

288 CHAPTER 10. VISUALIZATION

10.1 Potentials

In Section 3.3.3 we introduced the notion of factor potentials associated with
a graphical model. These potentials are nonnegative functions declared on
subsets of attributes. Their product equals the joint probability distribution of
the underlying graphical model. For a directed graphical model with attribute
set U = {A1, . . . , An} and network structure �G = (U, �E) this quite general
definition was specialized with the chain rule of probability to

P
(
A1 = a1, . . . , An = an

)
=

n∏
i=1

P
(
Ai = ai

∣∣∣ ∧
Aj∈parents�G

Aj = aj

)
.

In the following, we refer to the functions P(A | parents(A)) as potentials.
More precisely, for every attribute Ai we are dealing with

qi =
∏

Aj∈parents�G(Ai)

|dom(Aj)|

different probability distributions over dom(Ai): one for each combination
of the parent attribute values of Ai. Every such combination is denoted as
Qi1, . . . , Qiqi

. As an example consider a Bayesian network with three at-
tributes: A1 represents the air conditioning type, A2 the engine type and
the class value is determined by A3. For the sake of simplicity we assume
that the domains of these attributes are binary. The left part of Figure 10.1
depicts the graph structure as well as the layout of the three potentials. Note
that Q11 and Q21 represent ‘‘empty combinations,’’ that is, marginal distribu-
tions P(A1) and P(A2), since root nodes cannot have parents. We summarize
the potentials of an attribute in a potential table as it is sketched in the right
part of Figure 10.1. The different combinations of parent attribute values are
gathered columnwise, that is, every column represents a probability distribu-
tion (as indicated by the shaded column) and therefore sums up to 1. For the
sake of brevity, we denote the probability of the kth value of Ai given that
its parent attributes assume the jth value combination Qij by θijk. That is,

P(Ai = aik | parents�G(Ai) = Qij) = θijk.

The values of a potential table are the parameters we referred to above and we
now seek an appropriate visualization. Note that every database entry can be
mapped to exactly one table entry θijk. That is, an attribute and its parents
induce a partition of the underlying database: two database entries are in
the same equivalence class if they share the same values (for the considered
attribute and its parents). The main idea is to interpret each equivalence class
as an association rule [Agrawal and Srikant 1994] and use rule evaluation
measures to quantify the properties of the corresponding visual cues.

10.2. ASSOCIATION RULES 289

A1 A2

A3

P Q11

a12

a11

P Q21

a22

a21

P Q31 Q32 Q33 Q34

a32

a31

Ai Qi1 · · · Qij · · · Qiqi

ai1 θi11 · · · θij1 · · · θiqi1

...
...

. . .
...

. . .
...

aik θi1k · · · θijk · · · θiqik

...
...

. . .
...

. . .
...

airi
θi1ri

· · · θijri
· · · θiqiri

Figure 10.1 Left: An example network which (together with the domain sizes)
induces the layout of the potential tables. Right: A general potential table.
Each column represents a (conditional) probability distribution.

10.2 Association Rules

Association rule induction is a wide-spread data analysis method, which fo-
cuses on market basket analysis. Given a database of so-called transactions
(which corresponds exactly to a database of cases that we are dealing with,
that is, a transaction is a row of a database table), the objective is to find
subsets of attribute values (so-called item sets) that occur together in more
than a predefined fraction of transactions. This fraction is called the min-
imum (relative) support. In a next step one tries to identify a single item
within each item set such that the probability of observing this item given
the remaining items of the item set exceeds another predefined threshold, the
so-called minimum confidence. A rule has the following general form:

A1 =a1 ∧ · · · ∧ An =an −→ C=c =̂ �a → c

For the quantification of rules a multitude of evaluation measures has been
devised. A set of standard measures is now briefly discussed.

Relative Support As stated above, the relative support of a rule �a → c
represents the fraction of database cases (transactions) that are covered by
the rule. A case is covered if its attribute values match the values in the
antecedent and consequent. Formally, the relative support is defined as

support(�a → c) =

∣∣{t ∈ D | t(C) = c ∧
∧n

i=1 t(Ai) = ai}
∣∣

|D| .

Here D denotes the underlying database and t is understood in the tuple
concept introduced in Section 3.2.4. There are also related support measures:

290 CHAPTER 10. VISUALIZATION

the absolute support is the absolute number of covered database cases, that is,
the numerator in the equation above. Two other specializations of the support
measure are the left-hand side and right-hand side support, which restrict the
coverage test to �a and c, respectively.

Confidence The confidence quantifies the probability that the rule is valid
given that it is applicable. That is, it states (an estimate of) the probability
of observing the consequent value c if the antecedent �a is present:

conf(�a → c) =
support(�a → c)

support(�a)
.

Recall The recall of a rule describes the portion of database cases that
match the values �a given that the class value c is present:

recall(�a → c) =
support(�a → c)

support(c)
.

Lift The intuition underlying an association rule is that its antecedent im-
plies its consequent with high probability. To measure the impact of the
antecedent �a on the consequent c, we may compare the marginal probabil-
ity P(c) of observing the class c to the conditional probability P(c | �a) of
observing it if the antecedent attribute values are present. The ratio is called
the lift:

lift(�a → c) =
conf(�a → c)
support(c)

.

With these prerequisites, we can now identify each entry of a potential table
with an association rule. Each Qij represents a rule antecedent, while every
value aik yields a rule consequent. Then the value θijk is the confidence of the
rule Qij → aik. Each table entry describes a set of database cases, namely
those that are covered by the attribute values referenced in the rule. We
will depict these sets in a two-dimensional chart as circles. The area of each
circle is chosen equal to the relative support (or, equivalently, to the absolute
support, since the two measures are proportional to each other). A sketch of
a rule visualization is shown in Figure 10.2. The confidence value is encoded
as an arc of a pie chart. The color of this arc encodes the value of the class
value.2 In special cases we can even encode the antecedent attribute values
into the rule representation: if the number n of attributes is limited, we reserve
a distinct segment on the outer border for each attribute. If an attribute is
referenced by the rule, the respective value is represented as the segment
being filled with a color denoting the value. When such an encoding of the
antecedent is inappropriate, we do not draw the outer ring.

2Encoding attribute values by color is, of course, only applicable if we deal with a
relatively small number of values.

10.2. ASSOCIATION RULES 291

Figure 10.2 Graphical representation of a single
association rule. The size represents the num-
ber of covered database cases. The inner arc
quantifies the confidence and the class value of
the rule. The outer ring segments represent the
antecedent attributes: colored segments encode
the respective attribute value while white (un-
filled) segments indicate that the corresponding
attribute was not referenced by the rule.

P(C = y | ai, ej)

a1 a2 a3

e1 0.30 0.10 0.13
e2 0.12 0.11 0.10
e3 0.13 0.12 0.10

P(ai)

a1 0.2
a2 0.3
a3 0.5

P(ei)

e1 0.2
e2 0.2
e3 0.6

A E

C

Figure 10.3 Graphical structure of the imaginary example with attributes air
conditioning type (A), engine type (E), and class C indicating failure. The
tables represent the potentials (two marginal and one conditional probability
distribution). The potential P(C | A, E) is visualized in Figure 10.4.

Now that we have a visual representation of a single rule corresponding to
a single entry of a potential table, we need to arrange these representations
for all table entries in order to visualize a full potential table. According to
the confidence representation, we again assign association rule measures, but
now to the x- and y-coordinate of the location of the circle: the x-coordinate
is determined by the recall value of the rule while the y-coordinate is given
by the rule’s lift value. Of course, the choice of evaluation measures is up to
the user. However, we found the given assignment to be most intuitive.

Let us illustrate the presented visualization concepts with an imaginary
example: consider again the vehicle manufacturer scenario and assume that
the attributes air conditioning (A) and engine (E) now have three values
each. The class attribute C remains binary with C = y indicating a failure.
Figure 10.3 shows the model structure and the parameters: both the air con-
ditioning type and the engine type influence whether a failure occurs. For the
parent attribute combination (a1, e1), the failure rate is raised to 30%.

The visualization of the potential table for attribute C is depicted in Fig-
ure 10.4. It contains 18 circles representing the two class values for all 9 differ-
ent combinations of values of the attributes air conditioning and engine. Dark
circles correspond to failing cars (C = y), while light gray circles indicate cars

292 CHAPTER 10. VISUALIZATION

Figure 10.4 Visualization of the potential table P(C | A, E) of the imaginary
example. Dark circles correspond to failing cars (C = y), light gray ones to
functioning ones (C = n). The cross-haired circle clearly stands out, revealing
the manually implanted outlier, that is, the higher failure rate of vehicles with
A = a1 and E = e1.

Figure 10.5 Another view on the potential P(C | A, E) of the imaginary ex-
ample. Only cases with failures (C = y) are shown. The y-coordinate was
changed from lift to confidence. The (cross-haired) circle standing out cor-
responds to the combination (a1, e1) of parent attribute values, which has a
failure rate (confidence) of 30%.

10.2. ASSOCIATION RULES 293

that are still working (C = n). The marginal failure rate is roughly 12%:

P(C = y) =
3∑

i=1

3∑
j=1

P(C = y|A = ai, E = ej)P(A = ai)P(E = ej)

≈ 0.1196

Inspecting Figure 10.4 clearly reveals one rule standing out from the others.
This (cross-haired) circle represents the rule

A = a1 ∧ E = e1 → C = y,

which has a confidence of 30%. Since the overall failure rate is only about 12%,
the lift of this rule equals 30%

12% = 2.5, which corresponds to the y-coordinate
of the circle in the chart.3

Since we are free to choose the evaluation measures that are used to po-
sition the circles, we can, for instance, replace the lift by confidence as the
function for the y-coordinates. Figure 10.5 presents this altered view on the
same example. Note that only cases with C = y are shown. Again, the rule
with antecedent A = a1, E = e1 stands out.

The visual clue of having a more extreme location than most of the other
rules can be used to convey an intuitive handling to the user. Given the four
rule measures support, recall, confidence, and lift (used as explained above)
the user investigates the class variable and tries to identify ‘‘rules that are
located close to the upper right-hand side corner.’’

We conclude this chapter with a prospect on the visualization of model
change over time. A model induced from an entire database (as is assumed
to be the case throughout this book) represents, in a way, an aggregated
model. Most databases support timestamps and thus the insertion order of
the data can be used to create different subsets of cases of the database
w.r.t. time. If a considerable model change occurred during the period for
which the data was collected, we may also expect a model change. If this
change is reflected in different network structures, the proposed visualization
cannot be applied. However, for short periods within which we may conjecture
only minor model changes in terms of parameter deviations, we can use the
proposed visualization method to indicate the changes as follows: for every
rule (corresponding to an entry of the potential table of interest) a time series
of the rule properties is calculated. These are used to create an animation
where each step of the time series is used as a key frame. Between two key
frames we simply interpolate to create a smooth animation.

Figure 10.6 sketches this idea. A rule is evaluated at three points in time.
It shows that the set of covered cases is growing with time (as the support and

3Small deviations from the theoretical value are due to the random sampling used to
generate a database of cases from the graphical model in Figure 10.3.

294 CHAPTER 10. VISUALIZATION

Figure 10.6 A rule at three different times. The support increased (growing
size of the circle), the recall and lift did alike (circle is moving to the upper
right-hand corner). The user would be presented an animation with a smooth
transition between the three states.

thus the size of the circle increases). In addition, the confidence increased con-
siderably. One can imagine that such a visualization is only applicable if the
temporal trajectories of a few rules are shown. Therefore the set of rules has
to be preprocessed in order to select only those rules whose temporal behav-
ior (in terms of evaluation measure values) matches a certain user-specified
pattern. In [Steinbrecher and Kruse 2008] a method based on linguistic ex-
pressions is discussed. The user uses fuzzy sets on the change rate domains
of the rule evaluations measures to specify what change rates he considers
‘‘small,’’ ‘‘moderate,’’ ‘‘fast,’’ etc. Finally, for every rule a membership degree
is calculated to which it belongs to the concept. Only rules that exceed a
certain predefined threshold are shown.

Chapter 11

Applications

In this chapter we conclude our discussion of graphical models and how to
learn them from data by pointing out their practical value with some appli-
cations. In Section 11.1 we show how analog electrical circuits can be mod-
eled with graphical models for diagnostic purposes [Borgelt and Kruse 2005].
In Section 11.2 we review an approach to fraud detection in telecommuni-
cations developed at AT&T [Ezawa and Norton 1995, Ezawa et al. 1996],
which is based on learning Bayesian network classifiers from large phone call
databases. In Section 11.3 we study the construction of a Markov network to
predict the supply of automobile parts at the Volkswagen corporation, which
is derived from a relational graphical model built from technical and market-
ing rules [Detmer and Gebhardt 2001]. In Section 11.4 we describe an applica-
tion of learning Bayesian networks from data for fault analysis in automobiles,
which was part of a cooperation between the Otto-von-Guericke-University
of Magdeburg and the DaimlerChrysler corporation [Borgelt et al. 1998b].

11.1 Diagnosis of Electrical Circuits

In this section we consider how (probabilistic) graphical models can be used as
models to diagnose faults in electrical circuits. In electrical engineering several
approaches to this task have been developed [Liu 1987, Liu 1991]. Examples
include the fault dictionary approach, which collects a set of common or
relevant faults and associates them with (sets of) measurements by which
they can be identified [Bandler and Salama 1985], the model-based diagnosis
of digital circuits based on constraint propagation and an assumption-based
truth maintenance system (ATMS) [de Kleer and Williams 1987], and the
simulation of a circuit for different predefined faults to generate training data
for a classifier, for example, an artificial neural network [Aminian et al. 2002,
Spina and Upadhyaya 1997]. In particular the diagnosis of digital electrical

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

296 CHAPTER 11. APPLICATIONS

circuits is well-developed. However, this theory is difficult to transfer to analog
circuits due to problems like soft faults (that is, significant deviations from
nominal values, which lead to a deviation from the desired circuit behavior)
and the nondirectional behavior of analog circuits.

Established methods for the diagnosis of analog circuits suffer from sev-
eral drawbacks, like difficulties to take tolerances of components and mea-
surements into account. In addition, there is often the need that a human
expert specifies a set of faults, which are common or relevant for the circuit.
In this section, however, we develop a method that is based on a probabilistic
description of the state of the circuit with the help of a graphical model. Thus
we obtain an approach that is able to handle these problems.

11.1.1 Iterative Proportional Fitting

For our approach we need the well-known technique of iterative proportional
fitting (IPF), which has some connections to evidence propagation (cf. Sec-
tion 4.2), which can be seen as a special case. Iterative proportional fitting is
commonly used to adapt the marginal distributions of a given joint probabil-
ity distribution to desired values [Whittaker 1990]. It consists in computing
the following sequence of (joint) probability distributions:

p
(0)
V (v) ≡ pV (v)

∀i = 1, 2, . . . : p
(i)
V (v) ≡ p

(i−1)
V (v)

p∗Aj
(aj)

p
(i−1)
Aj

(aj)

where j is the ((i − 1) mod |J| + 1)-th element of J, the index set that in-
dicates the variables for which marginal distributions are given. p∗Aj

is the
desired marginal probability distribution on the domain of the variable Aj

and p
(i−1)
Aj

is the corresponding distribution as it can be computed from p
(i−1)
V

by summing over the values of all variables in V except Aj .
In each step the probability distribution is modified in such a way that

it satisfies one given marginal distribution (namely the distribution p∗Aj
).

However, this will, in general, perturb the marginal for a variable Ak, which
has been processed in a preceding step. Therefore the adaptation has to be
iterated, traversing the set of variables several times.

It can be shown that if there is a solution, iterative proportional fitting
converges to a (uniquely determined) probability distribution that has the de-
sired marginals as well as some other nice properties [Csiszar 1975, Jirousek
and Poeueil 1995]. Convergence may be checked in practice, for instance, by
determining the maximal change of a marginal probability: if this maximal
change falls below a user-defined threshold, the iteration is terminated (cf.
Section 5.3, where the same approach was used to check whether the expec-
tation maximization algorithm has reached its convergence point).

11.1. DIAGNOSIS OF ELECTRICAL CIRCUITS 297

R1

R2

R3

+

−
U0

−I0

U1, I1 U2

I2U3, I3

I0 I3 R3 U3 I3 I3 I2

I0 I1 R1 U1 I1 I1 I2

U0

U1
U2

U3

U2 I2 R2

Figure 11.1 A simple resistive circuit and an intuitive graph structure for this
circuit, which one may be tempted to use for building a graphical model.

Iterative proportional fitting can easily be extended to probability dis-
tributions represented by Markov networks or the corresponding join trees
[Jirousek and Poeueil 1995]. The idea of this extension is to assign each vari-
able, the marginal distribution of which is to be set, to a maximal clique of
the Markov network (or to a node of the join tree it has been turned into), to
use steps of iterative proportional fitting to adapt the marginal distributions
on the maximal cliques, and to distribute the information added by such an
adaptation to the other maximal cliques by join tree propagation.

11.1.2 Modeling Electrical Circuits

Before we present our method to construct a graphical model for an electrical
circuit in Section 11.1.3, it is worthwhile discussing some fundamental prob-
lems of such an approach. Straightforward intuitive approaches fail due to
two reasons: (1) cycles in the underlying graph structure and (2) difficulties
of specifying probability distributions in a plausible and consistent way.

We illustrate these problems with the very simple resistive direct current
circuit shown in Figure 11.1 on the left. A very natural approach to construct
a graphical model for this circuit would be to set up a clique graph like the
one shown in Figure 11.1 on the right, in which there is one node for each
basic electrical law needed to describe the circuit. The nodes at the four
corners encode Kirchhoff’s junction law for the four corners of the circuit and
the diamond-shaped node in the middle represents Kirchoff’s mesh law. The
remaining three nodes describe the three resistors with Ohm’s law. (The two
nodes on the left may, in principle, be removed, since it is I0 = I1 = I2 = I3

and thus the two corner nodes on the right suffice.)
The obvious problem with this clique graph is that it is cyclic and thus

evidence propagation can lead to inconsistent results. The crucial point is
that all four currents must be equal and thus, depending on the resistors, only
certain combinations of values for the voltages U1, U2, and U3 are possible.
However, these relations are not enforced by the graph structure, so that
actually impossible states of the circuit are not ruled out.

298 CHAPTER 11. APPLICATIONS

B = 0 B = 1

D = 0 0.5 0
D = 1 0 0.5

A = 0 A = 1
B = 0 B = 1 B = 0 B = 1

C = 0 0 0.25 0.25 0
C = 1 0.25 0 0 0.25

A
B

C

BD

CE

D

E
F

It is pABC ≡ pFDE and pBD ≡ pCE and
pABC and pBD are defined as follows:

Figure 11.2 A simple clique graph illustrating the propagation problem.

This problem is best understood by considering an example with binary
variables: consider the graph and the probability distributions shown in Fig-
ure 11.2 (it is pABC ≡ pFDE and pBD ≡ pCE). Suppose that we observe
A = 1. Since this enforces B = C and thus D = E, we should obtain, as
an inference result, P(F = 0) = 0 and P(F = 1) = 1. However, the marginal
distributions on the individual variables B and C do not change due to this ob-
servation (they are still P(B = 0) = P(B = 1) = P(C = 0) = P(C = 1) = 0.5).
As a consequence no information is transmitted to the right half of the net-
work, leading to the incorrect result P(F = 0) = P(F = 1) = 0.5. This also
illustrates the potential pitfalls of loopy propagation (cf. Section 4.2.3).

We encounter basically the same problem, though in more complex form,
for the electrical circuit in the graph structure shown in Figure 11.1. For in-
stance, if we set the variables for the three resistors to the same value, all
voltages U1, U2, and U3 must be equal. However, this information does not,
or does not completely, reach the center node. To cope with this problem we
would have to merge nodes in order to obtain an acyclic structure, which,
if done inappropriately, can lead to fairly large cliques (and doing it opti-
mally is a nontrivial issue—actually it is NP-hard, since finding an optimal
triangulation of an undirected graph is NP-hard, cf. Section 4.2.2).

The second problem we encounter if we try to construct a graphical model
for an electrical circuit results from the fact that the electrical laws and the
prior information about marginal probability distributions over, for example,
the resistor values do not allow for a direct initialization of the quantitative
part of the network. In a way, we have too little information. To see this,
consider how one may try to build a Bayesian network for the very simple
electrical circuit shown in Figure 11.1. We would like to have parentless nodes
only for those variables for which we can specify marginal distributions, that
is, for the resistor values and maybe the supply voltage. Every other variable
should be a child of one or more variables, with the conditional probability
distribution encoding the electrical law that governs the dependence, because
we cannot easily specify a marginal distribution for it.

11.1. DIAGNOSIS OF ELECTRICAL CIRCUITS 299

R1

U0

R3

U1

U2

U3

I1

I2

I3

R2
m

m

m

o

o

o

o

o o

j

j

Figure 11.3 An attempt to build a
Bayesian network for the circuit shown
in Figure 11.1: two cycles result. This
is a general problem that cannot be
avoided by making different choices
than those leading to this graph.

However, this is not possible as Figure 11.3 demonstrates (note that the
current I0 is omitted, because it must be identical to all other currents).
The Bayesian network shown in this figure is constructed as follows: first we
choose one of the voltages U1, U2, and U3 as the child for Kirchhoff’s mesh
law. For reasons of symmetry we choose U2, which leads to the edges marked
with an m, but other choices lead to the same problem in the end. As U1 and
U3 cannot be left parentless, because we cannot specify marginal distributions
for them, we use Ohm’s law to make them dependent on the corresponding
currents and resistor values. This leads to the edges marked with an o in the
top and bottom row of the network. For the second resistor, however, we make
I2 the child, because U2 already has all the parents it needs and R2 should be
parentless. This leads to the remaining two edges marked with an o. Finally
we make I1 and I3 children of some other variable, because we cannot specify
marginal distributions for them easily. The only law left for this is Kirchhoff’s
junction law, which leads to the edges marked with a j. However, the final
graph has two cycles and thus cannot be used as a Bayesian network.

11.1.3 Constructing a Graphical Model

In the following we no longer use voltages over electrical components, as in
Figure 11.1, but turn to node voltages (potentials). This has advantages not
only w.r.t. the measurement process (since node voltages against ground are
easier to measure), but also has several advantages w.r.t. the construction
of the graphical model. Note, however, that the problems pointed out in the
preceding section are not solved by such a transition. In the preceding section
we used voltages over components only, because this made it somewhat easier
to demonstrate the fundamental problems.

In the following we describe an algorithm to construct a join tree repre-
sentation of a Markov network for an analog electrical circuit, which avoids
these problems. Let a time-invariant n+1 node, b branch steady state circuit
with known topology be given, the nodes of which are accessible terminals
for measurements. One of them is taken as a reference (ground) and the node
voltages are used to study the circuit. We assume that for each component
the electrical law that governs its behavior (for example, Ohm’s law for a
resistor), its nominal value(s), and a tolerance provided by the manufacturer

300 CHAPTER 11. APPLICATIONS

are known. We use the following notation:

Ui, i = 0, . . . , n − 1 : node voltages
Ij , j = 0, . . . , b − 1 : branch currents
Rk, k= 0, . . . , b − 1 : branch resistances.

(Note that all magnitudes may be complex numbers, thus making it possible
to handle steady state alternating current circuits. For reasons of simplicity,
however, we confine ourselves to direct current circuits here.)

In order to build a join tree for this circuit, we have to find partitions of
the set of variables V = {U0, . . . , Un−1, I0, . . . , Ib−1, R0, . . . , Rb−1} into three
disjoint subsets X1, X2, and X3, such that the variables in X1 and X2 are
conditionally independent given the variables in X3. That is, if the values of
the variables in X3 are fixed, a change of the value of a variable in X1 has
no effect on the values of the variables in X2 and vice versa.

To find such partitions we consider virtual cross-sections through the
circuit (only through wires, not through components). Each of these cross-
sections defines a set of variables, namely the voltages of the wires that are
cut and the currents flowing through them. Since this set of variables obvi-
ously has the property of making the variables on one side of the cross-section
independent of those on the other side (and thus satisfies the conditional inde-
pendence property), we call it a separator set. We select a set of cross-sections
so that each component is enclosed by two or more cuts or is cut off from
the rest of the circuit by a single cut (terminal cross-section). Then the elec-
trical law governing a component describes how the variables of its enclosing
cross-sections relate to each other. Note that there are usually several ways
of selecting the cross-sections and that an appropriate selection is crucial to
the complexity of the network. However, selecting appropriate cross-sections
is easier than finding good node mergers in the approach discussed above.

Given a set of cross-sections we construct the join tree as follows: the
separator sets form, not surprisingly, the node separators (cf. Section 4.2.2).
For each circuit part (containing one component) we create a (clique) node
containing the union of the separator sets of the bounding cross-sections.
In addition, we create a node for each component, comprising the variables
needed to describe its behavior, and connect it to the node corresponding to
the circuit part the component is in. If the component node contains currents
not yet present in the circuit part node, we add these currents to it. The
connection is made through an appropriate node separator, containing the
intersection of the sets of variables assigned to the connected nodes.

Next this initial graphical model is simplified in two steps. In the first step,
the number of variables is reduced by exploiting trivial Kirchhoff junction
equations (like the identity of two currents). In the second step, we merge
adjacent nodes where the variables in one of them is a subset of the variables
in the other. The result is the qualitative part of the graphical model, that is,
the graph structure of the join tree, enhanced with node separators.

11.1. DIAGNOSIS OF ELECTRICAL CIRCUITS 301

R1

R2

R3

R4

R5

R6

+

−

U0

U1

U2

U3

U4

I0

I1

I2

I3

I4

I5

I6

Figure 11.4 A simple
resistive circuit.

R1

R2

R3

R4

R5

R6

+

−

U0

U1

U2

U3

U4

S1
S2

S3 S4
S5

S6

I0

I2

I4
Figure 11.5 The resis-
tive circuit shown in
Figure 11.4 with cross-
sections, which yield
the separator sets.

To find the quantitative part (that is, the probability distributions), we
initialize all node distributions to uniform (equal probabilities for all values).
Next we enforce the component laws as well as Kirchhoff’s laws (wherever
applicable) by zeroing the entries of the probability distributions that corre-
spond to impossible value combinations. Finally we incorporate the manufac-
turer supplied information about nominal values and tolerances by iterative
proportional fitting (see Section 11.1.1), thus setting the marginal component
distributions. The resulting graphical model can then be used to diagnose the
modeled circuit by propagating node voltage measurements.

From the theory of evidence propagation in graphical models and in par-
ticular in join trees (cf. Section 4.2.2) it is clear that the computational com-
plexity of operations (iterative proportional fitting and evidence propagation)
is governed by the size of the node distributions, which depends on the num-
ber of variables in a join tree node and the sizes of their domains (size of
the spanned state space). If the distributions can be kept small by a proper
selection of cross-sections, the computations are very efficient.

11.1.4 A Simple Diagnosis Example

To illustrate our approach we consider the simple resistive circuit shown in
Figure 11.4 with n = 5, b = 7. It is fed by a voltage supply U0, whose internal
resistance R0 we assume to be zero. The set of (real valued) variables is
V = {U0, . . . , U4, I0, . . . , I6, R0, . . . , R6}. We select the set of six cross-sections
S1 to S6 shown in Figure 11.5. As an example of the conditional independences
consider the cross-section S3: once we know the voltage of the cut wires (U1

and U2) and the currents through them (I1 and I3, I3 = I1), all magnitudes
to the left of S3 become independent of those to the right of it.

302 CHAPTER 11. APPLICATIONS

S1

U0

I1

I3

S2

U2

I1

I3

S3

U1

U2

I1

I3

S4

U1

U2

I4

I6

S5

U1

U4

I4

I6

S6

U3

U4

I4

I6

U0

I0

I1

I3

U0

U2

I1

I3

U1

U2

I1

I3

U1

U2

I1

I3

I4

I6

I2

U1

U2

U4

I4

I6

U1

U3

U4

I4

I6

U3

U4

I4

I5

I6

U0

I0

U0

U2

I1

U1

I3

U2

U1

I2

U2

U4

I4

U3

U1

I6

U4

U3

I5

U0

I0

U0

U2

I1

R1

U1

I3

R3

U2

U1

I2

R2

U2

U4

I4

R4

U3

U1

I6

R6

U4

U3

I5

R5

Figure 11.6 Initial
graphical model for
the example circuit.

U1

U2

I4

U1

U4

I4

U1

U2

I0

I4

I2

U1

U2

U4

I4

U1

U3

U4

I4

U0

U2

I0

R1

U1

I0

R3

U2

U1

I2

R2

U2

U4

I4

R4

U3

U1

I4

R6

U4

U3

I4

R5

U2

I0

U1

I0

U1

U2

I2

U2

U4

I4

U1

U3

I2

U3

U4

I4

Figure 11.7 Simpli-
fied graphical model
for the example cir-
cuit.

The initial graphical model, as it is constructed from the separator sets,
is shown in Figure 11.6. The node separators (rectangles) are labeled by the
cross-sections S1 to S6 they correspond to. The nodes of the join tree in the top
row result directly from the separators, those in the bottom row correspond
to the circuit elements. To simplify the network, we exploit I0 = I1 = I3 and
I4 = I5 = I6. Furthermore, we merge (1) the four leftmost nodes (two from
the top row and two from the bottom row), (2) the third and the fourth node
on the top row, and (3) the two rightmost nodes (the last nodes from the top
and the bottom row). The simplification result is shown in Figure 11.7.

For a few simple diagnosis experiments we implemented the described
method for this example with a discrete Markov network.1 In order to handle

1An alternative to handle the metric attributes, which comes to mind immediately, is
a Gaussian network. Unfortunately, in its standard form (that is, with a covariance ma-
trix) a Gaussian network is restricted to linear dependences. Ohm’s law, however, specifies
nonlinear dependences, because it involves the product of two quantities.

11.1. DIAGNOSIS OF ELECTRICAL CIRCUITS 303

Table 11.1 Resistor marginals after propagating the supply voltage U0 = 20V
(left) and the supply voltage as well as the measurement U4 = 5V (right).

