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Dominance Analysis: A New Approach to the Problem of Relative
Importance of Predictors in Multiple Regression

David V. Budescu

Whenever multiple regression is used to test and compare theoretically motivated models, it is of
interest to determine the relative importance of the predictors. Specifically, researchers seek to rank
order and scale variables in terms of their importance and to express global statistics of the model as
a function of these measures. This article reviews the many meanings of importance of predictors in
multiple regression, highlights their weaknesses, and proposes a new method for comparing vari-
ables: dominance analysis. Dominance is a qualitative relation denned in a pairwise fashion: One
variable is said to dominate another if it is more useful than its competitor in all subset regressions.
Properties of the newly proposed method are described and illustrated.

An important aspect of any multiple regression analysis is the
determination of the relative importance of the various predic-
tors. The quest for a single-valued, meaningful index of impor-
tance for each variable is almost as old as the model itself (Yule,
1899). However, recent articles by Kruskal (1987a, 1987b),
Kruskal and Majors (1989), Pratt (1987), and Theil (1987) have
vividly illustrated that no single "best" solution to this problem
has emerged. The goal of this article is to critically review some
of the standard measures of importance, point out their major
problems, and propose a new method for determining the im-
portance of variables.

There are numerous ways of using regression analysis in be-
havioral research (e.g., Hocking, 1976). I approached the prob-
lem from the point of view of researchers interested in the the-
oretical implications of specific models. For example, one may
be trying to determine the relative importance of education and
economic status in determining opinions (F. Williams & Mos-
teller, 1947); monetary and fiscal policy in determining gross
national product; teacher quality, school effects, and peer qual-
ity as determinants of school achievement (Mood, 1969); per-
sonality traits and family cohesiveness as predictors of ability to
cope effectively with stress; or genetic and environmental factors
as predictors of intelligence.

The Problem

Consider a univariate multiple regression model in which, in
a certain population, a single criterion, y, is described in terms
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of a linear combination of p predictors, x,,..., xf, and a con-
stant term (x0 = 1):

' = 2 № + e.
i-o

(1)

Under alternative versions of the model (e.g., Graybill, 1961),
the predictors are assumed to be constant numerical values (the
fixed model), random variables with a p-variate normal distri-
bution (the random model), or a mixture of the two (the mixed
model). In each case, the residual component is normally dis-
tributed with zero mean and fixed variance, a2. fyfj = !•••/>)
are population parameters known as regression coefficients. It
is often convenient to reexpress all of the variables included in
the model in standardized form with zero mean and unit vari-
ance. Let Zy and Zx, be standardized values of y and Xj (j' = 1,
. . . , p). Then

p

z y = 2 , Xj + e, (2)

where /3* are the standardized regression coefficients.
Various notions of importance have been suggested in the lit-

erature. Regardless of the particular interpretation adopted, us-
ers typically attempt to rank order the p predictors in terms of
their importance, scale the variables' importance (i.e., locate
them along a continuum with interval or ratio properties), and
relate the importance measures to certain global statistics such
as the model's squared multiple correlation, py

, or the
criterion expected value, ny. Sometimes, however, researchers
have more specific and focused goals, such as identifying the
"most important" predictor or determining whether x, is more,
or less, important than x,(i +j).

Part of the confusion regarding the variables' importance
may be attributed to the fact that in a special and simple case,
most measures coincide to yield a unique solution. If all p pre-
dictors are uncorrelated, then

(3)

Thus, the squared zero-order correlations of the variables with
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the criterion (which, in this case, happen to coincide with the
standardized coefficients) provide a meaningful scale along
which one can rank and locate the variables' importance in the
population. Furthermore, the sum of these measures of impor-
tance yields the population's squared multiple correlation.

Unfortunately, this simple and elegant result does not hold
for any arbitrary pattern of correlations among the predictors.
Although many of the regularly used measures of importance
reduce to the decomposition of Equation 3 under the special
circumstances just mentioned, they generalize this decomposi-
tion in different ways that imply different notions of impor-
tance. However, there is no compelling reason for preferring any
one of these generalizations over the others.

Various Implied Meanings of Importance

This article does not include a detailed review of all tech-
niques proposed to determine the relative importance of pre-
dictors in regression. Partial reviews are available in such stan-
dard references as Achen (1982); Darlington (1968, 1990); Co-
hen and Cohen (1983); Kruskal and Majors (1989); Lindeman,
Merenda, and Gold (1980); and Pedhazur (1975, 1982). My
goal is simply to show that these measures rely on different and,
in my opinion, unsatisfactory notions of importance. To sim-
plify matters, I present and discuss the various methods using
population terms. Later I address the issue of sampling error.

It is sometimes suggested that the predictors' zero-order cor-
relations with the criterion, pyx., or squared values, p2

yx, be used
as measures of their importance (e.g., Darlington, 1968). This
implies that a predictor's importance is denned by its unique
and direct predictive ability, ignoring all other variables in the
model.

