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Estimating Optimal Transformations for Multiple 
Regression and Correlation 

LEO BREIMAN and JEROME H. FRIEDMAN* 

In regression analysis the response variable Y and the predictor 
variables XI, . . , Xp are often replaced by functions 0(Y) and 
4I(XI), . . . p, (Xp). We discuss a procedure for estimating 
those functions 0* and 4 * . . . * that minimize e2 = E{[0(Y) 
_ lp=, 0j(Xj)]2}/var[0(Y)], given only a sample {(Yk, Xkl, 

. . ., Xkp), 1 ' k ? N} and making minimal assumptions 
concerning the data distribution or the form of the solution 
functions. For the bivariate case, p = 1, 0* and 4* satisfy p* 
= p(0*, 4*) = max0,0p[0(Y), +(X)], where p is the product 
moment correlation coefficient and p* is the maximal corre- 
lation between X and Y. Our procedure thus also provides a 
method for estimating the maximal correlation between two 
variables. 

KEY WORDS: Smoothing; ACE. 

1. INTRODUCTION 

Nonlinear transformation of variables is a commonly used 
practice in regression problems. Two common goals are sta- 
bilization of error variance and symmetrization/normalization 
of error distribution. A more comprehensive goal, and the one 
we adopt, is to find those transformations that produce the best- 
fitting additive model. Knowledge of such transformations aids 
in the interpretation and understanding of the relationship be- 
tween the response and predictors. 

Let Y, X, .. . , Xp be random variables with Y the response 
andXI, . . , XXp the predictors. Let 0(Y), q$(XI), . . . , Op(Xp) 
be arbitrary measurable mean-zero functions of the correspond- 
ing random variables. The fraction of variance not explained 
(e2) by a regression of 0(Y) on 4I,I i(Xi) is 

E{LO(Y) - E i(xi) 
e2(0, 1 . . . , 4P) = E02(y) . (1.1) 

Then define optimal transformations as functions Q*, 41*, ... 
4* that minimize (1.1); that is, 

e2(0*, min, . . ., 44) = mm e2(0, 01, . . ., 4p). (1.2) 1 p~~~ .k 0o01 ..... ,Xp 

We show in Section 5 that optimal transformations exist and 
satisfy a complex system of integral equations. The heart of 
our approach is that there is a simple iterative algorithm using 
only bivariate conditional expectations, which converges to an 
optimal solution. When the conditional expectations are esti- 
mated from a finite data set, then use of the algorithm results 
in estimates of the optimal transformations. 

This method has some powerful characteristics. It can be 

* Leo Breiman is Professor, Department of Statistics, University of Cali- 
fornia, Berkeley, CA 94720. Jerome H. Friedman is Professor, Department of 
Statistics and Stanford Linear Accelerator Center, Stanford University, Stan- 
ford, CA 94305. This work was supported by Office of Naval Research Con- 
tracts N00014-82-K-0054 and N00014-81-K-0340. 

applied in situations where the response or the predictors in- 
volve arbitrary mixtures of continuous ordered variables and 
categorical variables (ordered or unordered). The functions 0, 
01, . . ., ~ p are real-valued. If the original variable is cate- 
gorical, the application of 0 or Xi assigns a real-valued score 
to each of its categorical values. 

The procedure is nonparametric. The optimal transformation 
estimates are based solely on the data sample {(Yk, Xkl, . 

Xkp), 1 ? k ? N} with minimal assumptions concerning the 
data distribution and the form of the optimal transformations. 
In particular, we do not require the transformation functions to 
be from a particular parameterized family or even monotone. 
(Later we illustrate situations in which the optimal transfor- 
mations are not monotone.) 

It is applicable to at least three situations: 

1. random designs in regression 
2. autoregressive schemes in stationary ergodic time series 
3. controlled designs in regression. 

In the first of these, we assume the data (Yk, Xk), k = 1, 
. . N, are independent samples from the distribution of Y, 

XI, . . ., Xp. In the second, a stationary mean-zero ergodic 
time series XI, X2, . . . is assumed, the optimal transformations 
are defined to be the functions that minimize 

E02(XpX 
- > 

and the data consist of N + p consecutive observations xl, 
* XN+P- This is put in a standard data form by defining 

Yk = Xk+p, Xk = (Xk+p1, - I *, Xk), k = 1, . . ,N. 

In the controlled design situation, a distribution P(dy | x) for 
the response variable Y is specified for every point x = (xl, 
. . ., xp) in the design space. The Nth-order design consists 
of a specification of N points xl, . . . , XN in the design space, 
and the data consist of these points together with measurements 
on the response variables Yl, . . ., YN. The {Yk} are assumed 
independent with Yk drawn from the distribution P(dy I Xk). 

Denote by PN(dx) the empirical distribution that gives mass 
1/N to each of the points xl, . . ., XN. Assume further that 
PN P, where P(dx) is a probability measure on the design 
space. Then P(dy I x) and P(dx) determine the distribution of 
random variables Y, XI, . . . , Xp, and the optimal transfor- 
mations are defined as in (1.2). 

For the bivariate case, p = 1, the optimal transformations 
0*(Y), +*(X) satisfy 

p*(X, Y) = p(Q*, q*) = max p[0(Y), +(X)], (1.3) 
0,0 
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where p is the product-moment-correlation coefficient. The 
quantity p*(X, Y) is known as the maximal correlation between 
X and Y, and it is used as a general measure of dependence 
(Gebelein 1947; also see Renyi 1959, Sarmanov 1958a, b, and 
Lancaster 1958). The maximal correlation has the following 
properties (Renyi 1959): 

1. 0 ' p*(X, Y) ' 1. 
2. p*(X, Y) = 0 if and only if X and Y are independent. 
3. If there exists a relation of the form u(X) = v(Y), where 

u and v are Borel-measurable functions with var[u(X)] > 0, 
then p*(X, Y) = 1. 

Therefore, in the bivariate case our procedure can also be re- 
garded as a method for estimating the maximal correlation be- 
tween two variables, providing as a by-product estimates of the 
functions 0*, 4*, that achieve the maximum. 

In the next section, we describe our procedure for finding 
optimal transformations using algorithmic notation, deferring 
mathematical justifications to Section 5 and Appendix A. We 
next illustrate the procedure in Section 3 by applying it to a 
simulated data set in which the optimal transformations are 
known. The estimates are surprisingly good. Our algorithm is 
also applied to the Boston housing data of Harrison and Rub- 
infeld (1978) as listed in Belsley et al. (1980). The transfor- 
mations found by the algorithm generally differ from those 
applied in the original analysis. Finally, we apply the procedure 
to a multiple time series arising from an air pollution study. A 
FORTRAN implementation of our algorithm is available from 
either author. Section 4 presents a general discussion and relates 
this procedure to other empirical methods for finding transfor- 
mations. 

Section 5 and Appendix A provide some theoretical frame- 
work for the algorithm. In Section 5, under weak conditions 
on the joint distribution of Y, XI, . . . , Xp, it is shown that 
optimal transformations exist and are generally unique up to a 
change of sign. The optimal transformations are characterized 
as the eigenfunctions of a set of linear integral equations whose 
kernels involve bivariate distributions. We then show that our 
procedure converges to optimal transformations. 

Appendix A discusses the algorithm as applied to finite data 
sets. The results are dependent on the type of data smooth 
employed to estimate the bivariate conditional expectations. 
Convergence of the algorithm is proven only for a restricted 
class of data smooths. However, in more than 1,000 applica- 
tions of the algorithm on a variety of data sets using three 
different types of data smoothers, only one (very contrived) 
instance of nonconvergence has been found. 

Appendix A also contains proof of a consistency result. Un- 
der fairly general conditions, as the sample size increases the 
finite data transformations converge in a "weak" sense to the 
distributional space optimal transformations. The essential con- 
dition of the theorem involves the asymptotic consistency of a 
sequence of data smooths. In the case of iid data there are 
known results concerning the consistency of various smooths. 
Stone's (1977) pioneering paper established consistency for k- 
nearest-neighbor smoothing. Devroye and Wagner (1980) and, 
independently, Spiegelman and Sacks (1980) gave weak con- 
ditions for consistency of kernel smooths. See Stone (1977) 
and Devroye (1981) for a review of the literature. 

There are no analogous results, however, for stationary er- 
godic series or controlled designs. To remedy this we show that 
there are sequences of data smooths that have the requisite 
properties in all three cases. 

This article is presented in two distinct parts. Sections 1-4 
give a fairly nontechnical overview of the method and discuss 
its application to data. Section 5 and Appendix A are, of ne- 
cessity, more technical, presenting the theoretical foundation 
for the procedure. 

There is relevant previous work. Closest in spirit to the ACE 
algorithm we develop is the MORALS algorithm of Young et 
al. (1976) (also see de Leeuw et al. 1976). It uses an alternating 
least squares fit, but it restricts transformations on discrete 
ordered variables to be monotonic and transformations on con- 
tinuous variables to be linear or polynomial. No theoretical 
framework for MORALS is given. 

Renyi (1959) gave a proof of the existence of optimal trans- 
formations in the bivariate case under conditions similar to ours 
in the general case. He also derived integral equations satisfied 
by 0* and q* with kernels depending on the bivariate density 
of X and Y and concentrated on finding solutions assuming this 
density known. The equations seem generally intractable with 
only a few known solutions. He did not consider the problem 
of estimating 0*, q9* from data. 

Kolmogorov (see Sarmanov and Zaharov 1960 and Lancaster 
1969) proved that if Y1, . . . , Yq, XI, . . ., Xp have a joint 
normal distribution, then the functions 0(YI, . . . , Yq), 4(XI, 
* . . , Xp) having maximum correlation are linear. It follows 
from this that in the regression model 

p 
0(Y) = > 4i(Xi) + Z, (1.4) 

i=l 

if the 4i(Xi), i = 1, . . ., p, have a joint normal distribution 
and Z is an independent N(0, 72), then the optimal transfor- 
mations as defined in (1.2) are 0, 01, . . . , Op. Generally, for 
a model of the form (1.4) with Z independent of (XI, . 
Xp), the optimal transformations are not equal to 0, 1, . 
OP. But in examples with simulated data generated from models 
of the form (1.4), with non-normal {4i(Xi)}, the estimated 
optimal transformations were always close to 0, 01, . . , Op. 

Finally, we note the work in a different direction by Ki- 
meldorf et al. (1982), who constructed a linear-programming- 
type algorithm to find the monotone transformations 0(Y), #(X) 
that maximize the sample correlation coefficient in the bivariate 
case p = 1. 

2. THE ALGORITHM 

Our procedure for finding 0*, 0*, . . ., 4* is iterative. 
Assume a known distribution for the variables Y, XI, . ,Xp. 
Without loss of generality, let E02(Y) = 1, and assume that 
all functions have expectation zero. 