U0 = 20V U0 = 20V ∧ U4 = 5V

1Ω 2Ω 3Ω 4Ω 5Ω 1Ω 2Ω 3Ω 4Ω 5Ω

R1 0.11 0.22 0.39 0.19 0.09 0.00 0.04 0.33 0.32 0.31
R2 0.09 0.18 0.41 0.21 0.11 0.17 0.23 0.38 0.16 0.07
R3 0.12 0.22 0.40 0.18 0.08 0.53 0.29 0.15 0.03 0.00
R4 0.11 0.21 0.40 0.19 0.09 0.05 0.15 0.39 0.27 0.15
R5 0.11 0.21 0.40 0.19 0.09 0.16 0.25 0.37 0.16 0.07
R6 0.11 0.21 0.40 0.19 0.09 0.16 0.25 0.37 0.16 0.07

the real-valued variables, we discretized their ranges of values as follows: the
resistors are specified with 1 Ω to 5 Ω in steps of 1 Ω, the voltages range from
0 V to 20 V in steps of 1 V, and finally the currents range from 0 A to 4 A
in steps of 1 A. For the six resistors of this example we set an equal initial
probability distribution that is approximately normal and centered at 3 Ω,
that is, we use for all i = 1, . . . , 6 : pRi

(r) = (0.1, 0.2, 0.4, 0.2, 0.1).
The initial probability distributions are determined as described in Sec-

tion 11.1.3, that is, by enforcing the governing electrical laws (Kirchhoff and
Ohm) and incorporating the resistor maginals by iterative proportional fit-
ting. To mitigate the effects of discretizating the ranges of values of resistance,
voltages, and currents, we set a zero probability only if there is no combina-
tion of values from the represented intervals that is valid, that is, satisfies the
electrical law. With a threshold of 10−6 the iterative proportional fitting pro-
cedure converges after 5 iterations. This yields the final diagnostic network,
with which we can now draw inference from measurements on the circuit.

As an example, we set the voltage supply to 20 V and propagate this
information using join tree propagation. This changes the marginals of the
resistors only slightly as shown on the left in Table 11.1. Suppose now that
we measure the voltage U4 and find it to be 5 V. Propagating this evidence
yields the resistor marginals shown on the right in Table 11.1, which for R1

and R3 differ considerably from those shown on the left, thus indicating that
at least resistor R3 is highly likely to deviate from its nominal value.

Of course, this is only a very simple example, and it is handicapped by the
use of discretized ranges of values. Nevertheless it demonstrates the power of
such an approach, which, due to its sound underlying calculus, is a powerful
enhancement of the diagnosis of analog electrical circuits. Based on this ap-
proach one may even try to develop a theory of how to select measurements
in a diagnosis process (similar to [de Kleer and Williams 1987]).

304 CHAPTER 11. APPLICATIONS

11.2 Application in Telecommunications

Telecommunication is a fast growing business with a high turnover and in-
tense competitive pressure. Severe problems in this area are fraud and uncol-
lectible debt, from which the telecommunications industry incurs consider-
able losses every year. In this section we review, following [Ezawa and Norton
1995] and [Ezawa et al. 1996], an approach to identify potentially fraudulent
phone calls, which is based on learning Bayesian network classifiers from large
databases of already settled phone calls, that is, of phone calls for which it is
known whether the fee for them could be collected or not.

At first sight this problem may seem to be a simple classification task,
which could be solved with any type of classifier. However, there are several
aspects that make this problem difficult. In the first place, the interesting
cases—that is, the non-paying customers, which are the target—are (luckily)
rare: they comprise only 1% or 2% of the population. Nevertheless they cannot
be neglected: due to the high turnover in the telecommunications industry
(more than 100 billion dollars per year) this small percentage causes losses
of several billion dollars. Unfortunately, most classifier learners have severe
difficulties characterizing a minority class that is so small, because in such
extreme situations they tend to simply predict the majority class for all cases,
thus minimizing the error rate (decision tree learners are especially prone to
this problem). Even though in this application the databases to learn from
have been enriched to 9–12% nonpaying customers, thus alleviating the task
somewhat, the unequal class distribution still causes problems.

Secondly, the misclassification costs are greatly unequal. It is less impor-
tant to identify nonpaying customers: if they go undetected initially, they will
be identified after a couple of billing cycles nevertheless and thus the expected
loss is moderate. However, if a valuable paying customer is classified as fraud-
ulent and, consequently, some action is taken against him, the company may
loose this customer forever. Due to the high competition in the market, a
customer has a wide range of alternatives to choose from and thus may select
a different company in the future. In this case the loss of potential revenue
may be considerable. Even though some state-of-the-art classifiers offer ways
to take misclassification costs into account (for instance C5.0, the successor
of C4.5 [Quinlan 1993]), the costs often have to be fixed in advance, and a
change in costs enforces a reconstruction of the classifier. It would be more
convenient if a classification threshold could be fixed later.

Thirdly, some of the attributes describing a phone call have large un-
ordered sets of values, such as telephone exchange and city name. Such at-
tributes also pose problems for standard classifiers. Decision tree inducers,
for instance, cannot handle them adequately, because such attributes lead to
a very fine-grained division of the training data, thus limiting the number
of attributes that can reasonably be tested. As a consequence it may not be
possible to exploit the information contained in some attributes.

11.2. APPLICATION IN TELECOMMUNICATIONS 305

Finally, the phone call databases to learn from are very large (typically
they have 4–6 million records and 600–800 million bytes) and missing values
are very common. Some learning methods cannot handle such volumes of data
in reasonable time, because they may have to process the data several times
to reach a solution (for example, artificial neural networks). Missing values
also pose severe problems for some classifier induction methods.

A possible solution, which nicely handles most of the difficulties pointed
out above, is the application of a naive Bayes classifier (cf. Section 6.1). A
naive Bayes classifier can cope with the unequal class distribution and the
unequal misclassification costs, since it only computes class probabilities. The
threshold probability at which an action is taken w.r.t. a possibly fraudulent
costumer can be fixed later, depending, for instance, on an analysis of expected
loss based on test data. A naive Bayes classifier can also exploit at least part
of the information conveyed by any of the attributes, since the attributes are
treated independently and thus using one attribute does not restrict using
any other. However, the main drawback of a naive Bayes classifier, namely
the strong independence assumptions, leads to suboptimal performance in this
application. Therefore it is advisable not to rely on a pure naive Bayes classi-
fier, but to augment it with edges between some of the descriptive attributes.
If appropriate heuristics are used to select these edges, it is possible to retain
the efficiency with which a naive Bayes classifier can be constructed, thus
enabling this approach to handle large volumes of data.

The APRI (Advanced Pattern Recognition and Identification) system de-
veloped at AT&T [Ezawa and Norton 1995, Ezawa et al. 1996] was designed
according to the general scheme outlined above. It builds a Bayesian network
classifier starting from a naive Bayes structure and employs heuristics based
on mutual information (cf. Sections 7.2.4 and 7.3.2) to select the attributes
used in the classifier and the additional edges between them.

The Bayesian network construction in APRI has four phases. In the first
phase the database is scanned to determine the domains of all attributes.
This phase may involve a discretization of continuous attributes using an
information-based approach. In the second phase the descriptive attributes
to be used in the classifier are selected. To this end, the mutual information
of the class attribute C and each descriptive attribute A is computed. Then
a minimal set of attributes M ∈ U (where U is the set of all descriptive
attributes) is determined, which satisfies∑

A∈M

Imutual(C, A) ≥ α ·
∑
A∈U

Imutual(C, A),

where α is a parameter (specified as a percentage) that governs how many
attributes get selected. If α is set to 100%, all attributes are used. If α is less
than 100%, the attributes conveying the least information about the class are
discarded (and are not used in the consecutive steps either). By proceeding in
this way it is hoped that a simplification of the classifier is achieved without

306 CHAPTER 11. APPLICATIONS

having to pay too much in terms of reduced prediction accuracy. Note, how-
ever, that this selection scheme differs from the one studied in Section 6.3,
because it does not rely on the classification error to select the attributes.

The third phase is similar to the second. Again mutual information is
employed to determine which attributes should be connected by an edge (in
addition to the naive Bayes structure, in which there is a directed edge from
the class to each of the attributes selected in the second step). The selection
criterion is analogous to the one used in the second step. The conditional
mutual information (cf. Theorem 7.3.4 on page 235) of all pairs of descriptive
attributes is computed and the possible edges are ordered w.r.t. to this value.
Then a minimal set Eadd of edges (A, B) ∈ U′ × U′ (where U′ is the reduced
set of attributes resulting from the second phase) is selected, which satisfies∑

(A,B)∈Eadd

Imutual(A, B | C) ≥ β ·
∑

(A,B)∈U ′×U ′

Imutual(A, B | C),

where β is a parameter (specified as a percentage) that governs the density
of the resulting Bayesian network. If β is set to 100% (which is not advisable,
though), all possible edges are selected and the result is a complete network.
If β is less than 100%, the edges corresponding to the weakest dependences
are discarded. The selected edges are directed according to the mutual infor-
mation ranking computed in the second phase.

Note that this selection scheme can lead to more general networks than the
tree-augmented naive Bayes classifiers studied in Section 7.3.2, because the set
of additional edges is not restricted to a tree. A descriptive attribute may have
an arbitrary number of parents, whereas in a tree-augmented naive Bayes
classifier each descriptive attribute has at most two: the class attribute and
maybe one other descriptive attribute. Note also that it is not checked whether
an edge is unnecessary, because the attributes it connects share a parent (other
than the class attribute) that renders them conditionally independent.

Finally, in the fourth phase of the APRI construction algorithm, the con-
ditional probability distributions associated with the edges of the constructed
network are determined. The result is a Bayesian network classifier.

It is clear that each phase of the APRI algorithm requires exactly one
traversal of the database to learn from. Hence the classifier can be learned
with four traversals of the database, which make this approach feasible even
if the database has to be read from secondary storage (because it is too large
to be loaded into main memory). This is important, because in the applica-
tion considered here efficiency is an important issue. The patterns shown by
fraudulent phone calls are likely to change over time depending on the policy
adopted to identify and to prevent them. Hence, in order to be able to react
quickly to the changing patterns, an efficient method to reinduce a classifier
from newer training data is highly desirable.

[Ezawa and Norton 1995] report the result of an experiment, in which
APRI was applied to a phone call database of about 4 million records, each

11.3. APPLICATION AT VOLKSWAGEN 307

described by 33 attributes. This database contains about 10% uncollectible
calls. The algorithm described above was parameterized with α = 95% and
either β = 25% or β = 45%, which, judging from the empirical evaluation,
seem to be reasonable values. As the probability threshold for classifying a
call as uncollectible a more aggressive 50% and a more conservative 70% were
tested. The approach was compared to a naive Bayes classifier, either with all
attributes or a simplified version induced by greedily adding attributes (for-
ward selection, cf. Section 6.3). The results show that the approach is clearly
successful, being able to outperform the naive Bayes classifiers by a consider-
able margin. The best results were achieved with β = 45% and a probability
threshold of 70%. With these parameters over 20% of the uncollectible calls
are correctly identified while less than 3% of the collectible calls are misclassi-
fied, which translates to virtually identical absolute numbers. The pure naive
Bayes classifier either misclassifies a lot more collectible calls or identifies
considerably fewer uncollectible calls (depending on the parameters).

11.3 Application at Volkswagen

In order to satisfy the individual needs and wishes of their customers, the
marketing policy of the Volkswagen corporation is to offer their customers
the possibility of configuring their cars as individually as possible. That is, a
customer may choose—in addition to the model and a certain line of basic
equipment—from a wide variety of options, including engines with different
horsepower, manual or automatic gearshift, different types of tires, several
special equipment items, and so on [Detmer and Gebhardt 2001].

As convenient as this may be for a customer, who is not forced to adapt
to some standard configuration of a car, this freedom of choice leads to high
demands on logistics. The reason is that in todays highly competitive market
any company is forced to reduce production costs wherever possible. In par-
ticular, is tried to reduce the amount of stock in components and raw material
that has to be kept in a production plant, because stockkeeping is an impor-
tant cost factor. That is, it is tried to achieve ideally a situation in which
the components needed arrive ‘‘just in time’’ for assembly, so that no stock is
necessary at all. Of course, for such a scheme to be feasible, it is necessary to
plan the production process with high precision. This, in turn, requires highly
accurate prediction of the supply of components, because otherwise it would
not be possible to order the correct quantities from suppliers early enough.

‘‘Prediction is very difficult, especially of the future.’’ (This famous remark
is usually ascribed to Niels Bohr.) To predict the future supply of components
is, of course, no exception, but it is manageable if the range of products is
narrow enough. If a company produces, say, only a dozen different goods, then
there will be enough samples for each of them, so that product-specific time
series can be set up. Based on an extrapolation of these time series into the

308 CHAPTER 11. APPLICATIONS

future (done, for instance, with standard statistical techniques) a reasonable
prediction of the supply of components can be achieved by simply computing
the quantities needed to produce the predicted number of goods.

However, such an approach is no longer feasible with the wide range of
possible configurations of cars offered by the Volkswagen corporation, each of
which has, in principle, to be treated as a different product. For example, for
its most successful car, the VW Golf, a configuration is described by fixing
a value for each of about 165 different families of properties, which comprise
engine type, gearshift, tires, color, special equipment items, etc. Each of these
families has typically 3–5 values, but may also have up to 150, leading to
billions of configurations. Even though not all of these properties are chosen
directly by a customer (often several values are fixed by a single choice of a
certain line of equipment) and a large number of these configurations cannot
be built due to technical and marketing restrictions, there remain hundreds of
millions of possible products. Of course, not all of the possible configurations
are actually selected by a particular customer (in the year 2000 about 650 000
cars of type VW Golf were produced in Europe, thus restricting the number
of existing configurations), but that customers indeed take advantage of the
freedom of choice offered to them can be seen from the average number of
identical cars. For the VW Golf this average number is less than five, even
though it is computed without distinguishing between cars of different color
(that is, cars that only differ in color are counted as identical; however, the
sets of identical cars that are ordered for the fleets of large corporations or by
car rental companies were not included) [Detmer and Gebhardt 2001]. As a
consequence extrapolating time series for individual products is not feasible,
since the available samples are much too small.

As an alternative one may consider predicting the supply of components
directly from time series for individual components. However, this approach,
although it appears to be a convenient solution at first sight, does not han-
dle the problem adequately. In the first place, there are dependences between
components, which are imposed by technical or marketing restrictions. If such
dependences exist, the correct trend of the demand of a component may not
be visible from the time series for that component. In addition, such an ap-
proach cannot handle well the restriction that the percentage of alternative
components has to add up to 100%. That is, every car needs a steering wheel,
an engine, four wheels, etc. But there are different choices of, say, steering
wheels, and the sum of the supply of these has to add up to the total number
of cars. These restrictions are especially hard to satisfy in predictions if there
are dependences between components. For instance, a certain type of steering
wheel is only installed if an airbag has been selected, and leather coated steer-
ing wheels may not be combined with a certain type of multi-function display.
For the VW Golf, for example, such dependences result in about 70 000 com-
binations of properties that are relevant for the exact set of components that
can be installed in a car [Detmer and Gebhardt 2001].

11.3. APPLICATION AT VOLKSWAGEN 309

In order to cope with the prediction problem described above the Volkswa-
gen corporation has developed a system for car configuration prediction that
is based on a Markov network (cf. Definition 4.1.32 on page 120) over the set
of property families, which describes a probability distribution on the space of
possible car configurations [Detmer and Gebhardt 2001]. This network tries
to capture important dependences between car properties, while at the same
time exploiting (conditional) independences to reduce the complexity of the
prediction task. The basic idea is that given certain properties others may be
selected independently of each other, thus making a decomposition of the joint
probability distribution possible. Based on this decomposition, the frequency
of relevant combinations of properties can be estimated, relying on all cars
in the sales database having these combinations. That is, the decomposition
allows us to remove the restriction to individual configurations and thus to
enlarge the samples that can be evaluated. Finally the supply of individual
components is computed from these estimates.

In order to actually build the graphical model, a relational network is
constructed first based on a catalog of technical and marketing rules that
describes the constructible cars, that is, that distinguishes the possible from
the impossible configurations. For example, for the VW Golf this catalog,
which is formulated in a kind of a logical calculus, comprises about 10 000
entries. The idea of starting from this catalog is that impossible configurations
should be clearly represented as impossible, because the numbers predicted for
such configurations must necessarily be zero. If impossible configurations were
not explicitly marked as impossible, this requirement could not be enforced,
thus making the subsequent prediction worse than necessary.

The construction of the relational model is carried out in three steps. In
the first step the catalog of technical and marketing rules is translated into
a relational representation. That is, all rules that refer to the same set of
attributes (that is, the same set of property families) is represented by a
relation over this set of attributes: starting from the Cartesian product of the
attribute domains all tuples are discarded that are incompatible with one of
the rules. In a second step these relations are organized in a lattice structure
defined by the subset relation on the domains of the relations (that is, the
sets of attributes underlying them). The maximal elements of the resulting
lattice are used as the maximal cliques of the graph of a relational graphical
model. In order to make inferences possible this graph is finally triangulated.
(It should be noted that it is actually necessary to draw inferences, because
the sets of attributes that are relevant for predicting the supply of certain
components need not be contained in the same clique of the graph.)

Unfortunately, this straightforward approach does not lead directly to a
usable model, because the cliques of the resulting graph are too large to be
handled efficiently. Hence it is necessary to simplify the graphical model,
accepting approximations to make inferences feasible. This is done by com-
puting, for each relation in the lattice, a measure that makes it possible to

310 CHAPTER 11. APPLICATIONS

assess which relations can be dispensed with without deteriorating the model
quality too much. The idea of this measure is closely related to the Hartley
information gain and the relative number of possible value combinations stud-
ied in Section 7.1.1. It is based on the notion of the restrictivity of a relation,
which is the relative number of tuples that are excluded by this relation from
the Cartesian product of the attribute domains underlying it. That is, it mea-
sures the percentage of combinations that are excluded by the relation. From
the considerations in Section 7.1.1 it is clear that a high value of this measure
indicates that a relation is very important for the graphical model. One has to
take care, though, because the restrictivity of the maximal sets of the lattice
is not the correct measure to look at. If one of them is discarded one or more
subsets of it will take its place, thus making the loss in restrictivity less severe
than indicated by this measure. Therefore a modified measure, the additional
restrictivity is used, which is the percentage of tuples that is excluded by a
relation relative to the natural join of its subsets in the lattice [Gebhardt
1999]. For this measure a limiting value may be specified, which governs the
removal of relations. However, since it is difficult to specify an optimal limit,
the process of constructing the relational model must be iterated, increasing
the limit in each step, until a model of feasible complexity is reached.

Subsequently the relational model is turned into a Markov network by
simply taking the graph structure of the relational model and enhancing it
with probabilistic distribution functions, which are estimated from a sales
database. However, this model is still not the final one from which the sup-
ply of components is predicted, because it does not respect the production
capacities of different plants and suppliers. In order to take such constraints
into account the parameters of the Markov network are modified so that
the predicted distribution changes as slightly as possible, but the external
requirements are met. The corresponding distribution adaptation algorithm
relies heavily on iterative proportional fitting (cf. Section 11.1.1), extended
to Markov networks, and is described in detail in [Gebhardt et al. 2004].

After test runs of the system showed that it is reliable, the Volkswagen
corporation has made the developed system operative. For some time now
it has been used as the standard planning framework, through which it was
possible to considerably improve the planning quality and especially to detect
inconsistency more easily than with the previous system.

11.4 Application at DaimlerChrysler

Even high quality products like Mercedes-Benz vehicles sometimes show an
undesired behavior. Since its is a major concern of the Daimler corporation
to further improve the quality of their products, a lot of effort is dedicated to
finding the causes of these faults in order to be able to prevent similar faults
occurring in the future. To support these efforts the Daimler corporation

11.4. APPLICATION AT DAIMLERCHRYSLER 311

Table 11.2 A fictitious dependence of battery faults on the presence or absence
of an electrical sliding roof and an air conditioning system.

(fictitious) frequency of
battery faults

electrical
sliding roof

with

without

air conditioning
with without

9 % 3 %

3 % 2 %

maintains a quality information database to control the quality of vehicles
produced. In this database for every vehicle produced (car, van, lorry, or
truck) its configuration (product line, engine type, special equipment, etc.)
and any faults detected during production or maintenance are recorded.

The problems one faces in this application are similar to those discussed in
connection with the supply prediction at Volkswagen. Like Volkswagen, the
Daimler corporation offers its customers the possibility of configuring their
cars individually. As a consequence there are millions of different configura-
tions, each of which is bought only a few times (the average numbers of iden-
tical cars are comparable to those of the Volkswagen corporation). Therefore
it is not possible to monitor the behavior of individual configurations, simply
because there are too few example cases for each of them.

Unfortunately, it is not uncommon that a component fails only when it is
installed in combination with specific other components. Therefore a simple
check whether individual components show an unusually high frequency of
failure (although such a check is, of course, done) cannot uncover all weak-
nesses: their normal behavior in other configurations may hide the problem.
However, since the space of possible combinations is extremely large (for some
vehicles there are more than 100 special equipment items that may be chosen),
it is clear that this space cannot be searched manually.

In order to find a solution for this problem a cooperation between the Otto-
von-Guericke-University of Magdeburg and the Daimler Research and Tech-
nology Center Ulm was established. In this cooperation several data mining
methods were tried, with learning Bayesian networks among them, in order
to detect dependences between faults and vehicle properties. The underlying
idea was to exploit the search methods and evaluation measures developed
for learning Bayesian networks from data to search automatically for sets of
attributes that are strongly dependent on each other. In the course of this
cooperation the first author of this book wrote an initial version of the INES
program (Induction of NEtwork Structures), a prototype implementation of
several learning algorithms for probabilistic and possibilistic networks. This
program was mentioned in Sections 7.4 and 8.3, where it was used to produce
the reported experimental results.

312 CHAPTER 11. APPLICATIONS

el. sliding
roof

air con-
ditioning

cruise
control

tire
type

anti-slip
control

battery
fault

compressor
fault

brake
fault

Figure 11.8 A section of a fictitious two-layered network for the dependences
of faults (bottom) on vehicle properties (top).

The idea underlying the application of INES to the vehicle database is
very simple. Since we are interested in causes of faults, a two-layered network
is learned. The top layer of this network contains attributes describing the
vehicle configuration, whereas the bottom layer contains attributes describ-
ing possible vehicle faults. This is illustrated in Figure 11.8 and Table 11.2.
(Since real dependences and numbers are, of course, highly confidential, these
figures show fictitious examples. Any resemblance to actual dependences and
numbers is purely coincidental.2) Figure 11.8 shows a possible learned two-
layered network, Table 11.2 the frequency distribution associated with the
first of its subnets. Since in this example the fault rate for cars with an air
conditioning system and an electrical sliding roof is considerably higher than
that of cars without one or both of these items, we can conjecture that the
increased consumption of electrical energy due to installed air conditioning
and an electrical sliding roof is a cause of increased battery faults. Of course,
such a conjecture has to be substantiated by a technical analysis.

It should be noted that this approach is preferable to the alternative that
naturally comes to mind first, namely learning, for instance, a decision tree
for each of the faults. The first reason is that faults (like fraudulent calls in
the telecommunications application) are rare. However, decision trees have to
achieve a classification rate higher than 50% for a fault in a leaf node in order
to actually predict a fault. Otherwise the decision tree is simplified and—in
the worst case—simply predicts the majority class, which is, of course, that no
fault occurs. One may try to mitigate this problem by enriching the database
to learn from with examples of faulty behavior. However, this distorts the fre-
quency information, making the results difficult to interpret, but nevertheless
cannot completely remove the problem. Secondly, the distributions learned
in a Bayesian network are symmetric w.r.t. to the different parent attributes.

2Actually it can be seen from the items used in Table 11.2 that this is a fictitious
example, because a car with both an electrical sliding roof and air conditioning is a very
uncommon choice: there is no need for an electrical sliding roof if there is air conditioning,
and air conditioning does not work properly if the sliding roof is open.

11.4. APPLICATION AT DAIMLERCHRYSLER 313

Hence it is possible to remove any of them in order to study their individual
influence, by which evaluating the result is simplified considerable. Finally,
with the described approach it easier to detect common causes of different
faults, which turn up as common parents in the resulting network.

Although specific results are confidential, we can remark here that when
applied to a truck database INES easily found a dependence pointing to a
possible cause of a unusual fault, which was already known to the domain ex-
perts, but had taken them considerable effort to discover ‘‘manually’’ (query-
ing the database and studying the blueprints describing the construction of
the trucks). Even if one takes into account the time needed to select and
preprocess the data, so that INES becomes applicable, it is evident that with
the help of such a program the solution would have been found much faster.
Other dependences detected by INES were welcomed by the domain experts
as valuable starting points for further technical investigations.

In a second application INES was applied to a problem that had occurred
in the area of utility vehicles, but where it was not known at the time of the
application whether there existed a dependence on a certain configuration of
the vehicle. In this case INES could not find any dependence that pointed
to a possible cause. Although this sounds disappointing, it was partly due to
this result that investigations where directed elsewhere and, indeed, the cause
was finally found at a supplier, who had changed the quality of a lubricant.
This information was not contained in the database presented to INES and
thus there was no chance of detecting it automatically. Even though the
result obtained by INES was still useful in this case (because it prevented a
fruitless search for dependences on vehicle properties), it warns against too
optimistic expectations. If the database to learn from does not contain the
relevant information, no automatic search can find the solution. Nevertheless
we can conclude that learning probabilistic networks is a very useful method
to support the detection of product weaknesses [Borgelt et al. 1998b].

It should be noted that this application also provided some important
directions for our research. For example, the extension of the K2 metric to
a family of evaluation measures by introducing a parameter α, which was
described in Section 7.2.4, was in part triggered by practical problems that
turned up in the cooperation with DaimlerChrysler. In tests of the learning
algorithm against expert knowledge sometimes dependences of faults on the
vehicle equipment, which were known to the domain experts, could not be
discovered if the K2 metric was used. If Shannon information gain was used
instead, the desired dependences could be detected though.

A closer inspection revealed that the dependences that were difficult to
discover were rather weak. This made it plausible why they were not de-
tected with the K2 metric: as discussed in Section 7.2.4 the K2 metric has a
tendency to select simpler models. Therefore another parent attribute is se-
lected only if the improvement of fit outweighs the penalty for a more complex
model. However, for this to be the case the dependence has to be fairly strong.

314 CHAPTER 11. APPLICATIONS

Figure 11.9 Representation of the potential table of the failure class variable of
a Bayesian network induced by INES. The class variable had two parent nodes.
The cross-haired circle corresponds to 943 cars for which the dependence on
the parent attributes (denoted A and B) was unknown to the engineers.

Therefore, due to the penalty, the mentioned measures are sometimes not
sensitive enough (at least for the application described above). On the other
hand, Shannon information gain has its drawbacks, too. As discussed in Sec-
tion 7.2.4 this measure is biased towards many-valued attributes. Therefore,
if the parent attributes are combined into one pseudo-attribute (as described
in Section 7.2.1), Shannon information gain tends to ‘‘overfit’’ the data, be-
cause it is oversensitive to random fluctuations in the data. As a consequence
it sometimes indicates pseudo-dependences.

Not surprisingly, these results created the desire to have a parameter by
which the sensitivity of the evaluation measure w.r.t. dependences between
attributes can be controlled. Since by adjusting the value of the parameter α
of the extended K2 metric (or the reduction of description length measures),
a smooth transition from this (less sensitive) measure to the (more sensitive)
Shannon information gain can be achieved, it forms such a parameter and
allows us to control the sensitivity of the evaluation measure.

Due to the fruitful results of the dependency analysis discussed above,
DaimlerChrysler decided to continue the cooperation, which then led to the
introduction of the visualization technique (see Chapter 10) by the second au-

11.4. APPLICATION AT DAIMLERCHRYSLER 315

thor of this book. Now the task was to use the networks induced by INES and
provide the experts with an intuitive visual representation of the parameters,
that is, the potential tables. A typical database contained about 200 000 car
configurations with up to 200 attributes. The class variable had more than
1200 values, that is, it not only indicated the presence of a failure, but also
specified the type of failure (one value was reserved for ‘‘no failure’’).

After inducing a (probabilistic) graphical model we visualized the potential
tables of the class variable, which had two parent attributes (denoted by A
and B, since we are bound by a confidentiality agreement not to disclose
any technical details). The result is shown in Figure 11.9. The different gray
levels correspond to the different class values.3 We only displayed circles that
describe more than 100 vehicles. This led to a manageable set of rule icons to
be investigated. The cross-haired circle belongs to a set of 943 cars with a lift
value of approximately 4.7. That is, knowing the specific configuration of the
cars (rule antecedent or parent attribute values), the failure rate increases to
4.7 times the marginal failure rate. This particular dependence was unknown
to the domain experts and led to a deeper investigation. The remaining circles
with even higher lift values were already known to the engineers, but were
welcome as a statistically supported confirmation of this knowledge.

3The real application used, of course, a spectrum of colors. The gray levels are merely
due to the limitation of the print medium.

Appendix A

Proofs of Theorems

This appendix provides the proofs of all theorems in this book. It also contains
a few additional lemmata and their proofs, which are needed in the proofs
of some of the theorems. For reading convenience each section restates the
theorem proven in it.

A.1 Proof of Theorem 4.1.2

Theorem 4.1.2 Conditional probabilistic independence as well as conditional
possibilistic independence satisfy the semi-graphoid axioms.1 If the considered
joint probability distribution is strictly positive, conditional probabilistic inde-
pendence satisfies the graphoid axioms.

Proof. Since the proof of the semi-graphoid axioms is very similar for the
two calculi, we only provide a proof for the possibilistic case. A proof for the
probabilistic case can be derived from it very easily.2

That conditional possibilistic independence satisfies the semi-graphoid ax-
ioms can easily be demonstrated by drawing on the axioms of Definition 2.4.5
on page 39, the notion of a conditional degree of possibility as defined in
Definition 2.4.9 on page 47, and the notion of conditional possibilistic in-
dependence as defined in Definition 3.4.2 on page 86 (extended from single
attributes to sets of attributes). In the following W, X, Y, and Z are four
disjoint sets of attributes. Expressions like W = w, X = x, Y = y, and Z = z
are used as abbreviations for

∧
Ai∈W Ai = ai etc. Although this is somewhat

sloppy, it simplifies the notation considerably.

1The semi-graphoid and the graphoid axioms are defined in Definition 4.1.1 on page 94.
2We chose the possibilistic case, because a spelled out proof for the probabilistic case

is likely to be found in introductory books on probabilistic graphical models, for example,
in [Castillo et al. 1997]. On the other hand, seminal works like [Pearl 1988] and [Lauritzen
1996] do not provide a proof, but leave it as an exercise for the reader.

