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A general method is presented for comparing the relative importance of predictors
in multiple regression. Dominance analysis (D. V. Budescu, 1993), a procedure that
is based on an examination of the R2 values for all possible subset models, is refined
and extended by introducing several quantitative measures of dominance that differ
in the strictness of the dominance definition. These are shown to be intuitive,
meaningful, and informative measures that can address a variety of research ques-
tions pertaining to predictor importance. The bootstrap is used to assess the stability
of dominance results across repeated sampling, and it is shown that these methods
provide the researcher with more insights into the pattern of importance in a set of
predictors than were previously available.

The purpose of multiple regression (MR) is to pre-
dict or explain criterion (response) values from sev-
eral well-selected predictors. Social scientists often
use MR models to characterize the nature and degree
of relationship between one response variable (Y) and
multiple predictors (X1, X2, . . . , Xq). In this process, it
makes sense to distinguish between two separate
stages: model selection and predictor comparison (see
Azen, Budescu, & Reiser, 2001; Budescu, 1993).

In the model selection stage one identifies the “cor-
rect” model, or a subset of p predictors from the full
set of q predictors that provides the most adequate
description of the response variable, Y. Pedhazur
(1997) distinguishes between two general approaches
to MR, referred to as explanation and prediction, that
influence model selection. A researcher who uses the
explanation approach is guided by prior theory or sub-
stantive research to identify the “true” predictors and
determine the choice of model. In this case the re-

searcher’s goal is to confirm a specific theory. In con-
trast, a researcher who uses the prediction approach is
simply attempting to find the most predictive model
and is less concerned with whether the specific vari-
ables included in such a model are the true predictors.
This can be achieved through one of numerous statis-
tical model selection procedures (see, e.g., Cook &
Weisberg, 1999; Hocking, 1976; Judge, Griffiths,
Hill, Lutkepohl, & Lee, 1985; Miller, 1990; Neter,
Kutner, Nachtsheim, & Wasserman, 1996; Thall, Rus-
sell, & Simon, 1997). In some cases researchers may
use a combination of these two research goals by
identifying one or several predictors based on theo-
retical considerations and additional predictors based
on exploratory or predictive considerations. Regard-
less of the approach, once a model is selected it is
treated as the correct model with all the implications
of this assertion (e.g., that the sample estimates of the
population parameters are unbiased).

The predictor comparison stage, often used for in-
terpretation of the selected model, is the focus of this
article. In this stage, researchers often wish to assess
“predictor importance” by comparing the contribu-
tions made by the individual predictors in the selected
model to prediction of the response. Although one
may argue that if the chosen model is correct, then
each and every predictor in it is equally important (for
a discussion of this, see Azen et al., 2001), researchers
nonetheless often wish to establish the relative impor-
tance of the predictors included in this model. The
quest to determine the predictors’ relative importance
is very natural in many contexts and with many theo-
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ries. Naturally, the comparison method should fit the
research questions as well as the purpose of the analy-
sis, and this is discussed in detail later in this article
(in the section The Need for an Intuitive Measure of
Importance).

This article addresses the following general ques-
tion: Given any pair of predictors from the chosen set,
which would be more useful in predicting the crite-
rion? For example, it makes sense to inquire first what
variables predict a child’s IQ and then determine their
relative importance. One may start by considering a
long list of correlated predictors reflecting such char-
acteristics as the family’s intellectual and educational
background (e.g., the father’s IQ, the father’s educa-
tion, the mother’s IQ, the mother’s education), the
child’s home (the parents’ income, the number of
older and younger siblings), and the child’s commu-
nity (socioeconomic status of the neighborhood, qual-
ity of the school attended, average class size, etc.).
Once a parsimonious set of predictors is identified
(according to the researcher’s choice of a model se-
lection process), the researcher may wish to rank the
predictors according to their contribution in predicting
the child’s IQ. For example, if parents’ income, qual-
ity of school, and mother’s education are selected,
and, of these, if parents’ income is consistently a bet-
ter predictor than each of the others both when con-
sidered by itself or with any subset of the others, the
researcher can be quite confident that parents’ income
is the most dominant predictor of a child’s IQ. An-
other example may involve social psychology re-
searchers who are interested in predictors of satisfac-
tion with life (e.g., Suh, Diener, Oishi, & Triandis,
1998). Variables thought to be predictive (based on
theory or empirical findings) may include satisfaction
with one’s health, financial situation, family, housing,
and self, and researchers want to determine which of
these predictors is most important in predicting satis-
faction with life. If, for example, satisfaction with self
affects overall life satisfaction more strongly than any
other predictor by itself as well as within the context
of any subset of the remaining predictors, the answer
is clear. If one then needed to choose to address one
specific satisfaction domain for improving general life
satisfaction, the choice would be clear. Taking this
example further, if the researchers believe that on
theoretical grounds satisfaction with self and family
must be included as predictors, they may still want to
ask: How do the remaining predictors compare in the
context of these two given predictors? Is satisfaction
with financial situation, housing, or health the most

dominant (useful) predictor of satisfaction with life
after controlling for satisfaction with self and family?
Of course, one may already have a specific theory
regarding which predictor is more important, in which
case the analysis can be used to confirm the theory’s
predictions rather than explore possible answers.

In this article we focus on the difficult task of mea-
suring and interpreting predictor importance in the
context of a selected set of correlated predictors.
When correlated predictors are compared to each
other, all sensible measures of relative importance
will be affected by the other predictors (controlled
for) in the model and, indirectly, by the predictors
excluded from the model. There is currently no uni-
versally accepted definition of predictor importance,
and the proper interpretation of the most commonly
used measures (i.e., those provided automatically by
popular statistical software programs) is often diffi-
cult, awkward, or subject to misinterpretation and
misuse. In this article we propose an intuitive defini-
tion of predictor importance that leads to measures of
importance that researchers can readily use and prop-
erly interpret in a variety of research contexts.

Importance Measures in MR

We begin with a partial review of some commonly
used and recently advocated measures of predictor
importance. Consider the standardized MR model in
the population with p (p � 1) predictors and one
criterion (i.e., Y, X1, . . . , Xp are standardized to zero
mean and unit variance so an intercept is not needed):

Yj = �1X1j + �2X2j + . . . + �pXpj + ej = �
i=1

p

�iXij + ej, (1)

where �i is the population standardized regression co-
efficient associated with the ith predictor; ej ∼
N(0,�2); i � 1, . . . , p; j � 1, . . . , n. Suppose that we
are operating on the population and that the model is
correctly specified. Define the model’s predicted val-
ues as

Ŷj = �
i=1

p

�iXij,

and denote the squared correlation between the ob-
served (Y ) and predicted (Ŷ ) values as �2

YŶ (R2 in the
sample), a measure often used to quantify model fit
and interpreted as the proportion of the variance in Y
that can be reproduced, or accounted for, by the p
predictors. Given a specific set of p correlated predic-
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tors, how does one measure their individual relative
contribution to prediction? Below we review a variety
of importance measures. A summary of the geometri-
cal interpretation of some importance measures is
given in Bring (1996).

Importance Measures Based on
Regression Coefficients

�i. The regression coefficient �i, associated with
Xi in the MR Equation 1, represents the expected
change in Y in standard deviation (SD) units associ-
ated with a change of 1 SD unit in Xi provided that all
other predictors are held constant. In the special case
of uncorrelated predictors, the ith (standardized) co-
efficient is equivalent to the correlation between the
ith predictor and the criterion and provides an ad-
equate measure of relative importance. Although a
predictor whose coefficient is relatively large will pre-
sumably have a relatively larger effect on the predic-
tion of the criterion, in the presence of correlated pre-
dictors this effect can only be interpreted when the
effects of all other predictors are kept constant. There-
fore, if the predictors are correlated, it may not be
meaningful to think of the change in predictor Xi

while all other predictors remain constant because a
change in one predictor will most likely result in a
change in all predictors correlated with it (e.g., Mo-
steller & Tukey, 1977).

Partially standardized �i. Bring (1994) showed
that removing the variable with the smallest standard-
ized coefficient does not necessarily result in the
smallest reduction in �2

YŶ. He suggests that the regular
approach to standardization is inadequate because to
standardize �i, which measures the change in Y due to
a change in Xi holding all other predictors constant,
one uses the standard deviation si from the full sample
and thus assumes that si is uniform at all levels of the
other predictors. For example, using height and
weight as predictors, the interpretation of the coeffi-
cient associated with height is valid only at a fixed
level of weight, yet it is standardized using the stan-
dard deviation of heights from the full sample, which
includes all weight levels. Therefore, Bring suggests
that standardization be performed by using a partial
standard deviation that is conditional on the “sub-
samples” formed by holding variables constant. Bring
further shows that when the regression coefficients
are standardized by the partial standard deviations, the
ratio between the t scores obtained for variable i and
variable j is equivalent to the ratio between the stan-
dardized coefficients for variables i and j. The com-

parison of t values is useful because it is equivalent to
the reduction in �2

YŶ obtained by eliminating each of
the variables in the ratio from the regression model.

�2. Green, Carroll, and DeSarbo (1978) suggested
another measure based on regression coefficients that
uses Gibson’s (1962) approach. Their importance
measure consists of obtaining a set of orthonormal
variables that best approximates the original set of
predictors. The obtained (orthonormal) variables are
standardized variables that are uncorrelated with each
other. The squared regression coefficients from the
regression of Y on the orthonormal variables are then
computed. The proposed importance measure, �2, de-
composes each of these squared regression coeffi-
cients into original variable contributions while taking
into account the correlations between each original
variable and its corresponding orthonormal variable.
The �2 values for all of the predictors sum to �2

YŶ.
Johnson (2000) recently proposed a slight variation on
this approach that produces more meaningful and in-
terpretable results by correcting the way Green et al.’s
measure is computed.

Importance Measures Based on Correlations

�YXi
or �2

YXi
. Perhaps the most obvious measure of

importance is the simple product–moment correlation,
�YXi

, or the squared product–moment correlation, �2
YXi

,
between the criterion and each of the predictors.
This value is equivalent to the simple standardized
regression coefficient or the squared standardized re-
gression coefficient, respectively, in the regression of
Y on Xi alone. When all of the predictors are uncor-
related, the sum of the squared correlations is equal to
the variation accounted for by all predictors; that is,
∑p

i�1 �2
YXi

� �2
YŶ, and each squared correlation con-

stitutes a straightforward measure of the correspond-
ing predictor’s contribution to the total variance ac-
counted for by the model. However, in the social
sciences, predictor variables are rarely, if ever, uncor-
related, and the importance of the predictors might
change dramatically once the intercorrelations be-
tween the predictors are taken into account. For ex-
ample, consider a situation in which Y is to be mod-
eled by three predictor variables, X1, X2, and X3.
Suppose that X1 and X3 are each very highly corre-
lated with Y, while X2 is only moderately correlated
with Y. Furthermore, suppose X1 and X3 are highly
correlated with each other but are not highly corre-
lated with X2. In this case, once X1 is included in the
regression model, X3 will not make any additional
contribution to the prediction of Y. Therefore, once X1
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is in the model, X3 will be “less important” than X2,
even though the correlation between Y and X3 is
higher than the correlation between Y and X2. Simi-
larly, once X3 is in the model, X1 will appear to be less
important than X2. To further complicate matters, it
has been shown by several researchers (e.g., Shieh,
2001) that in a regression with two correlated predic-
tors �2

YŶ may exceed the sum of the squared correla-
tions �2

YX1
+ �2

YX2
. Therefore, measures that take the

predictors’ intercorrelations into account have been
suggested to address importance in the case of corre-
lated predictors.