To illustrate, we first look at the bivariate case: 

e2(0, 4) = E[0(Y) - /(X)]2. (2.1) 

Consider the minimization of (2.1) with respect to 0(Y) for a 
given function +(X), keeping EQ2 = 1. The solution is 

01(Y) = E[+b(X) |Y]/IIE[44X) |Y]II (2.2) 
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with I * - [E( )2] 12. Next, consider the unrestricted min- 
imization of (2.1) with respect to +(X) for a given 0(Y). The 
solution is 

OI(X) = E[0(Y) I X]. (2.3) 

Equations (2.2) and (2.3) form the basis of an iterative opti- 
mization procedure involving alternating conditional expecta- 
tions (ACE). 

Basic ACE Algorithm 

Set 0(Y) = Y/IIYII; 
Iterate until e2(0, q) fails to decrease: 

XI(X) = E[0(Y) I X]; 
replace +(X) with XI(X); 
01(Y) = E[O(X) I Y]/IIE[k(X) I Y]II; 
replace 0(Y) with 0I(Y); 

End Iteration Loop; 
0 and 0 are the solutions O* and 4*; 
End Algorithm. 

This algorithm decreases (2.1) at each step by alternatingly 
minimizing with respect to one function and holding the other 
fixed at its previous evaluation. Each iteration (execution of 
the iteration loop) performs one pair of these single-function 
minimizations. The process begins with an initial guess for one 
of the functions (0 = Y/IIYII) and ends when a complete iteration 
pass fails to decrease e2. In Section 5, we prove that the al- 
gorithm converges to optimal transformations Q*, O*. 

Now consider the more general case of multiple predictors 
XI,. . . , Xp. We proceed in direct analogy with the basic ACE 
algorithm. We minimize 

e2(0, q5, * , kp) = E[0(Y) - I dj(XJ)1, (2.4) 

holding EQ2 = 1, EO = E I = E4p = 0, through a 
series of single-function minimizations involving bivariate con- 
ditional expectations. For a given set of functions q$1(XI), . 
Op(Xp), minimization of (2.4) with respect to ?(Y) yields 

01(Y) = E[ I Y](xi) I j E[ i (xi) I Y (2.5) 

The next step is to minimize (2.4) with respect to 4I(X1), 
... ., qp(Xp), given 0(Y). This is obtained through another 
iterative algorithm. Consider the minimization of (2.4) with 
respect to a single function Ok(Xk) for given 0(Y) and a given 
set 41, . . , 4 k-1I, 4k+17 * , 4p. The solution is 

kk, l (Xk) =E [0(Y) - > i(Xi) I Xkj (2.6) 
i$k 

The corresponding iterative algorithm is as follows: 

Set 41(XI), . . . , 4p(Xp) = 0; 
Iterate until e2(0, 4', .P . . , 4) fails to decrease; 
Fork= ltopDo: 

Xkk,l(Xk) = E[0(Y) - i#k q5i(Xi) I XkI; 
replace kk(Xk) with jk1 I(Xk); 

End For Loop; 
End Iteration Loop; 

01, . . Xpare the solution functions. 

Each iteration of the inner For loop minimizes e2 (2.4) with 
respect to the function 4k(Xk), k = 1, . . . , p, with all other 
functions fixed at their previous evaluations (execution of the 
For loop). The outer loop is iterated until one complete pass 
over the predictor variables (inner For loop) fails to decrease 
e2 (2.4). 

Substituting this procedure for the corresponding single func- 
tion optimization in the bivariate ACE algorithm gives rise to 
the full ACE algorithm for minimizing the (2.4) e2. 

ACE Algorithm 

Set 0(Y) = Y/IIYII and +,(X1), . . ., 4p(Xp) = 0; 
Iterate until e2(0, 4,, . . ., 4p) fails to decrease; 
Iterate until e2(0, 1, . . ., /p) fails to decrease; 
Fork= ltopDo: 

Ok,l(Xk) = E[0(Y) - Eilk qi(Xi) | Xk]; 
replace 4k(Xk) with kk, I(Xk); 

End For Loop; 
End Inner Iteration Loop; 

01(Y) = E[Yi=, Ii(Xi) I Y]IIIE[= I Oi(Xi) IY]; 
replace 0(Y) with 01(Y); 

End Outer Iteration Loop; 
0, 4, . . . , Op are the solutions 0*, 0, . ,p; 

End ACE Algorithm. 

In Section 5, we prove that the ACE algorithm converges to 
optimal transformations. 

3. APPLICATIONS 

In the previous section, the ACE algorithm was developed 
in the context of known distributions. In practice, data distri- 
butions are seldom known. Instead, one has a data set {(Yk, 
Xkl, . . . , Xkp), 1 k ? N} that is presumed to be a sample 
from Y, XI, . . ., Xp. The goal is to estimate the optimal 
transformation functions 0(Y), 41(XI), . . . , 4p(Xp) from the 
data. This can be accomplished by applying the ACE algorithm 
to the data with the quantities e2, liii, and the conditional ex- 
pectations replaced by suitable estimates. The resulting func- 
tions 0, 4*, I . . ., Op are then taken as estimates of the 
corresponding optimal transformations. 

The estimate for e2 is the usual mean squared error for regres- 
sion: 

e2(o, * * 4P ) I N E 0O(Yk) I Oj(Xk)] 
Nk=l L J= 

If g(y, xl, . . ., xp) is a function defined for all data values, 
then u1gh12 is replaced by 

111J12 I= 
IIgIIN = N E 9 (Yk, Xkl, Xkp)- 

Nk=1I 

For the case of categorical variables, the conditional expectation 
estimates are straightforward: If the data are {(Xk, Zk)}, k = 1, 

N, and Z is categorical, then 

E[XIZ=z] = 2 Xk , 
Zk.Z Zk Z 

where X is real-valued and the sums are over the subset of 
observations having (categorical) value Z = z. For variables 
that can assume many ordered values, the estimation is based 
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on smoothing techniques. Such procedures have been the sub- 
ject of considerable study (e.g., see Gasser and Rosenblatt 
1979, Cleveland 1979, and Craven and Wahba 1979). Since 
the smoother is repeatedly applied in the algorithm, high speed 
is desirable, as well as adaptability to local curvature. We use 
a smoother employing local linear fits with varying window 
width determined by local cross-validation (the "super- 
smoother"; see Friedman and Stuetzle 1982). 

A A 

The algorithm evaluates 0*, 04, . . ., /* at all the corre- 
sponding data values; that is, 0*(y) is evaluated at the set of 
data values {Ykl, k = 1, . . . , N. The simplest way to under- 
stand the shape of the transformations is by means of a plot of 
the function versus the corresponding data values-that is, through 
the plots of 0*(Yk) versus Yk and 41, . . . , 4 versus the data 
values of xl, . . . , xp, respectively. 

In this section, we illustrate the ACE procedure by applying 
it to various data sets. In order to evaluate performance on finite 
samples, the procedure is first applied to simulated data for 
which the optimal transformations are known. We next apply 
it to the Boston housing data of Harrison and Rubinfeld (1978) 
as listed in Belsley et al. (1980), contrasting the ACE trans- 
formations with those used in the original analysis. For our last 
example, we apply the ACE procedure to a multiple time series 

to study the relation between air pollution (ozone) and various 
meteorological quantities. 

Our first example consists of 200 bivariate observations {(Yk, 

Xk), 1 ? k ? 2001 generated from the model 

Yk = exp[xk + Ek], 

with the xl and the 8k drawn independently from a standard 
normal distribution N(0, 1). Figure 1 (a) shows a scatterplot of 
these data. Figures 1(b)-l(d) show the results of applying the 
ACE algorithm to the data. The estimated optimal transfor- 
mation 0*(y) is shown in Figure 1(b)'s plot of 0*(Yk) versus 
Yk, 1 s k s 200. Figure 1(c) is a plot of 4*(Xk) versus Xk. 
These plots suggest the transformations 0(y) = log(y) and +(x) 
= X3, which are optimal for the parent distribution. Figure 1 (d) 
is a plot of 0*(Yk) versus 4*(Xk). This plot indicates a more 
linear relation between the transformed variables than that be- 
tween the untransformed ones. 

The next issue we address is how much the algorithm overfits 
the data due to the repeated smoothings, resulting in inflated 
estimates of the maximal correlation p* and of R*2 = 1 - 

e*2. The answer, on the simulated data sets we have generated, 
is surprisingly little. 

To illustrate this, we contrast two estimates of p* and R*2 

a ~~~~~~~~~~~~~~~~~~c 
y vs. xiF () 

40 0 
L 

20 

-1 0 1 -1 0 

b d 

2 0*(Y) - 2_ 
2 0b*(y) vs. 0*(x) 

A 0 

-1'- 

-2 -2 -2K I I I~~ I III - 

0 20 40 60 -2 -1 0 

Figure 1. First Example: (a) Original Data; (b) Transform on y; (c) Transform on x; (d) Transformed Data. 
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Table 1. Comparison of p* Estimates 

Standard 
Estimate Mean Deviation 

p* direct .700 .034 
ACE .709 .036 

using the above model. The known optimal transformations are 
0(Y) = log Y, +(X) = X3. Therefore, we define the direct 
estimate p for p*, given any data set generated as above by the 
sample correlation between log Yk and xl and set R2 = p2. The 
ACE algorithm produces the estimates 

lN 

P N E 6*(Yk) *i(Xk) = = I 
Nk=I1 

and R*2 = 1 -I - e p*2 In this model p* = .707 and R*2 
- .5. 

For 100 data sets, each of size 200, generated from the above 
model, the means and standard deviations of the p* estimates 
are in Table 1. The means and standard deviations of the R *2 
estimates are in Table 2. 

We also computed the differences p* - p and R*2 - R2 
for the 100 data sets. The means and standard deviations are 
in Table 3. 

The preceding experiment was duplicated for smaller sample 
size N = 100. In this case we obtained the differences in 
Table 4. 

We next show an application of the procedure to simulated 
data generated from the model 

Yk = exp[sin(27tXk) + Ck12], 1 ? k ? 200, 

with the Xk sampled from a uniform distribution U(0, 1) and 
the Ck drawn independently of the Xk from a standard normal 
distribution N(0, 1). Figure 2(a) shows a scatterplot of these 
data. Figures 2(b) and 2(c) show the optimal transformation 
estimates 0*(y) and +*(x). Although log(y) and sin(2irx) are 
not the optimal transformations for this model [owing to the 
non-normal distribution of sin(2irx)], these transformations are 
still clearly suggested by the resulting estimates. 