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

318 APPENDIX A. PROOFS OF THEOREMS

1. symmetry:
X⊥⊥Π Y | Z

⇒ ∀x, y, z, Π(Z = z) > 0 :
Π(X = x, Y = y | Z = z)

= min{Π(X = x | Z = z), Π(Y = y | Z = z)}
⇒ ∀x, y, z, R(Z = z) > 0 :

Π(Y = y, X = x | Z = z)
= min{Π(Y = y | Z = z), Π(X = x | Z = z)}

⇒ Y⊥⊥Π X | Z.

2. decomposition:
W ∪ X⊥⊥Π Y | Z

⇒ ∀w, x, y, z, Π(Z = z) > 0 :
Π(W = w, X = x, Y = y | Z = z)

= min{Π(W = w, X = x | Z = z), Π(Y = y | Z = z)}
⇒ ∀w, x, y, z :

Π(W = w, X = x, Y = y, Z = z)
= min{Π(W = w, X = x, Z = z), Π(Y = y, Z = z)}

⇒ ∀w, x, y, z :
Π(X = x, Y = y, Z = z)

= Π(
∨

w W = w, X = x, Y = y, Z = z)
= max

w
Π(W = w, X = x, Y = y, Z = z)

= max
w

min{Π(W = w, X = x, Z = z), Π(Y = y, Z = z)}

= min{max
w

Π(W = w, X = x, Z = z), Π(Y = y, Z = z)}

= min{Π(
∨

w W = w, X = x, Z = z), Π(Y = y, Z = z)}
= min{Π(X = x, Z = z), R(Y = y, Z = z)}

⇒ ∀x, y, z, Π(Z = z) > 0 :
Π(X = x, Y = y | Z = z)

= min{Π(X = x | Z = z), Π(Y = y | Z = z)}
⇒ X⊥⊥Π Y | Z.

3. weak union:
W ∪ X⊥⊥Π Y | Z

⇒ ∀w, x, y, z, Π(Z = z) > 0 :
Π(W = w, X = x, Y = y | Z = z)

= min{Π(W = w, X = x | Z = z), Π(Y = y | Z = z)}

A.1. PROOF OF THEOREM 4.1.2 319

⇒ ∀w, x, y, z :
Π(W = w, X = x, Y = y, Z = z)

= min{Π(W = w, X = x, Z = z), Π(Y = y, Z = z)}
= min{Π(W = w, X = x, Z = z),

Π(
∨

w W = w, Y = y, Z = z)}
= min{Π(W = w, X = x, Z = z),

max
w′

Π(W = w′, Y = y, Z = z)}

≥ min{Π(W = w, X = x, Z = z), Π(W = w, Y = y, Z = z)}
≥ Π(W = w, X = x, Y = y, Z = z)

⇒ ∀w, x, y, z :
Π(W = w, X = x, Y = y, Z = z)

= min{Π(W = w, X = x, Z = z), Π(W = w, Y = y, Z = z)}
⇒ ∀w, x, y, z, Π(Z = z, W = w) > 0 :

Π(W = w, X = x, Y = y | Z = z)
= min{Π(X = x | Z = z ∪ W = w),

Π(Y = y | Z = z ∪ W = w)}
⇒ X⊥⊥Π Y | Z ∪ W.

4. contraction:
(W⊥⊥Π X | Z) ∧ (W⊥⊥Π Y | Z ∪ X)

⇒ ∀w, x, y, z, Π(Z = z) > 0 :
Π(W = w, X = x | Z = z)

= min{Π(W = w | Z = z), Π(X = x | Z = z)}
∧ ∀w, x, y, z, Π(X = x, Z = z) > 0 :

Π(W = w, Y = y | X = x, Z = z)
= min{Π(W = w | X = x, Z = z), Π(Y = y | X = x, Z = z)}

⇒ ∀w, x, y, z :
Π(W = w,X = x, Z = z)

= min{Π(W = w, Z = z), Π(X = x, Z = z)}
∧ ∀w, x, y, z :

Π(W = w, Y = y, X = x, Z = z)
= min{Π(W = w, X = x, Z = z), Π(Y = y, X = x, Z = z)}

⇒ ∀w, x, y, z :
Π(W = w, Y = y, X = x, Z = z)

= min{Π(W = w, Z = z), Π(X = x, Z = z),
Π(Y = y, X = x, Z = z)}

320 APPENDIX A. PROOFS OF THEOREMS

= min{Π(W = w, Z = z), Π(Y = y, X = x, Z = z)}
⇒ ∀w, x, y, z, Π(Z = z) > 0 :

Π(W = w, X = x, Y = y | Z = z)
= min{Π(W = w | Z = z), Π(X = x, Y = y | Z = z)}

⇒ W⊥⊥Π X ∪ Y | Z.

Note that in these derivations we require Π(Z = z) > 0 whenever Z = z
is the condition of a conditional degree of possibility (although there is no
such requirement in Definition 2.4.9 on page 47), in order to strengthen the
analogy to the probabilistic case. Note also that this requirement is dropped
for unconditional degrees of possibility, since the relations for them trivially
also hold for P(Z = z) = 0 (as in the probabilistic case).

The intersection axiom can be demonstrated to hold for strictly positive
probability distributions by drawing on the basic axioms of probability theory
and the definition of a conditional probability and conditional probabilistic
independence as follows:

(W⊥⊥P Y | Z ∪ X) ∧ (X⊥⊥P Y | Z ∪ W)
⇒ ∀w, x, y, z :

P(W = w, Y = y | Z = z, X = x)
= P(W = w | Z = z, X = x) · P(Y = y | Z = z, X = x)

∧ ∀w, x, y, z :
P(X = y, Y = y | Z = z, W = w)

= P(X = x | Z = z, W = w) · P(Y = y | Z = z, W = w)
⇒ ∀w, x, y, z :

P(W = w, X = y, Y = y, Z = z)
= P(W = w, X = x, Z = z) · P(Y = y | Z = z, X = x)

∧ ∀w, x, y, z :
P(W = w, X = y, Y = y, Z = z)

= P(W = w, X = x, Z = z) · P(Y = y | Z = z, W = w)
⇒ ∀w, x, y, z :

P(Y = y | Z = z, X = x) = P(Y = y | Z = z, W = w).

This equation can only hold for all possible assignments x and w, if

∀w, x, y, z : P(Y = y | Z = z, X = x) = P(Y = y | Z = z) and
P(Y = y | Z = z, W = w) = P(Y = y | Z = z).

Note that this argument can fail if the joint probability distribution is not
strictly positive. For example, it may be P(X = x, Z = z) = 0 and thus
P(Y = y | Z = z, X = x) may not be defined, although P(Y = y | Z = z) is.

A.2. PROOF OF THEOREM 4.1.18 321

Substituting this result back into the first two equations we get

∀w, x, y, z :
P(W = w, Y = y | Z = z, X = x)

= P(W = w | Z = z, X = x) · P(Y = y | Z = z)
∧ ∀w, x, y, z :

P(X = y, Y = y | Z = z, W = w)
= P(X = x | Z = z, W = w) · P(Y = y | Z = z)

⇒ ∀w, x, y, z :
P(W = w, X = y, Y = y, Z = z)

= P(Y = y | Z = z) · P(W = w, X = x, Z = z)
⇒ ∀w, x, y, z :

P(W = w, X = y, Y = y | Z = z)
= P(Y = y | Z = z) · P(W = w, X = x | Z = z)

⇒ W ∪ X⊥⊥P Y | Z.

Note that no requirements P(Z = z) > 0, P(Y = y, Z = z) > 0, etc. are needed,
because the probability distribution is presupposed to be strictly positive and
therefore these requirements necessarily hold.

A.2 Proof of Theorem 4.1.18

Theorem 4.1.18 If a joint distribution δ over a set of attributes U satisfies
the graphoid axioms w.r.t. a given notion of conditional independence, then
the pairwise, the local, and the global Markov property of an undirected graph
G = (U, E) are equivalent.3

Proof. From the observations made in the paragraph following the defi-
nition of the Markov properties for undirected graphs (Definition 4.1.17 on
page 107) we know that the global Markov property implies the local and
that, if the weak union axiom holds, the local Markov property implies the
pairwise. So all that is left to show is that, given the graphoid axioms, the
pairwise Markov property implies the global.

The idea of the proof is very simple, as pointed out on page 108. Consider
three arbitrary disjoint subsets X, Y, and Z of nodes such that 〈X | Z | Y〉G.
We have to show that X⊥⊥δ Y | Z follows from the pairwise conditional in-
dependence statements that correspond to nonadjacent attributes. To do so
we start from an arbitrary statement A⊥⊥δ B | U − {A, B} with A ∈ X and

3The graphoid axioms are defined in Definition 4.1.1 on page 94 and the Markov prop-
erties of undirected graphs are defined in Definition 4.1.17 on page 107.

322 APPENDIX A. PROOFS OF THEOREMS

B ∈ Y, and then shifting nodes from the separating set to the separated sets,
thus extending A to (a superset of) X and B to (a superset of) Y and shrink-
ing U−{A, B} to Z. The shifting is done by applying the intersection axiom,
drawing on other pairwise conditional independence statements. Finally, any
excess attributes in the separated sets are cut away with the help of the
decomposition axiom.

Formally, the proof is carried out by backward or descending induction
[Pearl 1988, Lauritzen 1996] over the number n of nodes in the separating
set Z. If n = |U|−2 then X and Y both contain exactly one node and thus the
conditional independence w.r.t. δ follows directly from the pairwise Markov
property (induction anchor).

So assume that |Z| = n < |V| − 2 and that separation implies conditional
independence for all separating sets S with more than n elements (induction
hypothesis). We first assume that U = X ∪ Y ∪ Z, implying that at least one
of X and Y has more than one element, say, X. Consider an attribute A ∈ X:
Z ∪ {A} separates X − {A} from Y and Z ∪ (X − {A}) separates A from Y.
Thus by the induction hypothesis we have

X − {A}⊥⊥δ Y | Z ∪ {A} and {A}⊥⊥δ Y | Z ∪ (X − {A}).

Applying the intersection axiom yields X⊥⊥δ Y | Z.
If X ∪ Y ∪ Z ⊂ U, we choose an attribute A ∈ U − (X ∪ Y ∪ Z). We

know that Z∪ {A} separates X and Y (due to the monotony of u-separation,
cf. page 101, expressed by the strong union axiom, cf. page 101), implying
X⊥⊥δ Y | Z ∪ {A} (by the induction hypothesis). Furthermore, either X ∪ Z
separates Y from A or Y∪Z separates X from A (due to the transitivity of u-
separation, cf. page 101, together with the strong union axiom, cf. page 101).
The former case yields {A}⊥⊥δ Y | X∪Z (by the induction hypothesis) and by
applying the intersection and the decomposition axiom we derive X⊥⊥δ Y | Z.
The latter case is analogous.

A.3 Proof of Theorem 4.1.20

Theorem 4.1.20 If a three-place relation (· ⊥⊥δ · | ·) representing the set of
conditional independence statements that hold in a given joint distribution δ
over a set U of attributes satisfies the semi-graphoid axioms, then the local
and the global Markov property of a directed acyclic graph �G = (U, �E) are
equivalent. If it satisfies the graphoid axioms, then the pairwise, the local, and
the global Markov property are equivalent.4

Proof. As mentioned on page 110, a proof for this theorem can be found,
for example, in [Verma and Pearl 1990], although this may be a little difficult

4The graphoid and the semi-graphoid axioms are defined in Definition 4.1.1 on page 94
and the Markov properties of directed graphs are defined in Definition 4.1.19 on page 109.

A.3. PROOF OF THEOREM 4.1.20 323

to recognize, because the definition of certain notions has changed since the
publication of that paper. (Surprisingly enough, [Lauritzen 1996] only contains
a specialized proof for the probabilistic case.) Here we present our own proof
(which is similar to the one in [Verma and Pearl 1990]).

From the observations made in the paragraph following the definition of
the Markov properties for directed graphs (Definition 4.1.19 on page 109),
namely that the set of parents of a node obviously d-separates it from all its
other non-descendants, we know that the global Markov property implies the
local. Therefore, for the first part of the theorem, we only have to show that
the local Markov property implies the global.

So let X, Y, and Z be three disjoint subsets of attributes, such that X and
Y are d-separated by Z in the graph �G. We have to show that X⊥⊥δ Y | Z fol-
lows from the local conditional independence statements A⊥⊥δ nondescs(A)−
parents(A) | parents(A) that can be derived from the local Markov property
of the graph �G.

The proof consists of two phases. In the first phase the graph is simplified
by removing nodes that do not have a bearing on the conditional indepen-
dence statement to be derived. In the second phase the remaining attributes
of the graph are added step by step to a set of three conditional independence
statements. After all nodes have been added, the desired conditional indepen-
dence statement can be derived from one of these statements by applying the
decomposition axiom.

In the first phase a sequence of graphs �G0 = �G, �G1, . . . , �Gk is formed. Each
graph �Gi+1 is constructed from �Gi by removing an arbitrary childless node
not in X∪Y∪Z (and, of course, all edges leading to it). The process stops when
no more nodes can be removed. In the following we show by induction on the
graph sequence that all local conditional independence statements derivable
from the resulting graph �Gk are implied by those derivable from the original
graph �G. Clearly, all such statements derivable from �G0 are implied by those
derivable from �G, because the two graphs are identical (induction anchor).
So suppose that all local conditional independence statements derivable from
�Gi are implied by those derivable from �G (induction hypothesis). Let B be
the node that is removed from �Gi to construct �Gi+1 and let A be an arbitrary
node of �Gi+1. Note first that B cannot be a parent of A in �Gi, since then
B would not be childless in �Gi, contradicting the construction. If B is a
descendant of A in �Gi, then the local conditional independence statement
A⊥⊥δ nondescs(A) − parents(A) | parents(A) is identical in �Gi and in �Gi+1

and thus must be implied by the statements derivable from �G due to the
induction hypothesis. If B is a non-descendant of A in �Gi (but not a parent,
see above), then

A⊥⊥δ nondescs�Gi
(A) − parents�Gi

(A) | parents�Gi
(A)

≡ A⊥⊥δ (nondescs�Gi+1
(A) − parents�Gi+1

(A)) ∪ {B} | parents�Gi+1
(A)

324 APPENDIX A. PROOFS OF THEOREMS

and therefore the local conditional independence statement

A⊥⊥δ nondescs�Gi+1
(A) − parents�Gi+1

(A) | parents�Gi+1
(A)

can be derived by applying the decomposition axiom. Together with the in-
duction hypothesis we have that it is implied by the local conditional inde-
pendence statements derivable from �G. This completes the induction.

The set of nodes of the resulting graph �Gk is often called the smallest
ancestral set of X ∪ Y ∪ Z. An ancestral set is a set of nodes of a directed
graph that is closed under the ancestor relation, i.e., for each node in the set
all its ancestors are also in the set. A set S of nodes is called the smallest
ancestral set of a set W of nodes, if it is an ancestral set containing W and
there is no true subset of S that is also an ancestral set containing W. (We do
not prove, though, that the set of nodes of the resulting graph �Gk is indeed a
smallest ancestral set, because this is not relevant for the proof.)

In the second phase of the proof the desired conditional independence
statement is derived from the local conditional independence statements that
can be read from �Gk. This is done by forming four sequences (Wi)i∈I , (Xi)i∈I ,
(Yi)i∈I , and (Zi)i∈I , I = {0, . . . , |Uk|}, of disjoint subsets of nodes, such that
certain conditional independence statements hold for all i. These sequences
are constructed as follows: The first elements are all empty, i.e., W0 = X0 =
Y0 = Z0 = ∅. Let o : Uk → {1, . . . , |Uk|} be a topological order5 of the nodes
in �Gk and let Ai+1, i ≥ 0, be the (i + 1)-th node of this topological order,
i.e., o(Ai+1) = i + 1. In the step from i to (i + 1) the node Ai+1 is added to
exactly one of the sets Wi, Xi, Yi, and Zi according to

Wi+1 =

⎧⎨
⎩

Wi ∪ {Ai+1}, if Ai+1 /∈ X ∪ Y ∪ Z ∧ 〈Ai+1 | Z | X〉�Gk

∧ 〈Ai+1 | Z | Y 〉�Gk
,

Wi, otherwise,

Xi+1 =

⎧⎨
⎩

Xi ∪ {Ai+1}, if Ai+1 ∈ X ∨
(Ai+1 /∈ Z ∧ ¬〈Ai+1 | Z | X〉�Gk

),
Xi, otherwise,

Yi+1 =

⎧⎨
⎩

Yi ∪ {Ai+1}, if Ai+1 ∈ Y ∨
(Ai+1 /∈ Z ∧ ¬〈Ai+1 | Z | Y 〉�Gk

),
Yi, otherwise,

Zi+1 =
{

Zi ∪ {Ai+1}, if Ai+1 ∈ Z,
Zi, otherwise.

From this construction it is clear that ∀A ∈ Wi ∪Xi ∪Yi ∪Zi : o(A) ≤ i, that
Wi, Xi, Yi, and Zi are disjoint for all i (recall that X and Y are d-separated
by Z in �G and thus in �Gk), and that X ⊆ X|Uk|, Y ⊆ Y|Uk|, and Z|Uk| = Z.

5The notion of a topological order is defined in Definition 4.1.12 on page 100.

A.3. PROOF OF THEOREM 4.1.20 325

Wi

Xi Yi

Zi

We show now by induction on the four sequences that
the following three conditional independence statements
hold for all i: Wi ⊥⊥δ Xi ∪ Yi | Zi, Xi ⊥⊥δ Wi ∪ Yi | Zi, and
Yi ⊥⊥δ Wi ∪Xi | Zi. While proving this it is helpful to keep
in mind the picture shown on the right which illustrates the
above set of conditional independence statements.

Since W0 = X0 = Y0 = Z0 = ∅, it is trivially W0 ⊥⊥δ X0 ∪ Y0 | Z0,
X0 ⊥⊥δ W0 ∪ Y0 | Z0, and Y0 ⊥⊥δ W0 ∪X0 | Z0 (induction anchor). So suppose
that for some i the statements Wi ⊥⊥δ Xi ∪ Yi | Zi, Xi ⊥⊥δ Wi ∪ Yi | Zi, and
Yi ⊥⊥δ Wi ∪ Xi | Zi hold (induction hypothesis).

For the induction step, since ∀A ∈ Wi ∪ Xi ∪ Yi ∪ Zi : o(A) ≤ i, we
can conclude from the properties of a topological order that parents(Ai+1) ⊆
Wi ∪Xi ∪ Yi ∪Zi (since all parents of a node must precede it in a topological
order) and Wi ∪ Xi ∪ Yi ∪ Zi ⊆ nondescs(Ai+1) (since no child of a node
and thus no descendant can precede it in a topological order). Therefore,
by applying the decomposition axiom to the local conditional independence
statement involving Ai+1 that can be read from the graph �Gk, we have

Ai+1 ⊥⊥δ (Wi ∪ Xi ∪ Yi ∪ Zi) − parents(Ai+1) | parents(Ai+1). (A.1)

To derive from this statement the three desired conditional independence
statements for (i + 1), one has to show two things:
1. If the node Ai+1 is added to Zi, then the parents of Ai+1 must be either

all in Wi ∪ Zi, or all in Xi ∪ Zi, or all in Yi ∪ Zi.

2. If the node Ai+1 is added to Xi, then all parents of Ai+1 must be in Xi∪Zi.
(Analogously, if Ai+1 is added to Wi or Yi.)

However, this is easily achieved:
1. Let Ai+1 be added to Zi. Suppose that it has parents in both Xi and Yi

and let these parents be BX and BY , respectively. From the construction
of the sequences we know that BX ∈ X or ¬〈BX | Z | X〉�Gk

. Similarly,
we know that BY ∈ Y or ¬〈BY | Z | Y〉�Gk

. From the facts that the path
BX → Ai+1 ← BY has converging edges at Ai+1 (since BX and BY are
parents of Ai+1) and that Ai+1 ∈ Zi+1 ⊆ Z we know that there is an active
path connecting BX and BY . Combining these observations, we arrive at
the conclusion that given Z there must be an active path from a node in
X to a node in Y in the graph �Gk (and thus in �G, since the same path
exists in �G) contradicting the assumption that X and Y are d-separated
by Z in �G. In a similar way we see that Ai+1 cannot have parents in both
Wi and Xi or in both Wi and Yi, only that here the contradiction follows
from the construction of the sequences alone.

2. Let Ai+1 be added to Wi, Xi, or Yi, say, Xi (the three cases are analogous).
Then Ai+1 cannot have a parent in Wi or Yi, because this parent together
with Ai+1 forms an active path. Combining this observation, as in the

326 APPENDIX A. PROOFS OF THEOREMS

first case, with statements derivable from the construction of sequences,
we conclude that given Z there is an active path from a node in Wi to
a node in X (if the parent is in Wi) or from Y to X (if the parent is in
Yi). However, the former contradicts the construction of the sequences,
the latter the assumption that X and Y are d-separated by Z in �G. It is
clear that the other two cases, i.e., that Ai+1 is added to Wi or to Yi, are
analogous.

Suppose now, without restricting generality (the other two cases are analo-
gous), that parents(Ai+1) ⊆ Xi∪Zi. Then we can derive from the conditional
independence A.1 by applying the weak union axiom that

Ai+1 ⊥⊥δ Wi ∪ Yi | Zi ∪ Xi.

Applying the contraction axiom to this statement and Xi ⊥⊥δ Wi ∪ Yi | Zi

(which we know from the induction hypothesis), we arrive at

Ai+1 ∪ Xi ⊥⊥δ Wi ∪ Yi | Zi.

From steps 1 and 2 above and the assumption that parents(Ai+1) ⊆ Xi ∪Zi,
it follows that Ai+1 ∈ Xi+1 ∪ Zi+1, i.e., that Ai+1 is added either to Xi or
to Zi. If Ai+1 is added to Xi, then the above statement is equivalent to

Xi+1 ⊥⊥δ Wi+1 ∪ Yi+1 | Zi+1,

and if it is added to Zi, then

Xi+1 ⊥⊥δ Wi+1 ∪ Yi+1 | Zi+1 ≡ Xi ⊥⊥δ Wi ∪ Yi | Zi ∪ Ai+1,

i.e., the desired statement results from applying the weak union axiom.
The other two statements for (i + 1) are derived as follows: Applying the

weak union axiom to Ai+1 ∪ Xi ⊥⊥δ Wi ∪ Yi | Zi yields

Ai+1 ∪ Xi ⊥⊥δ Wi | Zi ∪ Yi and
Ai+1 ∪ Xi ⊥⊥δ Yi | Zi ∪ Wi.

By applying the contraction axiom to these statements and the statement
Yi ⊥⊥δ Wi | Zi, which can be derived from the statements of the induction
hypothesis by applying the decomposition axiom, we arrive at

Ai+1 ∪ Xi ∪ Yi ⊥⊥δ Wi | Zi and
Ai+1 ∪ Xi ∪ Wi ⊥⊥δ Yi | Zi.

If Ai+1 is added to Xi these statements are equivalent to those desired. If
Ai+1 is added to Zi, then the desired statements can be derived, as above,
by applying the weak union axiom. This completes the induction, because,

A.4. PROOF OF THEOREM 4.1.26 327

as mentioned above, the other two cases, i.e., parents(Ai+1) ∈ Wi ∪ Zi and
parents(Ai+1) ∈ Yi ∪ Zi, are analogous.

Since, as indicated above, X ⊆ X|Uk|, Y ⊆ Y|Uk| and Z = Z|Uk|, we can
finally derive X⊥⊥δ Y | Z by (at most) two applications of the decomposition
axiom to the statement X|Uk| ⊥⊥δ W|Uk| ∪ Y|Uk| | Z|Uk|, thus completing the
proof of the first part of the theorem.

The second part of the theorem is much easier to prove than the first.
Since we already know from the first part of the theorem that the local and the
global Markov property are equivalent (recall that the semi-graphoid axioms
are a subset of the graphoid axioms), it suffices to show that the pairwise and
the local Markov property are equivalent. That the local Markov property
implies the pairwise can be seen from the fact that the parents of a node
are a subset of its non-descendants and thus we get any pairwise conditional
independence statement for a node by applying the weak union axiom (cf. the
observations made in the paragraph following Definition 4.1.19 on page 109).

To show the other direction, we start from an arbitrary pairwise condi-
tional independence statement A⊥⊥δ B | nondescs(A) − {B}. Then we apply
the intersection axiom, drawing on other pairwise conditional independence
statements involving A, in order to shift attributes out of the separating set.
Eventually only the parents of A remain and thus we have the desired local
conditional independence statement.

A.4 Proof of Theorem 4.1.26

Theorem 4.1.26 Let pU be a strictly positive probability distribution on a
set U of (discrete) attributes. An undirected graph G = (U, E) is a conditional
independence graph w.r.t. pU , iff pU is factorizable w.r.t. G.

To prove this theorem we need two lemmata. The first provides us with a
more general characterization of conditional probabilistic independence, while
the second is merely a technical feature needed in the proof.

Lemma A.4.1 Let A, B, and C be three attributes with respective domains
dom(A), dom(B), and dom(C). Furthermore, let p = P|ABC be a probability
distribution on the joint domain of A, B, and C derived from some probability
measure P. Then

A⊥⊥p C | B ⇔ ∃g, h : ∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
p(A = a, B = b, C = c) = g(a, b) · h(b, c).

Proof. Although this lemma is often stated and used, it is rarely proven.
Conditional probabilistic independence implies (cf. page 75)

∀a ∈ dom(A) : ∀b ∈ dom(B), P(B = b) �= 0 : ∀c ∈ dom(C)
P(A = a, B = b, C = c) = P(A = a, B = b) · P(C = c | B = b).

328 APPENDIX A. PROOFS OF THEOREMS

and thus we can choose, for instance (cf. page 78),

g(a, b) = P(A = a, B = b) and

h(b, c) =
{

P(C = c | B = b), if P(B = b) �= 0,
0, otherwise.

To prove the other direction, we sum

P(A = a, B = b, C = c) = g(a, b) · h(b, c)

over all values c ∈ dom(C), which yields

P(A = a, B = b) = g(a, b) ·
∑

c∈dom(C)

h(b, c).

Since the left hand side does not depend on c, the right hand side must not
depend on c either. Therefore we can infer

∃fh : ∀b ∈ dom(B) :
∑

c∈dom(C)

h(b, c) = fh(b).

Analogously, by summing over all values a ∈ dom(A), we get

∃fg : ∀b ∈ dom(B) :
∑

a∈dom(A)

g(a, b) = fg(b).

Therefore we have

∀a ∈ dom(A) : ∀b ∈ dom(B) : P(A = a, B = b) = g(a, b) · fh(b) and
∀b ∈ dom(B) : ∀c ∈ dom(C) : P(B = b, C = c) = fg(b) · h(b, c).

Summing either the first of these equations over all values a ∈ dom(A) or the
second over all values c ∈ dom(C) yields, in analogy to the above,

∀b ∈ dom(B) : P(B = b) = fg(b) · fh(b).

Combining these results we finally arrive at

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

P(A = a, B = b) · P(B = b, C = c)
= g(a, b) · fg(b) · h(b, c) · fh(c)
= P(A = a, B = b, C = c) · P(B = b),

which shows that A⊥⊥P C | B. It is clear that the lemma and its proof carry
over directly to sets of attributes.

A.4. PROOF OF THEOREM 4.1.26 329

Lemma A.4.2 (Möbius inversion) Let ξ and ψ be functions defined on the
set of all subsets of a finite set V whose range of values is an Abelian group.
Then the following two statements are equivalent:

(1) ∀X ⊆ V : ξ(X) =
∑

Y :Y ⊆X

ψ(Y);

(2) ∀Y ⊆ V : ψ(Y) =
∑

Z:Z⊆Y

(−1)|Y −Z| ξ(Z).

Proof. (Basically as given in [Lauritzen 1996], only with modified nota-
tion.) We prove (2) ⇒ (1), i.e., we show that the sum of the terms ψ(Y) as
defined in (2) over all subsets of some set X is equal to ξ(X) :∑

Y :Y ⊆X

ψ(Y) =
∑

Y :Y ⊆X

∑
Z:Z⊆Y

(−1)|Y −Z| ξ(Z)

=
∑

Z:Z⊆Y

ξ(Z)

(∑
Y :Z⊆Y ⊆X

(−1)|Y −Z|

)

=
∑

Z:Z⊆Y

ξ(Z)

(∑
W :W⊆X−Z

(−1)|W |

)
.

The latter sum is equal to zero unless X−Z = ∅, i.e., unless Z = X, because
any finite, nonempty set has the same number of subsets of even as of odd
cardinality. The proof (1) ⇒ (2) is performed analogously.

Proof of Theorem 4.1.26. (The proof follows mainly [Lauritzen 1996].)
The proof consists of two parts. In the first part it is shown that, if the
distribution pU is factorizable w.r.t. an undirected graph G, then G satisfies
the global Markov property and thus is a conditional independence graph.
This part of the proof, which uses Lemma A.4.1, is rather simple. In the second
part, which is more complicated, a factorization of pU is derived from pU and
the pairwise Markov property of an undirected graph G that is a conditional
independence graph w.r.t. pU . For this second part we need Lemma A.4.2.

For the first part of the proof let M ⊆ 2U be a family of sets of attributes
such that the subgraphs of G induced by the sets M ∈ M are the maximal
cliques of G and let φM be the functions of the factorization of pU w.r.t. G.
Furthermore, let X, Y, and Z be three arbitrary disjoint subsets of attributes
such that X and Y are u-separated by Z in G. We have to show that G has
the global Markov property, i.e., that X⊥⊥pU

Y | Z. Let

X̂ = {A ∈ U − Z | 〈A | Z | Y〉G} and Ŷ = U − Z − X̂.

Obviously, it is X ⊆ X̂ (since X and Y are u-separated by Z), Y ⊆ Ŷ, and
〈X̂ | Z | Y〉G. From the latter and the definition of X̂ it follows 〈X̂ | Z | Ŷ〉G

330 APPENDIX A. PROOFS OF THEOREMS

by the transitivity axiom.6 (Intuitively: There cannot be an attribute A in X̂
that is not u-separated from Ŷ, because, by construction, no attribute in Ŷ is
u-separated from Y and thus A could not be u-separated from Y, contradicting
the definition of X̂.)

Let MX̂ be the family of all sets in M that contain an attribute in X̂. No
set in MX̂ can contain an attribute in Ŷ, because otherwise—since the sets in
M and thus the sets in MX̂ induce cliques—we could infer that there is an
edge connecting an attribute in X̂ and an attribute in Ŷ, contradicting that
X̂ and Ŷ are u-separated by Z. That is, we have

∀M ∈ MX̂ : M ⊆ X̂ ∪ Z and ∀M ∈ M−MX̂ : M ⊆ Ŷ ∪ Z.