Squared partial correlation. Kruskal (1987) sug-
gested that sometimes the p predictors of a regression
model may have some “natural” order by which they
are to be entered into the model. If subscripts are
assigned to the predictors according to this natural
order, then X1 enters first, followed by X2, and so on,
up to Xp. In this case, X1 accounts for a fraction of the
variance in Y, which is measured by the squared cor-
relation between X1 and Y, �2

YX1
. Of the remaining

variance in Y (the variance not accounted for by X1),
a fraction �2

YX2�X1
(the squared partial correlation be-

tween Y and X2 after controlling for X1) is accounted
for by X2, and so on, until Xp accounts for a fraction
�2

YXp�X1X2...X(p−1)
of whatever variance is unaccounted for

by the other p − 1 predictors. The partial squared
correlation coefficients thus represent measures of im-
portance of the corresponding predictors relative to
the specific ordering X1, . . . , Xp. Kruskal further sug-
gests that when a natural ordering is not available, this
procedure can be repeated for all p! orderings of the
predictors and the importance measures taken as an
average across the p! measures obtained for each pre-
dictor. Lindeman, Merenda, and Gold (1980) advo-
cated a similar procedure based on the squared semi-
partial (part) correlations.

Information from squared partial correlation.
Theil (1987) and Theil and Chung (1988) suggested
taking Kruskal’s measure a step further. Because the
unaccounted for variance, 1 − �2

YŶ, is the product (1 −
�2

YX1
)(1 − �2

YX2�X1
) . . . (1 − �2

YXp�X1X2...X(p−1)
), taking the

logarithm of each term turns this product into an ad-
ditive decomposition; that is, the terms sum to 1 − �2

YŶ.
Furthermore, letting I(x) � −log2(1 − x), I(�2

YŶ) �
I(�2

YX1
) + I(�2

YX2�X1
) + . . . + I(�2

YXp�X1X2...X(p−1)
), and I(�2

YŶ)
can be thought of as the total information on Y pro-
vided by the p predictors; that is, a larger value of �2

YŶ

results in a larger value of the function I(�2
YŶ) �

−log2(1 − �2
YŶ) and thus indicates that more “informa-

tion” on Y is provided by the predictors. This allows

us to measure each predictor’s contribution to the total
information, and, as Kruskal suggested, the average
over all p! orderings of the additive terms can be used
when a natural ordering of the predictors cannot be
determined.

Commonality analysis. Another variation on
measuring importance through partial correlations is
referred to as commonality analysis (Mayeske et al.,
1969; Mood, 1969, 1971; Newton & Spurrell, 1967a,
1967b), a procedure by which the variance accounted
for in the criterion is partitioned into two parts. The
first is a unique part, attributable to the predictors
individually, which is essentially the partial contribu-
tion of each predictor to the squared multiple corre-
lation with the criterion. The second is a common
part, attributable to a combination of the predictors,
which is the contribution to the multiple correlation
with the criterion that all of the predictors in the com-
bination share. Presumably, variables with small
uniquenesses and large commonalities can be elimi-
nated with the smallest reduction in overall variance
accounted for (Hedges & Olkin, 1981; Pedhazur,
1975, 1997). Some of the problems with this method
are that higher order commonalities (in the case of
more than two predictors) and negative commonality
elements (e.g., in the presence of suppressor vari-
ables) are difficult to interpret (Pedhazur, 1997).

Importance Measures Based on a Combination
of the Regression Coefficients and
the Correlations

�i�XiY
. Pratt (1987) analyzed the well-known

(e.g., Darlington, 1968) measure �i�XiY
, which is the

product of the standardized regression coefficient of
the predictor and the predictor’s correlation with the
criterion. The sum of this measure across all predic-
tors is the multiple correlation coefficient; that is,
∑p

i�1 �i�XiY
� �2

YŶ. Recently, this measure has been
advocated by Thomas and Zumbo (1996) and Thom-
as, Hughes, and Zumbo (1998).

�XiŶ
. Another measure that combines the correla-

tion and regression coefficients is

�XiŶ
=

�XiY

�YŶ
,

which is also known as the structure coefficient and
recently has been advocated by Dunlap and Landis
(1998) as well as by Courville and Thompson (2001).
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The Need for an Intuitive Measure
of Importance

The major weakness of most approaches reviewed
is the lack of an intuitive and straightforward inter-
pretation of the measures in a general context. The
wide variety of measures may clearly result in differ-
ent orderings of the predictors’ importance, leading to
confusion as to the meaning of importance. This often
leads to misinterpretation, misuse, and abuse of these
measures (Courville & Thompson, 2001, illustrate
such problems in several published studies).

For example, students and researchers are often
confused by results indicating that a regression coef-
ficient is not statistically significant although the bi-
variate correlation of that predictor with the criterion
is significant. This should not be surprising because
the statistical test for the regression coefficient is per-
formed in the presence of the effects of all other pre-
dictors, whereas the test for the bivariate correlation
ignores all other predictors. Similarly, researchers are
tempted to compare predictors on the basis of the
significance or size of their corresponding regression
coefficients (in the full model) and are confused when
this comparison does not match the comparison made
on the basis of the significance or size of the bivariate
correlations between the predictors and the criterion
(i.e., the significance of the simple regression coeffi-
cients), or of the significance and size of the coeffi-
cients in some subset model. The same can be said
about the interpretation of partial or semipartial cor-
relations. Although these measures are valuable, re-
searchers are not necessarily well versed in their in-
terpretation and thus have difficulties attempting to
reconcile apparent contradictions among different
measures and different subset models.

As with all statistical analyses, one’s research ques-
tion should dictate the most appropriate measure or
procedure to use. Thus, if one’s question concerns
finding the single best predictor (i.e., the predictor
that is most useful or predictive by itself), the simple
correlation coefficient can be used as a measure of
relative importance; if one’s question concerns which
predictor contributes most after accounting for the
effects of all other predictors, the semipartial correla-
tion or standardized regression coefficient (and asso-
ciated t test) can be used; if one’s question concerns
which predictor contributes most to a given subset of
predictors, then each predictor must be added indi-
vidually to the base subset and its standardized re-
gression coefficient (or associated t test) can be used;
and so on. Questions of importance that encompass all

of these contexts, however, cannot be answered by
any one of these measures. For example, suppose
theory dictates that children’s behavioral adjustment
is predicted by their perceived social support. A re-
searcher in this field may obtain measures on several
sources of support, such as parental support, teacher
support, peer support, general family support, and so
on, with the goal of finding the most important
source(s) of support in predicting adjustment. If the
researcher finds that parental support contributes
more highly to prediction than does peer support in
the presence of all other support sources (using tradi-
tional measures), this does not indicate that parental
support by itself is more predictive than peer support
by itself or in the presence of any other subset of the
remaining support sources. However, if parental sup-
port contributes more highly to prediction than does
peer support, regardless of which set of the remaining
predictors is present (controlled for), then parental
support is shown to be an overall more dominant pre-
dictor than peer support. Thus, if researchers design-
ing a treatment program to improve adjustment could
focus on only one of these support sources, they
would be more confident in focusing on parental sup-
port than on peer support. Similarly, a large university
may wish to identify the predictors of academic suc-
cess and then rank-order them according to their im-
pact (see an example in the Discussion section). If it
is found that one predictor (e.g., high school grade
point average) is more important than another (e.g.,
Scholastic Aptitude Test score) singly as well as in the
presence of any subset of the other predictors, the
university can be quite confident in using that predic-
tor (grade point average) over the other (Scholastic
Aptitude Test score) to make admission decisions.

The questions of relative importance in the context
of these examples are more general than those an-
swered by traditional measures and, consequently, re-
quire an appropriately general measure of importance.
Budescu (1993) argued that to translate the general
concept of relative importance into a measurable and
quantifiable statistical procedure there is a need to
agree on the definition and meaning of importance.

Budescu (1993) developed a clear and intuitive
definition that states that a predictor’s importance re-
flects its contribution in the prediction of the criterion
and that one predictor is “more important than an-
other” if it contributes more to the prediction of the
criterion than does its competitor at a given level of
analysis. The level of analysis is the context of the
subset model(s) that forms the basis for the compari-
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son(s), and it is important because all measures of
importance compare predictors within the context of a
specific model (i.e., in the presence of a specific set of
predictors). Thus, the level of analysis provides the
context of comparison; for example, if the simple bi-
variate correlations of each predictor with the crite-
rion are examined, the level of analysis ignores all
other predictors (i.e., the context is the null model),
but if the � coefficients (and possibly their associated
t tests) are examined in the context of the full model
(as is typical in statistical software output), the level
of analysis includes all other predictors (i.e., the con-
text is a subset model with [p − 1] predictors). Further,
if the comparison is carried out within a number of
models (each containing some subset of the remaining
predictors), the level of analysis includes all of these
comparisons. Thus, the most specific level of analysis
makes one comparison within the context of a specific
model and the most general level of analysis makes all
possible comparisons (one for each possible subset
model).

In Budescu’s (1993) approach, called dominance
analysis (DA), the contribution to prediction was de-
fined as the squared semipartial correlation, and the
level of analysis was defined as all 2(p−2) subset mod-
els for which the comparison of each pair of predic-
tors is relevant. In other words, one predictor is more
important than another if it would be chosen over its
competitor in all possible subset models where only
one predictor of the pair is to be entered. Thus, the
quantification of importance depends on which set of
predictors is involved in the analysis, a fact that is
crucial for proper interpretation but often overlooked
or misunderstood by researchers. The DA approach
provides the most general context by taking into ac-
count all relevant subset models, where a relevant
model is either any subset model that can be formed
from the predictors or any subset model that is theo-
retically possible and of interest (see the Constrained
DA section). One difficulty with DA is that domi-
nance cannot always be established between every
pair of predictors. In this article the original definition
is refined and the levels of dominance extended so
that dominance can be established in almost every
case. An overview of DA including the definition of
the levels of dominance follows.

Dominance Analysis

The standard measures reviewed earlier measure
relative importance either for each variable alone

(e.g., �2
YXi

), in the presence of all (p − 1) other pre-
dictors (e.g., �i), or as an average across all p! order-
ings of the predictors in the full model. DA is unique
in that (a) it measures relative importance in a pair-
wise fashion, and (b) the two predictors are compared
in the context of all 2(p−2) models that contain some
subset of the other predictors. As such, DA is more
sensitive to the various importance patterns that can
emerge in these cases and addresses a more general
definition of importance.