Our next example consists of a sample of 200 triples {Yk, 

Xkl, Xk2), 1 ' k ' 200} drawn from the model Y = XIX2, with 
XI and X2 generated independently from a uniform distribution 
U(- 1, 1). Note that 0(Y) = log(Y) and Oj(Xj) = log Xj 
(j = 1, 2) cannot be solutions here, since Y, XI, and X2 all 
assume negative values. Figure 3(a) shows a plot of 0*(Yk) 
versus Yk, and Figures 3(b) and 3(c) show corresponding plots 
of j* (Xkl) and 45(Xk2) (1 ' k ' 200). All three solution 
transformation functions are seen to be double-valued. The 
optimal transformations for this problem are 0*(Y) = log|Y| 
and 4j(Xj) = loglXjl (j = 1, 2). The estimates clearly reflect 
this structure except near the origin, where the smoother cannot 
reproduce the infinite discontinuity in the derivative. 

Table 2. Comparison of R*2 Estimates 

Standard 
Estimate Mean Deviation 

R*2 direct .492 .047 
ACE .503 .050 

Table 3. Estimate Differences 

Standard 
Estimate Mean Deviation 

p- .001 .015 
R*2- R2 .012 .022 

This example illustrates that the ACE algorithm is able to 
produce nonmonotonic estimates for both response and predic- 
tor transformations. 

For our next example, we apply the ACE algorithm to the 
Boston housing market data of Harrison and Rubinfeld (1978). 
A complete listing of these data appears in Belsley et al. (1980). 
Harrison and Rubinfeld used these data to estimate marginal 
air pollution damages as revealed in the housing market. Central 
to their analysis was a housing value equation that relates the 
median value of owner-occupied homes in each of the 506 
census tracts in the Boston Standard Metropolitan Statistical 
Area to air pollution (as reflected in concentration of nitrogen 
oxides) and to 12 other variables that are thought to affect 
housing prices. This equation was estimated by trying to de- 
termine the best-fitting functional form of housing price on 
these 13 variables. By experimenting with a number of possible 
transformations of the 14 variables (response and 13 predictors), 
Harrison and Rubinfeld settled on an equation of the form 

log(MV) = al + a2(RM)2 + a3AGE 

+ a4log(DIS) + a5log(RAD) + a6TAX 

+ a7PTRATIO + a8(B - .63)2 

+ aglog(LSTAT) + ajOCRIM + aj1ZN 

+ a12INDUS + a13CHAS + a14(NOX)P + c. 

A brief description of each variable is given in Appendix B. 
(For a more complete description, see Harrison and Rubinfeld 
1978, table 4.) The coefficients al, . . . , a14 were determined 
by a least squares fit to measurements of the 14 variables for 
the 506 census tracts. The best value for the exponent p was 
found to be 2.0, by a numerical optimization (grid search). This 
"basic equation" was used to generate estimates for the will- 
ingness to pay for and the marginal benefits of clean air. Har- 
rison and Rubinfeld (1978) noted that the results are highly 
sensitive to the particular specification of the form of the hous- 
ing price equation. 

We applied the ACE algorithm to the transformed measure- 
ments (y', xl .. x13) (using p = 2 for NOX) appearing in the 
basic equation. To the extent that these transformations are close 
to the optimal ones, the algorithm will produce almost linear 
functions. Departures from linearity indicate transformations 
that can improve the quality of the fit. 

In this (and the following) example we apply the procedure 
in a forward stepwise manner. For the first pass we consider 

Table 4. Estimate Differences, Sample Size 100 

Standard 
Estimate Mean Deviation 

p* - p .029 .034 
R*- R2.042 .051 
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_ . 1 l l I | I~~~~~~~~~~~~~~~~~~~I | |I T 
a 

6 _y vs. x 

6~~~~~~~~~~~~~~~~~~~~~ 

2 

0 

:~~~~~~~~~~~ 1 . 0.2 0.4 0 

b 

2 

0I 

0 .2 4. 0.6. 

1.0 

2 0*(y)~~~~~~~0*x 

0.5 

0.0 

-0.5 

0 0.2 0.4 0.6 0.8 1 

Figure 2. Second Example: (a) Original Data; (b) Transformed y;, 
(c) Transformed x. 