Therefore, if we split the product of the factorization as follows:

pU

(∧
Ai∈U

Ai = ai

)

=
∏

M∈M
φM

(∧
Ai∈M

Ai = ai

)

=

⎛
⎝ ∏

M∈MX̂

φM

(∧
Ai∈M

Ai = ai

)⎞⎠
⎛
⎝ ∏

M∈M−MX̂

φM

(∧
Ai∈M

Ai = ai

)⎞⎠ ,

we can conclude that the first product depends only on the values of the
attributes in X̂ ∪ Z, while the second product depends only on the values of
the attributes in Ŷ ∪ Z. With Lemma A.4.1, extended to sets of attributes,
we arrive at X̂⊥⊥pU

Ŷ | Z, from which we can infer X⊥⊥pU
Y | Z by (at most)

two applications of the decomposition axiom.7

Note that the first part of the proof as it is given above does not exploit
the presupposition that pU is strictly positive and thus the implication proven
holds also for more general probability distributions [Lauritzen 1996].

In the second part of the proof nonnegative functions φM are constructed
w.r.t. the maximal cliques M of G. Since it simplifies the proof, these func-
tions are not constructed directly, but via their logarithms. This is possi-
ble, because, according to the presuppositions of the theorem, the probability
distribution—and thus the factor potentials φM—must be strictly positive.
(Note, by the way, that, in contrast to the first part of the proof, the second
part cannot be strengthened to not strictly positive distributions. An exam-
ple of a probability distribution that is not factorizable w.r.t. its conditional
independence graph can be found in [Lauritzen 1996].) The idea of the proof

6The transitivity axiom is defined and shown to hold for u-separation on page 101.
7The decomposition axiom is part of the semi-graphoid axioms, defined in Defini-

tion 4.1.1 on page 94, which are satisfied by conditional probabilistic independence ac-
cording to Theorem 4.1.2 on page 95.

A.4. PROOF OF THEOREM 4.1.26 331

is to define specific functions for all subsets of attributes and to show that
they are identical to zero, if the subset is not a clique. Finally, the functions
for the cliques are properly combined to determine functions for the maximal
cliques only.

First we choose for each attribute Ai ∈ U a fixed but arbitrary value
a∗

i ∈ dom(Ai) and then we define for all X ⊆ U

ξX

(∧
Ai∈X

Ai = ai

)
= logP

(∧
Ai∈X

Ai = ai,
∧

Aj∈U−X

Aj = a∗
j

)
.

Since the values a∗
j are fixed, ξX depends only on the values of the attributes

in X. Furthermore, we define for all Y ⊆ U

ψY

(∧
Ai∈U

Ai = ai

)
=

∑
Z:Z⊆Y

(−1)|Y −Z| ξZ

(∧
Ai∈Y

Ai = ai

)
.

From this equation it is clear that ψY depends only on the values of the
attributes in Y. Next we apply Lemma A.4.2 (Möbius inversion) to obtain
that

logP
(∧

Ai∈U

Ai = ai

)
= ξU

(∧
Ai∈U

Ai = ai

)

=
∑

X:X⊆U

ψX

(∧
Ai∈X

Ai = ai

)
.

(Note that w.r.t. the application of the Möbius inversion the index counts as
the function argument.)

In the next step we have to show that ψX ≡ 0 whenever the subgraph
induced by X is not a clique of G. So let X ⊆ U be a set of attributes that does
not induce a clique of G. Then there must be two attributes A, B ∈ X that
are not adjacent in G. Since G is a conditional independence graph, it has the
global Markov property, which implies the pairwise Markov property (cf. the
paragraph following the definition of the Markov properties for undirected
graphs on page 107). Therefore it is A⊥⊥pU

B | U − {A, B}. To exploit this
statement we first rewrite the function ψX as

ψX

(∧
Ai∈X

Ai = ai

)

=
∑

Y :Y ⊆X−{A,B}
(−1)|X−{A,B}−Y |

(
ξY − ξY ∪{A} − ξY ∪{B} + ξY ∪{A,B}

)
,

where ξZ is an abbreviation of ξZ

(∧
Ai∈Z Ai = ai

)
. Consider a term of the

sum, i.e., consider an arbitrary set Y ⊆ X − {A, B}. Let Z = U − Y − {A, B}
and let Y = y and Z = z (as in the proof of Theorem 4.1.2 in Section A.1)

332 APPENDIX A. PROOFS OF THEOREMS

be abbreviations of
∧

Ai∈Y Ai = ai and
∧

Ai∈Z Ai = ai, respectively. (This is
somewhat sloppy, but simplifies the notation considerably.) Then

ξY ∪{A,B} − ξY ∪{A}

= log
P(A = a, B = b, Y = y, Z = z∗)
P(A = a, B = b∗, Y = y, Z = z∗)

(1)
= log

P(A = a | Y = y, Z = z∗) · P(B = b, Y = y, Z = z∗)
P(A = a | Y = y, Z = z∗) · P(B = b∗, Y = y, Z = z∗)

(2)
= log

P(A = a∗ | Y = y, Z = z∗) · P(B = b, Y = y, Z = z∗)
P(A = a∗ | Y = y, Z = z∗) · P(B = b∗, Y = y, Z = z∗)

(3)
= log

P(A = a∗, B = b, Y = y, Z = z∗)
P(A = a∗, B = b∗, Y = y, Z = z∗)

= ξY ∪{B} − ξY .

(1) and (3) follow from the conditional independence of A and B given all
other attributes. (2) follows, because the first factors in numerator and de-
nominator cancel each other and therefore may be replaced by any other
factors that cancel each other. We conclude that all terms in the sum defin-
ing a function ψX and thus the function itself must be zero if X is not a
clique of G.

In the final step we have to get rid of the functions for non-maximal
cliques. However, this is easily achieved. Any non-maximal clique is contained
in a maximal clique. Therefore we can simply add the function of the non-
maximal clique to the function of the maximal clique and replace the function
of the non-maximal clique by the zero function. In this process we have to be
careful, though, because a non-maximal clique may be contained in more than
one maximal clique, but the function for it should, obviously, be used only
once. Therefore, before adding functions, we assign each clique to exactly one
maximal clique in which it is contained and then we add for each maximal
clique the functions of the cliques assigned to it. The resulting functions are
the logarithms of the factor potentials φM of a factorization of pU w.r.t. G.

A.5 Proof of Theorem 4.1.28

Theorem 4.1.28 Let πU be a possibility distribution on a set U of (discrete)
attributes and let G = (U, E) be an undirected graph over U. If πU is decom-
posable w.r.t. G, then G is a conditional independence graph w.r.t. πU . If G is
a conditional independence graph w.r.t. πU and if it has hypertree structure,
then πU is decomposable w.r.t. G.

Proof. The proof of the first part of the theorem is directly analogous to
the proof of the probabilistic case as given in Section A.4, because we can

A.5. PROOF OF THEOREM 4.1.28 333

exploit a possibilistic analog of Lemma A.4.1. This analog can be derived,
together with its proof, from the probabilistic version by replacing any product
by the minimum and any sum by the maximum (together with some other
trivial modifications). Note that this part of the theorem does not require the
graph G to have hypertree structure and thus is valid for arbitrary graphs.

The proof of the second part of the theorem follows mainly [Gebhardt
1997], although in our opinion the proof given in [Gebhardt 1997] is incom-
plete, since it does not make clear where it is necessary to exploit the running
intersection property, especially where the requirement is needed that the in-
tersection of a set with the union of all preceding sets must be contained in a
single set. Here we try to amend this deficiency.

The proof is carried out by an induction on a construction sequence for the
graph G = (U, E), in which the cliques of G are added one by one until the
full graph G is reached. This sequence is derived from the running intersection
property of the family M of attribute sets that induce the maximal cliques of
G. Let m = |M| and let M1, . . . , Mm be the ordering underlying the definition
of the running intersection property. Furthermore, let G1, . . . , Gm = G be the
sequence of graphs defined by

∀i, 1 ≤ i ≤ m : Gi = (Ui, Ui × Ui ∩ E), where Ui =
⋃
j≤i

Mj .

In the induction it is shown that for all i, 1 ≤ i ≤ m, the marginal distribu-
tions πUi

are decomposable w.r.t. Gi. Clearly, πU1 is decomposable w.r.t. G1,
because there is only one clique (induction anchor). So suppose that πUi

is
decomposable w.r.t. Gi for some i (induction hypothesis), i.e.

∀ai ∈ dom(A1) : . . . an ∈ dom(An) :

πUi

(∧
Ak∈Ui

Ak = ak

)
= min

j≤i
πMj

(∧
Ak∈Mj

Ak = ak

)
.

In the step from i to (i+1) the clique with attribute set Mi+1 is added to Gi.
If we can show that

Mi+1 − Si ⊥⊥pU
Ui − Si | Si, where Si = Mi+1 ∩ Ui,

we have proven the theorem, because this conditional independence, trans-
lated to degrees of possibility, reads (note that Ui+1 = Ui ∪ Mi+1)

∀ai ∈ dom(A1) : . . . an ∈ dom(An) :

πUi+1

(∧
Ak∈Ui+1

Ak = ak

)

= min
{

πMi+1

(∧
Ak∈Mi+1

Ak = ak

)
, πUi

(∧
Ak∈Ui

Ak = ak

)}

334 APPENDIX A. PROOFS OF THEOREMS

and combining this equation with the induction hypothesis yields

∀ai ∈ dom(A1) : . . . an ∈ dom(An) :

πUi+1

(∧
Ak∈Ui+1

Ak = ak

)
= min

j≤i+1
πMj

(∧
Ak∈Mj

Ak = ak

)
.

To show that the above conditional independence statement holds, we exploit
the global Markov property of G, that is, we show

〈Mi+1 − Si | Si | Ui − Si〉G,

from which the conditional independence follows. It is clear that the sepa-
ration holds w.r.t. Gi+1, because any path from an attribute in Mi+1 − Si

to an attribute in Ui − Si must pass through an attribute in Si, simply be-
cause in Gi+1 all edges from an attribute in Mi+1 − Si lead to an attribute
in Mi+1. Therefore this separation can be invalidated only by a set Mj ,
j > i + 1, that still needs to be added to construct G = Gm. So suppose
there is a set Mj , j > i + 1, that contains an attribute A ∈ Ui − Si and an
attribute B ∈ Mi+1 − Si, thus bypassing the separating set Si. Furthermore,
if there are several such sets, let Mj be the set with the smallest index among
these sets. From the running intersection property we know that there is a
set Mk, k < j, so that {A, B} ⊆ Mk (this and the following is what [Geb-
hardt 1997] fails to point out). It must be k > i, because A was added with
Mi+1 and was not present in Ui. It must also be k ≤ i + 1, because we
chose Mj to be the set with the smallest index j > i + 1 containing both
A and B. Therefore Mk = Mi+1. However, this contradicts A ∈ Ui − Si.
It follows that there cannot be a set Mj through which the separating set Si

can be bypassed. In the same manner we can show that there cannot be a
sequence of sets Mj1 , . . . , Mjs

, and a path A0, A1, . . . , As, As+1, such that
A0 ∈ Ui − Si, {A0, A1} ⊆ Mj1 , . . . , {As, B} ⊆ Mjs

, As+1 ∈ Mi+1 − Si by-
passing the separating set: With a similar argument as above, assuming again
that the sets Mj1 , . . . , Mjs

are the ones with the smallest indices having the
desired property, we can show that there must be a set Mjk

, namely the one
with the largest index, such that either Ak+1 ∈ Mjk−1 or Ak−1 ∈ Mjk+1 , so
that we can shorten the path by one element. Working recursively, we reduce
this case to the case with only one set bypassing the separating set, which we
already showed to be impossible. Therefore the above separation holds.

Note that the running intersection property is essential for the proof. With-
out it, we do not have the conditional independence statements that are ex-
ploited. Consider, for example, a structure like the one shown in Figure 4.12
on page 117, which was used to demonstrate that the theorem does not hold
for arbitrary graphs. Since this graph does not have hypertree structure, there
is no construction sequence. Indeed, independent of the edge we start with,
and independent of the edge we add next, we do not have (in the general
case) the necessary conditional independence statement that would allow us
to extend the decomposition formula.

A.6. PROOF OF THEOREM 4.1.30 335

A.6 Proof of Theorem 4.1.30

Theorem 4.1.30 Let pU be a probability distribution on a set U of (discrete)
attributes. A directed acyclic graph �G = (U, �E) is a conditional independence
graph w.r.t. pU , iff pU is factorizable w.r.t. �G.

Proof. The proof of the theorem consists of two parts. In the first part it is
shown that, if the distribution pU is factorizable w.r.t. a directed acyclic graph,
then �G satisfies the global Markov property and thus is a conditional inde-
pendence graph. In the second part it is shown that the family of conditional
probabilities of an attribute given its parents in the graph is a factorization
of pU . Both parts make use of Theorem 4.1.20 (see page 110), which states
that the global and the local Markov property of a directed acyclic graph
are equivalent if the relation representing the set of conditional independence
statements that hold in pU satisfies the semi-graphoid axioms (as conditional
probabilistic independence does in general, cf. Theorem 4.1.2 on page 95).

For both parts of the proof let n = |U| and o : U → {1, . . . , n} be a
topological order8 of the attributes in �G. Let the attributes in U be numbered
in such a way that o(Ai) = i. Due to the properties of a topological order all
attributes preceding an attribute in the topological order are among its non-
descendants and all parents of Ai precede it in the topological order. That is,
we have

∀1 ≤ i ≤ n : parents(Ai) ⊆ {Aj | j < i} ⊆ nondescs(Ai).

Apply the chain rule of probability (cf. page 79) to the attributes in U w.r.t.
the topological order o. That is, write pU as

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

pu

(∧n

i=1
Ai = ai

)
=

n∏
i=1

P
(
Ai = ai

∣∣∣ ∧i−1

j=1
Aj = aj

)
.

For the first part of the proof9 we know that pU factorizes w.r.t. �G, i.e.

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

pu

(∧n

i=1
Ai = ai

)
=

n∏
i=1

P
(
Ai = ai

∣∣∣ ∧
Aj∈parents(Ai)

Aj = aj

)
.

8The notion of a topological order is defined in Definition 4.1.12 on page 100.
9Unfortunately, the first part of the proof is dealt with somewhat casually in [Lauritzen

1996] (which we follow for the proofs of some of the other theorems), so that we decided to
give a different proof. It is based strongly on the proof of Theorem 4.1.20.

336 APPENDIX A. PROOFS OF THEOREMS

Therefore we have

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :
n∏

i=1

P
(
Ai = ai

∣∣∣ ∧i−1

j=1
Aj = aj

)

=
n∏

i=1

P
(
Ai = ai

∣∣∣ ∧
Aj∈parents(Ai)

Aj = aj

)
.

From this equation one can easily establish that corresponding factors must
be equal by the following procedure: We sum the above equation over all
values of An, i.e., the last attribute of the topological order. This attribute
appears only in the last factor and thus all other factors can be moved out
of the sum. Since the last factor is a conditional probability of the values of
An, summing over all values of An yields 1 and therefore the term is simply
canceled by the summation. We arrive at

∀a1 ∈ dom(A1) : . . .∀an−1 ∈ dom(An−1) :
n−1∏
i=1

P
(
Ai = ai

∣∣∣ ∧i−1

j=1
Aj = aj

)

=
n−1∏
i=1

P
(
Ai = ai

∣∣∣ ∧
Aj∈parents(Ai)

Aj = aj

)
.

Comparing this result to the preceding equality, we conclude that

P
(
An = an

∣∣∣ ∧n−1

j=1
Aj = aj

)
= P

(
An = an

∣∣∣ ∧
Aj∈parents(An)

Aj = aj

)
.

In the same manner, working recursively down the topological order, we es-
tablish the equality for all attributes. Finally we have

∀1 ≤ i ≤ n : Ai ⊥⊥pU
{Aj | j < i} − parents(Ai) | parents(Ai).

From these statements we can infer, working in the same way as in the proof
of Theorem 4.1.20 (cf. Section A.3), that �G has the global Markov property,
since the set of statements above was all that was needed in that proof.

Another way to prove the first part of the theorem is the following: It is
clear that for each attribute A of the graph a topological order can be con-
structed, so that all its non-descendants precede it in the topological order.
For example, such a topological order can be found with the simple recur-
sive algorithm stated on page 100 by preferring those childless attributes that
are descendants of A. With respect to this specific topological order the con-
ditional independence statement that can be derived for A by the method
employed above is identical to the desired local conditional independence

A.7. PROOF OF THEOREM 4.1.31 337

statement. Note, though, that with this approach we may need a different
topological order for each attribute of the graph and that we finally have to
apply Theorem 4.1.20 in order to derive the global Markov property by which
a conditional independence graph is defined.

For the second part of the proof we know that �G has the global and thus
the local Markov property (cf. Theorem 4.1.20). Therefore we have

∀1 ≤ i ≤ n : Ai ⊥⊥pU
nondescs(Ai) − parents(Ai) | parents(Ai).

By applying the decomposition axiom10 and exploiting the properties of a
topological order (see above), we have

∀1 ≤ i ≤ n : Ai ⊥⊥pU
{Aj | j < i} − parents(Ai) | parents(Ai).

Translating this to probabilities yields

∀1 ≤ i ≤ n :

P
(
Ai = ai

∣∣∣ ∧i−1

j=1
Aj = aj

)
= P

(
Ai = ai

∣∣∣ ∧
Aj∈parents(Ai)

Aj = aj

)
.

By combining this statement with the chain rule decomposition shown above
we arrive at the desired factorization.

A.7 Proof of Theorem 4.1.31

Theorem 4.1.31 Let πU be a possibility distribution on a set U of (discrete)
attributes. If a directed acyclic graph �G = (U, �E) is a conditional independence
graph w.r.t. πU , then πU is decomposable w.r.t. �G.

Proof. The proof is analogous to the corresponding part of the proba-
bilistic case. We apply the possibilistic counterpart of the chain rule w.r.t.
a topological order of the attributes and simplify the conditions by exploit-
ing the conditional independences that can be derived from the local Markov
property of the graph �G. There is only one minor difference, because, if con-
ditional possibilistic independence is expressed in conditional possibilities, we
have a relation that differs from the probabilistic case. However, how to deal
with this difference was already explained on page 87 and therefore we do
not repeat it here. It should be noted, though, that this difference is the main
reason why the converse of the theorem, i.e. that a decomposition w.r.t. �G
implies the global Markov property of �G, does not hold, as demonstrated by
the example on page 119.

10The decomposition axiom is part of the semi-graphoid axioms, defined in Defini-
tion 4.1.1 on page 94, which are satisfied by conditional probabilistic independence ac-
cording to Theorem 4.1.2 on page 95.

338 APPENDIX A. PROOFS OF THEOREMS

A.8 Proof of Theorem 5.4.8

Theorem 5.4.8 Let D = (R, wR) be a database over a set U of attributes
and let X ⊆ U. Furthermore, let support(D) = (support(R), wsupport(R)) and
closure(D) = (closure(R), wclosure(R)) as well as π

(support(D))
X and π

(closure(D))
X

be defined as in Definition 5.4.3 on page 152, in Definition 5.4.7 on page 154,
and in the paragraphs following these definitions, respectively. Then

∀t ∈ T
(precise)
X : π

(closure(D))
X (t) = π

(support(D))
X (t),

i.e., computing the maximum projection of the possibility distribution π
(D)
U

induced by D to the attributes in X via the closure of D is equivalent to
computing it via the support of D.

Proof. [Borgelt and Kruse 1998c] The assertion of the theorem is proven
in two steps. In the first, it is shown that, for an arbitrary tuple t ∈ T

(precise)
X ,

π
(closure(D))
X (t) ≥ π

(support(D))
X (t),

and in the second that

π
(closure(D))
X (t) ≤ π

(support(D))
X (t).

Both parts together obviously prove the theorem. So let t ∈ T
(precise)
X be an

arbitrary precise tuple and let w0 =
∑

u∈R wR(u). Furthermore, let

S = {s ∈ support(R) | t � s|X} and C = {c ∈ closure(R) | t � c|X}.

(1) π
(closure(D))
X (t) ≥ π

(support(D))
X (t) :

We have to distinguish two cases, namely S = ∅ and S �= ∅, the first of
which is obviously trivial.

(a) S = ∅: π
(support(D))
X (t) = 0 ≤ π

(closure(D))
X (t) ∈ [0, 1].

(b) S �= ∅: Due to the definitions of π
(support(D))
X and wsupport(R)

π
(support(D))
X (t) =

1
w0

max
s∈S

wsupport(R)(s)

=
1
w0

max
s∈S

∑
u∈R,s�u

wR(u).

Let ŝ ∈ S be (one of) the tuple(s) s ∈ S for which wsupport(R)(s) is
maximal. Let V = {v ∈ R | ŝ � v}, i.e., let V be the set of tuples from
which the weight of ŝ is computed. Then

π
(support(D))
X (t) =

1
w0

wsupport(R)(ŝ) =
1
w0

∑
v∈V

wR(v).

A.8. PROOF OF THEOREM 5.4.8 339

Since V ⊆ R, we have v∗ = �v∈V v ∈ closure(R), because of the
definition of the closure of a relation (cf. Definition 5.4.6 on page 153).
Since ŝ ∈ S, we have t � ŝ|X (because of the definition of S), and
since ∀v ∈ V : ŝ � v, we have ŝ � v∗ (because the intersection of a
set of tuples is the least specific tuple that is at least as specific as
all tuples in the set), hence t � v∗|X . It follows that v∗ ∈ C.
Let W = {w ∈ R | v∗ � w}, i.e. let W be the set of tuples from
which the weight of v∗ is computed. Since v∗ = �v∈V v (due to the
definition of v∗), we have ∀v ∈ V : v∗ � v (due to the fact that the
intersection of a set of tuples is at least as specific as all tuples in the
set), and hence V ⊆ W. Putting everything together we arrive at

π
(closure(D))
X (t) =

1
w0

max
c∈C

wclosure(R)(c)

≥ 1
w0

wclosure(R)(v∗)

=
1
w0

∑
w∈W

wR(w)

≥ 1
w0

∑
v∈V

wR(v)

= π
(support(D))
X (t).

From what we have considered, the first inequality need not be an
equality, since there may be another tuple in closure(R) to which a
higher weight was assigned. The second inequality need not be an
equality, because W may contain more tuples than V.

(2) π
(closure(D))
X (t) ≤ π

(support(D))
X (t):

Again we have to distinguish two cases, namely C = ∅ and C �= ∅, the
first of which is obviously trivial.

(a) C = ∅: π
(closure(D))
X (t) = 0 ≤ π

(support(D))
X (t) ∈ [0, 1].

(b) C �= ∅: Due to the definitions of π
(closure(D))
X and wclosure(R)

π
(closure(D))
X (t) =

1
w0

max
c∈C

wclosure(R)(c)

=
1
w0

max
c∈C

∑
u∈R,c�u

wR(u).

Let ĉ ∈ C be (one of) the tuple(s) c ∈ C for which wclosure(R)(c) is
maximal. Let W = {w ∈ R | ĉ � w}, i.e. let W be the set of tuples
from which the weight of ĉ is computed. Then

π
(closure(D))
X (t) =

1
w0

wclosure(R)(ĉ) =
1
w0

∑
w∈W

wR(w).

340 APPENDIX A. PROOFS OF THEOREMS

Let Q =
{
q ∈ T

(precise)
X

∣∣ q � ĉ
}
, i.e. let Q be the set of tuples

‘‘supporting’’ ĉ. Since t ∈ T
(precise)
X and t � ĉ|X (due to ĉ ∈ C),

there must be a tuple s∗ ∈ Q, for which t � s∗|X . Since s∗ ∈ Q,
we have s∗ � ĉ ∈ closure(R) (due to the definition of Q), and since
∀c ∈ closure(R) : ∃u ∈ R : c � u (due to the definition of the
closure of a relation, cf. Definition 5.4.6 on page 153), it follows that
∃u ∈ R : s∗ � u and hence we have s∗ ∈ support(R).
Let V = {v ∈ R | s∗ � v}, i.e. let V be the set of tuples from which
the weight of s∗ is computed. Since s∗ � ĉ (see above), we have
∀w ∈ W : s∗ � w and hence W ⊆ V. Thus we arrive at

π
(support(D))
X (r) =

1
w0

max
s∈S

wsupport(R)(s)

≥ 1
w0

wsupport(R)(s∗)

=
1
w0

∑
v∈V

wR(v)

≥ 1
w0

∑
w∈W

wR(w)

= π
(closure(D))
X (t).

The reasons underlying the inequalities are similar to those in (1).
From (1) and (2) it follows that, since t is arbitrary,

∀t ∈ T
(precise)
X : π

(closure(D))
X (t) = π

(support(D))
X (t).

This completes the proof.

A.9 Proof of Lemma 7.2.2

Lemma 7.2.2 Let A, B, and C be three attributes with finite domains and
let their joint probability distribution be strictly positive, i.e., ∀a ∈ dom(A) :
∀b ∈ dom(B) : ∀c ∈ dom(C) : P(A = a, B = b, C = c) > 0. Then

I
(Shannon)
gain (C, AB) ≥ I

(Shannon)
gain (C, B),

with equality obtaining only if the attributes C and A are conditionally inde-
pendent given B.

Proof. Let the domains of A, B, and C be dom(A) = {a1, . . . , anA
},

dom(B) = {b1, . . . , bnB
}, and dom(C) = {c1, . . . , cnC

}, respectively. In or-
der to make the formulae easier to read, we use the following abbreviations,

A.9. PROOF OF LEMMA 7.2.2 341

which are consistent with the abbreviations introduced in Section 7.2.2:

pi.. = P(C = ci), pij. = P(C = ci, A = aj),
p.j. = P(A = aj), pi.k = P(C = ci, B = bk),
p..k = P(B = bk), p.jk = P(A = aj , B = bk), and

pijk = P(C = ci, A = aj , B = bk),

i.e., the index i always refers to the attribute C, the index j always refers to
the attribute A, and the index k always refers to the attribute B.

Since it makes the proof much simpler, we show that

I
(Shannon)
gain (C, B) − I

(Shannon)
gain (C, AB) ≤ 0,

from which the original statement follows trivially. In addition, we drop the
upper index ‘‘(Shannon)’’ in the following, since no confusion with Hartley
information gain or Hartley entropy is to be expected. (For the definition of
Shannon information gain in terms of Shannon entropies cf. Section 7.2.4.)

Igain(C, B) − Igain(C, AB)
= H(C) + H(B) − H(CB) − (H(C) + H(AB) − H(CAB))
= −H(CB) − H(AB) + H(CAB) + H(B)

=
nC∑
i=1

nB∑
k=1

pi.k log2 pi.k +
nA∑
j=1

nB∑
k=1

p.jk log2 p.jk

−
nC∑
i=1

nA∑
j=1

nB∑
k=1

pijk log2 pijk −
nB∑
k=1

p..k log2 p..k

=
nC∑
i=1

nA∑
j=1

nB∑
k=1

pijk log2

pi.kp.jk

pijkp..k

=
1

ln 2

nC∑
i=1

nA∑
j=1

nB∑
k=1

pijk ln
pi.kp.jk

pijkp..k

≤ 1
ln 2

nC∑
i=1

nA∑
j=1

nB∑
k=1

pijk

(
pi.kp.jk

pijkp..k
− 1

)

=
1

ln 2

⎡
⎣ nC∑

i=1

nA∑
j=1

nB∑
k=1

pi.kp.jk

p..k
−

nC∑
i=1

nA∑
j=1

nB∑
k=1

pijk

︸ ︷︷ ︸
=1

⎤
⎦

=
1

ln 2

⎡
⎣
⎛
⎝ nB∑

k=1

1
p..k

nC∑
i=1

nA∑
j=1

pi.kp.jk

⎞
⎠− 1

⎤
⎦

342 APPENDIX A. PROOFS OF THEOREMS

=
1

ln 2

⎡
⎣
⎛
⎝ nB∑

k=1

1
p..k

(
nC∑
i=1

pi.k

)
︸ ︷︷ ︸

=p..k

(
nA∑
j=1

p.jk

)
︸ ︷︷ ︸

=p..k

⎞
⎠− 1

⎤
⎦

=
1

ln 2

((
nB∑
k=1

p2
..k

p..k

)
︸ ︷︷ ︸

=1

−1

)

=
1

ln 2
(1 − 1) = 0,

where the inequality follows from the fact that

ln x ≤ x − 1,

with equality obtaining only for x = 1. (This can most easily be seen from
the graph of ln x.) As a consequence, Igain(C, AB) = Igain(C, B) only if

∀i, j, k :
pi.kp.jk

pijkp..k
= 1 ⇔ ∀i, j, k : pij|k = pi.|kp.j|k,

where pij|k = P(C = ci, A = aj | B = bk) and pi.|k and p.j|k likewise.
That is, Igain(C, AB) = Igain(C, B) only holds if the attributes C and A are
conditionally independent given attribute B.

A.10 Proof of Lemma 7.2.4

Lemma 7.2.4 Let A, B, and C be attributes with finite domains. Then

I2
gain(C, AB) ≥ I2

gain(C, B).

Proof. We use the same notation and the same abbreviations as in the
proof of Lemma 7.2.2 in Section A.9. Since it makes the proof much simpler,
we show

I2
gain(C, AB) − I2

gain(C, B) ≥ 0,

from which the original statement follows trivially. (For the definition of
quadratic information gain in terms of quadratic entropies cf. Section 7.2.4.)

I2
gain(C, AB) − I2

gain(C, B)

= H2(C) + H2(AB) − H2(CAB) − (H2(C) + H2(B) − H2(CB))
= H2(AB) − H2(CAB) + H2(CB) − H2(B)

= 1 −
nA∑
j=1

nB∑
k=1

p2
.jk − 1 +

nC∑
i=1

nA∑
j=1

nB∑
k=1

p2
ijk + 1 −

nC∑
i=1

nB∑
k=1

p2
i.k − 1 +

nB∑
k=1

p2
..k

A.10. PROOF OF LEMMA 7.2.4 343

= −
nA∑
j=1

nB∑
k=1

p.jk

nC∑
i=1

pijk +
nB∑
k=1

nC∑
i=1

nA∑
j=1

p2
ijk

−
nC∑
i=1

nB∑
k=1

pi.k

nA∑
j=1

pijk +
nB∑
k=1

p..k

nC∑
i=1

nA∑
j=1

pijk

=
nC∑
i=1

nA∑
j=1

nB∑
k=1

pijk(p..k − pi.k − p.jk + pijk) ≥ 0

That the last sum is nonnegative results from the fact that each term of the
sum is nonnegative. This can be seen as follows: From probability theory it
is well known that ∀E1, E2, E2 ⊆ Ω :

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2) and
P(E1 ∪ E2 ∪ E3) = P(E1) + P(E2) + P(E1)

−P(E1 ∩ E2) − P(E1 ∩ E3) − P(E2 ∩ E3)
+P(E1 ∩ E2 ∩ E3).