For illustrative purposes, suppose that the correla-
tion matrix shown in Table 1 was obtained for four
predictors (X1, X2, X3, X4) used to predict a certain
criterion. Several of the reviewed measures of impor-
tance are given for this example in Table 2. Note that
the various measures result in a different ordering of
relative importance1 (i.e., �i, semipartial �i

2 and par-
tial �i

2 give the ordering X1, X2, X3, X4; �XiY
, Kruskal’s

and Theil’s average over all p! orders and the struc-
ture coefficient �XiŶ

give the ordering X1, X4, X3, X2;
and �i�XiY

implies X1, X3, X4, X2).
The additional contributions of each predictor to

each subset model used in DA are shown in Table 3.
We use the notation �2

Y�X to represent the proportion of
variance in Y that is accounted for by the predictors in
the model X. The 24 � 16 models and their corre-
sponding �2

Y�X values are shown in the first two col-
umns of Table 3; for example, �2

Y�X1X3
� 0.477 rep-

resents the proportion of variance in Y that is
accounted for by the model consisting of X1 and X3.
The additional contribution of a given predictor is
measured by the increase in �2

YŶ that results from add-
ing that predictor to the regression model. Thus, the
additional contributions of X1 are computed as the
increases in the proportion of variance accounted for
when X1 is added to each subset of the remaining

1 Note that although all pairwise correlations are positive,
�2 is negative, making its interpretation very difficult.

Table 1
Population Correlation Matrix for Hypothetical Example
With Four Predictors

Variable 1 2 3 4 5

1. Y — 0.6 0.3 0.4 0.5
2. X1 0.6 — 0.8 0.1 0.3
3. X2 0.3 0.8 — 0.1 0.1
4. X3 0.4 0.1 0.1 — 0.5
5. X4 0.5 0.3 0.1 0.5 —
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predictors (i.e., the null subset {�}, {X2}, {X3}, {X4},
{X2X3}, {X2X4}, {X3X4} and {X2X3X4}). For example,
the additional contribution of X1 to the subset model
{X3} is defined as �2

Y�X1X3
− �2

Y�X3
. This is the difference

between the proportion of variance in Y accounted for
by both X1 and X3 and the proportion of variance in Y
accounted for by X3 alone. This value is also the
squared semipartial correlation between X1 and Y par-
tialling out or controlling for the effect of X3 on X1

(i.e., �2
Y(X1�X3)

; see Hays, 1994).
Similarly, the additional contributions of X2 are the

increases in the proportion of variance accounted for
when X2 is added to each subset of the remaining
predictors (i.e., null subset {�}, {X1}, {X3}, {X4},
{X1X3}, {X1X4}, {X3X4} and {X1X3X4}). Note that in
this example the only subset models to which both X1

and X2 make additional contributions are {�} (the null
subset), {X3}, {X4}, and {X3X4}. Thus, the additional
contribution of X1 can be meaningfully compared
with the additional contribution of X2 only in the con-
text of these common subset models. The additional
contributions made by X1 and X2 to the null subset are
simply �2

Y�X1
� 0.360 and �2

Y�X2
� 0.090, respectively.

In the body of Table 3 these are the entries in the first
row under the X1 and X2 columns, respectively. The
additional contributions of X1 and X2 to the subset
model {X3} are �2

Y�X1X3
− �2

Y�X3
� 0.477 − 0.160 �

0.317 and �2
Y�X2X3

− �2
Y�X3

� 0.228 − 0.160 � 0.068,
respectively. In the body of Table 3 these are the
entries in the row labeled X3 under the X1 and X2

columns, respectively. For the model {X4}, the addi-
tional contribution of X1 is �2

Y�X1X4
− �2

Y�X4
� 0.473 −

0.250 � 0.223 and the additional contribution of X2 is
�2

Y�X2X4
− �2

Y�X4
� 0.313 − 0.250 � 0.063; the corre-

sponding entries compared are in the row labeled X4

under the X1 and X2 columns, respectively. For
{X3X4}, the additional contribution of X1 is �2

Y�X1X3X4
−

�2
Y�X3X4

� 0.513 − 0.280 � 0.233, the additional con-
tribution of X2 is �2

Y�X2X3X4
− �2

Y�X3X4
� 0.338 − 0.280

� 0.058, and the entries compared are in the row
labeled X3X4 under the X1 and X2 columns, respec-
tively. Because the additional contribution of X1 is
larger than that of X2 to each of these subset models,
X1 dominates X2 (and has a higher relative impor-
tance). One predictor is said to completely dominate
another if its additional contribution to each of the
subset models that form the basis for comparison is
greater than that of the other predictor.

This analysis can be repeated for each pair of pre-
dictors (the additional contributions of X3 and X4 are
also given in Table 3, under the X3 and X4 columns,
respectively). For example, to compare X1 and X3,
compare the columns of Table 3 labeled X1 and X3:
In the null model row, 0.360 (the additional contribu-
tion of X1 to the null subset {�}) is larger than 0.160
(the additional contribution of X3 to the subset model
{�}); in the X2 row, 0.360 (the additional contribution
of X1 to the subset model {X2}) is larger than 0.138
(the additional contribution of X3 to the subset model
{X2}); in the X4 row, 0.223 (the additional contribu-
tion of X1 to the subset model {X4}) is larger than
0.030 (the additional contribution of X3 to the subset
model {X4}); and in the X2X4 row, 0.210 (the addi-
tional contribution of X1 to the subset model {X2X4})
is larger than 0.025 (the additional contribution of X3

to the subset model {X2X4}). Therefore, X1 com-
pletely dominates X3. Budescu (1993) shows that
dominance is transitive, meaning that for every triplet
of predictors, if Xi dominates Xj and Xj dominates Xk,
then Xi must dominate Xk.

If one predictor’s additional contribution is greater
than the other’s for some, but not all, of these subset
models, complete dominance (and relative impor-
tance) cannot be established and is said to be unde-
termined. For example, the additional contribution of
X2 to the subset model {X1} (in the X1 row and X2

column of Table 3) is 0.090 and the additional con-
tribution of 3 to the subset model {X1} (in the X1 row
and X3 column of Table 3) is 0.117, suggesting that X3

dominates X2. However, the additional contribution of
X2 to the subset model {X4} (in the X4 row and X2

column of Table 3) is 0.063, whereas the additional
contribution of X3 to the subset model {X4} (in the X4

row and X3 column of Table 3) is 0.030, suggesting
that in this case X2 dominates X3. Thus, complete
dominance cannot be established between X2 and

Table 2
Measures of Importance in the Population for
Hypothetical Example With Four Predictors (Assuming
Standardized Variables)

Measure

Predictor (Xi)

X1 X2 X3 X4

�i or Bi 0.905 −0.466 0.291 0.130
Semipartial �2

i 0.246 0.071 0.061 0.010
Partial �2

i 0.372 0.146 0.129 0.025
�XiY

0.6 0.3 0.4 0.5
Kruskal’s (1987) average 0.362 0.115 0.132 0.144
Theil’s (1987) average 0.651 0.177 0.206 0.233
�XiŶ

0.785 0.392 0.523 0.654
�i�XiY

0.543 −0.140 0.117 0.065
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X3—their relative importance changes depending on
which subset model forms the basis of comparison.
The results in Table 3 indicate that although X1 com-
pletely dominates X2 as well as X3 and X4, complete
dominance cannot be established between X2 and X3,
X2 and X4, or X3 and X4.

To reduce the incidence of undetermined domi-
nance, we introduce two weaker levels of dominance.
The first of these compares the additional contribu-
tions of each predictor to all subset models as before,
but the measure ultimately used to compare the pre-
dictors is the average of the additional contributions to
all subset models of a given model size. The model
size is defined as the number of predictors included in
the subset model and is denoted by k. If the average
additional contribution within each model size is
greater for one predictor than the other, then that pre-
dictor is said to conditionally dominate the other.
These (four) comparisons are shown symbolically in
Table 4 and numerically in the rows of Table 3 that

are labeled “k � (number) average.” For example, the
average contribution of X1 to models of size 1 is com-
puted as [0.360 + 0.317 + 0.223]/3 � 0.300, which is
the entry in the “k � 1 average” row under the X1

column. Similarly, the average contribution of X2 to
the models of size 1 is [0.090 + 0.068 + 0.063]/3 �
0.074. Because the average contribution (within
model size) of X1 is greater than that of X2 for each
model size (i.e., 0.360 > 0.090 for k � 0, 0.300 >
0.074 for k � 1, 0.263 > 0.069 for k � 2, and 0.246
> 0.071 for k � 3), X1 conditionally dominates X2. In
addition, X1 conditionally dominates X3 and X4. How-
ever, as in the complete dominance comparisons, con-
ditional dominance cannot be established between all
other pairs of predictors.

The last level of dominance summarizes the addi-
tional contributions of each predictor to all subset
models by averaging all the conditional values. In this
example, this consists of averaging the four averaged
entries in each column of Table 4. If this overall av-

Table 3
Dominance Analysis in the Population for Hypothetical Example With Four Predictors

Subset model (X) �Y�X
2

Additional contribution of:

X1 X2 X3 X4

Null and k � 0 average 0 0.360 0.090 0.160 0.250

X1 0.360 0.090 0.117 0.113
X2 0.090 0.360 0.138 0.223
X3 0.160 0.317 0.068 0.120
X4 0.250 0.223 0.063 0.030

k � 1 average 0.300 0.074 0.095 0.152

X1X2 0.450 0.124 0.073
X1X3 0.477 0.097 0.037
X1X4 0.473 0.051 0.041
X2X3 0.228 0.346 0.110
X2X4 0.313 0.210 0.025
X3X4 0.280 0.233 0.058

k � 2 average 0.263 0.069 0.063 0.073

X1X2X3 0.574 0.010
X1X2X4 0.523 0.061
X1X3X4 0.513 0.071
X2X3X4 0.338 0.246

k � 3 average 0.246 0.071 0.061 0.010

X1X2X3X4 0.584

Overall average 0.292 0.076 0.095 0.121

Note. The column labeled �Y�X
2 represents the variance in Y explained by the model appearing in the

corresponding row. Columns labeled Xi contain the additional contributions to the explained variance
gained by adding the column variable (Xi) to the row model. Blank cells indicate that data are not
applicable.
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eraged additional contribution is greater for one pre-
dictor than the other, that predictor is said to generally
dominate the other. The corresponding values for this
measure are shown in the last row of Table 3. For
example, the general measure for X1 is computed as
[0.360 + 0.300 + 0.263 + 0.246]/4 � 0.292. In theory
there is nothing preventing an unequal weighting of
these averages (e.g., if each average is weighted by
the number of models of a given size, the result would
be the unweighted average of all additional contribu-
tions). However, using this equal weighting of the
averages results in a measure that has the appealing
property of summing (over all predictors) to �2

YŶ of the
full model, or the proportion of variance in the crite-
rion explained by all of the predictors. In the example,
note that the sum is 0.292 + 0.076 + 0.095 + 0.121 �
0.584, the value of �2

YŶ for the model containing all
four predictors. This general dominance measure co-
incides with the average squared semipartial correla-
tions across all p! orders proposed in Lindeman et al.
(1980) and has been advocated by Johnson (2000),
who developed an efficient algorithm to compute
what he calls a “relative weight” measure that ap-
proximates the general dominance measure very well.
In terms of interpretation, the general measure repre-
sents the average difference in fit between all subset
models (of equal size) that include Xi and those that
do not include it. It is always possible to establish a
general dominance ordering unless the general mea-
sure is identical for a pair of predictors. In this ex-
ample, X1 generally dominates all predictors, X4

dominates X3 and X2, and X3 dominates X2 (thus the
ordering is X1, X4, X3, X2).

The three levels of dominance (complete, condi-
tional, and general) are related to each other in a hi-
erarchical fashion: Complete dominance implies con-
ditional dominance, which, in turn, implies general
dominance. However, for p > 3 the converse may not
hold; that is, general dominance does not imply con-

ditional dominance and conditional dominance does
not necessarily imply complete dominance.

Budescu (1993) provided several examples of DA
with real and hypothetical data. For additional ex-
amples of applications see Behson (2002); Block
(1995); Nickerson, Schwartz, Diener, and Kahneman
(in press); Suh et al. (1998); and Weinberger (1995).