It is well known that if a model is misspecified, either by omit-
ting important variables or by including unnecessary ones,
some of its attractive properties do not hold (e.g., Hocking,
1976). For example, the inclusion of unnecessary variables in-
flates the standard errors of the estimates, and the omission of
predictors that belong in the model induces bias in the parame-
ter estimates. Thus, another simple approach to the problem
would be to define all variables in the correct model as equally
important.

Undoubtedly, the most commonly invoked interpretation of
importance is a conditional one. The predictor's importance
depends on its contribution to the full model (Equation 1) con-
ditional on the contribution of the other p — 1 variables. There
are two classes of statistics in this category. The first includes all
slope-based measures (Kruskal, 1984): regression coefficients,
their standardized counterparts, the normalized standardized
coefficients (sometimes referred to as direction cosines), and se-
mistandardized coefficients (Stavig, 1977). These measures can
be interpreted as the rate of change in the criterion as a function
of a standard (unit) change in each predictor while the other
predictors are being held constant. Achen (1982) advocated the
product fan*, as a measure of level importance. Its absolute
value, 1/V.xJ, >s proportional to the predictor's elasticity, a mea-
sure often used in econometrics. This measure offers a simple
decomposition of the criterion's mean:

p
Hy = 2 ftMx-

The second class consists of the different variance reduction
measures such as the squared partial correlation and the
squared semipartial correlation, which is also known as the pre-
dictor's usefulness (Darlington, 1968). These correlational
measures can be interpreted as proportions of the criterion's
variance that can be reproduced by each predictor conditional
on the other variables' contribution (e.g., Cohen & Cohen,
1983). They allow for sequential decompositions of py.Xl...Xp

2,
the model's overall fit. In terms of partial correlations, there is
a multiplicative decomposition:

(1 - P^.x,...^_,2) = II (1 - Pyxj-
J-l

). (4)

In terms of semipartial correlations, there is an additive decom-
position:

Py(= Py-x, + PXx2-x,)

For natural, or theoretically meaningful, orders (e.g., successive
terms in a polynomial regression), Kruskal (1987a, 1987b) and
Lindeman, Merenda, and Gold (1980) recommended these se-
quential partial and semipartial correlations, respectively, as
measures of importance. However, they also pointed out that,
in most cases, no such ordering exists. For these cases, they sug-
gested averaging the sequential components (squared partial or
semipartial correlations) across all p\ possible orderings of the
predictors. Thus, a predictor's importance is defined as its aver-
age contribution to the fit of the model when all p\ orderings are
considered.

Building on Kruskal's approach, Theil (1987) and Theil and
Chung (1988) recommended measuring each variable's impor-
tance by the number of bits of information of the specific vari-
able. Let I(x) = -Iog2( 1 - x) for 0 < x < 1 . Then Equation 4
can be reexpressed as the sum of p measures of information:

By averaging across all p\ orders, one obtains another scale of
importance yielding a natural decomposition of the model's
overall goodness (in this case, the total number of bits of infor-
mation).

One of the best-known measures of importance is the prod-
uct of the variable's direct (its correlation with the criterion)
and total (its standardized regression coefficient) effects. This
measure provides a decomposition of the model's fit.

P.V..XI...X,
2 _ \r*

, - L, Pyx (7)

Although often criticized (e.g., Darlington, 1968) and ridiculed
(Kruskal, 1984; Ward, 1969), the measure has been recom-
mended and justified recently by Pratt (1987).

A factor-analytical approach to multiple regression suggests
quantifying a predictor's importance as its loading on the pre-
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dieted composite: its squared correlation with the predicted val-
ues. It is possible to show that

(8)
J-l

Thus, each variable's importance is a weighted average of all p
squared standardized regression coefficients. The weights are
proportional to the squared correlations of the predictor of in-
terest with all other variables.

Critique of the Various Measures oflmportance

An examination of these measures indicates that most share
certain problems that render them less than attractive to users
and researchers. The most glaring weakness is that they all rely
on too narrow, restrictive, and quite arbitrary definitions of im-
portance that do not necessarily match the regular connota-
tions attached to the term in substantive scientific applications.
Concepts are often vague and ill defined, and it may be impos-
sible to offer a precise universal definition of importance. I sus-
pect, however, that most people have a broader understanding
of importance than implied by any of these definitions, and I do
not expect either of the definitions described earlier to provide
fully satisfactory answers to questions such as the relative im-
portance of home and school effects in academic achievement
in the sense intended by educational or developmental re-
searchers.

The various definitions do not necessarily agree with each
other. This is not surprising if one keeps in mind that certain
measures (e.g., the variable's direct effect) depend only on each
predictor's relationship with the criterion, others (e.g., the con-
ditional measures) depend on the whole system of p + 1 vari-
ables, and others (e.g., the average measures) are defined across
all submodels. This gives rise to serious problems in interpreta-
tion of results and communication among users. Numerous il-
lustrative examples in which various measures of importance
rank and scale the predictors differently are available. Some are
related to problems of collinearity (e.g., Cramer, 1974) and sup-
pressor variables (e.g., Tzelgov & Henik, 1991), but the prob-
lem is not restricted to such pathological instances (e.g., Dar-
lington, 1968, 1990; Mosteller & Tukey, 1977; E. J. Williams,
1978).