It follows that ∀E1, E2, E2 ⊆ Ω :

P(E3) − P(E1 ∩ E3) − P(E2 ∩ E3) + P(E1 ∩ E2 ∩ E3)
= P(E1 ∪ E2 ∪ E3) − P(E1 ∪ E2) ≥ 0.

Hence, if we identify E1 with C = ci, E2 with A = aj , and E3 with B = bk,
we have that

∀i, j, k : p..k − pi.k − p.jk + pijk ≥ 0.

Therefore each term of the sum must be nonnegative, since the other fac-
tor pijk is clearly nonnegative, as it is a probability.

Since the sum can be zero only if all terms are zero, we obtain that it is
I2
gain(C, AB) = I2

gain(C, B) only if

∀i, j, k : pijk = 0 ∨ p..k + pijk = pi.k + p.jk.

Suppose there are two different values i1 and i2 for which pijk > 0. In this
case the second equation yields

∀j, k : pi1jk − pi2jk = pi1.k − pi2.k.

Clearly, this equation can hold only if there is at most one value j for which
pijk > 0. A symmetric argument shows that there can be at most one value i
for which pijk > 0 if there are two values j for which pijk > 0. Therefore the
sum can be zero only if at most one of the attributes A and C has more than
one value with a non-vanishing probability. Consequently, it is, in general,
I2
gain(C, AB) �= I2

gain(C, B) even if the attributes C and A are conditionally
independent given the attribute B.

344 APPENDIX A. PROOFS OF THEOREMS

A.11 Proof of Lemma 7.2.6

Lemma 7.2.6 Let A, B, and C be three attributes with finite domains and
let their joint probability distribution be strictly positive, i.e., ∀a ∈ dom(A) :
∀b ∈ dom(B) : ∀c ∈ dom(C) : P(A = a, B = b, C = c) > 0. Then

χ2(C, AB) ≥ χ2(C, B),

with equality obtaining only if the attributes C and A are conditionally inde-
pendent given B.

Proof. We use the same notation and the same abbreviations as in the
proof of Lemma 7.2.2 in Section A.9. Since it makes the proof much simpler,
we show

1
N

(
χ2(C, AB) − χ2(C, B)

)
≥ 0,

from which the original statement follows trivially. (For the definition of the
χ2 measure cf. Section 7.2.4.)

1
N

(
χ2(C, AB) − χ2(C, B)

)
=

nC∑
i=1

nA∑
j=1

nB∑
k=1

(pijk − pi..p.jk)2

pi..p.jk
−

nC∑
i=1

nB∑
k=1

(pi.k − pi..p..k)2

pi..p..k

=
nC∑
i=1

nB∑
k=1

⎛
⎝ nA∑

j=1

p2
ijk − 2pijkpi..p.jk + p2

i..p
2
.jk

pi..p.jk

− p2
i.k − 2pi.kpi..p..k + p2

i..p
2
..k

pi..p..k

⎞
⎠

=
nC∑
i=1

nB∑
k=1

⎛
⎝ nA∑

j=1

(
p2

ijk

pi..p.jk
− 2pijk + pi..p.jk

)
− p2

i.k

pi..p..k
+ 2pi.k − pi..p..k

⎞
⎠

=
nC∑
i=1

nB∑
k=1

⎛
⎝ nA∑

j=1

p2
ijk

pi..p.jk
− 2pi.k + pi..p..k − p2

i.k

pi..p..k
+ 2pi.k − pi..p..k

⎞
⎠

=
nC∑
i=1

nB∑
k=1

1
pi..p..k

⎛
⎝p..k

nA∑
j=1

p2
ijk

p.jk
− pi.k

nA∑
j=1

pijk

⎞
⎠

=
nC∑
i=1

nB∑
k=1

1
pi..p..k

⎡
⎣
⎛
⎝ nA∑

j1=1

p.j1k

⎞
⎠
⎛
⎝ nA∑

j2=1

p2
ij2k

p.j2k

⎞
⎠−

⎛
⎝ nA∑

j1=1

pij1k

⎞
⎠
⎛
⎝ nA∑

j2=1

pij2k

⎞
⎠
⎤
⎦

=
nC∑
i=1

nB∑
k=1

1
pi..p..k

⎛
⎝ nA∑

j1=1

nA∑
j2=1

p.j1kp2
ij2k

p.j2k
−

nA∑
j1=1

nA∑
j2=1

pij1kpij2k

⎞
⎠

A.12. PROOF OF THEOREM 7.3.1 345

=
nC∑
i=1

nB∑
k=1

1
pi..p..k

⎛
⎝ nA∑

j1=1

nA∑
j2=1

p2
.j1kp2

ij2k − pij1kpij2kp.j1kp.j2k

p.j1kp.j2k

⎞
⎠

=
nC∑
i=1

nB∑
k=1

1
2pi..p..k

nA∑
j1=1

nA∑
j2=1

(p.j1kpij2k − pij1kp.j2k)2

p.j1kp.j2k

=
nC∑
i=1

nB∑
k=1

nA∑
j1=1

nA∑
j2=1

(p.j1kpij2k − pij1kp.j2k)2

2pi..p..kp.j1kp.j2k
≥ 0,

where the semi-last step follows by duplicating the term in parentheses and
then interchanging the indices j1 and j2 in the second instance (which is
possible, because they have the same range). From the result it is immediately
clear that χ2(C, AB) ≥ χ2(C, B): Since each term of the sum is a square
divided by a product of (positive) probabilities, each term and thus the sum
must be nonnegative. It also follows that the sum can be zero only if all of its
terms are zero, which requires their numerators to be zero:

∀i, j1, j2, k : p.j1kpij2k − pij1kp.j2k = 0 ⇔ ∀i, j1, j2, k :
pij2k

p.j2k
=

pij1k

p.j1k

⇔ ∀i, j1, j2, k : pi|j2k = pi|j1k,

where pi|jαk = P(C = ci | A = ajα
, B = bk) with α ∈ {1, 2}. That is,

χ2(C, AB) = χ2(C, B) only holds if the attributes C and A are conditionally
independent given attribute B.

A.12 Proof of Theorem 7.3.1

Theorem 7.3.1 Let m be a symmetric evaluation measure satisfying

∀A, B, C : m(C, AB) ≥ m(C, B)

with equality obtaining only if the attributes A and C are conditionally inde-
pendent given B. Let G be a singly connected undirected perfect map of a
probability distribution p over a set U of attributes. Then constructing a max-
imum weight spanning tree for the attributes in U with m (computed from p)
providing the edge weights uniquely identifies G.

In order to prove this theorem, it is convenient to prove first the following
lemma, by which an important property of the measure m is established:

Lemma A.12.1 Let m be a symmetric evaluation measure satisfying

∀A, B, C : m(C, AB) ≥ m(C, B)

346 APPENDIX A. PROOFS OF THEOREMS

with equality obtaining only if the attributes C and A are conditionally inde-
pendent given B. If A, B, and C are three attributes satisfying A⊥⊥ C | B, but
neither A⊥⊥ B | C nor C⊥⊥ B | A, then

m(A, C) < min{m(A, B), m(B, C)}.

Proof. From the fact that A⊥⊥ C | B we know that

m(C, AB) = m(C, B) and m(A, CB) = m(A, B).

Since it is A⊥�⊥ B | C and C⊥�⊥ B | A, we have

m(C, AB) > m(C, A) and m(A, CB) > m(A, C).

Consequently, m(C, A) < m(C, B) and m(C, A) < m(A, B).

Proof of Theorem 7.3.1. Let C and A be two arbitrary attributes in U
that are not adjacent in G. Since G is singly connected there is a unique path
connecting C and A in G. We show that any edge connecting two consecutive
nodes on this path has a higher weight than the edge (C, A).

Let B be the successor of C on the path connecting C and A in G. Then
it is C⊥⊥p A | B, but neither C⊥⊥p B | A nor A⊥⊥p B | C. Consequently, it is
m(C, A) < m(C, B) and m(C, A) < m(B, A). If B is the predecessor of A on
the path, we already have that all edges on the path have a higher weight than
the edge (C, A). Otherwise we have that the edge (C, B) has a higher weight
than the edge (C, A). For the remaining path, i.e., the path that connects B
and A, the above argument is applied recursively.

Hence any edge between two consecutive nodes on the path connecting any
two attributes C and A has a higher weight than the edge (C, A). From this it
is immediately clear, for example by considering how the Kruskal algorithm
[Kruskal 1956] works, that constructing the optimum weight spanning tree
with m providing the edge weights uniquely identifies G.

A.13 Proof of Theorem 7.3.2

Theorem 7.3.2 Let m be a symmetric evaluation measure satisfying

∀A, B, C : m(C, AB) ≥ m(C, B)

with equality obtaining only if the attributes A and C are conditionally inde-
pendent given B and

∀A, C : m(C, A) ≥ 0

with equality obtaining only if the attributes A and C are (marginally) inde-
pendent. Let �G be a singly connected directed acyclic graph of a probability

A.14. PROOF OF THEOREM 7.3.3 347

distribution p over a set U of attributes. Then constructing a maximum weight
spanning tree for the attributes in U with m (computed from p) providing the
edge weights uniquely identifies the skeleton of �G, i.e., the undirected graph
then results if all edge directions are discarded.

Proof. Let C and A be two arbitrary attributes in U that are not adjacent
in �G. Since �G is singly connected, there is a unique path connecting C and A.
Suppose first that this path does not contain a node with converging edges
(from its predecessor and its successor on the path). In this case the proof of
Theorem 7.3.1 can be transferred, because, according to d-separation,11 we
have C⊥⊥p A | B, but neither C⊥⊥p B | A nor A⊥⊥p B | C (because �G is a
perfect map). Therefore the value of m must be less for the edge (C, A) than
for any pair of consecutive nodes on the path connecting C and A.

Suppose next that the path connecting C and A in �G contains at least
one node with converging edges (from its predecessor and its successor on the
path). According to the d-separation criterion C and A must be marginally
independent and hence it is m(C, A) = 0. However, no pair (Bi, Bj) of con-
secutive nodes on the path is marginally independent (since �G is a perfect
map) and thus m(Bi, Bj) > 0.

Hence any edge between two nodes on a path connecting two nonadjacent
nodes in the perfect map �G has a higher weight than the edge connecting them
directly. From this it is immediately clear, for example by considering how
the Kruskal algorithm [Kruskal 1956] works, that constructing the optimum
weight spanning tree with m providing the edge weights uniquely identifies
the skeleton of �G.

A.14 Proof of Theorem 7.3.3

Theorem 7.3.3 [Chow and Liu 1968] Let p be a strictly positive probability
distribution over a set U of attributes. Then a best tree-structured approxi-
mation12 of p w.r.t. the Kullback–Leibler information divergence13 is obtained
by constructing an undirected maximum weight spanning tree of U with mu-
tual information14 providing the edge weights, then directing the edges away
from an arbitrarily chosen root node, and finally computing the (conditional)
probability distributions associated with the edges of the tree from the given
distribution p.

In order to prove this theorem, it is convenient to prove first the following
lemma, by which an important property of the Kullback–Leibler information
divergence is established.

11d-separation was defined in Definition 4.1.14 on page 100.
12The notion of a tree-structured approximation was introduced on page 234.
13Kullback–Leibler information divergence was defined in Definition 7.1.3 on page 177.
14Mutual (Shannon) information was defined in Definition 7.1.4 on page 180.

348 APPENDIX A. PROOFS OF THEOREMS

Lemma A.14.1 Let p1 and p2 be two strictly positive probability distributions
on the same set E of events. The Kullback–Leibler information divergence is
nonnegative and zero only if p1 ≡ p2.

Proof. The proof is carried out by roughly the same means as the proof
of Lemma 7.2.2 in Section A.9.

∑
E∈E

p1(E) log2

p2(E)
p1(E)

=
1

ln 2

∑
E∈E

p1(E) ln
p2(E)
p1(E)

≤ 1
ln 2

∑
E∈E

p1(E)
(

p2(E)
p1(E)

− 1
)

=
1

ln 2

(∑
E∈E

p2(E) −
∑
E∈E

p1(E)

)

=
1

ln 2
(1 − 1) = 0

where the inequality follows from the fact that lnx ≤ x − 1, with equality
obtaining only for x = 1. (This can most easily be seen from the graph of
ln x.) Consequently,

∑
E∈E

p1(E) log2

p1(E)
p2(E)

= −
∑
E∈E

p1(E) log2

p2(E)
p1(E)

≥ 0.

In addition, ∑
E∈E

p1(E) log2

p1(E)
p2(E)

= 0

only if ∀E ∈ E : p1(E)
p2(E) = 1, i.e., if ∀E ∈ E : p1(E) = p2(E). Note that from this

result we also have that the expression
∑

E∈E p1(E) log2 p2(E) is maximized
for a fixed p1 by choosing p2 ≡ p1

Proof of Theorem 7.3.3. The proof follows mainly [Pearl 1988]. In a first
step it is shown that the Kullback–Leibler divergence of the distribution p
and the distribution pt represented by a given tree is minimized by associ-
ating with the edges of the tree the (conditional) probability distributions of
the child attribute given the parent attribute that can be computed from p.
(This is also called the projection of p onto the tree.) Let U = {A1, . . . , An}
and let, without restricting generality, attribute A1 be the root of the tree.
Furthermore, let Ak(j) be the parent of attribute Aj in the tree. For con-
venience, we denote all probabilities derived from p with P, and all derived
from pt by Pt. Finally, we use P(u) as an abbreviation for P(

∧
Ai∈U Ai = ai),

P(a1) as an abbreviation for P(A1 = a1), and analogous abbreviations for

A.14. PROOF OF THEOREM 7.3.3 349

other expressions. Then

IKLdiv(p, pt)

=
∑

∀Ai∈U : ai∈dom(Ai)

P(u) log2

P(u)
Pt(a1)

∏n
j=2 Pt(aj | ak(j))

= −H(Shannon)(A1. . . An) −
∑

∀Ai∈U :
ai∈dom(Ai)

P(u) log2 Pt(a1)
n∏

j=2

Pt(aj | ak(j))

= −H(Shannon)(A1. . . An) −
∑

a1∈dom(A1)

P(a1) log2 Pt(a1)

−
n∑

j=2

∑
aj∈dom(Aj)

ak(j)∈dom(Ak(j))

P(aj, ak(j)) log2 Pt(aj | ak(j))

From Lemma A.14.1 we know that
∑

E∈E p1(E) log2 p2(E) is maximized for a
fixed distribution p1 by choosing p2 ≡ p1. Consequently, the above expression
is minimized by choosing

∀a1 ∈ dom(A1) : Pt(a1) = P(a1) and
∀aj ∈ dom(Aj) : ∀ak(j) ∈ dom(Ak(j)) : Pt(aj | ak(j)) = P(aj | ak(j)).

This proves one part of the theorem, namely that the (conditional) probabil-
ities must be those computed from the distribution p.

To show that the best tree is obtained by constructing a maximum weight
spanning tree with Shannon information gain providing the edge weights,
we simply substitute these equations into the Kullback–Leibler information
divergence. This yields

IKLdiv(p, pt)

= −H(Shannon)(A1. . . An) −
∑

a1∈dom(A1)

P(a1) log2 P(a1)

−
n∑

j=2

∑
aj∈dom(Aj)

ak(j)∈dom(Ak(j))

P(aj , ak(j)) log2 P(aj | ak(j))

= −H(Shannon)(A1. . . An) + H(Shannon)(A1)

−
n∑

j=2

∑
aj∈dom(Aj)

ak(j)∈dom(Ak(j))

P(aj , ak(j))
(

log2

P(aj , ak(j))
P(aj)P(ak(j))

+ log2 P(aj)
)

= −H(Shannon)(A1. . . An) −
n∑

i=1

H(Shannon)(Ai) −
n∑

j=2

I
(Shannon)
gain (Aj , Ak(j)).

350 APPENDIX A. PROOFS OF THEOREMS

A B

C D

A B

C D

Figure A.1 Maximal cliques with four or
more nodes cannot be created without
breaking the rules for adding edges.

A B

C D

Figure A.2 The node A can be bypassed
only by an edge connecting the node D to
a neighbor of A.

Since the first two terms are independent of the structure of the tree, the
Kullback–Leibler information divergence is minimized by choosing the tree
that maximizes the third term, which is the sum of the edge weights of the
tree. Hence the tree underlying the best tree-structured approximation is ob-
tained by constructing the maximum weight spanning tree with Shannon
information gain providing the edge weights. This proves the theorem.

A.15 Proof of Theorem 7.3.5

Theorem 7.3.5 If an undirected tree is extended by adding edges only between
nodes with a common neighbor in the tree and if the added edges alone do not
form a cycle, then the resulting graph has hypertree structure and its maximal
cliques contain at most three nodes.

Proof. Consider first the size of the maximal cliques. Figure A.1 shows,
with solid edges, the two possible structurally different spanning trees for four
nodes. In order to turn these into cliques the dotted edges have to be added.
However, in the graph on the left the edge (B, D) connects two nodes not
having a common neighbor in the original tree and in the graph on the right
the additional edges form a cycle. Therefore it is impossible to get a clique
with a size greater than three without breaking the rules for adding edges.

In order to show that the resulting graph has hypertree structure, it is
sufficient to show that all cycles with a length greater than three have a
chord (cf. Section 4.2.2). This is easily verified with the following argument.
Neither the original tree nor the graph without the edges of this tree contain
a cycle. Therefore in all cycles there must be a node A at which an edge
from the original tree meets an added edge. Let the former edge connect the
nodes B and A and the latter connect the nodes C and A. Since edges may
only be added between nodes that have a common neighbor in the tree, there
must be a node D that is adjacent to A as well as to C in the original tree.

A.16. PROOF OF THEOREM 7.3.7 351

This node may or may not be identical to B. If it is identical to B and the
cycle has a length greater than three, then the edge (B, C) clearly is a chord.
Otherwise the edge (A, D) is a chord, because D must also be in the cycle.
To see this, consider Figure A.2, which depicts the situation referred to. To
close the cycle we are studying there must be a path connecting B and C that
does not contain A. However, from the figure it is immediately clear that any
such path must contain D, because A can only be bypassed via an edge that
has been added between D and a neighbor of A (note that this neighbor may
or may not be B).

A.16 Proof of Theorem 7.3.7

Theorem 7.3.7 If a family M of subsets of objects of a given set U is con-
structed observing the two conditions stated on page 245, then this family M
has the running intersection property.

Proof. Adding a node set to a given family M either adds isolated nodes,
i.e., nodes not contained in any subfamily, to a subfamily, or connects two or
more subfamilies, or both. Hence one can show that the method referred to
indeed results in a family M having the running intersection property by a
simple inductive argument, which proves that all subfamilies that are created
during the construction have the running intersection property:

A subfamily with a single node set trivially has the running intersection
property (induction anchor). So assume that all subfamilies up to a certain
size, i.e., with a certain number of node sets, have the running intersection
property (induction hypothesis). If a new node set only adds isolated nodes
to a subfamily, the enlarged family has the running intersection property,
because in this case the second condition on page 245 is equivalent to the last
part of the defining condition of a construction sequence (cf. Definition 4.1.27
on page 116). Hence the construction sequence of the subfamily (which must
exist due to the induction hypothesis) is simply extended by one set.

So assume that a new node set connects two or more subfamilies (and
maybe adds some isolated nodes, too). In order to show that there is a con-
struction sequence for the resulting subfamily of node sets, we show first that
any set of a family of sets having the running intersection property can be
made the first set in a construction sequence for this family: Reconsider the
join tree illustration of Graham reduction (cf. page 244). Obviously, the re-
duction can be carried out w.r.t. a join tree even if a given set (i.e., a given
node of the join tree) is chosen in advance to be the last to be removed, simply
because we can work from the leaves of the join tree towards the correspond-
ing node. Since the reverse of the order in which the node sets are removed by
Graham reduction is a construction sequence, there is a construction sequence

352 APPENDIX A. PROOFS OF THEOREMS

starting with the chosen set, and since the set can be chosen arbitrarily, any
set can be made the first of a construction sequence.

With this established, the remainder of the proof is simple: For each of the
subfamilies that are connected by the new node set, we determine a construc-
tion sequence starting with the set Mk mentioned in the second condition
stated on page 245. Then we form the construction sequence of the result-
ing enlarged subfamily as follows: The new node set is the first set in this
sequence. To it we append the construction sequences we determined for the
subfamilies, one after the other. This sequence is a construction sequence, be-
cause the sets Mk obviously satisfy the defining condition w.r.t. the first set
due to the way in which they were chosen. Within the appended sequences
the condition holds, because these sequences are construction sequences for
the subfamilies. There is no interaction between these sequences, because the
subfamilies are node-disjoint. Hence the new subfamily has the running inter-
section property.

Appendix B

Software Tools

In this appendix we briefly describe some software tools that support reason-
ing with graphical models and/or inducing them from a database of sample
cases. The following list is also available on our WWW pages:

http://www.borgelt.net/books/gm/tools.html

Of course, we do not claim this list to be complete (definitely it is not). Nor
does it represent a ranking of the tools, since they are ordered alphabeti-
cally. More extensive lists of probabilistic network tools have been compiled
byKevin Patrick Murphy:

http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html

and Google:

http://directory.google.com/Top/Computers/
Artificial Intelligence/Belief Networks/Software/

The Bayesian Network Repository is also a valuable resource. It lists examples
of Bayesian networks and data sets from which they can be learned:

http://www.cs.huji.ac.il/labs/compbio/Repository/

The software we developed in connection with this book is available at

http://www.borgelt.net/books/gm/software.html

The source code of the INES program (in C) is available at

http://www.borgelt.net/ines.html

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

354 APPENDIX B. SOFTWARE TOOLS

BayesBuilder

SNN, University of Nijmegen
PO Box 9101, 6500 HB Nijmegen, The Netherlands
http://www.snn.ru.nl/nijmegen/

BayesBuilder is a tool for (manually) constructing Bayesian networks and
drawing inferences with them. It supports neither parameter nor structure
learning of Bayesian networks. The graphical user interface of this program
is written in Java and is easy to use. However, the program is available only
for Windows, because the underlying inference engine is written in C++ and
has as yet only been compiled for Windows. BayesBuilder is free for non-
commercial use.

Bayesian Knowledge Discoverer / Bayesware Discoverer

Knowledge Media Institute / Department of Statistics
The Open University
Walton Hall, Milton Keynes MK7 6AA, United Kingdom
http://projects.kmi.open.ac.uk/bkd/

Bayesware Ltd.
http://bayesware.com/

The Bayesian Knowledge Discoverer is a software tool that can learn Bayesian
networks from data (structure as well as parameters). The dataset to learn
from may contain missing values, which are handled by an approach called
‘‘bound and collapse’’ that is based on probability intervals. The Bayesian
Knowledge Discoverer is free software, but it has been succeeded by a com-
mercial version, the Bayesware Discoverer. This program has a nice graphical
user interface with some powerful visualization options. A 30 days trial ver-
sion may be retrieved free of charge. Bayesware Discoverer is only available
for Windows.

BayesiaLab

Bayesia SA
6 rue Léonard de Vinci, BP 119, 53001 Laval Cedex, France
http://www.bayesia.com/

BayesiaLab is a commercial decision support application. The graphical user
interface is easy to use and allows for manual network construction and evi-
dence propagation. The tool supports learning network structures and param-
eters and offers extensive import functionality. The framework of Bayesian
networks is augmented by additional node types for actions, utilities and con-
straints. The program is written in Java.

APPENDIX B. SOFTWARE TOOLS 355

Bayes Net Toolbox

Kevin Patrick Murphy
Department of Computer Science, University of British Columbia
2366 Main Mall, Vancouver, BC, Canada V6T 1Z4
http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html

The Bayes Net Toolbox is an extension for Matlab, a well-known and widely
used mathematical software package. It supports several different algorithms
for drawing inferences in Bayesian networks as well as several algorithms for
learning the parameters and the structure of Bayesian networks from a dataset
of sample cases. It does not have a graphical user interface of its own, but
profits from the visualization capabilities of Matlab. The Bayes Net Toolbox
is distributed under the Gnu Library General Public License and is available
for all systems that can run Matlab, an installation of which is required.

Belief Network Power Constructor

Jie Cheng
Dept. of Computing Science, University of Alberta
2–1 Athabasca Hall, Edmonton, Alberta, Canada T6G 2E8
http://www.cs.ualberta.ca/~jcheng/bnpc.htm

The Bayesian Network Power Constructor uses a three-phase algorithm that
is based on conditional independence tests to learn a Bayesian network from
data. The conditional independence tests rely on mutual information, which is
used to determine whether a (set of) node(s) can reduce or even block the in-
formation flow from one node to another. The program comes with a graphical
user interface, though a much less advanced one than those of, for instance,
HUGIN and Netica (see below). It does not support drawing inferences, but
has the advantage that it is free software. It is available only for Windows.

Bayesian Network Tools in Java (BNJ)

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506, USA
http://bnj.sourceforge.net/

BNJ is an open-source tool collection for Bayesian network modeling. The user
may create a network manually or choose an algorithm from a set of structural
and parameter learning methods. Evidence propagation can be carried out
with discrete and continuous attributes. One special feature allows animation
of several propagation methods by highlighting the nodes and messages and
simultaneously stepping through the respective pseudo-code. The software is
written in Java and thus platform independent.

356 APPENDIX B. SOFTWARE TOOLS

GeNIe / SMILE

Decision Systems Laboratory, University of Pittsburgh
135 North Bellefield Avenue, Pittsburgh, PA 15260, USA
http://genie.sis.pitt.edu/

SMILE (Structural Modeling, Inference and Learning Engine) is a library of
functions for building Bayesian networks and drawing inferences with them.
It supports parameter and structural learning of Bayesian networks. GeNIe
(Graphical Network Interface) is a graphical user interface for SMILE that
makes the functions of SMILE easily accessible. While SMILE is platform-
independent, GeNIe is available only for Windows, since it relies heavily on the
Microsoft Foundation classes. Both packages are distributed free of charge.

Hugin

Hugin Expert A/S
Gasværksvej 5, 9000 Aalborg, Denmark
http://www.hugin.com/

Hugin is one of the oldest and best-known tools for Bayesian network con-
struction and inference. It comes with an easy to use graphical user interface,
but also has an API (application programmer interface) for several program-
ming languages, so that the inference engine can be used in other programs.
It supports estimating the parameters of a Bayesian network from a dataset
of sample cases. In a recent version it has also been extended by a learning
algorithm for the structure of a Bayesian network, which is based on condi-
tional independence tests. Hugin is a commercial tool, but a demonstration
version with restricted capabilities may be retrieved free of charge. Hugin is
available for Windows and Solaris (Sun Unix).

Netica

Norsys Software Corp.
3512 West 23rd Avenue, Vancouver, BC, Canada V6S 1K5
http://www.norsys.com/

Like Hugin, Netica is a commercial tool with an advanced graphical user
interface. It supports Bayesian network construction and inference and also
comprises an API (application programmer interface) for C/C++, C#, Java,
MatLab, VisualBasic and CLisp, so that the inference engine may be used in
other programs. Netica offers quantitative network learning (known structure,
parameter estimation) from a dataset of sample cases, which may contain
missing values. It does not support structural learning. A version of Netica
with restricted capabilities may be retrieved free of charge, but the price of a
full version is also moderate. Netica is available for Windows and Macintosh.

APPENDIX B. SOFTWARE TOOLS 357

Pulcinella

IRIDA, Université Libre de Bruxelles
50, Av. F. Roosevelt, CP 194/6, B-1050 Brussels, Belgium
http://iridia.ulb.ac.be/pulcinella/Welcome.html

Pulcinella is more general than the other programs listed in this appendix, as
it is based on the framework of valuation systems [Shenoy 1992a]. Pulcinella
supports reasoning by propagating uncertainty with local computations w.r.t.
different uncertainty calculi, but does not support learning graphical models.
The program requires a Common Lisp system. The last change of Pulcinella
dates back to 1995. Therefore, setting up a working environment will require
more effort than for the other applications in this list.

Tetrad

Tetrad Project, Department of Philosophy
Carnegie Mellon University, Pittsburgh, PA, USA
http://www.phil.cmu.edu/projects/tetrad/index.html

Tetrad is based on the algorithms developed in [Spirtes et al. 2001], i.e. on
conditional independence test approaches to learn Bayesian networks from
data, and, of course, subsequent research in this direction. It can learn the
structure as well as the parameters of a Bayesian network from a dataset of
sample cases, but does not support drawing inferences. Tetrad IV is avaibale
for Java. Older versions are available for MSDOS (Tetrad II) and Windows
(Tetrad III). Tetrad II is commercial, but available at a moderate fee. A free
beta version is available of Tetrad III.

WinMine / MSBN

Machine Learning and Statistics Group
Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399, USA
http://research.microsoft.com/en-us/um/redmond/ ↵
groups/adapt/msbnx/

WinMine is a toolkit, that is, it is a set of programs for different tasks, rather
than an integrated program. Most programs in this toolkit are command line
driven, but there is a graphical user interface for the data converter and a
network visualization program. WinMine learns the structure and the param-
eters of Bayesian networks from data and uses decision trees to represent
the conditional distributions. It does not support drawing inferences. How-
ever, Microsoft Research also offers MSBN (Microsoft Bayesian Networks), a
tool for (manually) building Bayesian networks and drawing inferences with
them, MSBN comes with a graphical user interface. Both programs, WinMine
as well as MSBN, are available for Windows only.