the 13 bivariate problems (p =1) involving the response y' 
with each of the predictor variables x' (1I k -< 13) in turn. 

~~~~~~~~ . 

th prdco 1ta aiie 20(',4kx) sicue 
in th moe.thescn'as(oe-h eanig1 rdc 
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mation 0(y'). This function is seen to have a positive curvature 
for central values of y', connecting two straight line segments 
of different slope in either side. This suggests that the loga- 
rithmic transformation may be too severe. Figure 4(b) shows 
the transformation 0(y) resulting when the (forward stepwise) 
ACE algorithm is applied to the original untransformed census 
measurements. (The same predictor variable set appears in this 
model.) This analysis indicates that, if anything, a mild trans- 
formation, involving positive curvature, is most appropriate for 
the response variable. 

Figures 4(c)-4(f) show the ACE transformations (X)k, (x,). 
kk4(Xk4) for the (transformed) predictor variables x' appearing 
in the final model. The standard deviation u(4,*) is indicated 
in each graph. This provides a measure of how strongly each 
4>*(xj) enters into the model for 0*(y'). [Note that v(0) = 
1.] The two terms that enter most strongly involve the number 
of rooms squared [Figure 4(c)] and the logarithm of the fraction 
of population that is of lower status [Figure 4(d)]. The nearly 
linear shape of the latter transformation suggests that the orig- 
inal logarithmic transformation was appropriate for this vari- 
able. The transformation on the number of rooms squared vari- 
able is far from linear, however, indicating that a simple quadratic 
does not adequately capture its relationship to housing value. 
For fewer than six rooms, housing value is roughly independent 
of room number, whereas for larger values there is a strong 
increasing linear dependence. The remaining two variables that 
enter into this model are pupil-teacher ratio and property tax 
rate. The solution transformation for the former, Figure 4(e), 
is seen to be approximately linear whereas that for the latter, 
Figure 4(f), has considerable nonlinear structure. For tax rates 
of up to $320, housing price seems to fall rapidly with increas- 
ing tax, whereas for larger rates the association is roughly 
constant. 

Although the variable (NOX)2 was not selected by our step- 
wise procedure, we can try to estimate its marginal effect on 
median home value by including it with the four selected vari- 
ables and running ACE with the resulting five predictor vari- 
ables. The increase in R2 over the four-predictor model was 
.006. The solution transformations on the response and original 
four predictors changed very little. The solution transformation 
for (NOX)2 is shown in Figure 4(g). This curve is a nonmon- 
otonic function of NOX2, not well approximated by a linear (or 
monotone) function. This makes it difficult to formulate a sim- 
ple interpretation of the willingness to pay for clean air from 
these data. For low concentration values, housing prices seem 
to increase with increasing (NOX)2, whereas for higher values 
this trend is substantially reversed. 

Figure 4(h) shows a scatterplot of O*(Yk) verus _j_ f* (Xkj) 
for the four-predictor model. This plot shows no evidence of 
additional structure not captured in the model 

4 

0()= , /j*(Xj) + e. 
j=1 

The e^*2 resulting from the use of the ACE transformations was 
.11,? as compared to the e2 value of .20 produced by the Harrison 
and Rubinfeld (1978) transformations involving all 14 varia- 
bles. 

For our final example, we use the ACE algorithm to study 
the relationship between atmospheric ozone concentration and 

meteorology in the Los Angeles basin. The data consist of daily 
measurements of ozone concentration (maximum one hour av- 
erage) and eight meteorological quantities for 330 days of 1976. 
Appendix C lists the variables used in the study. The ACE 
algorithm was applied here in the same forward stepwise man- 
ner as in the previous (housing data) example. Four variables 
were selected. These are the first four listed in Appendix C. 
The resulting R2 was .78. Running the ACE algorithm with all 
eight predictor variables produces an R2 of .79. 

In order to assess the extent to which these meteorological 
variables capture the daily variation of the ozone level, the 
variable day-of-the-year was added and the ACE algorithm was 
run with it and the four selected meteorological variables. This 
can detect possible seasonal effects not captured by the mete- 
orological variables. The resulting R2 was .82. Figures 5(a)- 
5(f) show the optimal transformation estimates. 

The solution for the response transformation, Figure 5(a), 
shows that, at most, a very mild transformation with negative 
curvature is indicated. Similarly, Figure 5(b) indicates that there 
is no compelling necessity to consider a transformation on the 
most influential predictor variable, Sandburg Air Force Base 
Temperature. The solution transformation estimates for the re- 
maining variables, however, are all highly nonlinear (and non- 
monotonic). For example, Figure 5(d) suggests that the ozone 
concentration is much more influenced by the magnitude than 
the sign of the pressure gradient. 

The solution for the day-of-the-year variable, Figure 5(f), 
indicates a substantial seasonal effect after accounting for the 
meteorological variables. This effect is minimum at the year 
boundaries and has a broad maximum peaking at about May 
1. This can be compared with the dependence of ozone pollution 
on day-of-the-year alone, without taking into account the me- 
teorological variables. Figure 5(g) shows a smooth of ozone 
concentration on day-of-the-year. This smooth has an R2 of .38 
and is seen to peak about three months later (August 3). 

The fact that the day-of-the-year transformation peaked at 
the beginning of May was initially puzzling to us, since the 
highest pollution days occur from July to September. This latter 
fact is confirmed by the day-of-the-year transformation with 
the meteorological variables removed. Our current belief is that 
with the meteorological variables entered, day-of-the-year be- 
comes a partial surrogate for hours of daylight before and during 
the morning commuter rush. The decline past May 1 may then 
be explained by the fact that daylight saving time goes into 
effect in Los Angeles on the last Sunday in April. 

These data illustrate that ACE is useful in uncovering inter- 
esting and suggestive relationships. The form of the dependence 
on the Daggett pressure gradient and on the day-of-the-year 
would be extremely difficult to find by any previous method- 
ology. 

4. DISCUSSION 

The ACE algorithm provides a fully automated method for 
estimating optimal transformations in multiple regression. It 
also provides a method for estimating maximal correlation be- 
tween random variables. It differs from other empirical methods 
for finding transformations (Box and Tidwell 1962; Anscombe 
and Tukey 1963; Box and Cox 1964; Kruskal 1964, 1965; 
Fraser 1967; Box and Hill 1974; Linsey 1972, 1974; Wood 
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1974; Mosteller and Tukey 1977; and Tukey 1982) in that the 
"best" transformations of the response and predictor variables 
are unambiguously defined and estimated without use of ad hoc 
heuristics, restrictive distributional assumptions, or restriction 
of the transformation to a particular parametric family. 

The algorithm is reasonably computer efficient. On the Bos- 
ton housing data set comprising 506 data points with 14 vari- 
ables each, the run took 12 seconds of central processing unit 
(CPU) time on an IBM 3081 computer. Our guess is that this 
translates into 2.5 minutes on a VAX 11/750 computer. To 
extrapolate to other problems, use the estimate that running 
time is proportional to (number of variables) x (sample size). 

A strong advantage of the ACE procedure is the ability to 
incorporate variables of quite different type in terms of the set 
of values they can assume. The transformation functions 0(y), 
01(xj), . . . , Op(xp) assume values on the real line. Their 
arguments can, however, assume values on any set. For ex- 
ample, ordered real, periodic (circularly valued) real, ordered, 
and unordered categorical variables can be incorporated in the 
same regression equation. For periodic variables, the smoother 
window need only wrap around the boundaries. For categorical 
variables, the procedure can be regarded as estimating optimal 
scores for each of their values. (The special case of a categorical 
response and a single categorical predictor variable is known 
as canonical analysis-see Kendall and Stuart 1967, p. 568- 
and the optimal scores can, in this case, also be obtained by 
solution of a matrix eigenvector problem.) 

The ACE procedure can also handle variables of mixed type. 
For example, a variable indicating present marital status might 
take on an integer value (number of years married) or one of 
several categorical values (N = never, D = divorced, W = 
widowed, etc.). This presents no additional complication in 
estimating conditional expectations. This ability provides a 
straightforward way to handle missing data values (Young et 
al. 1976). In addition to the regular sets of values realized by 
a variable, it can also take on the value "missing." 

In some situations the analyst, after running ACE, may want 
to estimate values of y rather than 0*(y), given a specific value 
of x. One method for doing this is to attempt to compute 
0 Q*- ( j*(Xj)). Letting Z = 1j=1 Ij*(XJ), however, we 
know that the best least squares predictor of Y of the form Z(Z) 
is given by E(Y I Z). This is implemented in the current ACE 
program by predicting y as the function of ljP=I 4* (xj), ob- 
tained by smoothing the data values of y on the data values of 
Ej> j* (xj). We are grateful to Arthur Owens for suggesting 
this simple and elegant prediction procedure. 

The solution functions 0*(y) and 4 (x1), . . ., * (xp) can 
be stored as a set of values associated with each observation 
(Yk, Xkl, . . . , xkp), 1 ? k ? N. Since 0(y) and +(x), however, 
are usually smooth (for continuous y, x), they can be easily 
approximated and stored as cubic spline functions (deBoor 1978) 
with a few knots. 

As a tool for data analysis, the ACE procedure provides 
graphical output to indicate a need for transformations as well 
as to guide in their choice. If a particular plot suggests a familiar 
functional form for a transformation, then the data can be pre- 
transformed using this functional form and the ACE algorithm 