Most of the approaches reviewed earlier lead to conclusions
that are model dependent and are not invariant to subset selec-
tion. Thus, it is possible that /8f > j3? in the presence of x3 and
x* but that /3f < /3f when x3 or x4 are excluded. Two researchers
who are interested in the relative importance of xt and x2 may
reach different conclusions depending on the other predictors
they include in their models. This situation reflects, in part, a
true state of affairs induced by the nature of the relationships
between the different predictors involved. However, it would be
to everyone's advantage to have a method of determining im-
portance that is invariant under all subset selections.

An assumption implicit in all of the approaches is that the p
variables can always be ordered (in a weak sense) according to
their importance. In fact, in all of the methods reviewed earlier
indices are calculated separately for each predictor and impor-
tance is inferred from the order of these indices. This precludes

the possibility that, for some variables, it might be impossible
to determine an ordering. In such cases, the best one can hope
for is a partial ordering of the predictors' importance. Pratt
(1987) argued that looking for relative importance may be anal-
ogous to "dividing the indivisible" because the predictors are
often interrelated and intertwined in extremely complex and
complicated patterns. It is important to distinguish between
those cases in which a ranking, or scaling, by importance is fea-
sible and meaningful and those instances in which such a rank-
ing is futile and meaningless.

To determine the importance of x, and x,, one should ideally
compare a certain function of x/ (unaffected by x,) with a sim-
ilar function of Xj (unaffected by A',). Yet, many of the methods
reviewed earlier yield measures that are correlated and interde-
pendent. Thus, it is questionable whether their comparison can
lead to meaningful conclusions about relative importance. For
example, when comparing two regression coefficients (or par-
tial correlations), one is contrasting the effect of x, given Xj (and
possibly other variables) with the effect of x,- given x, (and possi-
bly others).

A New Approach to Determining Relative Importance

An alternative approach to the problem of importance is to
formulate a set of requirements and conditions to be satisfied
by a new method. Specifically, a method designed to identify
the variables' relative importance must meet the following three
conditions: (a) Importance should be denned in terms of a vari-
able's "reduction of error" in predicting the criterion, >>; (b) The
method should allow for direct comparison of relative impor-
tance instead of relying on inferred measures; (c) Importance
should reflect a variable's direct effect (i.e., when considered by
itself), total effect (i.e., conditional on all other predictors), and
partial effect (i.e., conditional on subsets of predictors). I make
no claims of exclusivity or uniqueness with regard to these de-
siderata; some may consider this selection of conditions quite
arbitrary and may suggest others. This particular set of require-
ments is consistent with a fairly general and broad interpreta-
tion of importance. Furthermore, any technique satisfying
these requirements will also fulfill the requirements of most of
the measures currently available.

The first requirement explicitly equates importance with pre-
diction or error reduction, which appears to be the most preva-
lent and popular interpretation in the social sciences. The sec-
ond condition induces a mechanism for distinguishing between
cases in which variables can be ranked according to their im-
portance and those in which they cannot be ordered by this
criterion. Finally, the third condition outlines the three compo-
nents of reduction in error associated with importance: direct,
partial, and total.

Next I describe a new methodology (not necessarily the only
one) that satisfies the three requirements: dominance analysis.
Dominance is defined as a pairwise relationship that can be
tested for all p(p - 1 )/2 pairs of variables included in the model.
Consider any pair of predictors, x, and Xj, and let x/, stand for
any subset of the remaining p - 2 variables (i.e., excluding x,-
and Xj). Define variable x, to "weakly dominate" variable Xj if,
and only if,

^ Pr.x*S (9)
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Table 1
Dominance Analysis for p = 3

Variable(s)

x\
X2

x,
X\,X2

Xi,Xi

X2,X}

1

0
Py
Py
Py
Py
Py
Py

Contribution of

2 v v v3 X| X2 A3

P x2 P x2 Pyx2

2 y ' 2 2 2 3 2 _ 2
— Py-x,Xj Py-x\ r'y-x.x^ t*y-x.1 2 2 2 i i i 2 2

Py-xtx-) Py-x-j Py-x^x* Py-Xj

3 2 ^-^1^3 ~ Py-x> py*#* " py-x* ~ 2
,:c, — Py-x.x^, Py-x,x21 22 2 2 i z - 3 1 2
,jc, — Py-x.x->x-i Py-x,Xi

2x3 Py-^,jC2Jc3 Py-X}X3

for all 2<p 2) possible selections of xk, including the null set. The
notation x, D x/ indicates dominance. An alternative form of
the definition involves the variables' usefulness: x, D Xj if, and
only if,

(Pyxix* ~ Py*k2) '•
: - Py*^ (10)

for all possible choices of x/,; x, is said to weakly dominate (i.e.,
be at least as important as) x, if, in all subset models that do not
include either of the two predictors, x, is at least as useful as x,
(i.e., x, adds to the overall fit of the model at least as much as
Xj). One variable is more important than its competitor if its
predictive ability exceeds the other's in all subset regressions.