Bibliography

[Abe 2005] S. Abe. Support Vector Machines for Pattern Classification.
Springer-Verlag, Berlin, Germany 2005

[Agosta 2004] J.M. Agosta. Bayes Network ‘‘Smart Diagnostics’’. Intel Tech-
nology Journal 8(4):361–372. Intel Corporation, Santa Clara, CA, USA
2004

[Agrawal and Srikant 1994] R. Agrawal and R. Srikant. Fast Algorithms for
Mining Association Rules. Proc. 20th Int. Conf. on very Large Databases
(VLDB 1994, Santiago de Chile), 487–499. Morgan Kaufmann, San Mateo,
CA, USA 1994

[Agrawal et al. 1996] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. Verkamo. Fast Discovery of Association Rules. In: [Fayyad et al. 1996],
307–328

[Akaike 1974] H. Akaike. A New Look at the Statistical Model Identification.
IEEE Trans. on Automatic Control 19:716–723. IEEE Press, Piscataway,
NJ, USA 1974

[Aminian et al. 2002] F. Aminian, M. Aminian, and H.W. Collins. Analog
Fault Diagnosis of Actual Circuits Using Neural Networks. IEEE Trans.
on Instrumentation and Measurement 51(3):544–550. IEEE Press, Piscat-
away, NJ, USA 2002

[Andersen et al. 1989] S.K. Andersen, K.G. Olesen, F.V. Jensen, and
F. Jensen. HUGIN — A Shell for Building Bayesian Belief Universes
for Expert Systems. Proc. 11th Int. J. Conf. on Artificial Intelligence (IJ-
CAI’89, Detroit, MI, USA), 1080–1085. Morgan Kaufmann, San Mateo,
CA, USA 1989

[Anderson 1935] E. Anderson. The Irises of the Gaspe Peninsula. Bulletin of
the American Iris Society 59:2–5. Philadelphia, PA, USA 1935

[Anderson 1995] J.A. Anderson. An Introduction to Neural Networks. MIT
Press, Cambridge, MA, USA 1995

[Andreassen et al. 1987] S. Andreassen, M. Woldbye, B. Falck, and S.K. An-
dersen. MUNIN — A Causal Probabilistic Network for Interpretation of

359

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

360 BIBLIOGRAPHY

Electromyographic Findings. Proc. 10th Int. J. Conf. on Artificial Intelli-
gence (IJCAI’87, Milan, Italy), 366–372. Morgan Kaufmann, San Mateo,
CA, USA 1987

[Asuncion and Newman 2007] A. Asuncion and D.J. Newman. UCI Reposi-
tory of Machine Learning Databases. University of California at Irvine,
CA, USA 2007. http://archive.ics.uci.edu/ml/

[Azvine et al. 2000] B. Azvine and N. Azarmi and D. Nauck, eds. Soft Com-
puting and Intelligent Systems: Prospects, Tools and Applications. LNAI
1804, Springer-Verlag, Berlin, Germany 2000

[Baim 1988] P.W. Baim. A Method for Attribute Selection in Inductive
Learning Systems. IEEE Trans. on Pattern Analysis and Machine In-
telligence 10:888-896. IEEE Press, Piscataway, NJ, USA 1988

[Baldwin et al. 1995] J.F. Baldwin, T.P. Martin, and B.W. Pilsworth. FRIL
— Fuzzy and Evidential Reasoning in Artificial Intelligence. Research
Studies Press/J. Wiley & Sons, Taunton/Chichester, United Kingdom
1995

[Bandler and Salama 1985] J.W. Bandler and A.E. Salama. Fault Diagnosis
of Analog Circuits. Proc. IEEE 73:1279–1325. IEEE Press, Piscataway,
NJ, USA 1985

[Bartlett 1935] M.S. Bartlett. Contingency Table Interactions. Journal of
the Royal Statistical Society, Supplement 2:248–252. Blackwell, Oxford,
United Kingdom 1935

[Bauer et al. 1997] E. Bauer, D. Koller, and Y. Singer. Update Rules for
Parameter Estimation in Bayesian Networks. Proc. 13th Conf. on Un-
certainty in Artificial Intelligence (UAI’97, Providence, RI, USA), 3–13.
Morgan Kaufmann, San Mateo, CA, USA 1997

[Becker and Geiger 2001] A. Becker and D. Geiger. A Sufficiently Fast Al-
gorithm for Finding Close to Optimal Clique Trees. Artificial Intelligence
125(1–2):3–17. Elsevier Science, Amsterdam, Netherlands 2001

[Bergadano and Gunetti 1995] F. Bergadano and D. Gunetti. Inductive Logic
Programming: From Machine Learning to Software Engineering. MIT
Press, Cambridge, MA, USA 1995

[Bernardo et al. 1992] J. Bernardo, J. Berger, A. Dawid, and A. Smith, eds.
Bayesian Statistics 4. Oxford University Press, New York, NY, USA 1992

[Bezdek 1981] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Func-
tion Algorithms. Plenum Press, New York, NY, USA 1981

[Bezdek et al. 1999] J.C. Bezdek, J. Keller, R. Krishnapuram, and N. Pal.
Fuzzy Models and Algorithms for Pattern Recognition and Image Pro-
cessing. Kluwer, Dordrecht, Netherlands 1999

[Bishop 1996] C. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Oxford, United Kingdom 1996

BIBLIOGRAPHY 361

[Bock 1974] H.H. Bock. Automatische Klassifikation (Cluster-Analyse). Van-
denhoek & Ruprecht, Göttingen, Germany 1974

[Bodendiek and Lang 1995] R. Bodendiek and R. Lang. Lehrbuch der
Graphentheorie. Spektrum Akademischer Verlag, Heidelberg, Germany
1995

[Borgelt 1995] C. Borgelt. Diskussion verschiedener Ansätze zur Modellierung
von Unsicherheit in relationalen Datenbanken. Studienarbeit, TU Braun-
schweig, Germany 1995

[Borgelt 1998] C. Borgelt. A Decision Tree Plug-In for DataEngine. Proc.
2nd Int. Data Analysis Symposium. MIT GmbH, Aachen, Germany 1998.
Reprinted in: Proc. 6th European Congress on Intelligent Techniques and
Soft Computing (EUFIT’98, Aachen, Germany), Vol. 2:1299–1303. Verlag
Mainz, Aachen, Germany 1998

[Borgelt 1999] C. Borgelt. A Naive Bayes Classifier Plug-In for DataEngine.
Proc. 3rd Int. Data Analysis Symposium, 87–90. MIT GmbH, Aachen,
Germany 1999

[Borgelt 2007] C. Borgelt. Learning Undirected Possibilistic Networks with
Conditional Independence Tests. Proc. 16th IEEE Int. Conf. on Fuzzy
Systems (FUZZ-IEEE’07, London, UK), 1048–1053. IEEE Press, Piscat-
away, NJ, USA 2007

[Borgelt and Gebhardt 1997] C. Borgelt and J. Gebhardt. Learning Possi-
bilistic Networks with a Global Evaluation Method. Proc. 5th Euro-
pean Congress on Intelligent Techniques and Soft Computing (EUFIT’97,
Aachen, Germany), Vol. 2:1034–1038. Verlag Mainz, Aachen, Germany
1997

[Borgelt and Gebhardt 1999] C. Borgelt and J. Gebhardt. A Naive Bayes
Style Possibilistic Classifier. Proc. 7th European Congress on Intelli-
gent Techniques and Soft Computing (EUFIT’99, Aachen, Germany), CD-
ROM. Verlag Mainz, Aachen, Germany 1999

[Borgelt and Kruse 1997a] C. Borgelt and R. Kruse. Evaluation Mea-
sures for Learning Probabilistic and Possibilistic Networks. Proc. 6th
IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’97, Barcelona, Spain),
Vol. 2:1034–1038. IEEE Press, Piscataway, NJ, USA 1997

[Borgelt and Kruse 1997b] C. Borgelt and R. Kruse. Some Experimental Re-
sults on Learning Probabilistic and Possibilistic Networks with Different
Evaluation Measures. Proc. 1st Int. J. Conf. on Qualitative and Quantita-
tive Practical Reasoning (ECSQARU/FAPR’97, Bad Honnef, Germany),
LNAI 1244, 71–85. Springer-Verlag, Berlin, Germany 1997

[Borgelt and Kruse 1998a] C. Borgelt and R. Kruse. Probabilistic and Pos-
sibilistic Networks and How to Learn Them from Data. In: [Kaynak et
al. 1998], 403–426

362 BIBLIOGRAPHY

[Borgelt and Kruse 1998b] C. Borgelt and R. Kruse. Attributauswahl-
maße für die Induktion von Entscheidungsbäumen: Ein Überblick. In:
[Nakhaeizadeh 1998a], 77–98

[Borgelt and Kruse 1998c] C. Borgelt and R. Kruse. Efficient Maximum Pro-
jection of Database-Induced Multivariate Possibility Distributions. Proc.
7th IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’98, Anchorage, AK,
USA), CD-ROM. IEEE Press, Piscataway, NJ, USA 1998

[Borgelt and Kruse 1998d] C. Borgelt and R. Kruse. Possibilistic Net-
works with Local Structure. Proc. 6th European Congress on Intel-
ligent Techniques and Soft Computing (EUFIT’98, Aachen, Germany),
Vol. 1:634–638. Verlag Mainz, Aachen, Germany 1998

[Borgelt and Kruse 1999] C. Borgelt and R. Kruse. A Critique of Inductive
Causation. Proc. 5th European Conf. on Symbolic and Quantitative Ap-
proaches to Reasoning and Uncertainty (ECSQARU’99, London, United
Kingdom), LNAI 1638, 68–79. Springer-Verlag, Heidelberg, Germany 1999

[Borgelt and Kruse 2001] C. Borgelt and R. Kruse. An Empirical Investi-
gation of the K2 Metric. Proc. 6th European Conf. on Symbolic and
Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’01,
Toulouse, France). Springer-Verlag, Heidelberg, Germany 2001

[Borgelt and Kruse 2003] Christian Borgelt and Rudolf Kruse. Learning
Graphical Models by Extending Optimal Spanning Trees. In: [Bouchon-
Meunier et al. 2003], 339–348.

[Borgelt and Kruse 2005] C. Borgelt and R. Kruse. Probabilistic Graphical
Models for the Diagnosis of Analog Electrical Circuits. Proc. 8th European
Conf. on Symbolic and Quantitative Approaches to Reasoning and Un-
certainty (ECSQARU’05, Barcelona, Spain), 100–110. Springer-Verlag,
Heidelberg, Germany 2005

[Borgelt and Timm 2000] C. Borgelt and H. Timm. Advanced Fuzzy Clus-
tering and Decision Tree Plug-Ins for DataEngine. In: [Azvine et al. 2000],
188–212.

[Borgelt et al. 1996] C. Borgelt, J. Gebhardt, and R. Kruse. Concepts for
Probabilistic and Possibilistic Induction of Decision Trees on Real World
Data. Proc. 4th European Congress on Intelligent Techniques and Soft
Computing (EUFIT’96, Aachen, Germany), Vol. 3:1556–1560. Verlag
Mainz, Aachen, Germany 1996

[Borgelt et al. 1998a] C. Borgelt, J. Gebhardt, and R. Kruse. Chapter F1.2:
Inference Methods. In: [Ruspini et al. 1998], F1.2:1–14

[Borgelt et al. 1998b] C. Borgelt, R. Kruse, and G. Lindner. Lernen prob-
abilistischer and possibilistischer Netze aus Daten: Theorie und Anwen-
dung. Künstliche Intelligenz (Themenheft Data Mining) 12(2):11–17. Sci-
enTec, Bad Ems, Germany 1998

BIBLIOGRAPHY 363

[Borgelt et al. 2001] C. Borgelt, H. Timm, and R. Kruse. Probabilistic Net-
works and Fuzzy Clustering as Generalizations of Naive Bayes Classifiers.
In: [Reusch and Temme 2001], 121–138.

[Bouchon-Meunier et al. 2003] B. Bouchon-Meunier, L. Foulloy, and R.R.
Yager, eds. Intelligent Systems for Information Processing — From Rep-
resentation to Applications. Elsevier Science, Amsterdam, Netherlands
2003

[Boulay et al. 1987] B.D. Boulay, D. Hogg, and L. Steels, eds. Advances in
Artificial Intelligence 2. North-Holland, Amsterdam, Netherlands 1987

[Boutilier et al. 1996] C. Boutilier, N. Friedman, M. Goldszmidt, and
D. Koller. Context Specific Independence in Bayesian Networks. Proc.
12th Conf. on Uncertainty in Artificial Intelligence (UAI’96, Portland,
OR, USA), 115–123. Morgan Kaufmann, San Mateo, CA, USA 1996

[Breiman et al. 1984] L. Breiman, J.H. Friedman, R.A. Olshen, and
C.J. Stone. Classification and Regression Trees. Wadsworth Interna-
tional Group, Belmont, CA, USA 1984

[Buntine 1991] W. Buntine. Theory Refinement on Bayesian Networks. Proc.
7th Conf. on Uncertainty in Artificial Intelligence (UAI’91, Los Angeles,
CA, USA), 52–60. Morgan Kaufmann, San Mateo, CA, USA 1991

[Buntine 1994] W. Buntine. Operations for Learning with Graphical Models.
Journal of Artificial Intelligence Research 2:159–225. Morgan Kaufmann,
San Mateo, CA, USA 1994

[de Campos 1996] L.M. de Campos. Independence Relationships and Learn-
ing Algorithms for Singly Connected Networks. DECSAI Technical Report
96-02-04, Universidad de Granada, Spain 1996

[de Campos et al. 1995] L.M. de Campos, J. Gebhardt, and R. Kruse. Ax-
iomatic Treatment of Possibilistic Independence. In: [Froidevaux and
Kohlas 1995], 77–88

[de Campos et al. 2000] L.M. de Campos, J.F. Huete, and S. Moral. Inde-
pendence in Uncertainty Theories and Its Application to Learning Belief
Networks. In: [Gabbay and Kruse 2000], 391–434.

[Carnap 1958] R. Carnap. Introduction to Symbolic Logic and Its Applica-
tions. Dover, New York, NY, USA 1958

[Castillo et al. 1997] E. Castillo, J.M. Gutierrez, and A.S. Hadi. Expert Sys-
tems and Probabilistic Network Models. Springer-Verlag, New York, NY,
USA 1997

[Castillo 2008] G. Castillo. Adaptive Learning Algorithms for Bayesian Net-
work Classifiers. AI Communications 21(1):2008. IOS Press, Amsterdam,
Netherlands 2008

[Chapman et al. 1999] P. Chapman, J. Clinton, T. Khabaza, T. Reinartz,
and R. Wirth. The CRISP-DM Process Model. NCR, Denmark 1999.
http://www.ncr.dk/CRISP/.

364 BIBLIOGRAPHY

[Charitos et al. 2007] T. Charitos, L.C. van der Gaag, S. Visscher,
K.A.M. Schurink, and P.J.F. Lucas. A Dynamic Bayesian Network for
Diagnosing Ventilator-associated Pneumonia in ICU Patients. Expert Sys-
tems with Applications 36(2.1):1249–1258. Elsevier, Amsterdam, Nether-
lands 2007

[Chavira and Darwiche 2005] M. Chavira and A. Darwiche. Compiling
Bayesian Networks with Local Structure. Proc. 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005, Edinburgh, UK), 1306–1312. Morgan
Kaufmann, San Mateo, CA, USA 2005

[Cheeseman et al. 1988] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor,
and D. Freeman. AutoClass: A Bayesian Classification System. Proc.
5th Int. Workshop on Machine Learning, 54–64. Morgan Kaufmann, San
Mateo, CA, USA 1988

[Cheng et al. 1997] J. Cheng, D.A. Bell, and W. Liu. Learning Belief Net-
works from Data: An Information Theory Based Approach. Proc.
6th ACM Int. Conf. Information Theory and Knowledge Management
(CIKM’97, Las Vegas, NV), 325–331. ACM Press, New York, NY, USA
1997

[Cheng et al. 2002] J. Cheng, R. Greiner, J. Kelly, D.A. Bell, and W. Liu.
Learning Bayesian Networks from Data: An Information Theory Based
Approach. Artificial Intelligence 137(1–2):43–90. Elsevier, Amsterdam,
Netherlands 2002

[Chickering 1995] D.M. Chickering. Learning Bayesian Networks is NP-
Complete. Proc. 5th Int. Workshop on Artificial Intelligence and Statistics
(Fort Lauderdale, FL, USA), 121–130. Springer-Verlag, New York, NY,
USA 1995

[Chickering 2002] D.M. Chickering. Optimal Structure Identification with
Greedy Search. Journal of Machine Learning Research 3:507–554. MIT
Press, Cambridge, MA, USA 2002

[Chickering et al. 1994] D.M. Chickering, D. Geiger, and D. Heckerman.
Learning Bayesian Networks is NP-Hard (Technical Report MSR-TR-94-
17). Microsoft Research, Advanced Technology Division, Redmond, WA,
USA 1994

[Chickering et al. 1997] D.M. Chickering, D. Heckerman, and C. Meek. A
Bayesian Approach to Learning Bayesian Networks with Local Structure.
Proc. 13th Conf. on Uncertainty in Artificial Intelligence (UAI’97, Prov-
idence, RI, USA), 80–89. Morgan Kaufmann, San Mateo, CA, USA 1997

[Cho and Kim 2003] S.-J. Cho and J.H. Kim. Bayesian Network Modeling
of Strokes and Their Relationship for On-line Handwriting Recognition.
Pattern Recognition 37(2):253–264. Elsevier Science, Amsterdam, Nether-
lands 2003

BIBLIOGRAPHY 365

[Chow and Liu 1968] C.K. Chow and C.N. Liu. Approximating Discrete
Probability Distributions with Dependence Trees. IEEE Trans. on In-
formation Theory 14(3):462–467. IEEE Press, Piscataway, NJ, USA 1968

[Clarke et al. 1993] M. Clarke, R. Kruse, and S. Moral, eds. Symbolic and
Quantitative Approaches to Reasoning and Uncertainty (LNCS 747).
Springer-Verlag, Berlin, Germany 1993

[Cooper and Herskovits 1992] G.F. Cooper and E. Herskovits. A Bayesian
Method for the Induction of Probabilistic Networks from Data. Machine
Learning 9:309–347. Kluwer, Dordrecht, Netherlands 1992

[Cowell 1992] R. Cowell. BAIES — A Probabilistic Expert System Shell with
Qualitative and Quantitative Learning. In: [Bernardo et al. 1992], 595–600

[Cristianini and Shawe-Taylor 2000] N. Cristianini and J. Shawe-Taylor. An
Introduction to Support Vector Machines and Other Kernel-based Learn-
ing Methods. Cambridge University Press, Cambridge, United Kingdom
2000

[Csiszar 1975] I. Csiszar. I-Divergence Geometry of Probability Distributions
and Indirect Observations. Studia Scientiarum Mathematicarum Hungar-
ica 2:299–318. Hungarian Academy of Sciences, Budapest, Hungary 1975

[Daróczy 1970] Z. Daróczy. Generalized Information Functions. Information
and Control 16(1):36–51. Academic Press, San Diego, CA, USA 1970

[Dasgupta 1999] S. Dasgupta. Learning Polytrees. Proc. 15th Conf. on Un-
certainty in Artificial Intelligence. Morgan Kaufmann, San Mateo, CA,
USA 1999

[Date 1986] C.J. Date. An Introduction to Database Systems, Vol. 1. Addison-
Wesley, Reading, MA, USA 1986

[Darwiche 2003] A. Darwiche. A Differential Approach to Inference in
Bayesian Networks. J. of the Association for Computing Machinery
50(3):280–305. ACM Press, New York, NY, USA 2003

[Darwin 1859] C. Darwin. The Origin of Species. Penguin, London, United
Kingdom 1980 (first published in 1859)

[Dawid 1979] A. Dawid. Conditional Independence in Statistical Theory.
Journal of the Royal Statistical Society (Series B) 41:1–31. Blackwell,
Oxford, United Kingdom 1979

[Dawkins 1976] R. Dawkins. The Selfish Gene. Oxford University Press,
Oxford, United Kingdom 1976

[Dawkins 1986] R. Dawkins. The Blind Watchmaker. Longman, Harlow,
United Kingdom 1986

[Dechter 1990] R. Dechter. Decomposing a Relation into a Tree of Binary
Relations. Journal of Computer and Systems Sciences 41:2–24. Academic
Press, San Diego, CA, USA 1990

366 BIBLIOGRAPHY

[Dechter 1996] R. Dechter. Bucket Elimination: A Unifying Framework for
Probabilistic Inference. Proc. 12th Conf. on Uncertainty in Artificial In-
telligence (UAI’96, Portland, OR, USA), 211–219. Morgan Kaufmann,
San Mateo, CA, USA 1996

[Dechter and Pearl 1992] R. Dechter and J. Pearl. Structure Identification
in Relational Data. Artificial Intelligence 58:237–270. North-Holland,
Amsterdam, Netherlands 1992

[Dempster 1967] A.P. Dempster. Upper and Lower Probabilities Induced by
a Multivalued Mapping. Annals of Mathematical Statistics 38:325–339.
Institute of Mathematical Statistics, Hayward, CA, USA 1967

[Dempster 1968] A.P. Dempster. Upper and Lower Probabilities Gener-
ated by a Random Closed Interval. Annals of Mathematical Statistics
39:957–966. Institute of Mathematical Statistics, Hayward, CA, USA 1968

[Dempster et al. 1977] A.P. Dempster, N. Laird, and D. Rubin. Maximum
Likelihood from Incomplete Data via the EM Algorithm. Journal of the
Royal Statistical Society (Series B) 39:1–38. Blackwell, Oxford, United
Kingdom 1977

[Detmer and Gebhardt 2001] H. Detmer and J. Gebhardt. Markov-Netze
für die Eigenschaftsplanung und Bedarfsvorschau in der Automobilin-
dustrie. Künstliche Intelligenz (Themenheft Unsicherheit und Vagheit)
3/01:16–22. arendtap, Bremen, Germany 2001

[Dirichlet 1839] P.G.L. Dirichlet. Sur un nouvelle methode pour la determi-
nation des integrales multiples. C. R. Acad. Sci. Paris 8:156–160. Paris,
France 1839

[Domingos and Pazzani 1997] P. Domingos and M. Pazzani. On the Opti-
mality of the Simple Bayesian Classifier under Zero-One Loss. Machine
Learning 29:103-137. Kluwer, Dordrecht, Netherlands 1997

[Dougherty et al. 1995] J. Dougherty, R. Kohavi, and M. Sahami. Supervised
and Unsupervised Discretization of Continuous Features. Proc. 12th Int.
Conf. on Machine Learning (ICML’95, Lake Tahoe, CA, USA), 194–202.
Morgan Kaufmann, San Mateo, CA, USA 1995

[Dubois and Prade 1988] D. Dubois and H. Prade. Possibility Theory.
Plenum Press, New York, NY, USA 1988

[Dubois and Prade 1992] D. Dubois and H. Prade. When Upper Probabili-
ties are Possibility Measures. Fuzzy Sets and Systems 49:65–74. North-
Holland, Amsterdam, Netherlands 1992

[Dubois et al. 1993] D. Dubois, S. Moral, and H. Prade. A Semantics for
Possibility Theory Based on Likelihoods. Annual report, CEC-ESPRIT
III BRA 6156 DRUMS II, 1993

[Dubois et al. 1996] D. Dubois, H. Prade, and R. Yager, eds. Fuzzy Set Meth-
ods in Information Engineering: A Guided Tour of Applications. J. Wiley
& Sons, New York, NY, USA 1996

BIBLIOGRAPHY 367

[Duda and Hart 1973] R.O. Duda and P.E. Hart. Pattern Classification and
Scene Analysis. J. Wiley & Sons, New York, NY, USA 1973

[Everitt 1981] B.S. Everitt. Cluster Analysis. Heinemann, London, United
Kingdom 1981

[Everitt 2006] B.S. Everitt. The Cambridge Dictionary of Statistics (3rd edi-
tion). Cambridge University Press, Cambridge, United Kingdom 1998

[Ezawa and Norton 1995] K.J. Ezawa and S.W. Norton. Knowledge Discov-
ery in Telecommunication Services Data Using Bayesian Network Models.
Proc. 1st Int. Conf. on Knowledge Discovery and Data Mining (KDD’95,
Montreal, Canada), 100–105. AAAI Press, Menlo Park, CA, USA 1995

[Ezawa et al. 1996] K.J. Ezawa, M. Singh, and S.W. Norton. Learning Goal
Oriented Bayesian Networks for Telecommunications Risk Management.
Proc. 13th Int. Conf. on Machine Learning (ICML’96, Bari, Italy),
194–202. Morgan Kaufmann, San Mateo, CA, USA 1995

[Farinas del Cerro and Herzig 1994] L. Farinas del Cerro and A. Herzig. Pos-
sibility Theory and Independence. Proc. 5th Int. Conf. on Information
Processing and Management of Uncertainty in Knowledge-based Systems
(IPMU’94, Paris, France), LNCS 945, 820–825. Springer-Verlag, Heidel-
berg, Germany 1994

[Fayyad et al. 1996] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, eds. Advances in Knowledge Discovery and Data Mining.
AAAI Press and MIT Press, Menlo Park and Cambridge, MA, USA 1996

[Feller 1968] W. Feller. An Introduction to Probability Theory and Its Ap-
plications, Vol. 1 (3rd edition). J. Wiley & Sons, New York, NY, USA
1968

[Feynman et al. 1963] R.P. Feynman, R.B. Leighton, and M. Sands. The
Feynman Lectures on Physics, Vol. 1: Mechanics, Radiation, and Heat.
Addison-Wesley, Reading, MA, USA 1963

[Feynman et al. 1965] R.P. Feynman, R.B. Leighton, and M. Sands. The
Feynman Lectures on Physics, Vol. 3: Quantum Mechanics. Addison-
Wesley, Reading, MA, USA 1965

[Fisher 1936] R.A. Fisher. The use of multiple measurements in taxonomic
problems. Annals of Eugenics 7(2):179–188. Cambridge University Press,
Cambridge, United Kingdom 1936

[Fogel 2006] D.B. Fogel. Evolutionary Computation: Toward a New Philos-
ophy of Machine Intelligence (3rd edition). IEEE Press, Piscataway, NJ,
USA 2006

[Fonck 1994] P. Fonck. Conditional Independence in Possibility Theory.
Proc. 10th Conf. on Uncertainty in Artificial Intelligence (UAI’94, Seattle,
WA, USA), 221–226. Morgan Kaufmann, San Mateo, CA, USA 1994

368 BIBLIOGRAPHY

[Frankel et al. 2007] J. Frankel, M. Webster, and S. King. Articulatory Fea-
ture Recognition using Dynamic Bayesian Networks. Computer Speech
and Language 21(4):620–640. Elsevier Science, Amsterdam, Netherlands
2007

[Fredkin and Toffoli 1982] E. Fredkin and T. Toffoli. Conservative Logic.
Int. Journal of Theoretical Physics 21(3/4):219–253. Plenum Press, New
York, NY, USA 1982

[Freedman et al. 2007] D. Freedman, R. Pisani, and R. Purves. Statistics
(4th ed.). W.W. Norton, New York, NY, USA 2007

[Friedman and Goldszmidt 1996] N. Friedman and M. Goldszmidt. Building
Classifiers using Bayesian Networks. Proc. 13th Nat. Conf. on Artificial
Intelligence (AAAI’96, Portland, OR, USA), 1277–1284. AAAI Press,
Menlo Park, CA, USA 1996

[Friedman and Goldszmidt 1998] N. Friedman and M. Goldszmidt. Learning
Bayesian Networks with Local Structure. In: [Jordan 1998], 423–460.