can be rerun. The linearity (or nonlinearity) of the resulting 
ACE transformation on the variable in question gives an in- 

dication of how good the analyst's guess is. We have found 
that the plots themselves often give surprising new insights into 
the relationship between the response and predictor variables. 

As with any regression procedure, a high degree of associ- 
ation between predictor variables can sometimes cause the in- 
dividual transformation estimates to be highly variable, even 
though the complete model is reasonably stable. When this is 
suspected, running the algorithm on randomly selected subsets 
of the data, or on bootstrap samples (Efron 1979), can assist 
in assessing the variability. 

The ACE method has generality beyond that exploited here. 
An immediate generalization would involve multiple response 
variables YI, . . . , Yq. The generalized algorithm would esti- 
mate optimal transformations 0*, . . .0, O*, 04*, . . ., p* that 
minimize 

EL 01 (Y1) - o )(Xj)~ 

subject to EO = O,= I 1, ..., q, E = O,j = 1, ..., 
p, and IIY, 01(Y1)112 = 1. 

This extension generalizes the ACE procedure in a sense 
similar to that in which canonical correlation generalized linear 
regression. 

The ACE algorithm (Section 2) is easily modified to incor- 
porate this extension. An inner loop over the response variables, 
analogous to that for the predictor variables, replaces the single- 
function minimization. 

5. OPTIMAL TRANSFORMATIONS IN 
FUNCTION SPACE 

5.1 Introduction 

In this section, we first prove the existence of optimal trans- 
formations (Theorem 5.2). Then we show that the ACE algo- 
rithm converges to an optimal transformation (Theorems 5.4 
and 5.5). 

Define random variables to take values either in the reals or 
in a finite or countable unordered set. Given a set of random 
variables Y, XI, . . . , Xp , a transformation is defined by a set 
of real-valued measurable functions (0, 4), . . ., 4)P) = (0, 
4), each function defined on the range of the corresponding 
random variables, such that 

EO(Y) = 0, E/j(Xj) = 0, j = 1, . . ., p 

E02(y) < oo, E)j2(Xj) < oo, j = 1. p. (5.1) 

Use the notation 

+(X) = E 4(Xi). (5.2) 

Denote the set of all transformations by W. 

Definition 5.1. A transformation (0*, q*) is optimal for 
regression if E(0*)2 = 1 and 

e*2 = E[O*(Y) - (*(X)12 

= inf {E[0(Y) - 4(X)]2; EQ2 =1} 

Definition 5 . 2. A transformation (Q* *, + * *) is optimal for 
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correlation if E(0**)2 = 1, k(o**)2 = 1, and 

p= E[0**(Y)4**(X)] 

= sup {E[O(Y)4(X)]; E(4)2 = 1, EO2 = 1}. 

Theorem 5.1. If (0**, 4**) is optimal for correlation, then 
0* = 0**, 4* = p*4** is optimal for regression, and the 
converse. Furthermore, e*2 1 -p*. 

Proof. Write 

E(O- )2 = 1 - 2EO4 + Eb2 

= 1 - 2E(O)VE + E42, 

where - q EIV. Hence 

E(O - )2 2 1 -2p* + E42 (5.3) 

with equality only if EO = p*. The minimum of the right 
side of (5.3) over E42 is at E42 = (p*)2, where it is equal to 
1 - (p*)2. Then (e*)2 = 1 - (p*)2; and if (0**, 4,**) is 
optimal for correlation, then O* = 0**, 4o* = p*4)** is 
optimal for regression. The argument is reversible. (A similar 
result appears in Csaki and Fisher 1963.) 

5.2 Existence of Optimal Transformations 

To show existence of optimal transformations, two additional 
assumptions are needed. 

Assumption 5.1. The only set of functions satisfying (5.1) 
such that 

0(Y) + > 4j(Xj) = 0 a.s. 

are individually a.s. zero. 

To formulate the second assumption, we use Definition 5.3. 

Definition 5.3. Define the Hilbert spaces H2(Y), H2(XI), 
. , H2(Xp) as the sets of functions satisfying (5.1) with the 

usual inner product; that is, H2(Xi) is the set of all measurable 
4, such that E4j(Xj) = 0, Eoj2(Xj) < oo with (0j', 4j) = 
E[j' (Xj)0j(Xj)] . 

Assumption 5.2. The conditional expectation operators 

E(qj(Xj) | Y): H2(Xi) H2(Y), 

E(4i(X1) Xi): H2(XJ) H2(Xi), i = j 

E(O(Y) | X) H2(Y) - H2(Xi) 

are all compact. 

Assumption 5.2 is satisfied in most cases of interest. A suf- 
ficient condition is given by the following. Let X, Y be random 
variables with joint density fx,y and marginals fx, fy. Then the 
conditional expectation operator on H2(Y)-* H2(X) is compact 
if 

f f [fkyIfXfY]dxdy < o(. 

Theorem 5.2. Under Assumptions 5.1 and 5.2, optimal 
transformations exist. 

Some machinery is needed. 

Proposition 5.1. The set of all functions f of the form 

f(Y, X) = O(Y) + , 41(X1), 0 E H2(Y), fj E H2(Xj), 

with the inner product and norm 

(g, f) = E[gf], lf 112 = Ef2, 

is a Hilbert space denoted by H2. The subspace of all functions 
4 of the form 

(X) = t(X1), qj E H2(Xy), 

is a closed linear subspace denoted by H2(X). So are H2(Y), 
HAX,), -. . ., H2(Xp). 

Proposition 5.1 follows from Proposition 5.2. 

Proposition 5.2. Under Assumptions 5.1 and 5.2, there are 
constants 0 < c1 ' c2 < oo such that 

C, 11011, + IkiPI2) ' o + 1 p,j2 

' C2(1O1112 + > likIV)2 

Proof. The right-hand inequality is immediate. If the left side 
does not hold, we can find a sequence fn = n + z )n j such 
that lIIn0112 + JP, 1i1onjJ2 = 1, but llfnl12 -O 0. There is 
a subsequence n' such that0n' 

w 
0, O)n, 4 j); in the sense of 

weak convergence in H2(Y), H2(X1), . . , H2(Xp), respec- 
tively. 

Write 

E[0n'j(Xj)0n'i(Xi)] = E[1n,'(Xj)E(0n'i(Xi) I Xj)] 

to see that Assumption 5.2 implies E4n)t,n'i E4j4i (i = j), 
and similarly for EOn'n4',j. Furthermore II) < lim inf Ikkn iII, 
11011 - lim inf lIn'll. Thus, defining f = 0 + Ejoj, 

lf 112 = 110 + , 2 & < lim inf lIf '112 = 0, 
I 

which implies, by Assumption 5.1, that 0 = 4, = = p 
= 0. On the other hand, 

lIfn 112 = IOn'I112 + 1 InIj4.112 + 2 o (On', On'j) 
i i 

+ 2 (o n" j n'i) 
ioj 

Hence, if f = 0, then lim inf llfnlI2 ? 1. 

Corollary 5.1. If fn w f in H2, then 0n > 0 in H2(Y), Onj 

4j in H2(Xj), j = 1, . . ., p, and the converse. 
Proof. If fn = On + O 4nj 

w 0 + Ej 4j, then by Prop- 
osition 5.2, lim sup II?nIl < ?o, lim sup II4,nIll < ??. Take n' such 
that on 0', 4t, n - 4)J, and let f' = 0' + Ej 4);. Then for 
any g E H2, (g, fn ')- (g, f') so (g, f) = (g, f') all g. The 
converse iS easier. 

Definition 5.4. In H2, let Py P1, and Px denote the projection 
operators into H2(Y), H2(Xj), and H2(X), respectively. 
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On H2(Xi), Pj (j # i) is the conditional expectation operator, 
and similarly for Py. 

Proposition 5.3. Py is compact on H2(X) -> H2(Y), and Px 
is compact on H2(Y) -> H2(X). 

Proof. Take t)n E H2(X), 4, t). This implies, by Cor- 
ollary 5.1, that ()nj - ()i. By Assumption 5.2, PyOnj -4 PY 4) 
so that Py4n -4 Py4. Now take 0 E H2(Y), 4 E H2(X); then 
(0, Py4) = (0, 4) = (PxO, 4). Thus Px: H2(Y) -> H2(X) is 
the adjoint of Py and hence compact. 

Now to complete the proof of Theorem 5.2, consider the 
functional 110 - )112 on the set of all (0, 4) with 110112 = 1. For 
any 0, 4, 

110 - Q112 ? 110 - pX0II2. 

If there is a 0* that achieves the minimum of 110 - PXOII2 over 
110112 = 1, then an optimal transformation is 0*, PxO*. On 110112 

110 - PX0II2 = 1 - IIPX0II2. 

Let s = {supllPxOll; 11011 = 1}. Take On such that IlInII2 = 1, On 
-4 0, and IIPX0nll s-> . By the compactness of Px, IIPXOIll 
IIPxOlI = s. Furthermore, 11011 ' 1. If 11011 < 1, then for 0' = 

0/11011, we get the contradiction IIPxO'II > s. Hence 11011 = 1 
and (0, Px0) is an optimal transformation. This argument as- 
sumes that s > 0. If s = 0, then 110 - Px0II = 1 for all 0 with 
11011 = 1, and any (0, 0) is optimal. 

5.3 Characterization of Optimal Transformations 

Define two operators, U: H2(Y) -> H2(Y) and V: H2(X) 
H2(X), by 

US = PyPx0, V+ = PxPr 

Proposition 5.4. U and V are compact, self-adjoint, and 
non-negative definite. They have the same eigenvalues, and 
there is a 1-1 correspondence between eigenspaces for a given 
positive eigenvalue specified by 

0 = PXOIIIPo0II 0 = PY/iiiPY1ii- 

Proof Direct verification. 

Let the largest eigenvalue be denoted by A, A = IlUlI = IIVII. 
In the sequel we add the assumption that there is at least one 
0(Y) such that IIPx0II > 0. Then A > 0 and Theorem 5.3 follows. 

Theorem 5.3. If Q*, 4* is an optimal transformation for 
regression, then 

AS* = U0*, * =V 

Conversely, if 0 satisfies AO = UO, 11011 = 1, then 0, Px0 is 
optimal for regression. If 4 satisfies AO = V+, then 0 = 
Py/llIPyIll, and A/llIPyIll are optimal for regression. In ad- 
dition, 

(e2) = 1 - 

Proof Let 0*, 'j** be optimal. Then A* = PxO*. Write 

110* - +*II2 = 1 - 2(0*, Xt*) ? Ikg*112. 
Note that (0*, 4)*) = (0*, Py4i*) _ IIPy4)*II with equality only 
if Q* = cPy4)*, c constant. Therefore, Q* = y*lP*l. 

This implies 

IIPyI*110* = UO*, 11P4*4* = V+* 

so that JlPy4*11 is an eigenvalue A* of U, V. Computing gives 
110* - 4*112 = 1 - A*. Now take 0 any eigenfunction of U 
corresponding to A, with 11011 = 1. Let 4 = P,0; then 110 - 
)112 = 1 - A. This shows that Q*, O* are not optimal unless 
A*= . The rest of the theorem is straightforward verification. 

Corollary 5.2. If A has multiplicity one, then the optimal 
transformation is unique up to a sign change. In any case, the 
set of optimal transformations is finite dimensional. 

5.4 Alternating Conditional Methods 

Direct solution of the equations AO = UO or A4 = V4 is 
formidable. Attempting to use data to directly estimate the 
solutions is just as difficult. In the bivariate case, if X, Y are 
categorical, then 40 = UO becomes a matrix eigenvalue prob- 
lem and is tractable. This is the case treated in Kendall and 
Stuart (1967). 

The ACE algorithm is founded on the observation that there 
is an iterative method for finding optimal transformations. We 
illustrate this in the bivariate case. The goal is to minimize 
110(Y) - 4(X)112 with 110112 = 1. Denote PxO = E(0 I X), Py4 
= E(O I Y). Start with any first-guess function 0O(Y) having 
a nonzero projection on the eigenspace of the largest eigenvalue 
of U. Then define a sequence of functions by 

o = Px0o 

01 = PYko/llPY0011 

01 = PXOl, 

and in general /,+l = PXOn, 0n+1 = PY0n+1llPYfn+11l. It is 
clear that at each step in the iteration 110 - 0112 is decreased. 
It is not hard to show that in general, Ong, 4)n converge to an 
optimal transformation. 

The preceding method of alternating conditionals extends to 
the general multivariate case. The analog is clear; given O,n 
Ong the next iteration is 

On + 1 = PXOn , On+1 = PYOn+1111PYOn+111- 

However, there is an additional issue: How can Px0 be com- 
puted using only the conditional expectation operators P1 (] = 
1, . . . , p)? This is done by starting with some function 00 