According to this definition, two predictors, x, and x,, can be
involved in one of the following four exclusive relationships: (a)
x, D Xj, (b) Xj D x,, (c) x, D x, and x, D x,, or (d) neither x, D x,
nor Xj D x,. The first two situations define the simple cases in
which one of the variables dominates the other, the third case
identifies equally important predictors, and the last one indi-
cates situations in which the relative importance of two vari-
ables cannot be determined and they cannot be rank ordered
meaningfully.

Examples

Consider first the case of p = 2 predictors. In this trivial situ-
ation, x, D Xj if, and only if, py.x

2 > py.x
2 (note that this implies

that the contribution of x, to a submodel consisting of Xj only is
greater than the additional contribution of x, to x, alone).

Table 1 presents a prototype of dominance analysis for p =
3 predictors. The first column identifies the variables in each
submodel, and the second describes the fit of that model.

The next three columns (one for each predictor) describe the
increase in the model's fit as a result of the addition of that
particular variable. For example, the first row describes the in-
crease in goodness of fit of the null model associated with the
addition of each variable, and the second row describes the de-
gree to which a model consisting of X! is improved by adding
to it one of the additional predictors. To determine pairwise
dominance, one compares each pair of columns (predictors)
across all rows (submodels) for which both have nonempty en-
tries. Forp = 3, this amounts to two comparisons for each pair.
For example, when comparing x, and x2, one examines their
direct contributions ( p y . x

2 vs. py.X2
2) and their additional con-

tributions to the model including x3. If both differences have

the same sign (e.g., Xi has a greater contribution than x2 in both
instances), a dominance is established (Xi D x2).

As an illustration of this analysis, consider the following hy-
pothetical example. A large university is studying the impor-
tance of various factors in prediction of performance in gradu-
ate school. The three predictors are as follows: Xi = letters of
recommendations, x2 = Graduate Record Examination (GRE)
scores, and x3 = undergraduate grade point average (GPA). The
criterion, y, is the cumulative GPA after 2 years of graduate
school. Data are available for all graduate students over a period
of several years. Because no sampling is involved, these data are
treated as population values. Table 2 presents the (23 — 1) = 7
squared multiple correlations of all the possible models involv-
ing the p = 3 predictors. The values are presented in lexico-
graphical order.

Table 2 also presents the calculations for dominance analysis.
Dominance is examined for all pairs of predictors: GRE scores
contribute more to the prediction of graduate performance
than do letters of recommendation alone (.20 > . 10) and in the
presence of GPA (. 17 > .06). Thus, GRE dominates recommen-
dations. GRE scores are also better than GPA alone (.20 > . 15)
and in addition to recommendations (. 15 > . 11), so GRE domi-
nates GPA. Finally, it is easy to verify that GPA dominates rec-
ommendations. Thus, the three predictors have been ranked ac-

Table 2
A Hypothetical Example With p = 3 Predictors

Dominance analysis

Additional
contribution of

Variable(s)

x,
X2

*3

*I,X2

Xi,X3

X2,X,

P2

0
.10
.20
.15
.25
.21
.32

Xl

.10

—.05
.06

—
—.05

*2

.20

.15

—.17

—.16

XT,

.15

.11

.12

—.12

—
—

Note. xt = recommendations; x2 = Graduate Record Examination
(GRE); jc3 = grade point average.
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cording to their relative importance: GRE, GPA, and letters of
recommendation.

be determined for the pairs {x,-,x/} and {xjrxk}, yet x, D xk,
Dx,, or both.

Properties of Dominance Analysis

By definition, dominance is obtained only if one variable bet-
ters the other in all models; thus, this approach guarantees con-
sistency across all subsets and allows more general inferences.
Also, all of the comparisons are easy to interpret because each
pair of variables is compared only with respect to submodels
excluding both variables of interest. The following is a partial
list of the method's properties:

1. Importance depends only on the first two moments, and
joint moments, of the/? + 1 variables involved.

2. Dominance is invariant across any linear transformation
applied to any subset of variables.

3. If X, D Xj, it can be shown that the usefulness of x, is not
smaller than that of x/, that is,

Thus, dominance analysis allows inferences regarding models
including both variables as well.

4. Dominance is not affected by elimination of any subset of
predictors from the model.

5. Dominance is not affected by (a) addition of any new
"noise" variable uncorrelated with the criterion and the origi-
nal variables or (b) addition of any new variable uncorrelated
with J C ] - • -xp.

6. Dominance implies several of the better known measures
of importance. In particular, if x, D Xj, it must also be true that

pxy.
2 > x

2 (x,, = empty set),

and

Pyxr*

Also, the mean semipartial correlation of x/ must be equal to or
greater than the mean semipartial correlation ofXj (Lindeman
et al.'s 1980, measure), the mean partial correlation of x, must
be equal to or greater than the mean partial correlation of Xj
(Kruskal's, 1987a, 1987b, measure), and the mean information
of Xi must be equal to greater than the mean information of x,
(Theil's, 1987, measure).