Suppressor Variable Case

To further illustrate the usefulness of DA we pre-
sent the analysis in the presence of a suppressor vari-
able and show the ability of DA to detect such a
variable. A suppressor refers to a predictor whose
inclusion in the regression model improves prediction
through its correlation with other predictors rather
than its direct correlation with the criterion. In other
words, such variables “suppress” the variance in other
predictors that is irrelevant to the criterion and thus
enhance those predictors’ predictive ability. The
population correlation matrix in Table 5 includes
three predictors and reflects a pattern in which X2 acts
as a “classic suppressor” according to Tzelgov and
Henik’s (1991) typology; that is, a predictor that is
uncorrelated with the criterion but whose presence
improves prediction because of its correlation with
other predictors.

The contributions of a “regular” predictor averaged
over all models of a given size (i.e., the conditional
dominance measures) are expected to decrease
monotonically as the model becomes more complex

Table 4
Formulas Used to Compute the Averaged Additional Contributions Within Model Size in the Population With
Four Predictors

Subset model
size (k)

Average additional contributions of:

X1 X2

0 �Y�X1

2 �Y�X2

2

1 [(�Y�X1X2

2 − �Y�X2

2 ) + (�Y�X1X3

2 − �Y�X3

2 ) + (�Y�X1X4

2 − �Y�X4

2 )]/3 [(�Y�X1X2

2 − �Y�X1

2 ) + (�Y�X2X3

2 − �Y�X3

2 ) +
(�Y�X2X4

2 − �Y�X4

2 )]/3
2 [(�Y�X1X2X3

2 − �Y�X2X3

2 ) + (�Y�X1X2X4

2 − �Y�X2X4

2 ) +
(�Y�X1X3X4

2 − �Y�X3X4

2 )]/3
[(�Y�X1X2X3

2 − �Y�X1X3

2 ) + (�Y�X1X2X4

2 − �Y�X1X4

2 ) +
(�Y�X2X3X4

2 − �Y�X3X4
)]/3

3 (�Y�X1X2X3X4

2 − �Y�X2X3X4

2 ) (�Y�X1X2X3X4

2 − �Y�X1X3X4

2 )

Table 5
Example of a Population Correlation Matrix for
Classical Suppression

Variable 1 2 3 4

1. Y — 0.50 0.00 0.25
2. X1 0.50 — 0.30 0.25
3. X2 0.00 0.30 — 0.25
4. X3 0.25 0.25 0.25 —
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(larger) because of the correlations among the pre-
dictors. However, the contributions of a suppressor
variable may deviate from this monotonic pattern—
paradoxically, the predictor makes a more substantial
contribution in more complex models. This result is
shown in Table 6; while the average additional con-
tributions (i.e., the conditional dominance measures)
of X1 and X3 decrease with model size, k (from 0.250
to 0.239 to 0.234 in the case of X1, and from 0.062 to
0.042 to 0.026 in the case of X3), these measures
actually increase in the case of X2, the classic sup-
pressor (from 0.000 to 0.014 to 0.034). Although not
shown, similar patterns of results are observed in ex-
amples of negative and reciprocal suppression (as de-
fined by Tzelgov & Henik, 1991).

Furthermore, as pointed out by an anonymous re-
viewer of this article, using any measure based on the
correlation �XiY

(e.g., the product �i�XiY
or the struc-

ture coefficient �XiŶ
) as an index of predictor contri-

bution would yield a value of 0 for the suppressor
variable X2 in the above example (because �X2Y

� 0).
This would imply that X2 contributes nothing overall,
clearly a misleading interpretation. It thus appears that
DA is more useful for detecting cases of suppression
than other procedures.

DA With Other Measures of Fit

Some of the key features of DA are not restricted to
the �2

YŶ (or the sample R2) metric. In fact, it is easy to

show that any measure of model fit that is a monotone
(increasing or decreasing) function of the model’s er-
ror sum of squares (SSE) would yield the same domi-
nance pattern. In other words, if DA based on the
squared multiple correlations shows that in a certain
sample or population Xi dominates Xj (generally, con-
ditionally, or completely), it must also be the case that
DA of the same data set based on any other measure
that is monotonically related to SSE would similarly
show Xi to dominate Xj (generally, conditionally, or
completely, respectively). A formal proof of this
claim for three such measures (adjusted R2, Akaike’s
Information Criterion, and Cp) is given in Azen
(2000).

Constrained DA: Examining Only Theoretically
Meaningful Subsets

Constrained DA is a simple extension of DA for
cases where a specific predictor (or set of predictors)
is forced to be a part of the model. Such constraints
may be imposed by theoretical or practical consider-
ations that require the inclusion of some predictors. In
this way, only theoretically meaningful subset models
are used in the analysis and only relevant comparisons
among the remaining predictors are conducted.

Using the illustrative example presented in Table 3,
suppose that for theoretical reasons X1 must be in-
cluded in the regression model (i.e., subset models
that do not include X1 are of no practical or theoretical

Table 6
Dominance Analysis in the Population for the Classical Suppression Example

Subset model (X) �Y�X
2

Additional contribution of:

X1 X2 X3

Null and k � 0 average 0 0.250 0.000 0.062

X1 0.250 0.025 0.017
X2 0.000 0.275 0.067
X3 0.062 0.204 0.004

k � 1 average 0.239 0.014 0.042

X1X2 0.275 0.026
X1X3 0.267 0.034
X2X3 0.067 0.234

k � 2 average 0.234 0.034 0.026

X1X2X3 0.300

Overall average 0.241 0.016 0.043

Note. The column labeled �Y�X
2 represents the variance in Y explained by the model appearing in the

corresponding row. Columns labeled Xi contain the additional contributions to the explained variance
gained by adding the column variable (Xi) to the row model. The rows in bold show the average
additional contributions that are conditional on model size. Blank cells indicate that data are not appli-
cable.
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interest). For example, Y may be an overall measure
of satisfaction with life, X1 may be satisfaction with
self, and the other predictors may be satisfaction with
housing, finances, and health. In this instance, it is
possible that the researcher believes self-satisfaction
must be in the model for theoretical reasons (e.g.,
self-satisfaction is theoretically necessary for satisfac-
tion with other domains or self satisfaction is already
known to be highly predictive of life satisfaction) and
wishes to examine the dominance relationship among
the remaining predictors. Those rows of Table 3 per-
taining to subsets excluding X1 are deleted, and the
analysis proceeds as before to compare the predictors
in this reduced (or constrained) table. To illustrate this
analysis, Table 7 presents the DA results using only
those subset models that include X1.

Unlike the full model analysis (Table 3), where
only general dominance could be established among
X2, X3, and X4, the results in this constrained case
(Table 7) indicate that X3 completely dominates X4.
Interestingly, in the full analysis (Table 3) the general
dominance ordering was X1, X4, X3, X2, but in this
constrained case (Table 7) we find that the order
among the three predictors of interest changes to X3,
X2, X4. Also, recall that in the full analysis the general
dominance measures sum to �2

YŶ of the full model
(0.584). In the constrained case where X1 is forced to
be part of the model, the sum of the general domi-

nance measures is (0.078 + 0.087 + 0.059) � 0.224
and the fit of the fixed predictor (X1) is �2

Y�X1
� .360,

so the overall total (0.224 + 0.360 � 0.584) is again
equal to �2

YŶ of the full model.

Inference

Given an MR model involving p predictors, one
may fit all 2p−1 subset regression models and deter-
mine, for each of the distinct p(p − 1)/2 pairs of pre-
dictors, whether one predictor dominates the other
(for each definition of dominance: complete, condi-
tional, and general). In this section the issue of gen-
eralizing dominance results beyond the particular ob-
served sample is addressed; we describe how to
estimate the standard error of dominance across re-
peated sampling and how to determine the confidence
one can have in making inferences about the popula-
tion from the observed sample.

If, ultimately, interest is simply in whether one pre-
dictor (Xi) dominates another (Xj), this can be sum-
marized by a measure denoted Dij, which can have
one of three values: Dij � 1 if Xi dominates Xj, Dij �
0 if Xj dominates Xi, and Dij � 0.5 if neither predictor
dominates the other (dominance cannot be established
between Xi and Xj). The bootstrap procedure is used to
simulate the distribution of the Dij values that would
be obtained if the study were repeated many times,

Table 7
Constrained (X1 Included in All Models) Dominance Analysis in the Population for the
Hypothetical Example With Four Predictors

Subset model (X) �Y�X
2

Additional contribution of:

X2 X3 X4

(X1) and k � 1 average 0.360 0.090 0.117 0.113

(X1)X2 0.450 0.124 0.073
(X1)X3 0.477 0.097 0.037
(X1)X4 0.473 0.051 0.041

k � 2 average 0.074 0.082 0.055

(X1)X2X3 0.574 0.010
(X1)X2X4 0.523 0.061
(X1)X3X4 0.513 0.071

k � 3 average 0.071 0.061 0.010

(X1)X2X3X4 0.584

Overall average 0.078 0.087 0.059

Note. The column labeled �Y�X
2 represents the variance in Y explained by the model appearing in the

corresponding row. Columns labeled Xi contain the additional contributions to the explained variance
gained by adding the column variable (Xi) to the row model. Blank cells indicate that data are not
applicable.

DOMINANCE ANALYSIS FOR MULTIPLE REGRESSION 139



drawing a different random sample from the same
population each time.

Bootstrap Procedure
The bootstrap is a procedure that was developed to

empirically estimate the variability of a statistic
whose theoretical distribution is unknown. The pro-
cedure “resamples” the data with replacement to gen-
erate an empirical estimate of the entire sampling dis-
tribution of the statistic of interest (Efron, 1979;
Mooney & Duval, 1993). Starting with the n obser-
vations in the parent sample (obtained by the re-
searcher), each resample or bootstrap sample is ob-
tained by randomly drawing n observations with
replacement from the parent sample. The resulting
bootstrap sample thus consists of a set of n observa-
tions that are similar, but not (usually) identical, to
those in the parent sample and can be treated as a
random sample drawn from the same population that
generated the parent sample. This process is repeated
S times (where S is a large number) to generate a total
of S bootstrap samples.

In the case of MR, the purpose of resampling is to
capture the random component of the regression
model, and a distinction is thus made between regres-
sion models involving fixed predictors and those in-
volving random predictors (Efron, 1979; Freedman,
1981; Mooney & Duval, 1993; Neter et al., 1996;
Shao, 1996; Stein, 1996). When the levels of the pre-
dictors are random (rather than fixed), the bootstrap-
ping process resamples the n cases (where each case
consists of the criterion and its associated predictor
values: Yj, X1j, X2j, . . . , Xpj; j � 1,2, . . . , n) and this
was the procedure used in all the examples presented
in this article.