and iteratively subtracting off the projections of 0 - On on the 
subspaces H2(X1), . . . , H2(Xp) until we get a function 4 such 
that the projection of 0 - 4 on each of H2(X1) is zero. This 
leads to the double-loop algorithm. 

The Double-Loop Algorithm 

The Outer Loop. (a) Start with an initial guess 0O(Y). (b) 
Put On+1 = PXOn 0n+1 = Pyk)n+1II1Pyk)n+111 and repeat until 
convergence. 

Let PEOO be the projection of 00 on the eigenspace E of U 
corresponding to A. 

Theorem 5.4. If IIPEOOII # 0, define an optimal transfor- 
mation by 0* = PESOOIIPEOOII, k* = PXO* Then 110Jn - ?*11 

? 0,1k,, - (*I>O11 
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Proof. Notice that O,+, = UO,/1lUO,l. For any n, 0On = 

ant,* + gn, where gn I E, because, if it is true for n, then 

On+1 = (an7,* + Ugn)/||an7O + Ugn|i 

and Ugn is I to E. For any g I E, lUghi ' rilgil, where r < 
. Since an+ I = i{an/hUOnI0, g9n+1 = Ugn/llUOnl0; then 

hh9n + 1||/an + 1 = |I Ug9n|/Xan < (rI)II9gIIIan - 
Thus lignillan ' c(rIl)". But 110nil = 1, a' + lignih2 = 1 im- 
plying a 2 - 1. Since ao > 0, then an > 0; so an -' 1. Now 
use i1?n - 0*112 = (1 - an)2 + ilgn i12 to reach the conclusion. 
Since I4,+1 - 011I*I X = nIPxO - PXt0*I C 0l,n - 0* IIthe theorem 
follows. 

The Inner Loop. (a) Start with functions 0, 40. (b) If, after 
m stages of iteration, the functions are 4)m), then define, for j 

=1, 2,...,1~p, 

4)(M+l) = - (M M 4m+ 1)) <> j (0 _ E iC))_E gi I)) 
i>j i<j 

Theorem 5.5. Let 'm = Ej 'P(m). Then IIPxO - Q I-I > 0. 
Proof. Define the operator T by 

T = (Il-PPp)(l - p_ ) ..(Il-PI) . 

Then the iteration in the inner loop is expressed as 

0 - 4m+I = T(0 - Pm) 

= Tm+l(0 - 4)) (5.5) 

Write 0 - 00 = 0 - PO + PxO - ~0. Noting that T(O- 
PxO) = 0 - PxO, (5.5) becomes 

Om+ I = Px0 - Tm +I(PxO - ). 
The theorem is then proven by Proposition 5.5. 

Proposition 5.5. For any 0 E H2(X), IIT"'II --* 0. 
Proof. 11( - Pj)4II2 = 11,112 - lIPj4II2 S 11k112. Thus 1ITIh 

s 1. There is no 0 # 0 such that IIT)II = 11411. If there were, 
then ItPjtjI = 0, all j. Then for 4' = 2 4);, 

(q9 q$) = (q$ 4j4) = E (PJq, 4j) = 0. 
J J 

The operator T can be decomposed as I + W, where W is 
compact. Now we claim that IITmWII -* 0 on H2(X). To prove 
this, let y > 0 and define 

G(y) = sup {IITW4)I/IIW41I; 1111 sI 1, IIW)II ' y}. 

Take Xn 
w 4), Ik1I < 1, II|WVnll 2 y so that IITWIIIIIWnII- 

G(y). Then 1111 SI 1, IIW4jII > y, and G(y) = IITW4)I/IIW411. 
Thus G(y) < 1 for all y > 0 and is clearly nonincreasing in y. 
Then 

IITmW`WII = IITWTM"- 1(11 G(IITm - lW411)IITm- 1W41 

Put yo = IIWIl Ym = Gm(ym)yo; then IITmWII - Ym. But clearly 

The range of W is dense in H2(X). Otherwise, there is a 4)' 
# 0 such that (4)', W4)) = 0, all 4). This implies (W*4)', 4)) 
- 0 or W'*4' = 0. Then IIT*4)'II - II4)'II, and a repetition of 

the argument given before leads to 0 = 0. For any 4 and 
E > 0, take W4l so that 114 - W+l11 e. Then lITmIll e E + 
IITmW4111, which completes the proof. 

There are two versions of the double loop. In the first, the 
initial functions 40 are the limiting functions produced by the 
preceding inner loop. This is called the restart version. In the 
second, the initial functions are 00 0. This is thefresh start 
version. The main theoretical difference is that a stronger con- 
sistency result holds for the fresh start. Restart is a faster- 
running algorithm, and it is embodied in the ACE code. 

The Single-Loop Algorithm 

The original implementation of ACE combined a single it- 
eration of the inner loop with an iteration of the outer loop. 
Thus it is summarized by the following. 

1. Start with 00, k0 = 0. 
2. If the current functions are 0n, 4n, define P)n+1 by 

On - 4)n+I = T(fJn - )n) d 

3. Let On+1 = Pkn+1/IIPy4n+ 11. Run to convergence. 

This is a cleaner algorithm than the double loop, and its 
implementation on data runs at least twice as fast as the double 
loop and requires only a single convergence test. Unfortunately, 
we have been unable to prove that it converges in function 
space. Assuming convergence, it can be shown that the limiting 
0 is an eigenfunction of U. But giving conditions for 0 to 
correspond to i, or even showing that 0 will correspond to i, 
"almost always" seems difficult. For this reason, we adopted 
the double-loop algorithm instead. 

APPENDIX A: THE ACE ALGORITHM ON 
FINITE DATA SETS 

A.1 Introduction 
The ACE algorithm is implemented on finite data sets by replacing 

conditional expectations, given continuous variables, by data smooths. 
In the theoretical results concerning the convergence and consistency 
properties of the ACE algorithm, the critical element is the properties 
of the data smooth used. The results are fragmentary. Convergence 
of the algorithm is proven only for a restricted class of smooths. In 
practice, in more than 1,000 runs of ACE on a wide variety of data 
sets and using three different types of smooths, we have seen only 
one instance of failure to converge. A fairly general, but weak, con- 
sistency proof is given. We conjecture the form of a stronger con- 
sistency result. 

A.2 Data Smooths 
Define a data set D to be a set {x, XN} of N points in p- 

dimensional space; that is, Xk = (Xkl, . . , Xkp). Let q)N be the collection 
of all such data sets. For fixed D, define F(x) as the space of all real- 
valued functions 4 defined on D; that is, 4 E F(x) is defined by the 
N real numbers {+(xl), . . . I)(XN)}. Define F(x,), j = 1, . . ., p, 
as the space of all real-valued functions defined on the set {xl,, x2 , 

*. * , XNj}- 

Definition A.l. A data smooth S of x on xj is a mapping S: F(x) 
-*F(x,) defined for every D in GPN. If 4) E F(x), denote the corre- 

sponding element in F(xj) by 5(4) | xj) and its values by 5(4) I Xkj). 

Let xbe any one of x,,... p Some examples of data smooths 
are the following. 
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1. Histogram. Divide the real axis into disjoint intervals {I,}. If 
xk E I,, define 

S(O I xk) = - > 4(Xm). 

nX,,m4kE1 

2. Nearest Neighbor. Fix M < N12. Order the xi getting x < x2 
< .. < XN (assume no ties) and corresponding +(x,), ). 
Put 

S(ktIXk) I OXkM ) 
2M m=-M 

mOO 

If M points are not available on one side, make up the deficiency on 
the other side. 

3. Kernel. Take K(x) defined on the reals with maximum at x = 
0. Then 

S(4O I Xk) = O 4?(xm)K(xm - Xk) E K(x, - Xk). 
m f 

4. Regression. Fix M and order Xk as in example 2. At Xk, re- 
gress the values of 4)(xk+M) . . ., 4)(xk+M), excluding O(Xk), on 
Xk-M, . . ., Xk+M, excluding Xk, getting a regression line L(x). Put 
S(I I Xk) = L(xk). If M points are not available on each side of Xk, 

make up the deficiency on the other side. 

5. Supersmoother. See Friedman and Stuetzle (1982). 

Some properties that are relevant to the behavior of smoothers are 
given next. These properties hold only if they are true for all D C & , 

1. Linearity. A smooth is linear if 

S(aqi + /42) = aSq51 + fS4)2 
for all 41, ()2 E F(x) and all constants a, ,B. 

2. Constant Preserving. If 4 E F(x) is constant (4-c), then 
SO = c. 

To give a further property, introduce the inner product ( )N on 
F(x) defined by 

(4), 4')N = - 4)(Xk)4)'(Xk) N k 

and the corresponding norm 11 IIN 
3. Boundedness. S is bounded by M if 

IIS)IIN ? MII4IIN, all 4 E F(x), 
where IIS5IIN is defined on F(x,) exactly as IkPIIN is defined on F(x). 

In these examples of smooths, all are linear, except the super- 
smoother. This implies they can be represented as an N X N matrix 
operator varying with D. All are constant preserving. Histograms and 
the nearest neighbor are bounded by 2. Regression is unbounded due 
to end effects, but in the Section A.5 we introduce a modified regres- 
sion smooth that is bounded by 2. The bound for kernel smooths is 
more complicated. 

A.3 Convergence of ACE 

Let the data be of the form (Yk, Xk) = (Yk, Xkl. Xkp), k = 1, 
N. Assume that y = x= x= = 0. Define smooths S., 

S l . . , Sp, where S, F(y, x) F(y) and S,: F(y, x) -> F(x,). 
Let H2(y, x) be the set of all functions in F(y, x) with zero mean, and 
let H2(y), H2(x,) be the corresponding subspaces. 

It is essential to modify the smooths so that the resulting functions 
have zero means. This is done by subtracting the mean; thus the 
modified S, is defined by 

Sf4) = S,4) - Av(S,4)). (A.1) 

Henceforth, we use only modified smooths and assume the original 

smooth to be constant preserving so that the modified smooths take 
constants into zero. 

The ACE algorithm is defined by the following. 

1- 0( )(Yk) = Yk, Cb50(xkJ) = 0. 

(The inner loop) 

2. At the n stage of the outer loop, start with 0(n)5 0(?). For every 
m 2 I and j = 1, . p, define 

(m+1) S(0n) - > 4m+) _-E >1 m) 
i<J l>J 

Keep increasing m until convergence to -,. 
(The outer loop) 

3. Set Q(n+1) = SY(i 0)/)IISy(li 0j)IIN Go back to the inner loop 
with Oj?)' = 4, (restart) or Oj50 = 0 (fresh start). Continue until con- 
vergence. 

To formalize this algorithm, introduce the space H2(O, +) with 
elements (0, 04, . . ., ,p), 0 E H2(y), 4, E H2(x,), and subspaces 
H2(0) with elements (0, 0, 0, . . ., 0) = 0 and H2(W) with elements 
(O, 01, . ., p) = +4 

For f = (fo, f,., fp) in H2(0, 4)), define S,: H2(O, 4) 
H2(0, 4)) by 

(S,f) =0, j ? i 

=fi + Sij( f,), j=i 
\,oj 

Starting with 0 = (0, 0, 0, . . , 0), 4)(m) = (0, 0(m)), one complete 
cycle in the inner loop is described by 

0 - + (m I ) = I Sp)(I - Sp - ) 
... 

(I - Sj)(O t() (A.2) 

Define T on H2(0, 4) H2(0, 4)) as the product operator in (A.2). 
Then 

4)(m) = 0 - Tm(0 - 4)(O)) (A.3) 

If, for a given 0, the inner loop converges, then the limiting 4) 
satisfies 

S(0- 4) = 0, ] = 1, P. (A.4) 

That is, the smooth of the residuals on any predictor variable is zero. 
Adding 

0 = Sy,SIISYNIk (A.5) 

to (A.4) gives a set of equations satisfied by the estimated optimal 
transformations. 

Assume, for the remainder of this section, that the smooths are 
linear. The (A.4) can be written as 

SA) = S,O, i = 1, . - , P. (A.6) 

Let sp(S,) denote the spectrum of the matrix Sj. Assume 1 o sp(Sj). 
(The number 1 is in the spectrum for constant preserving smooths but 
not for modified smooths.) Define matrices A, by A, = S,(I - S,)-I 
and the matrix A as ,AJ. Assume further that -1 sp(A). Then 
(A.6) has the unique solution 

4,= A,(I + A)'0, j = 1, . . . 'p- (A.7) 
The element + = (0, 4,p.4),,) given by (A.7) will be denoted 
by PO. Rewrite (A.3) using (I - T)(0 - P0) = 0 as 

4)(m) = PO - Tm(P - ''J'?' (A. 8) 

Therefore, the inner loop converges if it can be shown that Tmf -o 0 
for all f E H2(4)). What we can show is Theorem A. 1. 