7. Dominance is a transitive relationship. The following con-
ditions apply for any triple (x/, x,-, x*): if x/ D Xj, then

, then

It follows that

implying that x, D xk.
8. Lack of dominance, however, is not necessarily transitive.

It is conceivable that relative importance (dominance) cannot

A Quantitative Measure of Importance

Assume now that, in a system with p predictors, all p(p - 1)/
2 pairs can be ordered (i.e., dominance or equality was identi-
fied in each pair). In this case, it is possible to determine a mean-
ingful quantitative measure of importance that is fully consis-
tent with the current approach and yields a useful decomposi-
tion of the models' squared multiple correlation.

The qualitative notion of dominance relies on the compari-
son of the usefulness of the predictors across all subsets. The
quantitative measure provides a summary of these usefulness
measures. In particular, let C(^ be the mean usefulness of x,
across all (£""') models consisting of k + 1 variables (x, and k
additional variables):

C<« = ( 1 1 )

where xh is any subset of k predictors, x, excluded. Thus, CXi
(k)

is the mean usefulness of x, when it is added to k (k = 0 • • -p -
1) additional predictors. Finally, by averaging these values
across all orders, one obtains Cx., the variable's average useful-
ness:

Cx, = 2 (12)

Cx. > 0 because it is a combination of positive components (Cx.
= 0 if, and only if, x, is a noise variable uncorrelated with the
criterion and the other predictors). Computationally, Cx. is
equivalent to Lindeman et al.'s (1980) measure (the mean
squared semipartial correlation across all p\ permutations).
Therefore, it provides the same decomposition of the model's
total fit:

Pyx = y cL <-•*• (13)

With p = 3 variables, one simply calculates the predictor's aver-
age contribution for each class of models with k = 0, 1, or 2
predictors and then averages this contribution across all models.
Thus, one obtains, for x,,

<0) = n 2
, Py-X, >

Xt
W = ((Py.x,x2

2 ~ Pyx,2) + (Py xtx

and
(2) _ 2 — „ 2\•3 Py-X2x3 )

The variable's importance, Cx/, is the mean of these three com-
ponents.

It is interesting to note that, after some simple algebra, this
equation can be reexpressed as follows:
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Table 3
Quantitative Measures of Importance for the Hypothetical
Example With Three Predictors

k

0
1
2

M(CX)
%

Recommendations

.10

.055

.05

.069
18.6

ORE

.20

.16

.15

.173
46.8

Grade point
average

.15

.115

.12

.128
34.6

Note. GRE = Graduate Record Examination.

This particular form provides an interesting insight into the
meaning of CXl: It averages, across all orders, the difference be-
tween the fit of the models including xi and the models exclud-
ing it. Thus, the first term compares the fit obtained by x, alone
and the average of the direct contributions of jc2 and x3; the
second term compares the fit of all models with two predictors,
including x,, and the fit of a model including x2 and x3; and
soon.

Table 3 illustrates these calculations for the hypothetical ex-
ample presented in Table 2. The entries in Table 3 are the pre-
dictors' mean usefulness for all models of order k = 0, 1, and 2.
Consistent with the definition of dominance, the value for GRE
is the highest in each row, and the one for recommendations
is the lowest. Thus, after ranking the importance of the three
variables, we were able to scale them at .173, .128, and .069.
These three values add up to the (full) model's squared multiple
correlation (.37) and attribute 46.8% of the variance to GRE,
34.6% to GPA, and the remaining 18.6% to letters of recom-
mendation.

Computation and Sampling Theory

The definition of dominance (Equation 9) indicates that, for
each pair of variables, one needs to compare squared multiple
correlations from several partial models. If one is to compare
a\\p(p - l)/2 pairs of variables, all subset multiple correlations
must be involved. Thus, any calculation of dominance relation-
ships must start by obtaining all 2" - 1 squared multiple corre-
lations (e.g., the RSQUARE procedure in SAS [SAS Institute,
1985]). Let p be the (2" - 1)X 1 vector of these subset squared
multiple correlations, lexicographically ordered, and let Ay be
any (2P^2) X (2" - 1) matrix of contrasts identifying the 2"~2

models relevant for the comparison of x, and Xj. The product,
A,7 = Ay-p, is a (2"~2) X 1 vector including all of the relevant
differences. If all of its entries are nonnegative, then x, D x,. If
all of its entries are nonpositive, then x, D xt. If all of its entries
are zero, x, and x, are equally important; all other cases indicate
that Xj and .r, cannot be ordered with respect to their impor-
tance. Table 4 illustrates the calculations for the case of p = 3.
The table presents the vector p; three matrices of contrasts, A12,
A, 3, and A23, necessary for the comparisons of x, and x2,xl and
x3, and x2 and x3, respectively; and the difference vectors A,2,
A,3, and A23.