[Froidevaux and Kohlas 1995] C. Froidevaux and J. Kohlas, eds. Symbolic
and Quantitative Approaches to Reasoning and Uncertainty (LNCS 946).
Springer-Verlag, Berlin, Germany 1995

[Frydenberg 1990] M. Frydenberg. The Chain Graph Markov Property.
Scandinavian Journal of Statistics 17:333–353. Swets & Zeitlinger, Ams-
terdam, Netherlands 1990

[Gabbay and Kruse 2000] D. Gabbay and R. Kruse, eds. DRUMS Handbook
on Abduction and Learning. Kluwer, Dordrecht, Netherlands 2000

[Gamez et al. 2004] J.A. Gamez, S. Moral, and A. Salmeron. Advances in
Bayesian Networks. Springer, Berlin, Germany 2004

[Gath and Geva 1989] I. Gath and A.B. Geva. Unsupervised Optimal Fuzzy
Clustering. IEEE Trans. Pattern Anal. Mach. Intelligence 11:773–781.
IEEE Press, Piscataway, NJ, USA 1989

[Gebhardt 1997] J. Gebhardt. Learning from Data: Possibilistic Graphical
Models. Habilitation Thesis, University of Braunschweig, Germany 1997

[Gebhardt 1999] J. Gebhardt. EPL (Planung und Steuerung von Fahrzeu-
gen, Eigenschaften und Teilen) — Detailmodellierung, Methoden und Ver-
fahren. ISC Gebhardt and Volkswagen AG, K-DOB-11 (internal report),
Wolfsburg, Germany 1999

[Gebhardt and Kruse 1992] J. Gebhardt and R. Kruse. A Possibilistic Inter-
pretation of Fuzzy Sets in the Context Model. Proc. 1st IEEE Int. Conf.
on Fuzzy Systems (FUZZ-IEEE’92, San Diego, CA, USA), 1089-1096.
IEEE Press, Piscataway, NJ, USA 1992

[Gebhardt and Kruse 1993a] J. Gebhardt and R. Kruse. A New Approach
to Semantic Aspects of Possibilistic Reasoning. In: [Clarke et al. 1993],
151–160

BIBLIOGRAPHY 369

[Gebhardt and Kruse 1993b] J. Gebhardt and R. Kruse. The Context Model
— An Integrating View of Vagueness and Uncertainty. Int. Journal of Ap-
proximate Reasoning 9:283–314. North-Holland, Amsterdam, Netherlands
1993

[Gebhardt and Kruse 1995] J. Gebhardt and R. Kruse. Learning Possibilistic
Networks from Data. Proc. 5th Int. Workshop on Artificial Intelligence
and Statistics (Fort Lauderdale, FL, USA), 233–244. Springer-Verlag,
New York, NY, USA 1995

[Gebhardt and Kruse 1996a] J. Gebhardt and R. Kruse. POSSINFER — A
Software Tool for Possibilistic Inference. In: [Dubois et al. 1996], 407–418

[Gebhardt and Kruse 1996b] J. Gebhardt and R. Kruse. Tightest Hyper-
tree Decompositions of Multivariate Possibility Distributions. Proc. 7th
Int. Conf. on Information Processing and Management of Uncertainty in
Knowledge-based Systems (IPMU’96, Granada, Spain), 923–927. Univer-
sidad de Granada, Spain 1996

[Gebhardt and Kruse 1996c] J. Gebhardt and R. Kruse. Automated Con-
struction of Possibilistic Networks from Data. Journal of Applied Mathe-
matics and Computer Science, 6(3):101–136. University of Zielona Góra,
Zielona Góra, Poland 1996

[Gebhardt and Kruse 1998] J. Gebhardt and R. Kruse. Information Source
Modeling for Consistent Data Fusion. Proc. Int. Conf. on Multisource-
Multisensor Information Fusion (FUSION’98, Las Vegas, Nevada, USA),
27–34. CSREA Press, USA 1996

[Gebhardt et al. 2004] Jörg Gebhardt, Christian Borgelt, and Rudolf Kruse.
Knowledge Revision in Markov Networks. Mathware and Softcomputing,
11(2–3):93–107. University of Granada, Granada, Spain 2004

[Geiger et al. 1990] D. Geiger, T.S. Verma, and J. Pearl. Identifying Inde-
pendence in Bayesian Networks. Networks 20:507–534. J. Wiley & Sons,
Chichester, United Kingdom 1990

[Geiger 1990] D. Geiger. Graphoids — A Qualitative Framework for Prob-
abilistic Inference. PhD thesis, University of California at Los Angeles,
CA, USA 1990

[Geiger 1992] D. Geiger. An entropy-based learning algorithm of Bayesian
conditional trees. Proc. 8th Conf. on Uncertainty in Artificial Intelligence
(UAI’92, Stanford, CA, USA), 92–97. Morgan Kaufmann, San Mateo,
CA, USA 1992

[Geiger and Heckerman 1991] D. Geiger and D. Heckerman. Advances in
Probabilistic Reasoning. Proc. 7th Conf. on Uncertainty in Artificial In-
telligence (UAI’91, Los Angeles, CA, USA), 118–126. Morgan Kaufmann,
San Mateo, CA, USA 1997

[Gibbs 1902] W. Gibbs. Elementary Principles of Statistical Mechanics. Yale
University Press, New Haven, Connecticut, USA 1902

370 BIBLIOGRAPHY

[Good 1965] I.J. Good. The Estimation of Probabilities: An Essay on Modern
Bayesian Methods. MIT Press, Cambridge, MA, USA 1965

[Goodman et al. 1991] I.R. Goodman, M.M. Gupta, H.T. Nguyen, and
G.S. Rogers, eds. Conditional Logic in Expert Systems. North-Holland,
Amsterdam, Netherlands 1991

[Gould 1981] S.J. Gould. The Mismeasure of Man. W.W. Norton, New York,
NY, USA 1981. Reprinted by Penguin Books, New York, NY, USA 1992

[Greiner 1989] W. Greiner. Mechanik, Teil 1 (Series: Theoretische Physik).
Verlag Harri Deutsch, Thun/Frankfurt am Main, Germany 1989. English
edition: Classical Mechanics. Springer-Verlag, Berlin, Germany 2002

[Greiner et al. 1987] W. Greiner, L. Neise, and H. Stöcker. Thermodynamik
und Statistische Mechanik (Series: Theoretische Physik). Verlag Harri
Deutsch, Thun/Frankfurt am Main, Germany 1987. English edition: Ther-
modynamics and Statistical Physics. Springer-Verlag, Berlin, Germany
2000

[Grossman and Domingos 2004] Learning Bayesian Network Classifiers by
Maximizing Conditional Likelihood. Proc. 21st Int. Conf. on Machine
Learning (ICML 2004, Banff, Alberta, Canada), 46. ACM Press, New
York, NY, USA 2004

[Hammersley and Clifford 1971] J.M. Hammersley and P.E. Clifford. Markov
Fields on Finite Graphs and Lattices. Unpublished manuscript, 1971.
Cited in: [Isham 1981]

[Hartley 1928] R.V.L. Hartley. Transmission of Information. The Bell System
Technical Journal 7:535–563. Bell Laboratories, Murray Hill, NJ, USA
1928

[Haykin 2008] S. Haykin. Neural Networks and Learning Machines (3rd ed.).
Prentice-Hall, Upper Saddle River, NJ, USA 2008

[Heckerman 1991] D. Heckerman. Probabilistic Similarity Networks. MIT
Press, Cambridge, MA, USA 1991

[Heckerman 1998] D. Heckerman. A Tutorial on Learning with Bayesian Net-
works. In: [Jordan 1998], 301–354.

[Heckerman et al. 1994] D. Heckerman, J.S. Breese, and K. Rommelse. Trou-
bleshooting Under Uncertainty. Proc. 5th Int. Workshop on Principles of
Diagnosis, 121–130. AAAI Press, Menlo Park, CA, USA 1994

[Heckerman et al. 1995] D. Heckerman, D. Geiger, and D.M. Chickering.
Learning Bayesian Networks: The Combination of Knowledge and Sta-
tistical Data. Machine Learning 20:197–243. Kluwer, Dordrecht, Nether-
lands 1995

[Herskovits and Cooper 1990] E. Herskovits and G.F. Cooper. Kutato: An
entropy-driven System for the Construction of Probabilistic Expert Sys-
tems from Databases. Proc. 6th Conf. on Uncertainty in Artificial Intel-

BIBLIOGRAPHY 371

ligence (UAI’90, Cambridge, MA, USA), 117–128. North-Holland, New
York, NY, USA 1990

[Hestir et al. 1991] K. Hestir, H.T. Nguyen, and G.S. Rogers. A Random Set
Formalism for Evidential Reasoning. In: [Goodman et al. 1991], 209–344

[Higashi and Klir 1982] M. Higashi and G.J. Klir. Measures of Uncertainty
and Information based on Possibility Distributions. Int. Journal of Gen-
eral Systems 9:43–58. Gordon and Breach, Newark, NJ, USA 1982

[Hisdal 1978] E. Hisdal. Conditional Possibilities, Independence, and Nonin-
teraction. Fuzzy Sets and Systems 1:283–297. North-Holland, Amsterdam,
Netherlands 1978

[Holland 1975] J.H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, MI, USA 1975

[Höppner et al. 1999] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler.
Fuzzy Cluster Analysis. J. Wiley & Sons, Chichester, United Kingdom
1999

[Hsu 2004] W.H. Hsu. Genetic Wrappers for Feature Selection in Decision
Tree Induction and Variable Ordering in Bayesian Network Structure
Learning. Information Sciences 163(1–3):103–122. Elsevier, Amsterdam,
Netherlands 2004

[Huete and de Campos 1993] J.F. Huete and L.M. de Campos. Learning
Causal Polytrees. In: [Clarke et al. 1993], 180–185.

[Huffman 1952] D.A. Huffman. A Method for the Construction of Minimum
Redundancy Codes. Proc. Institute of Radio Engineers 40(9):1098–1101.
Institute of Radio Engineers, Menasha, WI, USA 1952

[Hüllermeier 2007] E. Hüllermeier. Case-based Approximate Reasoning.
Springer-Verlag, Berlin, Germany 2007

[Isham 1981] V. Isham. An Introduction to Spatial Point Processes and
Markov Random Fields. Int. Statistical Review 49:21–43. Int. Statisti-
cal Institute, Voorburg, Netherlands 1981

[Jakulin and Rish 2006] A. Jakulin and I. Rish. Bayesian Learning of Markov
Network Structure. Proc. 17th European Conf. on Machine Learning
(ECML 2006, Berlin, Germany), 198–209. Springer-Verlag, Berlin, Ger-
many 2006

[Jamshidian and Jennrich 1993] M. Jamshidian and R.I. Jennrich. Conjugate
Gradient Acceleration of the EM Algorithm. Journal of the American Sta-
tistical Society 88(412):221–228. American Statistical Society, Providence,
RI, USA 1993

[Jensen 1996] F.V. Jensen. An Introduction to Bayesian Networks. UCL
Press, London, United Kingdom 1996

[Jensen 2001] F.V. Jensen. Bayesian Networks and Decision Graphs.
Springer, Berlin, Germany 2001

372 BIBLIOGRAPHY

[Jensen and Jensen 1994] F.V. Jensen and F. Jensen. Optimal Junction
Trees. Proc. 10th Conf. on Uncertainty in Artificial Intelligence (UAI’94,
Seattle, WA, USA), 360–366. Morgan Kaufmann, San Mateo, CA, USA
1994

[Jensen and Nielsen 2007] F.V. Jensen and T.D. Nielsen. Bayesian Networks
and Decision Graphs (2nd ed.). Springer, London, United Kingdom 2007

[Jirousek and Poeueil 1995] R. Jiroušek and S. Pøeuèil. On the Effective Im-
plementation of the Iterative Proportional Fitting Procedure. Computa-
tional Statistics and Data Analysis 19:177–189. Int. Statistical Institute,
Voorburg, Netherlands 1995

[Jordan 1998] M.I. Jordan, ed. Learning in Graphical Models. MIT Press,
Cambridge, MA, USA 1998

[Jordan et al. 1998] M.I. Jordan, Z. Ghahramani, T.S. Jaakola, and
L.K. Saul. An Introduction to Variational Methods for Graphical Models.
In: [Jordan 1998], 105–161

[Kanal and Lemmer 1986] L.N. Kanal and J.F. Lemmer, eds. Uncertainty in
Artificial Intelligence. North-Holland, Amsterdam, Netherlands 1986

[Kanal et al. 1989] L.N. Kanal, T.S. Levitt, and J.F. Lemmer, eds. Uncer-
tainty in Artificial Intelligence 3. North-Holland, Amsterdam, Netherlands
1989

[Kaynak et al. 1998] O. Kaynak, L. Zadeh, B. Türksen, and I. Rudas, eds.
Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration
with Applications (NATO ASI Series F). Springer-Verlag, New York, NY,
USA 1998

[Khanafar et al. 2008] R.M. Khanafar, B. Solana, J. Triola, R. Barco,
L. Moltsen, Z. Altman, and P. Lazaro. Automated Diagnosis for UMTS
Networks Using a Bayesian Network Approach. IEEE Trans. on Vehicu-
lar Technology 57(4):2451–2461. IEEE Press, Piscataway, NJ, USA 2008

[Kim et al. 2004] S. Kim, S. Imoto, and S. Miyano. Dynamic Bayesian Net-
work and Nonparametric Regression for Nonlinear Modeling of Gene Net-
works from Time Series Gene Expression Data. Biosystems 75(1–3):57–65.
Elsevier Science, Amsterdam, Netherlands 2004

[Kira and Rendell 1992] K. Kira and L. Rendell. A Practical Approach to
Feature Selection. Proc. 9th Int. Conf. on Machine Learning (ICML’92,
Aberdeen, United Kingdom), 250–256. Morgan Kaufmann, San Mateo,
CA, USA 1992

[Kirkpatrick et al. 1983] S. Kirkpatrick, C.D. Gelatt, and M.P. Vercchi. Op-
timization by Simulated Annealing. Science 220:671–680. High Wire
Press, Stanford, CA, USA 1983

[Kjaerulff 1990] U. Kjaerulff. Triangulation of Graphs — Algorithms Giving
Small Total State Space. Technical Report R90-09, Aalborg University,
Aalborg, Denmark 1990

BIBLIOGRAPHY 373

[de Kleer and Williams 1987] J. de Kleer and B.C. Williams. Diagnosing
Multiple Faults. Artificial Intelligence 32(1):97–130. Elsevier Science,
New York, NY, USA 1987

[Kline 1980] M. Kline. Mathematics — The Loss of Certainty. Oxford Uni-
versity Press, New York, NY, USA 1980

[Klir and Folger 1988] G.J. Klir and T.A. Folger. Fuzzy Sets, Uncertainty
and Information. Prentice-Hall, Englewood Cliffs, NJ, USA 1988

[Klir and Mariano 1987] G.J. Klir and M. Mariano. On the Uniqueness of
a Possibility Measure of Uncertainty and Information. Fuzzy Sets and
Systems 24:141–160. North-Holland, Amsterdam, Netherlands 1987

[Kolmogorov 1933] A.N. Kolmogorov. Grundbegriffe der Wahrscheinlich-
keitsrechnung. Springer-Verlag, Heidelberg, 1933. English edition: Foun-
dations of the Theory of Probability. Chelsea, New York, NY, USA 1956

[Kolodner 1993] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann,
San Mateo, CA, USA 1993

[Kononenko 1994] I. Kononenko. Estimating Attributes: Analysis and Ex-
tensions of RELIEF. Proc. 7th European Conf. on Machine Learning
(ECML’94, Catania, Italy), 171–182. Springer-Verlag, New York, NY,
USA 1994

[Kononenko 1995] I. Kononenko. On Biases in Estimating Multi-Valued At-
tributes. Proc. 1st Int. Conf. on Knowledge Discovery and Data Mining
(KDD’95, Montreal, Canada), 1034–1040. AAAI Press, Menlo Park, CA,
USA 1995

[Koza 1992] J.R. Koza. Genetic Programming 1 & 2. MIT Press, Cambridge,
CA, USA 1992/1994

[Krippendorf 1986] K. Krippendorf. Information Theory and Statistics
(Quantitative Applications in the Social Sciences 62). Sage Publications,
London, United Kingdom 1986

[Kruse and Schwecke 1990] R. Kruse and E. Schwecke. Fuzzy Reasoning in
a Multidimensional Space of Hypotheses. Int. Journal of Approximate
Reasoning 4:47–68. North-Holland, Amsterdam, Netherlands 1990

[Kruse et al. 1991] R. Kruse, E. Schwecke, and J. Heinsohn. Uncertainty
and Vagueness in Knowledge-based Systems: Numerical Methods (Series:
Artificial Intelligence). Springer-Verlag, Berlin, Germany 1991

[Kruse et al. 1994] R. Kruse, J. Gebhardt, and F. Klawonn. Foundations
of Fuzzy Systems, J. Wiley & Sons, Chichester, United Kingdom 1994.
Translation of the book: Fuzzy Systeme (Series: Leitfäden und Monogra-
phien der Informatik). Teubner, Stuttgart, Germany 1993

[Kruskal 1956] J.B. Kruskal. On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem. Proc. American Mathematical So-
ciety 7(1):48–50. American Mathematical Society, Providence, RI, USA
1956

374 BIBLIOGRAPHY

[Kullback and Leibler 1951] S. Kullback and R.A. Leibler. On Information
and Sufficiency. Annals of Mathematical Statistics 22:79–86. Institute of
Mathematical Statistics, Hayward, CA, USA 1951

[Langley et al. 1992] P. Langley, W. Iba, and K. Thompson. An Analysis
of Bayesian Classifiers. Proc. 10th Nat. Conf. on Artificial Intelligence
(AAAI’92, San Jose, CA, USA), 223–228. AAAI Press/MIT Press, Menlo
Park/Cambridge, CA, USA 1992

[Langley and Sage 1994] P. Langley and S. Sage. Induction of Selective
Bayesian Classifiers. Proc. 10th Conf. on Uncertainty in Artificial In-
telligence (UAI’94, Seattle, WA, USA), 399–406. Morgan Kaufmann, San
Mateo, CA, USA 1994

[Larrañaga et al. 1996] P. Larrañaga, M. Poza, Y. Yurramendi, R. Murga,
and C. Kuijpers. Structural Learning of Bayesian Networks by Genetic
Algorithms: A Performance Analysis of Control Parameters. IEEE Trans.
on Pattern Analysis and Machine Intelligence 18:912–926. IEEE Press,
Piscataway, NJ, USA 1996

[Larsen and Marx 2005] R.J. Larsen and M.L. Marx. An Introduction to
Mathematical Statistics and Its Applications (4th ed.). Prentice-Hall, En-
glewood Cliffs, NJ, USA 1986

[Lauritzen 1996] S.L. Lauritzen. Graphical Models. Oxford University Press,
Oxford, United Kingdom 1996

[Lauritzen and Spiegelhalter 1988] S.L. Lauritzen and D.J. Spiegelhalter. Lo-
cal Computations with Probabilities on Graphical Structures and Their
Application to Expert Systems. Journal of the Royal Statistical Society,
Series B, 2(50):157–224. Blackwell, Oxford, United Kingdom 1988

[Lauritzen et al. 1990] S.L. Lauritzen, A.P. Dawid, B.N. Larsen, and
H.G. Leimer. Independence Properties of Directed Markov Fields. Net-
works 20:491–505. J. Wiley & Sons, Chichester, United Kingdom 1990

[Lemmer 1996] J.F. Lemmer. The Causal Markov Condition, Fact or Arti-
fact? SIGART Bulletin 7(3):3–16. Association for Computing Machinery,
New York, NY, USA 1996

[Little 1977] C.H.C. Little, ed. Combinatorial Mathematics V (LNM 622).
Springer-Verlag, New York, NY, USA 1977

[Liu 1987] R.-W. Liu, ed. Selected Papers on Analog Fault Diagnosis. IEEE
Press, New York, NY, USA 1987

[Liu 1991] R.-W. Liu. Testing and Diagnosis of Analog Circuits and Systems.
Van Nostrand Reinhold, New York, NY, USA 1991

[Lopez de Mantaras 1991] R. Lopez de Mantaras. A Distance-based At-
tribute Selection Measure for Decision Tree Induction. Machine Learning
6:81–92. Kluwer, Dordrecht, Netherlands 1991

[Maier 1983] D. Maier. The Theory of Relational Databases. Computer Sci-
ence Press, Rockville, MD, USA 1983

BIBLIOGRAPHY 375

[Metropolis et al. 1953] N. Metropolis, N. Rosenblut, A. Teller, and E. Teller.
Equation of State Calculations for Fast Computing Machines. Journal of
Chemical Physics 21:1087–1092. American Institute of Physics, Melville,
NY, USA 1953

[Michalewicz 1998] Z. Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs (3rd edition). Springer-Verlag, Berlin, Germany 1996

[Michie 1989] D. Michie. Personal Models of Rationality. Journal of Statis-
tical Planning and Inference 21, Special Issue on Foundations and Phi-
losophy of Probability and Statistics. Swets & Zeitlinger, Amsterdam,
Netherlands 1989

[Miyamoto et al. 2008] S. Miyamoto, H. Ichihashi, and K. Honda. Algorithms
for Fuzzy Clustering: Methods in c-Means Clustering with Applications.
Springer-Verlag, Berlin, Germany 2008

[Mooij and Kappen 2007] J. Mooij and H. Kappen. Sufficient Conditions for
Convergence of the Sum-Product Algorithm. IEEE Trans. on Information
Theory 53(12):4422–4437. IEEE Press, Piscataway, NJ, USA 2007

[Muggleton 1992] S. Muggleton, ed. Inductive Logic Programming. Academic
Press, San Diego, CA, USA 1992

[Nakhaeizadeh 1998a] G. Nakhaeizadeh, ed. Data Mining: Theoretische As-
pekte und Anwendungen. Physica-Verlag, Heidelberg, Germany 1998

[Nakhaeizadeh 1998b] G. Nakhaeizadeh. Wissensentdeckung in Datenbanken
und Data Mining: Ein Überblick. In: [Nakhaeizadeh 1998a], 1–33

[Nauck and Kruse 1997] D. Nauck and R. Kruse. A Neuro-Fuzzy Method
to Learn Fuzzy Classification Rules from Data. Fuzzy Sets and Systems
89:277–288. North-Holland, Amsterdam, Netherlands 1997

[Nauck et al. 1997] D. Nauck, F. Klawonn, and R. Kruse. Foundations of
Neuro-Fuzzy Systems. J. Wiley & Sons, Chichester, United Kingdom 1997

[Neapolitan 1990] R.E. Neapolitan. Probabilistic Reasoning in Expert Sys-
tems. J. Wiley & Sons, New York, NY, USA 1990

[Neapolitan 2004] R.E. Neapolitan. Learning Bayesian Networks. Prentice
Hall, Englewood Cliffs, NJ, USA 2004

[Neil et al. 2005] M. Neil, N. Fenton, and M. Tailor. Using Bayesian Net-
works to Model Expected and Unexpected Operational Losses. Risk Anal-
ysis 25(4):963–972. J. Wiley & Sons, Chichester, United Kingdom 2005

[von Neumann 1932] J. von Neumann. Mathematische Grundlagen der Quan-
tenmechanik. Springer-Verlag, Berlin, Germany 1932. English edition:
Mathematical Foundations of Quantum Mechanics. Princeton University
Press, Princeton, NJ, USA 1955

[Nguyen 1978] H.T. Nguyen. On Random Sets and Belief Functions. Journal
of Mathematical Analysis and Applications 65:531–542. Academic Press,
San Diego, CA, USA 1978

376 BIBLIOGRAPHY

[Nguyen 1984] H.T. Nguyen. Using Random Sets. Information Science
34:265–274. Institute of Information Scientists, London, United Kingdom
1984

[Niculescu et al. 2006] R.S. Niculescu, T.M. Mitchell, and R.B. Rao. Bayesian
Network Learning with Parameter Constraints. Journal of Machine
Learning Research 7:1357–1383. Microtome Publishing, Brookline, MA,
USA 2006

[Nürnberger et al. 1999] A. Nürnberger, C. Borgelt, and A. Klose. Improving
Naive Bayes Classifiers Using Neuro-Fuzzy Learning. Proc. Int. Conf. on
Neural Information Processing (ICONIP’99, Perth, Australia). 154–159,
IEEE Press, Piscataway, NJ, USA 1999

[Pearl 1986] J. Pearl. Fusion, Propagation, and Structuring in Belief Net-
works. Artificial Intelligence 29:241–288. North-Holland, Amsterdam,
Netherlands 1986

[Pearl 1988] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, San Mateo, CA, USA
1988 (2nd edition 1992)

[Pearl 2000] J. Pearl. Causality: Models, Reasoning, and Inference. Cam-
bridge University Press, Cambridge, United Kingdom 2000

[Pearl and Paz 1987] J. Pearl and A. Paz. Graphoids: A Graph Based Logic
for Reasoning about Relevance Relations. In: [Boulay et al. 1987], 357–363

[Pearl and Verma 1991a] J. Pearl and T.S. Verma. A Theory of Inferred Cau-
sation. Proc. 2nd Int. Conf. on Principles of Knowledge Representation
and Reasoning. Morgan Kaufmann, San Mateo, CA, USA 1991

[Pearl and Verma 1991b] J. Pearl and T.S. Verma. A Statistical Semantics
for Causation. Proc. of the 3rd Int. Workshop on AI and Statistics (Fort
Lauderdale, FL, USA). Reprinted in: Statistics and Computing 2, 91–95.
Chapman & Hall, New York, NY, USA 1992

[Pernkopf 2004] F. Pernkopf. Detection of Surface Defects on Raw Steel
Blocks using Bayesian Network Classifiers. Pattern Analysis and Ap-
plications 7(3):333–342. Springer, London, United Kingdom 2004

[Poole 1993] D. Poole. Probabilistic Horn Abduction and Bayesian Networks.
Artificial Intelligence, 64(1):81-129. North-Holland, Amsterdam, Nether-
lands 1993

[Popper 1934] K.R. Popper. Logik der Forschung. 1st edition: Springer-
Verlag, Vienna, Austria 1934. 9th edition: J.C.B. Mohr, Tübingen, Ger-
many 1989. English edition: The Logic of Scientific Discovery. Hutchin-
son, London, United Kingdom 1959

[Press et al. 1992] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and
B.P. Flannery. Numerical Recipes in C — The Art of Scientific Com-
puting (2nd edition). Cambridge University Press, Cambridge, United
Kingdom 1992

BIBLIOGRAPHY 377

[Prim 1957] R.C. Prim. Shortest Connection Networks and Some Generaliza-
tions. The Bell System Technical Journal 36:1389-1401. Bell Laboratories,
Murray Hill, NJ, USA 1957

[Quinlan 1986] J.R. Quinlan. Induction of Decision Trees. Machine Learning
1:81–106. Kluwer, Dordrecht, Netherlands 1986

[Quinlan 1993] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA, USA 1993

[de Raedt and Bruynooghe 1993] L. de Raedt and M. Bruynooghe. A Theory
of Clausal Discovery. Proc. 13th Int. J. Conf. on Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA, USA 1993

[de Raedt et al. 2007] L. de Raedt, P. Frasconi, K. Kersting, and S.H. Mug-
gleton, eds. Probabilistic Inductive Logic Programming. Springer-Verlag,
Heidelberg, Germany 2007

[Rasmussen 1992] L.K. Rasmussen. Blood Group Determination of Danish
Jersey Cattle in the F-blood Group System (Dina Research Report 8).
Dina Foulum, Tjele, Denmark 1992

[Rebane and Pearl 1987] G. Rebane and J. Pearl. The Recovery of Causal
Polytrees from Statistical Data. Proc. 3rd Workshop on Uncertainty in
Artificial Intelligence (Seattle, WA, USA), 222–228. USA 1987. Reprinted
in: [Kanal et al. 1989], 175–182

[Reichenbach 1944] H. Reichenbach. Philosophic Foundations of Quantum
Mechanics. University of California Press, Berkeley, CA, USA 1944.
Reprinted by Dover Publications, New York, NY, USA 1998

[Reichenbach 1947] H. Reichenbach. Elements of Symbolic Logic. Macmillan,
New York, NY, USA 1947

[Reichenbach 1956] H. Reichenbach. The Direction of Time. University of
California Press, Berkeley, CA, USA 1956

[Reusch and Temme 2001] B. Reusch and K.-H. Temme, eds. Computational
Intelligence in Theory and Practice. Series: Advances in Soft Computing.
Physica-Verlag, Heidelberg, Germany 2001

[Rissanen 1983] J. Rissanen. A Universal Prior for Integers and Estimation by
Minimum Description Length. Annals of Statistics 11:416–431. Institute
of Mathematical Statistics, Hayward, CA, USA 1983

[Rissanen 1987] J. Rissanen. Stochastic Complexity. Journal of the Royal
Statistical Society (Series B), 49:223–239. Blackwell, Oxford, United King-
dom 1987

[Robinson 1977] R.W. Robinson. Counting Unlabeled Acyclic Digraphs. In:
[Little 1977], 28–43

[Robles et al 2004] V. Robles, R. Larrañaga, J. Pena, E. Menasalvas,
M. Perez, V. Herves, and A. Wasilewska. Bayesian Network Multi-
Classifiers for Protein Secondary Structure Identification. Artificial Intel-

378 BIBLIOGRAPHY

ligence in Medicine 31(2):117–136. Elsevier Science, Amsterdam, Nether-
lands 2004

[Rojas 1996] R. Rojas. Neural Networks: A Systematic Introduction.
Springer-Verlag, Berlin, Germany 1996

[Rokach and Maimon 2008] L. Rokach and O. Maimon. Data Mining with
Decision Trees: Theory and Applications. World Scientific, Hackensack,
NJ, USA 2008

[Roos et al. 2005] T. Roos, H. Wettig, P. Grünwald, P. Myllymäki, and
H. Tirri. On Discriminative Bayesian Network Classifiers and Logistic
Regression. Machine Learning 65(1):31–78. Springer, Amsterdam, Nether-
lands 2005

[Ruelle 1993] D. Ruelle. Zufall und Chaos. Springer-Verlag, Heidelberg, Ger-
many 1993

[Ruspini et al. 1998] E. Ruspini, P. Bonissone, and W. Pedrycz, eds. Hand-
book of Fuzzy Computation. Institute of Physics Publishing, Bristol,
United Kingdom 1998

[Russel et al. 1995] K. Russel, J. Binder, D. Koller, and K. Kanazawa. Lo-
cal Learning in Probabilistic Networks with Hidden Variables. Proc. 1st
Int. Conf. on Knowledge Discovery and Data Mining (KDD’95, Montreal,
Canada), 1146–1152. AAAI Press, Menlo Park, CA, USA 1995

[Saffiotti and Umkehrer 1991] A. Saffiotti and E. Umkehrer. PULCINELLA:
A General Tool for Propagating Uncertainty in Valuation Networks. Proc.
7th Conf. on Uncertainty in Artificial Intelligence (UAI’91, Los Angeles,
CA, USA), 323–331. Morgan Kaufmann, San Mateo, CA, USA 1991

[Sahami 1996] M. Sahami. Learning Limited Dependence Bayesian Classi-
fiers. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining
(KDD’96, Portland, OR, USA), 335–338. AAAI Press, Menlo Park, CA,
USA 1996

[Salmon 1963] W.C. Salmon. Logic. Prentice-Hall, Englewood Cliffs, NJ,
USA 1963

[Salmon 1984] W.C. Salmon. Scientific Explanation and the Causal Structure
of the World. Princeton University Press, Princeton, NJ, USA 1984

[Savage 1954] L.J. Savage. The Foundations of Statistics. J. Wiley & Sons,
New York, NY, USA 1954. Reprinted by Dover Publications, New York,
NY, USA 1972

[Schneiderman 2004] H. Schneiderman. Learning a Restricted Bayesian Net-
work for Object Recognition. Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR’04, Washington, DC), 639–646. IEEE Press,
Piscataway, NJ, USA 2004

[Schölkopf and Smola 2001] B. Schölkopf and A.J. Smola. Learning with Ker-
nels: Support Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, Cambridge, MA, USA 2001

BIBLIOGRAPHY 379

[Schwarz 1978] G. Schwarz. Estimating the Dimension of a Model. Annals of
Statistics 6:461–464. Institute of Mathematical Statistics, Hayward, CA,
USA 1978

[Shachter et al. 1990] R.D. Shachter, T.S. Levitt, L.N. Kanal, and J.F. Lem-
mer, eds.Uncertainty in Artificial Intelligence 4. North-Holland, Amster-
dam, Netherlands 1990

[Shafer 1976] G. Shafer. A Mathematical Theory of Evidence. Princeton
University Press, Princeton, NJ, USA 1976

[Shafer and Pearl 1990] G. Shafer and J. Pearl. Readings in Uncertain Rea-
soning. Morgan Kaufmann, San Mateo, CA, USA 1990

[Shafer and Shenoy 1988] G. Shafer and P.P. Shenoy. Local Computations
in Hypertrees (Working Paper 201). School of Business, University of
Kansas, Lawrence, KS, USA 1988

[Shakhnarovich et al. 2006] G. Shakhnarovich, R. Darrell, and P. Indyk.
Nearest-Neighbor Methods in Learning and Vision: Theory and Practice.
MIT Press, Cambridge, MA, USA 2006

[Shannon 1948] C.E. Shannon. The Mathematical Theory of Communication.
The Bell System Technical Journal 27:379–423. Bell Laboratories, Murray
Hill, NJ, USA 1948

[Shawe-Taylor and Cristianini 2004] J. Shawe-Taylor and N. Cristianini.
Kernel Methods for Pattern Analysis. Cambridge University Press, Cam-
bridge, United Kingdom 2004

[Shenoy 1991b] P.P. Shenoy. Conditional Independence in Valuation-based
Systems (Working Paper 236). School of Business, University of Kansas,
Lawrence, KS, USA 1991

[Shenoy 1992a] P.P. Shenoy. Valuation-based Systems: A Framework for
Managing Uncertainty in Expert Systems. In: [Zadeh and Kacprzyk 1992],
83–104