Method
In each of the S bootstrap samples the dominance

value (Dij) obtained for a given pair of predictors (Xi

and Xj) can have one of three values: 1 if Xi dominates
Xj, 0 if Xj dominates Xi, or 0.5 if dominance cannot be
established between Xi and Xj. For example, if the
total number of bootstrap samples is 1,000 (S �
1,000), there will be 1,000 dominance values (D1

ij, D2
ij,

. . . , Dij
1000) for each pair of predictors (and each level

of dominance). The average of these dominance val-
ues (over all S bootstrap samples) is written as

Dij =
1

S �
s=1

S

Dij
s . (2)

The average, Dij, represents the expected level of
dominance of Xi over Xj in the population and is a

random variable that can take on any value between 0
and 1. The standard error (SE) of Dij is obtained by
computing the standard deviation of the dominance
values over all S bootstrap samples, written as

SE�Dij� =� 1

S − 1 �
s=1

S

�Dij
s − Dij�

2. (3)

The standard error represents the expected variability
of the dominance value over repeated sampling. The
interpretation of Dij and the standard error is facili-
tated by three obvious references points: Dij is 1 (and
SE is 0) if, and only if, Dij � 1 in all bootstrap
samples. Conversely, Dij is 0 (and SE is 0) if, and only
if, Dij � 0 in all bootstrap samples. Finally, Dij is 0.5
if the distribution of dominance indices (Ds

ij) is sym-
metric in the sense that the number of cases in which
Xi dominates Xj equals the number of cases in which
Xj dominates Xi. In this case, the standard error de-
pends on the number of indeterminate cases; it is
maximized when there are no indeterminate cases
(i.e., Xi dominates Xj in exactly one half of all boot-
strap samples and Xj dominates Xi in the remaining
half of the bootstrap samples), and it is minimized
(i.e., SE is 0) if, and only if, Dij � 0.5 in all bootstrap
samples (i.e., all cases are indeterminate). Thus, the
closer Dij is to one of the two end points (0 or 1), the
stronger the case for a clear directional dominance,
whereas the closer Dij is to 0.5, the stronger the case
for indeterminacy.

Another way to evaluate the generality and robust-
ness of the results (that is closer in spirit to the tradi-
tional hypothesis testing) is to measure the degree to
which the dominance pattern obtained in the sample is
reproduced in the S bootstrap samples (Thompson,
1994, refers to this as internal replicability). Suppose
we found that, in the sample, X3 completely domi-
nates X2, and after observing the distribution of results
in the S bootstrap samples, we determine that this
result was replicated in 97% of the bootstrap samples.
We conclude that the chance of reproducing the
sample result is 0.97, and we can be 97% confident in
concluding that X3 dominates X2 in the population.
We refer to this value as the reproducibility of the
result. Because interest is often in whether Xi domi-
nates Xj (but not necessarily by how much), this ap-
proach allows the researcher to both state the prob-
ability that Xi will dominate Xj and determine a
confidence level on that probability.

To illustrate the procedures, consider again the hy-
pothetical example presented earlier with four predic-
tors (X1, X2, X3, X4) and the (population) correlation
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matrix shown in Table 1. As discussed earlier (Table
3), according to the complete dominance criterion it is
expected that X1 will dominate X2 as well as X3 and
X4, but dominance would not be established between
X2, X3, and X4. A random sample of n � 100 multi-
variate normal observations was generated from a
population with this correlation matrix; the sample
correlation matrix is presented in Table 8. This
sample was then bootstrapped S � 1,000 times. The
results are shown in Table 9: The first and second
columns identify the two variables being compared;
the third column is the value of Dij in the sample; the
fourth column is the average (Dij) value over the boot-
strap samples; and the fifth column is the standard
error (SE) of the Dij values over the bootstrap
samples. The next three columns describe the distri-

bution of Dij over the S bootstrap samples; they show
the proportion of bootstrap samples in which Xi domi-
nated Xj or Dij � 1 (Pij), the proportion of samples in
which Xj dominated Xi or Dij � 0 (Pji), and the pro-
portion of samples in which dominance between Xi

and Xj could not be established or Dij � 0.5 (Pnoij).
The last column is the reproducibility of (or propor-
tion of bootstrap samples that agree with) the sample
results. Although each pair has two possible orders
(e.g., for the pair X1, X2, the two orders are i � 1, j �
2 and i � 2, j � 1), only one order is shown in the
table because of the obvious redundancy (Dij + Dji �
1). To facilitate interpretation, the order of presenta-
tion (i then j) of each pair in the table was determined
such that Pij > Pji for complete dominance.2 The com-
plete dominance results show that, for this particular

Table 8
Sample (n = 100) Correlation Matrix for Hypothetical Example With Four Predictors

Variable 1 2 3 4 5

1. Y — 0.6087 0.2580 0.4735 0.4558
2. X1 0.6087 — 0.7626 0.0886 0.2528
3. X2 0.2580 0.7626 — −0.0325 −0.0256
4. X3 0.4735 0.0886 −0.0325 — 0.4878
5. X4 0.4558 0.2528 −0.0256 0.4878 —

Table 9
Hypothetical Example Sample Results: Dij Values in the Sample (n = 100) and Their Means (Dij), Standard Errors,
Probabilities, and Reproducibility Over S = 1,000 Bootstrap Samples

i j Sample Dij
a Dij SE(Dij) Pij

b Pji
c Pnoij

d Reproducibility

Complete dominance
1 2 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
1 3 1.0 0.9315 0.186 0.873 0.010 0.117 0.873
1 4 1.0 0.9680 0.122 0.936 0.000 0.064 0.936
2 4 0.5 0.5080 0.116 0.035 0.019 0.946 0.946
3 2 1.0 0.7475 0.260 0.505 0.010 0.485 0.505
3 4 1.0 0.7800 0.254 0.566 0.006 0.428 0.566

Conditional dominance
1 2 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
1 3 1.0 0.9325 0.190 0.879 0.014 0.107 0.879
1 4 1.0 0.9720 0.115 0.944 0.000 0.056 0.944
2 4 0.5 0.5100 0.145 0.052 0.032 0.916 0.916
3 2 1.0 0.8670 0.234 0.746 0.012 0.242 0.746
3 4 1.0 0.7990 0.251 0.604 0.006 0.390 0.604

General dominance
1 2 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
1 3 1.0 0.9630 0.189 0.963 0.037 0.000 0.963
1 4 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
2 4 0.0 0.2640 0.441 0.264 0.736 0.000 0.736
3 2 1.0 0.9430 0.232 0.943 0.057 0.000 0.943
3 4 1.0 0.8480 0.359 0.848 0.152 0.000 0.848
a Dij � 1 − Dji.

bPij = Pr(Dij � 1). cPji = Pr(Dij � 0). dPnoij = Pr(Dij � 0.5).
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sample, X1 indeed dominates X2 as well as X3 and X4

(i.e., D12 � 1, D13 � 1, D14 � 1), dominance could
not be established between X2 and X4 (i.e., D24 �
0.5), but dominance was established for the remaining
pairs, with X3 dominating both X2 and X4 (i.e., D32 �
1 and D34 � 1). The Dij values reflect these results
and refine them by demonstrating the expected value
of Dij over repeated sampling. For example, although
both X1 and X3 dominate X4 in the sample, the domi-
nance of X3 over X4 is expected to be established less
often (D34 � 0.780) than the dominance of X1 over X4

(D14 � 0.968). The standard error estimates give the
expected amount of variability of the Dij values
around their expected values. More details are given
by the three probability entries, one of which also
serves as the reproducibility measure. Note, for ex-
ample, that the proportion of undetermined outcomes
was much higher between X3 and X4 (Pno34 � 0.428)
than between X1 and X4 (Pno14 � 0.064). The repro-
ducibility values show that the sample result D34 � 1
was obtained in only 56.6% of all bootstrap samples,
whereas the sample result D14 � 1 was obtained in
93.6% of all bootstrap samples.

The conditional and general dominance results
show a similar pattern while reducing the number of
indeterminacies, as shown by the Dij values becoming
closer to either 0 or 1 as the level of analysis becomes
“weaker.” For example, in the complete dominance
case, D34 � 0.780; in the weaker conditional domi-
nance case, D34 � 0.799; and in the still weaker
general dominance case, D34 � 0.848. This result is
similarly demonstrated by the fact that the sample
reproducibility of D34 � 1 increases from 56.6% for
complete dominance, to 60.4% for conditional domi-
nance, and to 84.8% for general dominance. The con-
clusion that can be drawn from these results is that the
level of confidence in the dominance of X3 over X4 is
high only in the general dominance case that uses a
weaker standard. Conversely, consider the reproduc-
ibility of the indeterminate dominance relationship
between X2 and X4 (D24 � 0.5), which decreases from
94.6% for complete dominance to 91.6% for condi-
tional dominance. Moreover, X4 generally dominates
X2 (D24 � 0) and the reproducibility of this result is
73.6%, indicating that the level of confidence in the
established dominance relationship between X2 and
X4 (in the general dominance case) is low in compari-
son to the level of confidence in the indeterminate
relationship between X2 and X4 (in the complete and
conditional dominance cases).

The pattern of results indicates an increase in the

reproducibility of Dij � 1 and a decrease in the re-
producibility of Dij � 0.5 as the dominance level is
relaxed (complete, conditional, general). Intuitively,
this pattern of results makes sense—in the case of Dij

� 1, as the level of dominance is relaxed, more cases
that satisfy this dominance relationship will occur,
leading to higher reproducibility. On the other hand,
in the case of Dij � 0.5, the undetermined dominance
relationship is more likely to be resolved as the level
of dominance is relaxed, resulting in lower reproduc-
ibility of the undetermined dominance result.3

The Dij values are directly related to the Pij values;
in fact, Dij � Pij + 1

2
Pnoij. Thus, the Dij values account

for the proportion of undetermined cases (Pnoij),
whereas the Pij values do not. In addition, Dij can be
interpreted as the expected value of Dij, and Pij can be
interpreted as the probability that Xi dominates Xj.

Example: Satisfaction With Life
Suh et al. (1998) collected responses from nearly

7,000 college students in 41 countries on numerous
variables pertaining to satisfaction with life. For this
example, a subset of variables was selected and only
responses from the United States (n � 428) were
used. The criterion, Y, was the score on a satisfaction
with life scale consisting of five items. The five pre-
dictors were responses to single items (not part of the
global scale) pertaining to domain-specific reported
levels of satisfaction. The domains were health (X1),
financial situation (X2), family (X3), housing (X4), and
self (X5). The correlation matrix is shown in Table 10,
and the values of several of the reviewed measures of
importance are given in Table 11. The various mea-
sures indicate self and family (in that order) to be the
two top predictors and health to be the least important
predictor. The ordering of housing and finance is less
clear and varies across the measures of importance.

2 For example, suppose that of 1,000 cases, D12 � 1
occurred 600 times, D12 � 0 occurred 300 times, and D12

� 0.5 occurred 100 times. Then P12 � 600/1000 � 0.6,
P21 � 300/1000 � 0.3, and Pno12 � 100/1000 � 0.1. It
would be redundant to write the results for both the order
i � 1, j � 2 (Pij � P12 � 0.6, Pji � P21 � 0.3, Pno12 �
0.1) and the order i � 2, j � 1 (Pij � P21 � 0.3, Pji � P12

� 0.6, Pno12 � 0.1). Thus, given that for i � 1 and j � 2
Pij � 0.6 > Pji � 0.3, only this order would be presented.

3 In fact, because the undetermined relationship will usu-
ally become determined in the general dominance case, it
probably makes sense to compare the reproducibility of the
undetermined dominance result between the complete and
conditional dominance levels only.
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The Dij values in the sample are shown in Table 12
along with the average and standard error of the Dij

values and the reproducibility of the sample results
over S � 1,000 bootstrap samples. Examining the
sample results, it appears that according to the com-
plete dominance measure, X2 (finance) dominates X1

(health); dominance cannot be established between X2

(finance) and X4 (housing); X3 (family) dominates X1

(health), X2 (finance), and X4 (housing); X4 (housing)
dominates X1 (health); and X5 (self) dominates all of
the other predictors. Thus, the overall ordering is self,
family, finance/housing, and health. The conditional
dominance results are identical, and general domi-
nance establishes that X2 (finance) dominates X4

(housing).
The results over 1,000 bootstrap samples demon-

strate the same pattern of results as in the sample and
add information on the expected values and stability
of these measures. For example, although all predic-
tors dominate X1 (health), X4 (housing) completely
dominates X1 (health) less often (D41 � 0.7725) than
does X2 (finance; D21 � 0.916), X3 (family; D31 �
0.9995), or X5 (self; D51 �1.000). The standard er-
rors, however, indicate that these differences are quite
small.