Up to this point, the discussion has been in terms of popula-

Table 4
Calculation of All Three Pairwise Differences
in a Model With p = 4 Predictors

( 1 - 1 0 0 0 0 0

0 0 0 0 1 - 1 0

/ 1 0 -1 0 0 0 0 \

* 0 0 0 1 0 - 1 0 '

(
.4,3

0 1 - 1 0 0 0 0

0 0 0 1 - 1 0 0

Pr-i3

Py-23

Py. 123

lPy.\2~Py.22 \

^ Py.n2 - Py-212 '

A,2

Py-23

Py -2 ~ Py 3

Py-\2 ~ Py- 13

tion values and has ignored any sampling problems. Let R be
the vector of the 2" - 1 sample squared multiple correlations,
lexicographically ordered, based on n observations. It is well
known that R is a biased estimator of p (Olkin & Pratt, 1958).
Olkin and Siotani (1976) showed that the asymptotic distribu-
tion of R is multivariate normal, and Hedges and Olkin (1981)
showed that, as n -*• oo,

V«A(R - p) ~ N(0, A*A'), (15)

where \l/ is the asymptotic variance-covariance matrix of the
various squared multiple correlations (its form is outlined in
the Appendix). Thus, in testing for dominance of one variable
over the other, it is possible to use the just-described result to
calculate (1 - a) 100% asymptotic confidence interval for any
Ay-. If all lower bounds of A/,- are nonnegative, the results are
supportive of the claim that x, D xf, if all upper bounds are
nonpositive, they support the notion that x,- D x,-. If any of the
intervals includes a zero, the relationship between the two pre-
dictors cannot be determined.

No precise small-sample model of inference is available for
dominance analysis. One feasible approximate solution for
small samples is to "jacknife" the estimates (e.g., Arvesen &
Salsburg, 1975; Miller, 1974; Mosteller & Tukey, 1977). By
eliminating one observation at a time, one can obtain n pseudo-
independent estimates of all the relevant squared multiple cor-
relations, estimate the variance-covariance matrix, and obtain
approximate confidence intervals.

As an illustration of large-sample inference regarding domi-
nance, consider an additional example. Pedhazur (1982, p. 202)
presented data regarding the prediction of college GPA by three
predictors—socioeconomic status (SES), IQ, and need achieve-
ment (nAch)—for a sample of 300 individuals. Table 5 presents
the correlation matrix and the vector of squared multiple cor-
relations in this sample, ordered lexicographically.

Table 6 summarizes the calculation of asymptotic confidence
intervals for all three pairs of predictions. The first column pres-
ents the difference between the relevant squared multiple corre-
lations (see Table 4). It appears that this is a clear case of domi-
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Table 5
A Numerical Example With p = 3

Table 7
A Numerical Example With p = 4

Variable

Variables SES

SES 1
IQ .30
nAch .41
GPA .33

IQ nAch GPA

1
.16 1
.57 .50 1

Vector of squared multiple correlations

Variables
in model

SES
IQ
nAch
SES, IQ
SES, nAch
IQ, nAch
SES, IQ, nAch

R2

.109

.325

.250

.353

.269

.496

.496

Note. SES = socioeconomic status; nAch = need achievement; GPA
= grade point average. (From Multiple Regression in Behavioral Re-
search, Explanation and Prediction [p. 203] by E. J. Pedhazur, 1982,
New York: Holt, Rinehart and Winston, Inc. Copyright 1982 by Holt,
Rinehart and Winston, Inc. Reprinted by permission.)

Xi
X2

X3

X4

y

Variables

Xi
X2

Xj
X4

X,X2

XiXj
X\X4

X2Xj
X2X4

X\ A'2 X} X4

I

.683 1

.154 -.050 1

.460 .297 .006 1

.618 .461 .262 .507

Vector of squared multiple correlations

R2 Variables

.JO£ X$\4

.213

.069 Xlx2x,

.257 XiX2x4

.385 xtXiX4

.410 X2x3x4

.445

.294 x,x2X]X4

.363

y

1

R2

.324

.419

.448

.480

.439

.49!

Note. From Applied Multiple Regression/Correlation Analysis for the
Behavioral Sciences (p. 99) by J. Cohen & P. Cohen, 1983, Hillsdale,
NJ: Erlbaum. (Copyright 1983 by Lawrence Erlbaum Associates, Inc.
Reprinted by permission.)

nance: SES is dominated by IQ and nAch, and IQ seems to do-
minate nAch. The second column presents the standard errors
of the differences (using Hedges and Olkin's, 1981, approach
presented in the Appendix), and the last two columns show the
lower and upper bounds of the 95% asymptotic confidence in-
tervals. These bounds support the inferiority of SES as a pre-
dictor in the population. However, the comparison of IQ and
nAch is inconclusive: The lower bounds are negative and the
upper bounds are positive. Thus, although the difference be-
tween the squared multiple correlations favors IQ, one cannot
reject the hypothesis that the predictors are equally important.