Theorem A.]. If det[I + A] $ 0 and if the spectral radii of l,, 
. ,Snare all less than one, a necessary and sufficient condition for 



594 Journal of the American Statistical Association, September 1985 

iTmf -O 0 for all f E H2(4,) is that 

det[A! - (I - Si/A)-I(I - S))] (A.9) 

has no zeros in JA I 1 except A = 1. 
Proof. For Tmf 0, all f E H2(4), it is necessary and sufficient 

that the spectral radius of T be less than one. The equation Tf = 2f 
in component form is 

Af, = -Si(Ai f, + E f, j = 1,. p. (A.1O) 
I<j ,,j 

Let s = li fi and rewrite (A. 10) as 

(Ai -Sj)fj = sj (I -iA) E f,-s) (A.I1) 

If A = 1, (A.11) becomes (I - Sj)fj = -Sjs or s = -As. By 
assumption, this implies that s = 0, and hence fj = 0, for all j. This 
rules out A = 1 as an eigenvalue of T'. For A $ 1, but A greater than 
the maximum of the spectral radii of the S, (j = 1, . . p), define 
g, = (1 - A) i< f,- s. Then f, = (g+- gj))/(I - s), 5o 

(A! - S,)(g1+1 - g,) = (1 - A)S,g1 

or 

gi+, = (I-SI)-'(I - S)g,. (A.12) 
Since gp+1 -iAs, g = -s; then (A.12) leads to 

As = (I -Sp/iA)-I(I - Sp) ... (I - SI/I)-'(I- S)s. (A.13) 
If (A. 13) has no nonzero solutions, then s = 0, g, = 0, and j = 1, 
. . ., p, implying all f, = 0. Conversely, if (A. 13) has a solution s 
# 0, it leads to a solution of (A. 10). 

Unfortunately, condition (A.9) is difficult to verify for general linear 
smooths. If the S, are self-adjoint, non-negative definite, such that all 
elements in the unmodified smooth matrix are non-negative, then all 
spectral radii of Sj are less than one and (A.9) can be shown to hold 
by verifying that 

121 s 1 l(i - S,iaru( - S,)1I 

has no solutions A with JAI > 1 and then ruling out solutions with JAI 
= 1. 

Assuming that the inner loop converges to PC, the outer loop it- 
eration is given by 

0 (n +11 = Sy p @(n) / | Sy PO IN) 

Put the matrix SyP = U so that 

O(n 1) = 'O(n)/llCJII ll (A.n14) 

If the eigenvalue A of UL having largest absolute value is real and 
positive, then Q(n+ 1) converges to the projection of 0(0) on the eigenspace 
of A. The limiting 0, PO is a solution of (A.4) and (A.5). If i is not 
real and positive, then f9() oscillates and does not converge. If the 
smooths are self-adjoint and non-negative definite, then SYP is the 
product of two self-adjoint non-negative definite matrices; hence it has 
only real non-negative eigenvalues. We are unable to find conditions 
guaranteeing this for more general smooths. 

It can be easily shown that with modifications near the endpoints, 
the nearest neighbor smooth satisfies the preceding conditions. Our 
current research indicates a possibility that other types of common 
smooths can also be modified into self-adjoint, non-negative definite 
smooths with non-negative matrix elements. For these, ACE conver- 
gence is guaranteed by the preceding arguments. 

ACE, however, has invariably converged using a variety of non- 
self-adjoint smooths (with one exception found using an odd type of 
kernel smooth). We conjecture that for most data sets, reasonable 

smooths are "close" enough to being self-adjoint so that their largest 
eigenvalue is real, positive, and less than one. 

A.4 Consistency of ACE 

For '0, 01, . . ., 0,, any functions in H2(Y), H2(X) , H2(Xp), 
and any data set D E 9N, define functions Pj(0, I x,) by 

Pj(Ij Xkj) = E(O,(Xi) I Xj = XkJ). (A. 15) 
Let 4j in H2(xj) be defined as the restriction of 4)j to the set of data 
values {xl,, . . ., x,j} minus its mean value over the data values. 

Assume that the N data vectors (Yk, Xk) are samples from the dis- 
tribution of (Y, X, . . ., Xp), not necessarily independent or even 
random (see Section A.5). 

Definition A.2. Let S(m, S/') be any sequence of data smooths. 
They are mean squared consistent if 

EIISj(N)(0 I xj) - P N(4i | xjJN - 

for all 00, .. ,p as above, with the analogous definition for S(N. 

Whether or not the algorithm converges, a weak consistency result 
can be given under general conditions for the fresh-start algorithm. 
Start with 00 E H2(Y). On each data set, run the inner-loop iteration 
m times; that is, define 

(nn+ I) = 9(n) - Tm(9(n)) 

Then set 
0(n + 1) = S 4(n+l)lllsY+(n + I)IIN. 

Repeat the outer loop I times, getting the final functions ON(y; m, 1), 
OjN(xj; m, 1). Do the analogous thing in function space starting with 
00, getting functions whose restriction to the data set D are denoted 
by 0(y; m, 1), Oj(x,; m, 1). 

Theorem A.2. For the fresh-start algorithm, if the smooths SyN) 

S,N' are mean squared consistent, linear, and uniformly bounded as N 
- 00, and if for any 0 E L2(Y), 11N0 110112, EllIII 110112, then 

EIION(y; m, I) - 0(y; m, 1)112 -* 0, 

EIIOjN(xj; m, 1) - N,(x1; m, 1)11k -0 

If 0* is the optimal transformation PEOOIIIPEOOII, 4* = Px0*, then as 
m, I - a) in any way, 

110(-; m, 1) - 0*11 -? 0, llj(I ; m, 1) -04*1l -* 0. 

Proof. First note that for any product of smooths S(,N) ... kv 

EllS(N 
' ... S(NO 

So 
PI, ...^ON 

? 

EIIS~ "Sth0 - p h. 00k - O. 

This is illustrated with S,v)SJN)00 (i 5 j). Since EIIS>N)00 - 
PAUII - 0, then Sf00 = Pjo0 + 4j,N' where EIIjNIN|- 0. 
Therefore 

SFN)(Sj(0o) = St PJ00 + SrN)4)JN. 

By assumption, 11S(M)0j,N11N < M110j,NIIN, where M does not depend on 
N. Therefore EIISlN)4)j,NIk2 - 0. By assumption, EIIS(N)P10o - 

P,P,0011N -- 0 so that EIISVv)SjN)0o - PPj0 1k2 ->O. 

Proposition A.1. If ON is defined in H2(y) for all data sets D, and 
0 E H2(Y) such that 

EIION(y) - 0(y)112 0, 

then 

E ON(Y) 0(y) 2 2 

Proof. Write 0/11011 = 0/IIOIIN + 0(/101 - l/IIOIIN). Then two 
parts are needed: first, to show that 

11IIONIIN IIOIIN IN 
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and second, to show that 

F 1- IIOIIN 2N 

For the first part, let 

S2 1 (0N(Yk) 0 (Yk) 2 (ON , 0)N 
N N k IIONIIN IIOIIN) IIONIINIIOIIN) 

Then SN ? 4, so it is enough to show that SN 0 to get ESN 0. 

Let 

VN N -> (ON(Yk) -(YJ 

= IIONIIk + 111N - 2(ON, 0)N 

= 
(IIONIIN - IIIIN) + 2(1IOIINIIONIIN - (ON, 0)N)- 

Both terms are positive, and since EVN 2- 0, E(I10NIIN 
- IIOIIN)2 - 0 

and E(IIOIINIIONIIN - (ON, 0)N) O 0. By assumption, 1101kN 110112, 

resulting in SN 40 
Now look at 

WN = - 
0 
O2(yk)[liII01IN - 1/11011]2 

Nk 

IIIIk(1 IIOIIN - 1/11011)2 

= (1 - IIOIIN/IIOII) 

Then EWN -- 0 follows from the assumptions. 
Using Proposition A. 1, it follows that EIION(Y; m, 1) - 0(y; m, 

N)II- 0 and, in consequence, that E II,N(X,; m, 1) - +,(x, ; m, 1)112 
- 0. 

In function space, define 

P)m'Q = 0 - Tm0 

Um= x 

Then 

0(; m, 1) = Um 0lIU n 
The last step in the proof is showing that 

||UM00I/11UM00II - 0*11 -| 0 

as m, I go to infinity. Begin with Proposition A.2. 

Proposition A.2. As m - oo, Um - U in the uniform operator 
norm. 

Proof. llUmO - U0II = IlPyTmPx0ll _ IlTmPx0ll. Now on H2(Y), 
IlTmPxIl -O 0. If not, take 0mg 110mll = 1 such that 1T1'PX0mll ? 6, all 
m. Let Om,'4 0; then PX0m 

s 
PxO and 

JlTm'PXOm,ll IITm'Px(0m, - 0)11 + IITmPx0II 

C llPx(0rm - 0)11 + IlTm'PxOll. 

By Proposition (5.5) the right-hand side goes to zero. 

The operator Um is not necessarily self-adjoint, but it is compact. 
By Proposition (A.2), if 0(sp(U)) is any open set containing sp(U), 
then for m sufficiently large, sp(Um) C 0(sp(U)). Suppose, for sim- 
plicity, that the eigenspace EA corresponding to the largest eigenvalue 
i of U is one-dimensional. (The proof goes through if E, is higher- 
dimensional, but it is more complicated.) Then for any open neigh- 
borhood 0 of A, and m sufficiently large, there is only one eigenvalue 
Am of Um in 0, )m Lrn> s, and the projection P(m) of Um corresponding 
to )r converges to PEA in the uniform operator topology. Moreover, 
'ir can be taken as the eigenvalue of Urn having largest absolute value. 
If iL' is the second largest eigenvalue of U and 4m is the eigenvalue 
of Urn having the second highest absolute value, then (assuming E,~ 
is one-dimensional) 4m > A'. 

Write 
Wm = Um P~,E W = U -PE; 

so IlWm - Wll -- 0 again. Now, 

Um6o = Pm)0O + WI0o 

U'0O = 1IPE-0o + W00. (A.16) 

For any E > 0 we will show that there exists mo, 1 such that for m 
M iO, 1 ? 10, 

||wmo/im 001A 8, |W Soll/2 - * (A. 17) 

Take r = (, + A')/2 and select mo such that r > max(G, ImlI; m ' 
MO). Denote by R(A, Wm) the resolvent of Wm. Then 

WI = 
I 

| RQL, Wm)di 
27r I|=r 

R 

and 

-ilmi rI | gR(A, Wm)11dJAJ, 27r 12=r 

where dI)4 is arc length along JIH = r. On JiA = r, for m m io, IIR(A, 
Wm)II_ is continuous and bounded. Furthermore, IIR(Q, Wm)II -> IIR({, 
W)II uniformly. If M(r) = maxlpI=rIIR(Q, W)II, then 

IIWII < r'M(r)(1 + Am), 

where Am O 0 as m -> oo. Certainly, 

IIWIII ? r'M(r). 
Fix 6 > 0 such that (1 + 6)r < A. Take m' such that for m 2 max(mo, 
ms), Am ' (1 + 6)r. Then 

IIWII/II A 1/(1 + 6))'M(r)(l + Am) 
and 

ll'l li'< 1/ 1+ 6))'M(r) - 

Now choose a new mo and 10 such that (A. 17) is satisfied. 
Using (A.17), 

ul 00 P(m)00 

where 8m,i 0 as m, I -l oo. Thus 
U1 0 PE 0O PE-00 

m0- 0* =1 

IIU|| 00H m,I + IIPEm 1l IIPE-0011 

and the right side goes to zero as m, I - oo. 
The term weak consistency is used above because we have in mind 

a desirable stronger result. We conjecture that for reasonable smooths, 
the set CN = {(Y1, Xl), . . ., (YN, XN); algorithm converges} satisfies 
P(CN) --+1 and that for 0N, the limit on CN starting from a fixed 00, 

E[ICNII0N - 0N] 0. 

We also conjecture that such a theorem will be difficult to prove. A 
weaker, but probably much easier result would be to assume the use 
of self-adjoint non-negative definite smooths with non-negative matrix 
elements. Then we know that the algorithm converges to some ON, 
and we conjecture that E[II0N - 0*N] 0 

A.5 Mean Squared Consistency of Nearest 
Neighbor Smooths 

To show that the ACE algorithm is applicable in a situation, we 
need to verify that the assumptions of Theorem (A.2) can be satisfied. 
We do this, first assuming that the data (Y,, X), . (YN, XN) are 
samples from a two-dimensional stationary, ergodic process. Then the 
ergodic theorem implies that for any 0 E L2(Y), 11011k -l 11012 and, 
trivially, E~I0ISI >~ 1lOW 

To show that we can get a bounded, linear sequence of smooths 
that are mean squared consistent, we use the nearest neighbor smooths. 
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Theorem A.3. Let (Y1, XI),'. . . , (YN, XN) be samples from a 
stationary ergodic process such that the distribution of X has no atoms. 
Then there exists a mean squared consistent sequence of nearest- 
neighbor smooths of Y on X. 

The proof begins with Lemma A. 1. 

Lemma A.J. Suppose that P(dx) has no atoms, and let PN(dx) 