Use of lower levels of dominance reduce the num-
ber of undetermined cases and lead to expected values
that become increasingly closer to either 0 or 1. Simi-
larly, as the level of analysis gets weaker, the sample
reproducibility increases because of the elimination of
undetermined cases; for example, the dominance of
X2 (finance) over X1 (health) is reproduced in 83.2%
of cases for complete dominance, 95.4% of cases for
conditional dominance, and 98.1% of cases for gen-
eral dominance. Therefore, it appears that this domi-
nance relationship is stable and highly reproducible.
On the other hand, the indeterminacy between X2 (fi-
nance) and X4 (housing) is reproduced in only 47.3%
of cases for complete dominance and 35.8% of cases
for conditional dominance, whereas the general domi-
nance of X2 (finance) over X4 (housing) was repro-
duced in 70.3% of cases. Therefore, one may be less
confident in the indeterminacy results for complete
and conditional dominance and relatively more con-
fident in the established dominance of X2 (finance)
over X4 (housing) using general dominance.

The probability of dominance results shown in
Table 12 can be used to gain more insight into the
behavior of the dominance measures over repeated
sampling. For example, using complete dominance,

Table 11
Various Measures of Importance for the Satisfaction With Life Data Set (n = 428)

Measure

Predictor (Xi)

Health Finance Family Housing Self

B̂i (raw coefficient) 0.0245 0.5519 1.2037 0.5789 2.2505
�̂i (standardized coefficient) 0.0050 0.1334 0.2420 0.1347 0.4622
t value 0.13 3.58 6.29 3.69 11.51
rXiY

0.2346 0.3637 0.4875 0.3162 0.6208
Semipartial ri

2 0.0000 0.0153 0.0471 0.0162 0.1578
Partial ri

2 0.0000 0.0295 0.0857 0.0313 0.2389
Kruskal’s (1987) average 0.0213 0.0699 0.1527 0.0570 0.3036
Theil’s (1987) average 0.0314 0.1058 0.2428 0.0852 0.5267
�̂irXiY

0.0012 0.0485 0.1180 0.0426 0.2869
rXiŶ

0.3327 0.5158 0.6914 0.4484 0.8804

Table 10
Correlation Matrix for Satisfaction With Life Data Set (n = 428)

Variable 1 2 3 4 5 6

1. Y — 0.2346 0.3637 0.4875 0.3162 0.6208
2. Health 0.2346 — 0.1775 0.1125 0.1510 0.3425
3. Finance 0.3637 0.1775 — 0.2614 0.2384 0.2899
4. Family 0.4875 0.1125 0.2614 — 0.2490 0.3818
5. Housing 0.3162 0.1510 0.2384 0.2490 — 0.1918
6. Self 0.6208 0.3425 0.2899 0.3818 0.1918 —
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note that although X4 (housing) dominates X1 (health)
with D41 � 0.7725, the proportion of samples that
result in undetermined dominance between X4 (hous-
ing) and X1 (health) is quite high (Pno41 � 0.455),
indicating that in almost half of all samples domi-
nance between these predictors will be undetermined
and that the reproducibility of the dominance relation-
ship between these predictors is only slightly over
50%. This provides much more information on this
dominance relationship than that provided by the
sample results alone. Software for the computations
presented in this article is available, in the form of an
SAS Macro, from Razia Azen and is available in the

online version of this article in the PsycARTICLES
database.

Discussion

Social scientists are often interested in comparing
the predictors in an MR analysis to answer a variety of
research questions in many contexts. The need for
such a process is quite evident as researchers continue
to be interested in finding ways to compare predictors
and, unfortunately, often use measures that are not
well suited for this purpose or not well understood,
leading to misuse (Courville & Thompson, 2001;
Pedhazur, 1997). DA is proposed as a method that can

Table 12
Results for Satisfaction With Life Example: Dij Values in the Sample (n = 428) and Their Means (Dij), Standard Errors,
Probabilities, and Reproducibility Over S = 1,000 Bootstrap Samples

i j Sample Dij Dij
a SE(Dij) Pij

b Pji
c Pnoij

d Reproducibility

Complete dominance
2 1 1.0 0.9160 0.187 0.832 0.000 0.168 0.832
2 4 0.5 0.6405 0.335 0.404 0.123 0.473 0.473
3 1 1.0 0.9995 0.016 0.999 0.000 0.001 0.999
3 2 1.0 0.9605 0.151 0.930 0.009 0.061 0.930
3 4 1.0 0.9540 0.151 0.912 0.004 0.084 0.912
4 1 1.0 0.7725 0.249 0.545 0.000 0.455 0.545
5 1 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
5 2 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
5 3 1.0 0.9920 0.063 0.984 0.000 0.016 0.984
5 4 1.0 1.0000 0.000 1.000 0.000 0.000 1.000

Conditional dominance
2 1 1.0 0.9735 0.127 0.954 0.007 0.039 0.954
2 4 0.5 0.6490 0.372 0.470 0.172 0.358 0.358
3 1 1.0 0.9995 0.016 0.999 0.000 0.001 0.999
3 2 1.0 0.9675 0.144 0.946 0.011 0.043 0.946
3 4 1.0 0.9645 0.138 0.934 0.005 0.061 0.934
4 1 1.0 0.9220 0.192 0.852 0.008 0.140 0.852
5 1 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
5 2 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
5 3 1.0 0.9980 0.032 0.996 0.000 0.004 0.996
5 4 1.0 1.0000 0.000 1.000 0.000 0.000 1.000

General dominance
2 1 1.0 0.9810 0.137 0.981 0.019 0.000 0.981
2 4 1.0 0.7030 0.457 0.703 0.297 0.000 0.703
3 1 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
3 2 1.0 0.9800 0.140 0.980 0.020 0.000 0.980
3 4 1.0 0.9940 0.077 0.994 0.006 0.000 0.994
4 1 1.0 0.9120 0.283 0.912 0.088 0.000 0.912
5 1 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
5 2 1.0 1.0000 0.000 1.000 0.000 0.000 1.000
5 3 1.0 0.9980 0.045 0.998 0.002 0.000 0.998
5 4 1.0 1.0000 0.000 1.000 0.000 0.000 1.000

Note. The predictors are health (X1), finance (X2), family (X3), housing (X4), and self (X5).
aDij � 1 − Dji.

bPij = Pr(Dij � 1). cPji = Pr(Dij � 0). dPnoij � Pr(Dij � 0.5).
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address a wide variety of questions pertaining to pre-
dictor comparisons, from the very specific to the most
general, in a simple and intuitive manner.

We believe that DA is superior to most other ap-
proaches of determining relative importance because
of its more natural and intuitive interpretation, which
allows a general approach to predictor comparisons.
Unlike most other approaches, which start with a par-
ticular statistic (e.g., correlation coefficient) and try to
“extract” its interpretation, DA starts with a clear defi-
nition of importance and identifies the measures that
address the key question: Is variable Xi more or less
(or equally) important than variable Xj in predicting Y
in the context of the predictors included in the se-
lected model? The definition of importance is
straightforward—Xi is considered more important
than Xj if it contributes more to the prediction of the
response than does Xj; in other words, if one had to
choose only one of the two predictors, Xi is judged
more important if it would be chosen over Xj.

The original definition of dominance (Budescu,
1993) was strict in its requirement that, to establish
the dominance of one predictor over another, the ad-
ditional contribution condition needs to be satisfied in
each possible subset model. One important contribu-
tion of this article is the relaxation of this stringent
criterion and the definition of the weaker versions of
dominance that allow some violations of complete
dominance as long as Xi dominates Xj on the average.
The average can be taken either across all models of
a fixed size (conditional dominance) or across all
models (general dominance). As an analogy, consider
the question: Is City A warmer than city B? The ques-
tion can be answered in the affirmative fashion at
three distinct levels that tolerate various amounts of
inconsistency: (a) A is warmer than B if its tempera-
ture is higher every day of the year (complete); (b) A
is warmer than B if its average monthly temperature is
higher every month of the year but not necessarily
every day (conditional); and (c) A is warmer than B if
its average annual temperature is higher (general). We
recommend that dominance be reported at the stron-
gest level (complete) when it can be established, be-
cause it implies that the weaker levels of dominance
have also been achieved. If dominance cannot be es-
tablished at the complete level, we suggest reporting
this; the fact that dominance is undetermined is useful
in its own right. Researchers then have the option of
proceeding by examining weaker levels of dominance
to resolve any undetermined cases; the weakest (gen-
eral) dominance level will almost always establish

dominance between each pair of predictors. However,
if dominance could not be established at any level
other than the general level of measurement, this find-
ing would be indicative of a weaker form of domi-
nance that holds only by averaging over all subset
models.

The DA procedure can easily be used to answer
either very specific or the most general questions that
require predictor comparisons. For example, to iden-
tify the predictor whose removal will result in the
smallest drop in the proportion of variance (of Y)
accounted for, examine the rows of the DA table cor-
responding to subset models of size p − 1; this is
equivalent to examining the t tests of the regression
coefficients or the squared partial or semipartial cor-
relations. To identify the predictor that will give the
best prediction if used alone, examine the first row of
the DA table (corresponding to the null subset model);
this is equivalent to examining the simple bivariate
correlation with Y. To identify the predictor that adds
most to prediction after controlling for any specific
subset of the remaining variables, use constrained DA
by examining only the rows of the DA table that are
relevant. To identify the importance of the predictors
in the most general sense, which does not indicate a
specific subset model as the basis for comparison,
examine all possible subset models and all possible
comparisons by using the full DA table as well as the
various levels of dominance (complete, conditional,
general). To identify suppression cases, one may also
use the DA table, as illustrated earlier.

The intuitive appeal of the DA approach is exem-
plified in a recent report (Geiser & Studley, 2002),
which examined the relative importance and contri-
bution of high school grade point average (HSGPA)
and Scholastic Aptitude Test (SAT) I and SAT II
scores in predicting success in college as part of an
effort to develop optimal and fair admission proce-
dures for the University of California (UC) system.
The authors analyzed the GPA of all (n � 77,893)
UC freshmen for the period 1996–1999. To this end,
they fitted all 7 (or 23 − 1) distinct submodels, com-
pared their overall fit (in terms of R2), and examined
the additional contribution (again, in terms of R2) of
each of the predictors to the various subset models
(pages 5 and 6). For all practical purposes they per-
formed a DA, although they never used this term nor
made any explicit reference to this approach. It takes
the authors three full paragraphs to summarize the
conclusions of their various analyses and comparisons
when, in fact, the results can be summarized by sim-
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ply stating that HSGPA dominates SAT II generally
and HSGPA and SAT II dominate SAT I completely.
Table 13 presents the DA of these data. This report
has recently been cited as one of the main reasons for
the change in the nature of the SAT (Barnes, 2002)
and illustrates how DA can be used to affect and
shape policymaking.