Table 6
Asymptotic 95% Confidence Intervals for
All Pairwise Differences (n = 300)

Variables
compared (i,j) Difference

Asymptotic
SE

95% confidence
bounds

Lower Upper

SES-IQ

SES-nAch

IQ-nAch

-.216
-.228
-.141
-.144

.075

.084

0.050
0.039
0.045
0.031
0.064
0.055

-.314
-.300
-.230
-.204
-.045
-.023

-.118
-.158
-.053
-.084

.195

.191

Note. SES = socioeconomic status; nAch = need achievement. Each
pair of variables is compared across two submodels. (From Multiple
Regression in Behavioral Research, Explanation and Prediction [p. 203]
by E. J. Pedhazur, 1982, New York: Holt, Rinehart and Winston, Inc.
Copyright 1982 by Holt, Rinehart and Winston, Inc. Reprinted by per-
mission.)

Finally, consider an example with p = 4 predictors. Cohen
and Cohen (1983, p. 99) presented data for the prediction of
salary (y) from years since doctoral degree (x\), number of pub-
lications (jc2), sex (x3), and number of citations (x4). It is inter-
esting to note that standard measures of importance disagree
with regard to the ordering of the predictors: (a) The simple
correlations indicate that pyx, > pyXi > pyX2 > pyX}', (b) The stan-
dardized coefficients rank order the predictors as follows: b, >

Table 8
Dominance Analysis of a Numerical Example Withp = 4

Contribution of

Variable(s)

x,
X2

Xi
X4

X i X 2

X\X)
xtx4
X2X,
X2Xt

X}X4

X\X2X]
X 1X2X4

XiX]X4

X2X)X4

R2

0
.382
.213
.069
.257
.385
.410
.445
.294
.363
.324
.419
.448
.480
.439

x,

.382
—

.172

.341

.188
—
—
—

.125

.085

.156
—
—
—

.052

X2

.213

.003
—

.225

.106
—

.009

.003
—
—

.115
—
—

.011
—

Xl

.069

.028

.081

—.067
.034

—.035

—.076

—
—.043
—
—

X4

.257

.063

.150

.255
—

.063

.070
—

.145
—
—

.072
—
—
—

Note. From Applied Multiple Regression/Correlation Analysis for the
Behavioral Sciences (p. 99) by J. Cohen & P. Cohen, 1983, Hillsdale,
NJ: Erlbaum. (Copyright 1983 by Lawrence Erlbaum Associates, Inc.
Reprinted by permission.)
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bt > 63 > b2; (c) The usefulness of the variables is as follows:
U(x4) > t/(x,) > U(x3) > U(x2). The data are summarized in
Table 7 and analyzed in Table 8.

As all six pairs of variables are compared, it becomes appar-
ent that x, and x4 dominate x2 and x3 but that the relationships
between Xi and x4 and between x2 and x3 are indeterminate.
Note, for example, that xt is a better predictor than x4 by itself
and in the presence of another variable (x2 or x3); however, x4

betters x, in the presence of both x2 and x3. This result indicates
that the four variables cannot be fully ordered and that their
relative contribution cannot be assessed quantitatively. One can
achieve a partial order only with (x, or x4 or both) D (x2 or x3 or
both). One possible way of "solving" this problem is to fit a
simpler model. If, for example, one eliminatesx2, the overall fit
drops only slightly (to 0.48), the three variables can be ordered
by dominance (x, D x4 D x3), and their importance measures
are 0.26,0.16, and 0.05, respectively.

Concluding Remarks

The main goals of this article have been to illustrate the many
meanings that have been explicitly and implicitly attached to
the term importance in the context of multiple regression, to
highlight certain weaknesses shared by most of these meanings,
and to propose a new approach to this important problem.
What is the role of dominance analysis in the standard use of
multiple regression in behavioral research applications? This
new technique was designed to characterize (and sometimes
quantify) the relative importance of the p predictors in a specific
model. Thus, it does not compete with the various methods
used to identify the model, nor is it biased in favor of one of
these methods. It is best to think of dominance analysis as com-
plementing the stage of model identification and parameter es-
timation. Its major contribution is in the interpretation of the
results.

One can think of regression analysis as a three-stage proce-
dure. The first stage involves selection of the model, the second
stage consists of a qualitative dominance analysis, and the final
stage involves a quantitative analysis.

Selection of the Model

In many confirmatory applications, researchers consider the
exact model to be known and specified on the basis of prior
theoretical and empirical considerations. In other exploratory
applications, researchers attempt to identify the "best" subset
of predictors for the explanation and prediction of y. There are
numerous techniques for selecting this group of variables, and
many measures of goodness. A review and comparison of these
methods is beyond the scope of this article (for partial reviews,
however, see Cohen & Cohen, 1983; Darlington, 1990; Draper
& Smith, 1981; or Hocking, 1976). Only after the completion
of this model specification stage does it make sense to apply
the dominance analysis. Needless to say, dominance analysis is
conditional on the identification of the correct model. If the
model is misspecified, the results of the dominance analysis will
also be incorrect. This may cause problems, especially if certain
predictors are incorrectly omitted from the model. As argued
earlier, adding irrelevant (noise) variables should not affect the

results of dominance comparison in the population. However,
omission of variables that belong in the model can bias these
comparisons (just as it causes bias in the regression coefficient
estimates).