P(dx). Take 3N> O, 6N- > O; define J(x; E) = [x - c, x + ?]; 
and 

CN(x) = min{e; PN(J(x, ?)) 2 AN} 

e(x) = min{e; P(J(x, e)) 6 }. 

Then using A to denote symmetric difference, 

PN(J(X, EN(X)) A J(x, e(x))) -* 0 uniformly in x (A.18) 
and 

lim sup sup PN(J(x, E(x)) A J(y, E(y))) c &X(h), (A. 19) 
N {(x,y);Ix-yjIt} 

where s1(h)- 0 ash- 0. 
Proof. Let FN(x), F(x) be the cumulative df corresponding to PN, 

P. Since FN - F and F is continuous, then it follows that 

supIFN(x) - F(x)I -- O. 

To prove (A. 18), note that 

PN(J(X, 9N) A J(X, E)) 
_ 1PN(J(X EN)) - PN(J(X, 0)) 

1 |N - PN(J(X, 9N))l 

+ 1|N - 31 + IFN(X + ?(x)) - F(x + ?(x))| 

+ IFN(X - ?(X)) - FN(x - ( , 

which does it. To prove (A. 19), it is sufficient to show that 

sup P(J(x, e(x)) A J(y, ?(y))) c ?X(h)- 
x,y, k-yj5h 

First, note that 

|?(x) - s(Y)I S Ix - yA. 

If J(x, E(x)), J(y, e(y)) overlap, then their symmetric difference con- 
sists of two intervals I,, 12 such that JIj ? 2jx - Yl, 1I21 C 21x - yl. 
There is an ho > 0 such that if |x - y ho, the two neighborhoods 
always overlap. Otherwise there is a sequence {x"}, with e(x,) -* 0 
and P(J(x", e(x"))) = 3, which is impossible, since P has no atoms. 
Then for h s ho 

sup P(J(x, e(x)) A J(y, e(y))) s 2 sup P(I) 
x,y;jx-yt-h |iI92h 

and the right-hand side goes to zero as h -> 0. 
The lemma is applied as follows: Let g(y) be any bounded function 

in L2(Y). Define P6(g I x), using If) to denote the indicator function, 
as 

11/ g(y) I(x' E J(x, e(x)))P(dy, dx') 

= 11/ Px(g I x') I(x' E J(x, e(x)))P(dx'). 

Note that Pa is bounded and continuous in x. Denote by SW the smooths 
with M = [NJ]. Proposition A.3 follows. 

Proposition A.3. ElISg g - Pjgllj -- 0 for fixed 3. 
Proof. By (A. 18), with probability one, 

Sr (g I x) = (1/ [N]) I g(yj)I(x1 E J(x, EN(X))) 

can be replaced for all x by 

gN(x, a)) = (11[3N]) > g(y3)1(x, E J(x, iE(x))), 

where w is a sample sequence. 

By the ergodic theorem, for a countable {x"} dense on the real line, 
and c E W', P(W') = 1, 

('N(X., w0) = gN(X, CO) - Pb(g I Xn) -O 0. 

Use (A. 19) to establish that for any bounded interval J and any wo E 
W', (N(X, co) 0 uniformly for x E J. Then write 

1N 

ll|DN(X, 0)IIN = E > N'(Xk, w)I(Xk E J) N k=1 

N 
+ - >k=Fkl, o41(Xk E' J). 

Nk= 

The first term is bounded and goes to zero for co E W'; hence its 
expectation goes to zero. The expectation of the second tenn is bounded 
by cP(X E ' J). Since J can be taken arbitrarily large, this completes 
the proof. 

Using the inequality 

EjIS6'g - Pxglls 2 Ej|S( g - P6gll + 21IP6g - Pxgll2 
gives 

lim sup EjjS?g - Pxgll2 ? 21jP6g - Pxgll2. 
Proposition A.4. For any 4(x) c L2(X), lim,,,0jjP& - O.11 - 0. 
Proof. For 4 bounded and continuous, 

O I q(x')I(x' E J(x, e(x)))P(dx') - (x) 

as (5-- 0 for every x. Since suplP,5 - ? c for all (, then IIP,4 
- oil -- 0. The proposition follows if it can be shown that for every 
0 E L2(X), lim sup6llP0ll < o. But 

IP6l12 = f [ O f k(x')I(x' E J(x, C(x)))P(dx')1 P(dx) 

S O (X )2 p(d) [ I(X' E- J(x, e(x)))P(dx)] 

Suppose that x' is such that there are numbers E+, c- with P([x', x' 
+ c+]) = (, P([x', x' - -]) = 6. Then x' E J(x, E(x)) implies 
xi - e x x' + +, and 

116 f I(x' E J(x, c(x)))P(dx) ? 2. (A.20) 

If, say, P([x', co)) < ( then x 2? x' - c and (A.20) still holds, and 
similarly if P((- oo, x']) < 3. 

Take {OnJ to be a countable set of functions dense in L2(Y). By 
Propositions A.3 and A.4, for any c > 0, we can select 6(e, n), N(6, 
n) so that for all n, 

E1lS'On - PX0,Ik2 ? c for ( s ((, n), N 2 N(5, n). 

Let cM I 0 as M -* 0o; define 3M = minnlM 6(c, n) and N(M) = 
maxn.M N(6M, n). Then 

E1IS,N 0n - PX0n112 < CM for n ? M, N 2 N(M). 
Put M(N) = max{M; N ? max(M, N(M))}. Then M(N) -> 00 as N 

oo, and the sequence of smooths SI is mean squared consistent 
for all On. Noting that for B E L2(Y), 

EIIS0B -PX0II2 s 3EIISI0n - PXOn N + 9110 - OnlI2 

completes the proof of the theorem. 
The fact that ACE uses modified smooths SWg = Smg - 

Av(S?g) and functions g such that Eg = 0 causes no problems, since 

IIAv(S rg)II = (Av(SNg))2 

and 

Av(Sag, gN(x, cf), 

using the notation of Proposition A.3. 
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Assume g is bounded, and write 
I N ( ) 1N 

Av(SI) g) =N k Ni + 

By the ergodic theorem, the second term goes a.s. to EPj(g I X), and 
an argument mimicking the proof of Proposition A.3 shows that the 
first term goes to zero a.s. 

Finally, write 

IEP6(g I X)| = IEP6(g I X) - EPxgI s lIP64 - 4lI, 

where 0 = Pxg. Thus, Theorem A.3 can be easily changed to account 
for modified smooths. 

In the controlled experiment situation, the {Xk} are not random, but 
the condition PN(dx) P(dx) is imposed. Additional assumptions are 
necessary. 

Assumption A. 1. For O(Y) any bounded function in L2(Y), E(O(Y) 
| X = x) is continuous in x. 

Assumption A.2. For i # i and +(x) any bounded continuous 
function, E(O(X,) I X, = x) is continuous in x. 

A necessary result is Proposition A.5. 

Proposition A.S. For O(y) bounded in L2(Y) and +(x) bounded 
and continuous, 

I N 
- E O(yJ)o(xJ) as > EO(Y)O(X). 

NJ=I 

Let TN = J=, O(YJ)4(xJ). Then ETN = J7 g(x,)+(xj), g(x) = 

E[O(Y) I X = x]. By hypothesis, ETNIN-> EO(Y) (X). Furthermore, 
N 

ON var(TN) = E E[O(y) - g(x )]20(X ) 

N 

=E h (x,) 0(x,), 
* I 

where h(x) = E[(O(Y) - g(X))2 | X = x]. Since ho is continuous 
and bounded, then NIN -+ Eh(X)O(X). Now the application of Kol- 
mogorov's exponential bound gives 

TNIN - ETNIN aS > 0, 

proving the proposition. 
In Theorem A. 2 we add the restriction that 00 be a bounded function 

in L2(Y). Then the condition on 0 may be relaxed to the following: 
For 0, any bounded function in L2(Y), 1111 N 110112, EI0lIN 11-> . 
These follow from Proposition A.5 and its proof. Furthermore, because 
of Assumptions A. 1 and A.2, mean squared consistency of the smooths 
can be relaxed to the following requirements. 

Assumption A.3. For i =# j and every bounded continuous function 
+(x,), 

2I~ P4I --> 0. 
||s,+ 

- 

PJOIIN ? 

Assumption A.4. For every bounded function O(y) E L2(Y), 

EIIS,O - P N0IIk 0 
Assumption A.5. For every bounded continuous function +(x,), 

EIIS,q$ - PVII2 -> 0. 

The existence of sequences of nearest-neighbor smooths satisfying 
Assumptions A.3, A.4, and A.5 can be proven in a fashion similar 
to the proof of Theorem A.3. Assumption A. 3 is proven using Lemma 
A.1 and Proposition A.4. Assumptions A.4 and A.5 require Propo- 
sition A.S in addition. 

If the data are iid, stronger results can be obtained. For instance, 
mean squared consistency can be proven for a modified regression 
smooth similar to the supersmoother. For x of any point, let J(x) be 
the indexes of the M points in {XA} directly above x plus the M below. 
If there are only M' < M above (below), then include the M + (M 

- M') directly below (above). For a regression smooth, 

S(4 I x) = f + [rF(0, x)/](x - xx), (A.21) 

where /X, xx are the averages of 0(yj, x, over the indexes in J(x), 
and Fx(4, x), U2 are the covariance between IYk), Xk and the variance 
of Xk over the indexes in J(x). 

Write the second term in (A.21) as 

[Fx(& x)OlR[(x - Xx)ux] 

If there are M points above and below in J(x), it is not hard to show 
that 

l(x - XX)/I s 1 

This is not true near endpoints where (x -x )/Ix can become arbi- 
trarily large as M gets large. This endpoint behavior keeps regression 
from being uniformly bounded. To remedy this, define a function 

[x], = x, lxl? s1 

= sign(x), lxi > 1, 

and define the modified regression smooth by 

S(4 I x) = x + Fr(4, x)/Ux[(x - XX)/Ux],. (A.22) 

This modified smooth is bounded by 2. 

Theorem A.4. If, as N -> oo, M -> oo, MIN -> 0, and P(dx) has 
no atoms, then the modified regression smooths are mean squared 
consistent. 

The proof is in Breiman and Friedman (1982). We are almost certain 
that the modified regression smooths are also mean squared consistent 
for stationary ergodic time series and in the weaker sense for controlled 
experiments, but under less definitive conditions on rates at which M 

00. 

APPENDIX B: VARIABLES USED IN THE 
HOUSING VALUE EQUATION OF 

HARRISON AND RUBINFELD (1978) 

MV-median value of owner-occupied home 
RM-average number of rooms in owner units 
AGE-proportion of owner units built prior to 1940 
DIS-weighted distances to five employment centers in the Boston 

region 
RAD-index of accessibility to radial highways 
TAX-full property tax rate ($/$10,000) 
PTRATIO-pupil-teacher ratio by town school district 
B-black proportion of population 
LSTAT-proportion of population that is lower status 
CRIM-crime rate by town 
ZN-proportion of town's residential land zoned for lots greater 

than 25,000 square feet 
INDUS-proportion of nonretail business acres per town 
CHAS-Charles River dummy = 1 if tract bounds the Charles 

River, 0 otherwise 
NOX-nitrogen oxide concentration in pphm 

APPENDIX C: VARIABLES USED IN THE 
OZONE-POLLUTION EXAMPLE 

SBTP-Sandburg Air Force Base temperature (C?) 
IBHT-inversion base height (ft.) 
DGPG-Daggett pressure gradient (mmhg) 
VSTY-visibility (miles) 
VDHT-Vandenburg 500 millibar height (in) 
HMDT-humidity (percent) 
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IBTP-inversion base temperature (F?) 
WDSP-wind speed (mph) 

Dependent Variable: 

UP03-Upland ozone concentration (ppm) 

[Received August 1982. Revised July 1984.] 
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Comment 
DARYL PREGIBON and YEHUDA VARDI* 

In data analysis, the choice of transformations is often done 
subjectively. ACE is a major attempt to bring objectivity to 
this area. As Breiman and Friedman have demonstrated with 
their examples, and as we have experienced with our own, 
ACE is a powerful tool indeed. Our comments are sometimes 
critical in nature and reflect our view that there is much more 
to be done on the subject. We consider the methodology a 
significant contribution to statistics, however, and would like 
to compliment the authors for attacking an important problem, 

* Daryl Pregibon and Yehuda Vardi are Members of Technical Staff, 
AT & T Bell Laboratories, Murray Hill, NJ 07974. 

for narrowing the gap between mathematical statistics and data 
analysis, and for providing the data analyst with a useful tool. 

1. ACE IN THEORY: HOW MEANINGFUL IS 
MAXIMAL CORRELATION? 

To keep our discussion simple we limit it here to the bivariate 
case, though the issues that we raise are equally relevant to the 
general case. The basis of ACE lies in the properties of maximal 
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