Each of the predictor comparisons in DA is based
on the same subset model; that is, the comparison of
Xi and Xj is always conducted within the context of a
given subset of the remaining predictors and thus the
order of entry of the other predictors into the model is
irrelevant. If one is interested in the effect of each
predictor as it is added to the previously entered pre-
dictors, it is possible to perform a sequence of con-
strained DAs, but DA is not designed to generate or
address one specific hierarchical order. DA was also
not designed to address questions regarding path-
analytic models; for example, DA would not be of
help in studying a specific causal model in which X1

predicts X2 and X2 predicts Y, nor would DA be ap-
propriate for other path-analytic models such as me-
diation or indirect effect models.

Any of the problems that are inherent to poorly
measured variables and their effect on the semipartial
correlations (for examples, see Pedhazur, 1997) will
clearly also affect the results of DA. Other potential

measurement problems that could lead to erroneous
conclusions when comparisons are made—for ex-
ample, the construct represented by one variable is
better measured than the construct represented by an-
other, or the values of one variable are more repre-
sentative of the range of its values in the population
than are those of another variable—are discussed in
Cooper and Richardson (1986). If the validity of con-
clusions drawn from the appropriate use of other mea-
sures of importance is questionable because of poor
data, poor sampling, or other research methodology
problems, the validity of conclusions drawn from DA
will be similarly adversely affected. DA is an alter-
native to other measures of importance that is based
on substantive and interpretational considerations, but
it will not alleviate any issues that are due to prob-
lematic data.

The DA approach to comparing predictors is based
on a predictor’s added predictive ability in the pres-
ence of other predictors. This article takes the per-
spective of researchers who are interested in deciding
which of two predictors is more important without
examining the magnitude of the advantage. In other
words, we focus on a qualitative determination of im-
portance rather than a quantitative measure. It is con-
ceptually simple to generalize this process to any
measure of model fit that is based on the SSE and to

Table 13
Dominance Analysis of Data From “UC and the SAT”

Subset model (X) RY�X
2

Additional contribution of:

HSGPA SAT I SAT II

Null and k � 0 average 0 0.154 0.133 0.160

HSGPA 0.154 0.054 0.068
SAT-I 0.133 0.075 0.029
SAT-II 0.160 0.062 0.002

k � 1 average 0.068 0.028 0.048

HSGPA, SAT I 0.208 0.015
HSGPA, SAT II 0.222 0.001
SAT-I, SAT II 0.162 0.061

k � 2 average 0.061 0.001 0.015

HSGPA, SAT I, SAT II 0.223

Overall average 0.094 0.054 0.074

Note. The column labeled RY�X
2 represents the variance in Y explained by the model appearing in the

corresponding row; the other columns contain the additional contributions to the explained variance
gained by adding the column variable to the row model. Blank cells indicate that data are not applicable.
HSGPA � high school grade point average; SAT � Scholastic Aptitude Test. Data are from “UC and
the SAT: Predictive Validity and Differential Impact of the SAT I and SAT II at the University of
California,” by S. Geiser and R. Studley, 2002, Educational Assessment, 8, Table 2, p. 6. Copyright 2002
by Lawrence Erlbaum Associates. Adapted with permission.
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extend this measure to other general linear models.
Similar approaches to comparing predictors have been
proposed in the statistics literature by Whittaker
(1984) in the context of model selection and by Che-
van and Sutherland (1991) in the context of predictor
importance. The DA approach presented here is a
general approach to comparing predictors that in-
cludes several other comparison approaches (e.g.,
simple bivariate correlations, squared semipartial cor-
relations, regression coefficients) as special cases. DA
allows the researcher to compare the relative impor-
tance of regression predictors to answer a variety of
research questions in a variety of contexts and at dif-
ferent levels of measurement (i.e., complete, condi-
tional, and general). The use of the bootstrap to assess
the stability of dominance results across repeated
sampling provides the researcher with more insights
into the pattern of importance in a set of predictors
than were previously available.
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Dominance Probability Macro 

This macro executes dominance analysis as described  in “The Dominance Analysis Approach for Comparing Predictors in 
Multiple Regression,” by Razia Azen and David Budescu (Psychological Methods, 2003, Vol. 8, No. 2). Dominance 
analysis quantifes the importance of each predictor as its average increment to the model r-squared, across all possible 
submodel sizes. This macro was written by Razia Azen with valuable contributions from Robert Ceurvorst.   
 
NOTE:  This program is limited to at most 10 predictors!

-------------
INSTRUCTIONS:
-------------

1. In this macro, change the %macro dom line (which appears just below these
instructions) according to the following directions:
%macro dom (data=_last_, dep=Y, indep='list of predictors', p=n_of_predictors,

noprint=0, short=0, B=n_of_bootstraps, predtype='type_of_predictors',
seed=random_number);

If defaults are used, then only p= OR indep= is necessary, e.g., "%dom(p=4)"
will use the last data set created and operate on variables Y and X1-X4.

Either p= OR indep= is required -- not both. If both are specified, p is
determined by counting the variables in the indep= list.

data= SAS dataset to be used. Default is last dataset created.

dep= Name of dependent variable. Default is Y.

indep= List of predictors in quotes.
OR

p= No. of predictors IF and ONLY IF they are named X1-Xp,
in which case indep= is not required.

noprint=1 Suppresses printing of the input dataset.

short=1 Suppresses listing of each predictor's contributions to individual
submodels.

B= The number of bootstrap runs. Default is 1000.

predtype= 'f' if the predictors are fixed;
'r' if the predictors are random. Default is 'r'.

seed= Six digits. Default is 0 (uses clock value).

For example, with 4 predictors named X1, X2, X3, X4 and all default values:
(data=_last_, dep=Y, p=4, indep=, noprint=0, short=0, B=1000, predtype='r', seed=0);
Or, with 4 predictors named A, B, C, D and all default values:
(data=_last_, dep=Y, p=, indep='A B C D', noprint=0, short=0, B=1000, predtype='r',
seed=0);

2. Save this macro, and add the following two lines (below) to the
SAS program in which you've read the data set to be analyzed:

%include 'k:\sasmacro\uniDAmacro.sas'; *** CHANGE TO PATH WHERE MACRO IS SAVED ***;
%dom;

3. Run the program edited in step 2.
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-- END OF INSTRUCTIONS --
******************************************************************************/
option nosource;
/********** CHANGE ONLY THE LINE BELOW (See step 1 above)!!! **************/
%macro dom (data=_last_, dep=Y, p=, indep=' ', noprint=0, short=0, B=1000, predtype='r',
seed=0);
/**************************************************************************/

%if &indep= and &p= %then %do;
%put YOU MUST SPECIFY INDEP=list of predictors OR P=no. of predictors (IF THEY ARE NAMED

X1-Xp).;
%goto done;

%end;

%else %if &indep ne %then %do;
%if %index(&indep,%str(%'))>0 or %index(&indep,%str(%"))>0

%then %let indep = %substr(&indep,2,%length(&indep)-2);
%if %index(&indep,-) > 0 %then %expand;
%let p=1;
%do %while(%length(%scan(&indep,&p))>0);

%let x&p = %scan(&indep,&p);
%let p = %eval(&p+1);

%end;
%let p = %eval(&p-1);

%end;

%else %if &p > 0 %then %do;
%let indep=;
%do i=1 %to &p;

%let indep=&indep x&i;
%let x&i=x&i;

%end;
%end;

%if &p>10 %then %do;
%put THE MAXIMUM NUMBER OF PREDICTORS IS 10. YOU HAVE &P..;
%goto done;

%end;

%LET DATANAME=&SYSLAST;
option nonotes;
DATA _NULL_; FILE PRINT LINESLEFT=WITH; CALL SYMPUT('WITH',WITH);
DATA _NULL_;

FILE PRINT NOTITLES LINESLEFT=WITHOUT;
CALL SYMPUT ('MTITLE',TRIM(LEFT(WITHOUT-&WITH+2)));
CALL SYMPUT('NMODELS', 2**&p -1);

RUN;

data original; set &data;

%if &noprint=0 %then %do;
proc print;
title&mtitle 'Input data set (check to make sure it is correct)'; run;
%end;

data labels; set;
keep &indep;
length dvlabel $40;
call label(&dep,dvlabel);
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call symput('dvl',trim(dvlabel));
if _n_=1 then stop;

run;

/*********************************************************
PART 1: regression/DA of the original data

*********************************************************/

title 'regression results for original data set';
option notes;
proc reg corr data=original outest=onereg (keep=_in_ _rsq_ &indep);

model &dep=&indep / stb pcorr2 scorr2 ;
model &dep=&indep / selection=adjrsq best=&nmodels %if &short=1 %then noprint;;

run; quit; option nonotes;

* order all subset models in lexicographical order;
data modelmat;

set onereg;
%if %substr(&sysver,1,1)=8 %then if _n_>1;;
%do i=1 %to &p;

&&x&i=(&&x&i>.);
%end;
if _IN_=. then delete;
keep &indep _IN_ _RSQ_;

proc sort; by _IN_ %do i=1 %to &p; descending &&x&i %end;; run;
proc print; title 'R-squared values for all subset models'; run;

/*** %if &short=0 %then %do;
proc print; id _IN_ _RSQ_; format _RSQ_ 5.4; run;

%end; ***/

/**********************************************
DOMINANCE ANALYSIS TABLE

**********************************************/
option notes; title;
proc IML;
reset noprint;
start;
* read the subset models matrix into DOM;
use modelmat;
read all into DOM;

close modelmat;

* dom contains, for each subset model, 1/0 values for the predictors,
the number of predictors in (_IN_), and the model r2 (_RSQ_);

p=ncol(dom)-2;
ncol=ncol(dom);

* dom is rearranged to contain, for each subset model, the number of predictors
in and the r2 of the model, followed by 1/0 values for predictors in/out;
dom1=dom[,1:p]; dom2=dom[,(p+1):ncol]; dom=dom2||dom1; free dom1 dom2;

* generate table of additional contributions;
null=J(1,ncol,0);
dom=null//dom;
nrow=nrow(dom);
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* dom now contains a top row of zeros for the null model;
full=J(1,p,99); fullrsq=J(1,1,99);
reduced=J(1,p,99); redrsq=J(1,1,99);
contrib=J(nrow,p,0); * additional contributions matrix;

do i=1 to nrow; * for each model;
do j=1 to p; * for each predictor;

if dom(|i,j+2|)=0 then do; * if predictor is not in subset model;
reduced=dom[i,3:ncol]; * the 1/0 row represents the reduced model;
full=reduced; * the full model is same as reduced model;

do k=1 to p;
if k=j then full(|1,k|)=1; * add the jth predictor to the full model;

end;

do r=1 to nrow; * for each model;
comp=dom[r,3:ncol]; * comp is the 1/0 row of dom;
if comp=full then fullrsq=dom[r,2]; * r2 of row is fullrsq, or;
if comp=reduced then redrsq=dom[r,2]; * r2 of row is redrsq;

end;

contrib(|i,j|)=fullrsq-redrsq; * contrib is r2 difference;
end;

else do;
contrib(|i,j|)=.; * if predictor is in model, contib is .;

end;

end;
end;

contrib=dom||contrib;
contrib=contrib[1:nrow-1,];

cols = {IN RSQ %do i=1 %to &p; &&X&i %end; %do i=1 %to &p; CP&i %end;};

create rsqtable from contrib[colname=cols];
append from contrib;

close rsqtable;

finish;
run; quit;

option nonotes;

%if &short=0 %then %do;
proc print data=rsqtable; id IN RSQ; format RSQ CP1-CP&p 5.4;
title&mtitle 'Dominance Table: Additional Contributions of Predictors Across All Subset