Qualitative Dominance Analysis

Dominance is determined through a pairwise comparison of
all predictors. The final result of this stage is the establishment
of a complete (e.g., the example in Table 2) or partial (e.g., the
example in Table 8) ordering of the p predictors. The determi-
nation of this qualitative relationship involves a stringent crite-
rion incorporating all relevant models for each pair of predic-
tors. The two obvious advantages of this approach are that (a)
the operational definition of importance is more compelling
and matches the intuitive meaning of the term and (b) it elimi-
nates most of the confusion due to the inconsistency between
different measures (given a specific model) and between various
submodels (assuming a certain measure). Recall that x, D x, if
it predicts y better by itself, in the presence of all other p -
2 predictors, or in any other submodel. Thus, if dominance is
established, x, is a more important predictor than x, by any of
the other regular measures of importance. In those cases in
which only a partial order can be established (see Table 8), the
qualitative stage of the analysis pinpoints the potential sources
of ambiguity in inference by identifying the subset of variables
that cannot be ordered unequivocally and the source of the am-
biguity (x, may be better than Xj by itself and in the presence of
all other variables, but only in certain submodels).

An important distinction, often overlooked when interpret-
ing regression analysis, is the one between the descriptive and
the inferential implications of the results. It is not uncommon
to encounter research articles that report numerous significant
tests to identify the best fitting model and interpret the estimates
from the sample as if they were population values. Dominance
analysis is, clearly, not immune to similar problems. Establish-
ing that x, dominates x, in a certain sample does not guarantee
that the same pattern will be replicated in other samples or in
the population (see Table 6 for an example). Users of domi-
nance analysis should make every effort to maintain this impor-
tant distinction.

Quantitative Analysis

The last stage of the analysis invokes a quantitative approach
and, in fact, makes use of an existing measure. However, it is
important to emphasize that this quantitative stage is meaning-
ful only under a certain pattern of qualitative conclusions. It is
inconsistent with the basic approach to calculate Lindeman et
al.'s (1980) measure for a set of predictors that cannot be or-
dered: Assigning unequal numerical values to such variables
would imply that one is better or more important than the other,
contradicting the result of the qualitative analysis. Assigning
equal values to these variables would imply that they are equally
important, which would, again, contradict the qualitative re-
sults.

Some Generalizations

In many cases, the most interesting question from a theoreti-
cal point of view is whether variable x, (e.g., SES) is more or less
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important than x2 (e.g., IQ) in predicting a criterion, y, such as
scholastic achievement, regardless of the other variables in-
volved. The regular measures infer relative importance of the
two predictors from their rank in the vector ofp measures (e.g.,
standardized coefficients). In contrast, dominance analysis pro-
vides a methodology for a direct test of this question without
explicitly referring to the importance of the other p - 2 vari-
ables.

Although dominance analysis was introduced as a method of
comparing specific variables, it can be easily applied to groups
(sets) of inseparable predictors. For example, consider a regres-
sion in which religion is operationalized by three binary
dummy variables, xs, x2, and x3, and marital status is opera-
tionalized by two additional dummy variables, x4 and xs. The
meaningful comparison involves the set of religion variables
against the set of marital status predictors rather than all 10
pairwise comparisons because, from a theoretical point of view,
the dummy variables in each set will always be considered as an
integral group. Similarly, when fitting a polynomial regression,
it seems sensible to combine all terms of x\ (linear, quadratic,
cubic, etc.) and of x2 for the purposes of importance compari-
sons of the two predictors.
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Appendix

Asymptotic Sampling Distribution of All Squared Multiple Correlations (from Hedges & Olkin, 1981)1

Let p be the vector of all 2"~' squared multiple correlations ordered
lexicographically, and let R be its sample counterpart. Let a and b de-
note nonempty sets of the indices of the predictors (1,2, . . . , />) , and let
py.a

2 and py.b2 stand for the squared multiple correlations of y with the
variables included in subsets a and b, respectively. Define a* and b+ as
a* = a U y and b* = b U y. For any nonempty subsets i andj of {0, 1,
. . . , p } , define the matrix of bivariate population and sample corre-
lations whose subscripts lie in / and j, respectively, by Pti and Ry. Thus,
PU is the matrix of correlations ps, such that s e /, t e j, and /?„ is the
sample analogue ofPv.
THEOREM:

Let (y, x^ ..., xp) have a multivariate normal distribution; then,
as « -»• oo,

and

- p)

where ̂  = \\<l/ab\\,

' From "The Asymptotic Distribution of Communality Compo-
nent*" by L. Hedges and I. Olkin, 1981, Psychomelrika, 46, p. 333.
Copyright 1981 by the Psychometric Society. Reprinted by permission.
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