[Shenoy 1992b] P.P. Shenoy. Conditional Independence in Uncertainty The-
ories. Proc. 8th Conf. on Uncertainty in Artificial Intelligence (UAI’92,
Stanford, CA, USA), 284–291. Morgan Kaufmann, San Mateo, CA, USA
1992

[Shenoy 1993] P.P. Shenoy. Valuation Networks and Conditional Indepen-
dence. Proc. 9th Conf. on Uncertainty in AI (UAI’93, Washington, DC,
USA), 191–199. Morgan Kaufmann, San Mateo, CA, USA 1993

[Singh and Valtorta 1993] M. Singh and M. Valtorta. An Algorithm for the
Construction of Bayesian Network Structures from Data. Proc. 9th Conf.
on Uncertainty in Artificial Intelligence (UAI’93, Washington, DC, USA),
259–265. Morgan Kaufmann, San Mateo, CA, USA 1993

[Smith et al. 1993] J.E. Smith, S. Holtzman, and J.E. Matheson. Structuring
Conditional Relationships in Influence Diagrams. Operations Research
41(2):280–297. INFORMS, Linthicum, MD, USA 1993

380 BIBLIOGRAPHY

[Spina and Upadhyaya 1997] R. Spina and S. Upadhyaya. Linear Circuit
Fault Diagnosis Using Neuromorphic Analyzers. IEEE Trans. Circuits
and Systems II 44(3):188–196. IEEE Press, Piscataway, NJ, USA 1997

[Spirtes et al. 1989] P. Spirtes, C. Glymour, and R. Scheines. Causality from
Probability (Technical Report CMU-LCL-89-4). Department of Philoso-
phy, Carnegie-Mellon University, Pittsburgh, PA, USA 1989

[Spirtes et al. 2001] P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction, and Search, 2nd ed. MIT Press, Cambridge, MA, USA 2001

[Spohn 1990] W. Spohn. A General Non-Probabilistic Theory of Inductive
Reasoning. In: [Shachter et al. 1990], 149–158

[Steck 2001] H. Steck. Constraint-Based Structural Learning in Bayesian
Networks using Finite Data Sets. Ph.D. thesis, TU München, Munich,
Germany 2001

[Steinbrecher and Kruse 2008] M. Steinbrecher and R. Kruse. Identify-
ing Temporal Trajectories of Association Rules with Fuzzy Descrip-
tions. Proc. Conf. North American Fuzzy Information Processing Society
(NAFIPS 2008, New York, NY), 1–6. IEEE Press, Piscataway, NJ, USA
2008

[Studený 1992] M. Studený. Conditional Independence Relations have no Fi-
nite Complete Characterization. Trans. 11th Prague Conf. on Information
Theory, Statistical Decision Functions, and Random Processes, 377–396.
Academia, Prague, Czechoslovakia 1992

[Tarjan and Yannakakis 1984] R.E. Tarjan and M. Yannakakis. Simple
linear-time algorithms to test chordality of graphs, test acyclicity of hy-
pergraphs and selectively reduce acyclic hypergraphs. SIAM Journal on
Computing 13:566–579. Society of Industrial and Applied Mathematics,
Philadelphia, PA, USA 1984

[Taskar et al. 2004] B. Taskar, V. Chatalbashev, and D. Koller. Learning
Associative Markov Networks. Proc. Int. Conf. Machine Learning (ICML
2004, Banff, Alberta, Canada), 102–109. ACM Press, New York, NY,
USA 2004

[Tsamardinos et al. 2006] I. Tsamardinos, L.E. Brown, and C.F. Aliferis. The
Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm.
Machine Learning 65(1):31–78. Springer, Amsterdam, Netherlands 2006

[Tucker and Liu 1999] A. Tucker and X. Liu. Extending Evolutionary Pro-
gramming to the Learning of Dynamic Bayesian Networks. Proc. of the
Genetic and Evolutionary Computation Conference, 923–929. Morgan
Kaufmann, San Mateo, CA, USA 1999

[Ullman 1988] J.D. Ullman. Principles of Database and Knowledge-Base Sys-
tems, Vol. 1 & 2. Computer Science Press, Rockville, MD, USA 1988

[Verma and Pearl 1990] T.S. Verma and J. Pearl. Causal Networks: Seman-
tics and Expressiveness. In: [Shachter et al. 1990], 69–76

BIBLIOGRAPHY 381

[Vollmer 1981] G. Vollmer. Ein neuer dogmatischer Schlummer? Kausali-
tät trotz Hume und Kant. Akten des 5. Int. Kant-Kongresses (Mainz,
Germany), 1125–1138. Bouvier, Bonn, Germany 1981

[Wainwright and Jordan 2008] M.J. Wainwright and M.I. Jordan. Graphical
Models, Exponential Families, and Variational Inference. Now Publishers,
Hanover, MA, USA 2008

[Walley 1991] P. Walley. Statistical Reasoning with Imprecise Probabilities.
Chapman & Hall, New York, NY, USA 1991

[Wang 1983a] P.Z. Wang. From the Fuzzy Statistics to the Falling Random
Subsets. In: [Wang 1983b], 81–96

[Wang 1983b] P.P. Wang, ed. Advances in Fuzzy Sets, Possibility and Ap-
plications. Plenum Press, New York, NY, USA 1983

[Wang and Mendel 1992] L.-X. Wang and J.M. Mendel. Generating fuzzy
rules by learning from examples. IEEE Trans. on Systems, Man, & Cy-
bernetics 22:1414–1227. IEEE Press, Piscataway, NJ, USA 1992

[Wehenkel 1996] L. Wehenkel. On Uncertainty Measures Used for Decision
Tree Induction. Proc. 7th Int. Conf. on Information Processing and Man-
agement of Uncertainty in Knowledge-based Systems (IPMU’96, Granada,
Spain), 413–417. Universidad de Granada, Spain 1996

[Weiss 2000] Y. Weiss. Correctness of Local Propability Propagation in
Graphical Models with Loops. Neural Computation 12(1):1–41. MIT
Press, Cambridge, MA, USA 2000

[Weiss and Freeman 2001] Y. Weiss and W.T. Freeman. Correctness of Be-
lief Propagation in Gaussian Graphical Models of Arbitrary Topology.
Neural Computation 13(10):2173–2200. MIT Press, Cambridge, MA, USA
2001

[von Weizsäcker 1992] C.F. Weizsäcker. Zeit und Wissen. Hanser, München,
Germany 1992

[Whittaker 1990] J. Whittaker. Graphical Models in Applied Multivariate
Statistics. J. Wiley & Sons, Chichester, United Kingdom 1990

[Witte and Witte 2006] R.S. Witte and J.S. Witte. Statistics. J. Wiley &
Sons, Chichester, United Kingdom 2006

[Wright 1921] S. Wright. Correlation and Causation. Journal of Agricultural
Research 20(7):557-585. US Dept. of Agriculture, Beltsville, MD, USA
1921.

[Xu and Wunsch 2008] R. Xu and D. Wunsch. Clustering. J. Wiley & Sons,
Chichester, United Kingdom and IEEE Press, Piscataway, NJ, USA 2008

[Yedida et al. 2003] J.S. Yedida, W.T. Freeman, and Y. Weiss. Understand-
ing Belief Propagation and Its Generalizations. Exploring Artificial Intelli-
gence in the New Millenium, 239–269. Morgan Kaufmann, San Francisco,
CA, USA 2003

382 BIBLIOGRAPHY

[Zadeh 1975] L.A. Zadeh. The Concept of a Linguistic Variable and Its Appli-
cation to Approximate Reasoning. Information Sciences 9:43–80. Elsevier
Science, New York, NY, USA 1975

[Zadeh 1978] L.A. Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility.
Fuzzy Sets and Systems 1:3–28. North-Holland, Amsterdam, Netherlands
1978

[Zadeh and Kacprzyk 1992] L.A. Zadeh and J. Kacprzyk. Fuzzy Logic for the
Management of Uncertainty. J. Wiley & Sons, New York, NY, USA 1992

[Zell 1994] A. Zell. Simulation Neuronaler Netze. Addison-Wesley, Bonn,
Germany 1994

[Zey 1997] R. Zey, ed. Lexikon der Forscher und Erfinder. Rowohlt, Rein-
bek/Hamburg, Germany 1997

[Zhang and Poole 1996] N.L. Zhang and D. Poole. Exploiting Causal Inde-
pendence in Bayesian Network Inference.Journal of Artificial Intelligence
Research 5:301–328. Morgan Kaufmann, San Mateo, CA, USA 1996

[Zhang and Zhang 2002] C. Zhang and S. Zhang. Association Rule Mining:
Models and Algorithms. Springer, New York, NY, USA 2002

[Zhou and Dillon 1991] X. Zhou and T.S. Dillon. A statistical-heuristic Fea-
ture Selection Criterion for Decision Tree Induction. IEEE Trans. on
Pattern Analysis and Machine Intelligence (PAMI) 13:834–841. IEEE
Press, Piscataway, NJ, USA 1991

Index

α-cut, 183
absolute frequency coding, 226
accidental correlation, 284
active path, 100
acyclic graph, 99, 116
additional tuples, 169, 201
adjacent, 97, 98
AIC, 228
air conditioning, 312
Akaike information criterion, 228
alternating current circuit, 300
analog electrical circuit, 296
ancestor, 99
ancestral sampling, 138, 259
annealing, 240
antisymmetric, 275
approximate propagation, 137
artificial neural network, 8
association analysis, 7
association rule, 9, 289
assumption-based truth mainte-

nance system, 295
asymmetry of causal structures,

277, 281
at least as fine as, 65
at least as specific as, 141
ATMS, 295
attribute merging, 128
average number of questions, 202

background knowledge, 12
backward elimination, 164
basic possibility assignment, 24, 36

normalized, 37
basic probability assignment, 24

least prejudiced, 44
battery fault, 312
Bayes factor, 217, 222
Bayes’ rule, 21, 158, 163
Bayesian estimation, 142
Bayesian information criterion,

228
Bayesian network, 8, 10, 53, 120

with star-like structure, 160
Bayesian–Dirichlet metric, 216,

219
extension, 221

BDeu metric, 220
bias towards many-valued attri-

butes, 207, 220, 229, 314
BIC, 228
billiard, 282
binary possibility measure, 67
binary split, 268
blocked path, 100
blood group determination, 129,

259, 271
BOBLO network, 11
Boltzmann distribution law, 138
boundary, 97
Brahe, Tycho, 3–5
bucket elimination, 136

χ2 measure, 214
possibilistic, 229

case-based reasoning, 9
cattle example, 129
causal chain, 276
causal influence, 274, 279

genuine, 279

383

Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
C Borgelt, M Steinbrecher and R Krus © 2009, John Wiley & Sons, Ltd ISBN: 978-0-470-72210-7

384 INDEX

potential, 279
causal Markov assumption, 280
causal network, 275
causal path condition, 254
causal structure, 275
causation, 273

as functional dependence, 275,
280

cause, 275
certain statement, 19
chain of arguments, 16
chain rule

of possibility, 87, 163
of probability, 79, 159

chain rule factorization, 79
chaos theory, 282
child, 98
chord, 132
chordal graph, 132
Chow–Liu algorithm, 233
Chow–Liu tree, 233
chromosome, 241
classification, 7, 10
classification tree, 8
classifier simplification, 164
classifier, naive, 157
Clementine, 9
clique, 98

maximal, 98
closed under tuple intersection,

153
closure, 97

of a database, 154
of a relation, 153

cluster analysis, 9
clustering, 7
coding

absolute frequency, 226
equal size subsets, 203
Huffman, 203
linear traversal, 203
perfect, 205
relative frequency, 225
Shannon–Fano, 203

color-blind, 20
common cause, 276
common cause assumption, 280
common effect, 276
common effect assumption, 280
commonsense reasoning, 50
complete graph, 98
complete set of rules, 96
complete subgraph, 98
comprehensibility, 3
concept description, 7
conditional degree of possibility,

47, 85
conditional dependence graph, 103

maximal, 104
conditional independence

possibilistic, 86
probabilistic, 78
relational, 71

conditional independence graph,
10, 103

minimal, 104, 120
conditional independence search,

247–258
conditional independence test, 168,

237, 248
order, 181
possibilistic, 188
probabilistic, 181
relational, 171

conditional possibility, 70, 71
conditioning, 20, 47, 58, 76, 84
confidence, 289, 290

minimum, 289
connected, 98, 99

multiply, 128
singly, 98, 99, 129

connected component, 245
conservative logic, 284
consistency, 37–39
consonant, 41
constraint propagation, 295
construction sequence, 243
context, 27, 36

INDEX 385

overlapping, 31–35
context model, 15, 21, 27–30, 49
context-specific independence, 266
continental drift, 274
contour function, 36
contraction axiom, 94, 110, 319
converging causal influence, 279
core, 278
correctness, 3
correlation, 273
CRISP-DM, 6
cross entropy, 180, 202
crossing-over, 241
cycle, directed, 99
cylindrical extension, 59, 64

d-connected, 99
δ-function, 221
d-separation, 100, 276
DaimlerChrysler, 310
Danish Jersey cattle, 129, 259, 271

join tree, 133
moral graph, 131
triangulated graph, 133

data, 2–3
data cleaning, 6
data mining, 1, 5–6

methods, 8–9
tasks, 7–8

database, 141
likelihood, 216, 259
probability, 179

database theory, 55
DB2 Intelligent Miner, 9
death sentencing, 283
decision graph, 267
decision making, 15, 45
decision tree, 8, 12, 266

full, 266
reduced, 267

decomposability, 61
decomposable, 65, 69, 77, 168

w.r.t. a directed graph, 118

w.r.t. an undirected graph,
114

decomposition, 16, 54, 65, 69, 77
at least as fine as, 65
finer, 65
irredundant, 65
minimal, 65, 232
possibilistic, 82
probabilistic, 74
redundant, 65
relational, 55
trivial, 65

decomposition axiom, 94, 318
degree, 97
degree of certainty, 20
degree of confidence, 20
degree of possibility, 23, 35, 83

conditional, 47–48, 85
weighted sum, 187, 230

Dempster–Shafer network, 55
Dempster–Shafer theory, 42
dependence analysis, 7, 10, 311
dependence map, 103

maximal, 104
dependence path condition, 254
dependence strength, 168, 175,

181, 188, 191
descendant, 99
description length, 225
deviation analysis, 7
diagnosis, 17, 56, 295
dice, 22–27
digital eletrical circuit, 296
Dirac’s δ-function, 221
directed acyclic graph, 99, 275
directed cycle, 99
directed graph, 97, 275
direction of time, 277
Dirichlet distribution, 219
Dirichlet’s integral, 218
distribution, 54

Dirichlet, 219
faithful, 277, 284
Maxwell, 240

386 INDEX

possibility, 24
probability, 68
velocity, 240

distribution law
Boltzmann, 138

diverging causal influence, 279
DM (data mining), 1, 5
dodecahedron, 22

edge, 97
effect, 275
electrical circuit, 295

alternating current, 300
analog, 296

electrical sliding roof, 312
elementary possibility assignment,

24
elementary probability assign-

ment, 24
eletrical circuit

analog, 296
EM algorithm, 143
energy, 240, 285
energy minimum, 240
entropy

expected, 206, 223
generalized, 209
Hartley, 172, 200, 206, 228
quadratic, 210
Shannon, 172, 202, 228

equivalent sample size, 220
estimation

Bayesian, 142
maximum likelihood, 142,

159, 222
evaluation measure, 167, 192

decomposable, 193
global, 193
holistic, 193
local, 193
possibilistic, 228–230
probabilistic, 201–228
relational, 199–201
sensitivity, 223, 314

symmetric, 194
evidence, 17, 18, 56

weight of, 213
evidence factor, 126, 127
evidence propagation, 10, 55, 121

bucket elimination, 136
join tree, 128–135
loopy, 137
other methods, 136–138
polytree, 136
possibilistic, 84
probabilistic, 76
relational, 60
tree, 122–128
variational methods, 138

evolution, 241
evolutionary algorithms, 241–242
exact propagation, 137
exhaustive, 54
exhaustive graph search, 230–232
expectation maximization, 143–

148
expectation step, 143
expected entropy, 206, 223
experiments with dice, 22–27
extension principle, 87
extension, cylindrical, 59, 64

F-blood group system, 129
factor potential, 77, 242, 288
factorizable, 77

w.r.t. a directed graph, 118
w.r.t. an undirected graph,

114
factorization, 77, 130

chain rule, 79
faithful distribution, 277, 284
faithfulness, 276
falling shadow, 36
fault analysis, 295
fault dictionary approach, 295
feature selection, 164
finer, 65
fitness, 241

INDEX 387

focal set, 35
consonant, 41

focusing, 6
forward selection, 164
frame of discernment, 16, 129
fraud detection, 295
Fredkin gate, 284
free energy, 138
full decision tree, 266
full split, 268
fuzzy cluster analysis, 9, 12
fuzzy set, 22, 183
fuzzy systems, 11

Γ-function, 219
Galilei, Galileo, 4
Gaussian network, 302
gene, 241
generality, 3
generalized entropy, 209
generalized gradient, 147
generation of hypertrees, 243–246
generic knowledge, 16, 18, 54, 56
genetic algorithms, 241–242
genotype, 241
genuine causal influence, 279
Gini index, 211

modified, 212
symmetric, 211

global structure, 167, 265
learning, 168

gradient descent, 143
Graham reduction, 244
graph, 16, 97

chordal, 132
complete, 98
directed, 97
directed acyclic, 99, 275
Markov properties, 106–111
moral, 131
simple, 97
sparse, 250
triangulated, 132, 243
undirected, 97

graphical model, 10–12, 16, 54
global structure, 167, 265
learning, 11
local structure, 265

graphoid, 94
graphoid axioms, 94
greedy parent selection, 237, 260,

263
greedy search, 232–239
guided random graph search, 239–

247

Halley’s comet, 274
Hartley entropy, 172, 200, 206, 228
Hartley information, 172, 200, 206,

228
Hartley information divergence,

185
Hartley information gain, 173, 199
Hartley information gain ratio, 200

conditional, 201
symmetric, 200

Heisenberg’s uncertainty relations,
282

hexahedron, 22
hidden attribute, 144
hidden parameter, 282
Huffman coding, 203
HUGIN, 10
hyperedge, 116
hypergraph, 116
hypertree, 116

random generation, 243–246
random modification, 243–246

hypertree structure, 116, 129, 133
test for, 244

IBM Inc., 9
icosahedron, 22
ideal gas, 240
idempotent update, 128
imprecise statement, 17
imprecise tuple, 140
imprecision, 15, 17–19, 48

388 INDEX

imputation, 6
independence, 273

context specific, 266
possibilistic

conditional, 86
probabilistic, 79

conditional, 78
relational, 70

conditional, 71
independence assumption, 159
independence map, 103

minimal, 104
indicator function, 69
inductive causation, 13, 273–285

algorithm, 278
inductive logic programming, 9
INES, 259, 271, 311
inference, 15–17
inference network, 10, 16, 54
information

Hartley, 172, 200, 206, 228
mutual, 180, 195, 197, 202
Shannon, 172, 202, 228

information criterion, 227
Akaike, 228
Bayesian, 228

information divergence
Hartley, 185
Kullback–Leibler, 177, 180

information gain
Hartley, 173
quadratic, 210
Shannon, 180, 202, 221, 313

information gain ratio, 208
symmetric, 209

instantiation, 63
insufficient reason principle, 30–31,

48
interpretation of probability, 31
intersection, 58, 152
intersection axiom, 94, 110, 320
interval arithmetics, 15
invariant substructure, 277
IPF, 296

iris data, 161
IRP, 49
irredundant decomposition, 65
item set, 289
iterative proportional fitting, 296

join tree, 129, 244
join tree construction, 133
join tree propagation, 128–135
join-decomposable, 59
junction law, 297

k-nearest neighbor, 9
K2 algorithm, 218, 237
K2 metric, 216, 218, 223, 313
KDD, 1, 5
KDD process, 2, 6–7
Kepler’s laws, 4
Kepler, Johannes, 3–5
kernel methods, 8
Kirchhoff’s junction law, 297
Kirchhoff’s mesh law, 297
knowledge, 2–3, 15

criteria to assess, 3
generic, 16
prior, 16

knowledge discovery, 1, 5–6
Kolmogorov’s axioms, 40
Kruskal algorithm, 133, 175, 181,

191, 232, 233
Kullback–Leibler information di-

vergence, 177, 180

Laplace correction, 143, 160, 259
Laplace’s demon, 282
latent attribute, 144
latent structure, 277

projection of, 277
latent variable, 276, 277
lattice energy, 240
learning

global structure, 168
local structure, 265
possibilistic networks, 183–

192

INDEX 389

probabilistic networks, 177–
183

qualitative, 13
quantitative, 139
relational networks, 168–177
structural, 13

learning algorithm, 192
least specific tuple, 153
lift, 290
likelihood, 142, 179

of a database, 179, 216, 246,
259

likelihood equivalent, 219
likelihood function, 222
likelihood metric, 223
local structure, 265
location of a particle, 282
logic

conservative, 284
modal, 21
symbolic, 16, 18

loop, 97
loopy propagation, 137
lower and upper probability, 51

many-valued attributes
bias towards, 207, 220, 229,

314
market basket analysis, 289
Markov equivalent, 111
Markov network, 8, 10, 53, 120,

131
Markov property, 106–111

global, 107, 109
local, 107, 109
pairwise, 107, 109

mass assignment, 43
mass assignment theory, 43–45
mating, 242
maximal clique, 98
maximization step, 143
maximum cardinality search, 132
maximum likelihood estimation,

142, 159, 222

maximum projection, 148
maximum weight spanning tree,

175
Maxwell distribution, 240
measuring dependence strength,

168, 175, 181, 188, 191
mechanistic paradigm of physics,

281
medical diagnosis, 17, 56
Mercedes-Benz, 310
merge, 268, 270
merging attributes, 128
mesh law, 297
message, 122
message length, 225
metal, 240
migration, 242
minimal decomposition, 65, 232
minimum description length prin-

ciple, 224
minimum support, 289
minimum weight spanning tree,

175
minimum–maximum, 91
Möbius inversion, 329
modal logic, 21
mode, 89
model change, 293
model-based diagnosis, 295
modification of hypertrees, 243–

246
modified Gini index, 212
momentum of a particle, 282
momentum term, 147
monocrystalline structure, 240
monotonic, 101
moral graph, 131
multidimensional domain, 54
multinet, 265
multiply connected, 128
MUNIN, 11
mutation, 241
mutual information, 180, 195, 197,

202, 233, 235

390 INDEX

possibilistic, 229
mutually exclusive, 30, 54

naive Bayes classifier, 8, 12, 13, 157
basic formula, 159
for the iris data, 162
tree-augmented, 235

naive classifier, 157
possibilistic, 162

basic formula, 163
probabilistic, 157

natural join, 19, 59, 65
necessity distribution, 50
necessity measure, 51
negative information, 29, 42, 50
neighbor, 97
neural network, 8, 147
neuro-fuzzy rule induction, 9, 12
node, 97
node merging, 129
node processor, 10, 135
non-descendant, 99
non-idempotent update, 128
non-interactivity, 86
nonspecificity, 184, 228
normalization, 37–39, 83
novelty, 3
number of additional tuples, 169,

201
number of questions, 202

octahedron, 22
Ohm’s law, 297
optimum weight spanning tree,

175, 232
construction, 233, 260, 263

oracle, 202
outlier detection, 6
overlapping contexts, 31–35

parent, 98
parentage verification, 129
path, 98, 99

active, 100

blocked, 100
directed, 99

PATHFINDER, 10
pedigree registration, 129
perfect map, 103, 248, 276

sparse, 250
perfect question scheme, 205
permutation invariance argument,

30
phenogroup, 131
phenotype, 241
Platonic bodies, 22
polycrystalline structure, 240
polytree, 99, 122, 233, 251

skeleton, 234
polytree propagation, 136
population, 241
positive information, 50
possibilistic χ2 measure, 229
possibilistic independence

conditional, 86
imprecision-based, 86
uncertainty-based, 86

possibilistic mutual information,
229

possibilistic network, 121
learning, 183–192
with star-like structure, 163

possibilistic non-interactivity, 86
possibility, 22

conditional, 70, 71
degree of, 23, 35, 83

conditional, 47, 85
possibility distribution, 24

α-cut, 183
induced by a database, 148

possibility measure, 24, 39, 46, 83
binary, 67

possibility theory, 15, 21, 48
POSSINFER, 11
potential, 288
potential causal influence, 279
potential table, 288
precedence in time, 275

INDEX 391

precise statement, 17
precise tuple, 140
prediction, 7
preprocessing, 6
Prim algorithm, 133, 233
prior knowledge, 16, 54, 56
priority problem, 280
probabilistic causal network, 275
probabilistic independence

conditional, 78
probabilistic network, 8, 120

learning, 177–183
probabilistic structure, 275
probability, 20, 23

interpretation, 31
lower bound, 51
of a database, 179
product rule, 24
upper and lower, 51
upper bound, 27, 35

probability distribution, 68
decomposable, 77
decomposition, 77
factorizable, 77
factorization, 77
IRP, 49

probability measure, 24
probability space, 36
probability theory, 19–21
product rule, 24, 217
product-maximum, 91
product-sum, 91
projection, 58, 64, 139, 141

maximum, 148
of a latent structure, 277
sum, 141

propagation, 16
approximate, 137
bucket elimination, 136
exact, 137
join tree, 128–135
loopy, 137
other methods, 136–138
polytree, 136

tree, 122–128
variational methods, 138

PULCINELLA, 11

quadratic entropy, 210
quadratic information gain, 210
qualitative description, 12
qualitative information, 120
qualitative learning, 13
quantitative description, 12
quantitative information, 120
quantitative learning, 139
quantum mechanics, 282
question scheme, 202

random graph search, 239–247
random set, 35

consistent, 37
with consonant focal sets, 41,

44
reasoning, 54
recall, 290
reduced decision tree, 267
reduction, 6
reduction of description length,

225
reduction of message length, 225
redundant decomposition, 65
reference structure, 217
regression tree, 8
Reichenbach’s dictum, 276
relation, 63, 68, 140, 183

closed under tuple intersec-
tion, 153

cylindrical extension, 64
decomposability, 61
decomposable, 65, 69
decomposition, 65, 69
projection, 64, 141

relational algebra, 15, 17–19
relational independence, 70

conditional, 71
relational network, 55

learning, 168–177

392 INDEX

relative frequency coding, 225
relevance, 214
relief measure, 212
renormalization, 47
restriction, 64, 141
restrictivity, 310

additional, 310
root node, 99
rule visualization, 290
running intersection property, 116

test for, 244

sample space, 24
sampled distribution, 276
SAS Enterprise Miner, 9
SAS Institute Inc., 9
schema theorem, 242
scoring function, 167
search, 192

conditional independence,
247–258

exhaustive, 230–232
guided random, 239–247

search method, 167, 192, 230
segmentation, 7
selection, 241
semi-graphoid, 94
semi-graphoid axioms, 94
sensitive dependence on initial

conditions, 282
sensitivity, 314
separation, 100

in directed graphs, 100
in undirected graphs, 100

separator set, 300
set-valued information, 15, 18
sexual reproduction, 241
Shannon entropy, 172, 202, 228
Shannon information, 172, 202,

228
Shannon information gain, 180,

202, 221, 313
Shannon information gain ratio,

208

symmetric, 209
Shannon–Fano coding, 203
similarity network, 265
simple graph, 97
simulated annealing, 239–240, 260,

263
singly connected, 98, 99, 129
skeleton, 112, 234
smallest ancestral set, 324
soft fault, 296
sound set of rules, 96
spanning tree, 175, 232
sparse graph, 250
specificity divergence, 185
specificity gain, 189, 197, 228

conditional, 229
specificity gain ratio, 229

symmetric, 229
split, 268, 270
SPSS Inc., 9
spurious association, 279
stability, 276
state of the world, 16
statistical nature of quantum me-

chanics, 282
statistics, 8, 273
stochastic simulation, 137
strong union axiom, 101
structural learning, 13
subgraph, 98
sum projection, 141
supply prediction, 295
support, 152

absolute, 290
left-hand side, 290
minimum, 289
relative, 289
right-hand side, 290

support vector machines, 8
survival of the fittest, 241
Swiss cheese, 274
symbolic logic, 16, 18
symmetric Gini index, 211

INDEX 393

symmetric information gain ratio,
209

symmetric uncertainty coefficient,
209

symmetry axiom, 94, 318

TAN, 235
telecommunications, 304
temperature, 240
tetrahedron, 22
theoretical physics, 138
thermal activity, 240
thermodynamics, 138
time

direction of, 277
precedence in, 275

topological order, 100
tournament selection, 241
trail, 99
trajectory, 282
transaction, 289
transfer of energy, 285
transitivity axiom, 101
tree, 98, 99, 116

Chow–Liu, 233
tree augmented naive Bayes classi-

fier, 235
tree propagation, 122–128
tree-structured approximation,

234
trend analysis, 7
triangulated graph, 132, 243
triangulation, 132, 243
trivial decomposition, 65
troubleshooting, 11
tube arrangement, 281
tuple, 63, 140

at least as specific as, 141
imprecise, 140
intersection, 152
least specific, 153
precise, 140
projection, 64, 141
restriction, 64, 141

weight, 141

u-separation, 100
uncertain statement, 19
uncertainty, 15, 19–21, 48
uncertainty amplifier, 282
uncertainty coefficient, 208

symmetric, 209
uncertainty relations, 282
undirected graph, 97
uniform prior distribution, 143,

218
uniform probability assignment, 30
universe of discourse, 16
upper and lower probability, 51
usefulness, 3
utility theory, 15

v-structure, 112
valuation-based network, 11
variational methods, 138
velocity distribution, 240
vertex, 97
visualization, 6
Volkswagen, 307
voting model, 44

weak union axiom, 94, 318
weight of a tuple, 141
weight of evidence, 213
weighted sum of degrees of possi-

bility, 187, 230

	Cover
	Front-matter
	Wiley Series in Computational Statistics
	Graphical Models: Representations for Learning, Reasoning and Data Mining, Second Edition
	Copyright
	Contents
	Preface
	Chapter 1Introduction
	Chapter 2 Imprecision and Uncertainty
	Chapter 3Decomposition
	Chapter 4 Graphical Representation
	Chapter 5 Computing Projections
	Chapter 6 Naive Classifiers
	Chapter 7 Learning Global Structure
	Chapter 8 Learning Local Structure
	Chapter 9 Inductive Causation
	Chapter 10 Visualization
	Chapter 11 Applications
	Appendix A Proofs of Theorems
	Appendix B Software Tools
	Bibliography
	Index