Regression Models';
%UNQUOTE(TITLE%EVAL(&MTITLE+1)) 'CPi indicates the additional contribution of predictor i

to the model r-square';
%end;

proc summary nway; var CP1--CP&p; class in;
output out=avgcont (drop=_type_) mean=&indep;

run;
proc means noprint; var &indep;
output out=meanc mean=;

run;
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data avgcont; set labels meanc (in=y) avgcont;
if y then in=999;

proc print double; id IN; var &indep;
format &indep 5.4 IN %if &p<11 %then 1.0; %else 2.0;;

title&mtitle 'Dominance Analysis: Overall Average Contributions of Predictors (First
Row)';
%UNQUOTE(TITLE%EVAL(&MTITLE+1)) 'And Average Contributions to Models of Each Size
(Remaining Rows)'; run;

proc transpose prefix=size out=meanc (rename=(SIZE999=OVERALL _NAME_=VAR)); id IN; var
&indep; run;
proc sort; by descending overall;
title&mtitle 'Dominance Analysis: Average Predictor Contributions Overall and to Models of
Each Size';
proc print; id _character_; format _numeric_ 5.4; run;

TITLE&MTITLE;
%DONE: option notes _last_=&syslast;
run;

/**********************************************
DOMINANCE MATRICES (Sample)

**********************************************/

Proc IML;
start;
use modelmat;
read all into damat;

close modelmat;
Dcsample=J(&p,&p,0); Dasample=J(&p,&p,0); Dgsample=J(&p,&p,0);
RSQ=damat[,ncol(damat)];

/***************************************************/
/***** Complete dominance ****/
/***************************************************/
do i=1 to &p-1;
do j=i+1 to &p;

* define matrix of constants ("comp") to determine complete dominance between
each pair of predictors;

comp=J(2**(&p-2),2**&p-1,0);

* Xh is any subset model that does not include i and j;
* Xh contains the columns of damat that do not involve i or j;
Xh=J(nrow(damat),&p-2,99);

Xhcol=0; * index column number in Xh;
do h=1 to &p;
if (i ^= h & j ^= h) then do; * find non i,j columns;
Xhcol=Xhcol+1; * update column number in Xh;
Xh[,Xhcol] = damat[,h]; * assign column to Xh;
end;

end;

* contrast rows (subsets) representing XiXh and XjXh;
comprow=1;
do r=1 to 2**&p-2; * for each pair of rows;
do s=r+1 to 2**&p-1;
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if Xh[r,]=Xh[s,] then do; * if the rows of Xh are the same;
* and if i and j are contrasted;

if (damat[r,i]=1 & damat[r,j]=0 & damat[s,i]=0 &
damat[s,j]=1) then do;
comp[comprow,r]=1;
comp[comprow,s]=-1;
comprow=comprow+1;

end;
end;

end; * do r loop;
end; * do s loop;

*** Determine the complete Dij value ***;

cdiffij=comp*RSQ;

zero=J(nrow(cdiffij), ncol(cdiffij),0);
ijdom=nrow(cdiffij);

* obtain complete dominance matrices;
* undetermined case (all differences are zero);
if cdiffij=zero then do;

Dcsample[i,j]=0.5;
Dcsample[j,i]=Dcsample[i,j];

end;
* else, check signs of difference elements;
if cdiffij ^= zero then do;
nonneg=0; nonpos=0;
do k=1 to nrow(cdiffij);
if cdiffij[k,]>=0 then nonneg=nonneg+1;
if cdiffij[k,]<=0 then nonpos=nonpos+1;

end;
* dominance case;
if nonneg=ijdom then Dcsample[i,j]=1; else Dcsample[i,j]=0;
if nonpos=ijdom then Dcsample[j,i]=1; else Dcsample[j,i]=0;
* undetermined case (differences have different signs);
if (Dcsample[i,j]=0 & Dcsample[j,i]=0) then do;

Dcsample[i,j]=0.5;
Dcsample[j,i]=Dcsample[i,j];

end;
end;

/***************************************************/
/***** Conditional dominance ****/
/***************************************************/
* define matrix of constants ("avg") to determine average (within model
size) dominance between each pair of predictors;

subsets=damat;
* subsets is a matrix that consists of p+2 columns (and
the null model in the top row): 1/0 for x1 - xp, in, Rsq;

avg=J(&p,2**&p-1,0);
do c=1 to &p; * for each model size;
num=0; * index number of subsets per size;
do m=1 to 2**&p-1; * for each model, determine number of models

of size is c-1 to which the ith predictor makes
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an additional contribution;
if (subsets[m,&p+1]=c-1 & subsets[m,i]=0) then num=num+1;

end;
if num=0 then num=1; * for the case of the null model (size=0);
do r=1 to 2**&p-1; * determine subsets to contrast;
* consider additional contributions for model size (c);
if (subsets[r,&p+1]=c-1 | subsets[r,&p+1]=c) then do;
* average contribution of models that inlcude i but not j;
if (subsets[r,i]=1 & subsets[r,j]=0) then avg[c,r]=1/num;
* average contribution of models that inlcude j but not i;
if (subsets[r,i]=0 & subsets[r,j]=1) then avg[c,r]=-1/num;

end;
end;

end;

*** Determine the average Dij value ***;

adiffij=avg*RSQ;

zero=J(nrow(adiffij), ncol(adiffij),0);
ijdom=nrow(adiffij);

* obtain average dominance matrices;
* undetermined case (all differences are zero);
if adiffij=zero then do;

Dasample[i,j]=0.5;
Dasample[j,i]=Dasample[i,j];

end;
* else, check signs of difference elements;
if adiffij ^= zero then do;
nonneg=0; nonpos=0;
do k=1 to nrow(adiffij);
if adiffij[k,]>=0 then nonneg=nonneg+1;
if adiffij[k,]<=0 then nonpos=nonpos+1;

end;
* dominance case;
if nonneg=ijdom then Dasample[i,j]=1; else Dasample[i,j]=0;
if nonpos=ijdom then Dasample[j,i]=1; else Dasample[j,i]=0;
* undetermined case (differences have different signs);
if (Dasample[i,j]=0 & Dasample[j,i]=0) then do;

Dasample[i,j]=0.5;
Dasample[j,i]=Dasample[i,j];

end;
end;

/***************************************************/
/***** General dominance ****/
/***************************************************/
* define matrix of constants ("glob") to determine global (overall average)
dominance between each pair of predictors;

glob=J(1,2**&p-1,99);
do g=1 to 2**&p-1;
glob[,g]=avg[+,g]/&p;

end;

*** Determine the global Dij value ***;

gdiffij=glob*RSQ;
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zero=J(nrow(gdiffij), ncol(gdiffij),0);
ijdom=nrow(gdiffij);

* obtain global dominance matrices;
* undetermined case (all differences are zero);
if gdiffij=zero then do;

Dgsample[i,j]=0.5;
Dgsample[j,i]=Dgsample[i,j];

end;
* else, check signs of difference elements;
if gdiffij ^= zero then do;
nonneg=0; nonpos=0;
do k=1 to nrow(gdiffij);
if gdiffij[k,]>=0 then nonneg=nonneg+1;
if gdiffij[k,]<=0 then nonpos=nonpos+1;

end;
* dominance case;
if nonneg=ijdom then Dgsample[i,j]=1; else Dgsample[i,j]=0;
if nonpos=ijdom then Dgsample[j,i]=1; else Dgsample[j,i]=0;
* undetermined case (differences have different signs);
if (Dgsample[i,j]=0 & Dgsample[j,i]=0) then do;

Dgsample[i,j]=0.5;
Dgsample[j,i]=Dgsample[i,j];

end;
end;

end; *(i loop);
end; *(j loop);

create Dcsample from Dcsample;
append from Dcsample;

close Dcsample;
create Dasample from Dasample;
append from Dasample;

close Dasample;
create Dgsample from Dgsample;
append from Dgsample;

close Dgsample;

* create a file with sample dominance values;
* variables: i, j, cell value;
Sample_dc = J(&p*(&p-1), 3, 0); Sample_da = J(&p*(&p-1), 3, 0);
Sample_dg = J(&p*(&p-1), 3, 0); row=0;
do i=1 to nrow(Dcsample);
do j=1 to ncol(Dcsample);
if i ^= j then do;
row=row+1;
Sample_dc[row,1]=i; Sample_dc[row,2]=j; Sample_dc[row,3]=Dcsample[i,j];
Sample_da[row,1]=i; Sample_da[row,2]=j; Sample_da[row,3]=Dasample[i,j];
Sample_dg[row,1]=i; Sample_dg[row,2]=j; Sample_dg[row,3]=Dgsample[i,j];

end;
end;

end;
create sample_dc from Sample_dc[colname={i j dij}];
append from Sample_dc;

close sample_dc;
create sample_da from Sample_da[colname={i j dij}];
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append from Sample_da;
close sample_da;
create sample_dg from Sample_dg[colname={i j dij}];
append from Sample_dg;
close sample_dg;

finish;
run;

/*************************************************************************
* PART 2: Bootstrapping Loop
**************************************************************************/
* input: data set containing Y, data set containing X;
data depvar;
set original;
keep &dep;
run;

data indepvar;
set original;
keep &indep;
run;

* steps: 1. resample, 2. compute r-squared vector, 3. repeat B times;
option ls=70 nonotes nosource nosource2;
proc IML;
reset noprint; * nolog;
start;

*A. Generate a vector of B seeds (seedvec);
/***********************************************************************/
/* The vector seedvec contains B random seeds from a uniform */
/* distribution, generated using the initial value (seed) specified */
/* above. The vector is then saved to an external file, seeds, */
/* which is subsequently read into the SAS dataset (seeds). */
/***********************************************************************/

seedvec=J(&B,1,0);
do i=1 to &B;

seedvec(|i,|) = uniform(&seed)*100000;
end;

create seeds from seedvec;
append from seedvec;
close seeds;

finish;
run; quit;

/*====================================================================*/
/* start 1 to B loop */
/*====================================================================*/

%do r = 1 %to &B;

proc IML;
reset noprint; * nolog;
start;
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* obtain Aij and Dij for each ij pair;

* read in the original data set (into DATA);
use depvar;
read all into YData;
close depvar;
use indepvar;
read all into XData;
close indepvar;

DATA = YData || XData;
Y = YData;
X = XData;

* read in the seeds vector (into seedvec);
use seeds;
read all into seedvec;

close seeds;

n=nrow(DATA);
r=ncol(DATA);

*** check input;
if &r=1 then do;
print 'Check that the data were read properly!!!';
first5Y = J(1,5,0); first5Y=Y[1:5,];
first5X = J(&p,5,0); first5X=X[1:5,];
print 'The number of observations used is:' n;
print 'The total number of variables used is:' r;
print 'The dependent values for the first five cases are:' first5Y;
print 'The predictor values for the first five cases are:' first5X;
print 'You requested' &B 'bootstrap samples';
print 'The bootstrap procedure is now running... PLEASE WAIT...';

end;

/***********************************************************************/
/* For bootstrapping run i, the i-th entry of the vector seedvec */
/* (resample) is used to generate a vector (integers) whose entries */
/* consist of the integers 1 to n sampled randomly, with replacement, */
/* from a uniform distribution. */
/***********************************************************************/
integers=J(n,1,0);

* Specify seed for resampling (resample);
resample=J(1,1,0);
resample=seedvec(|&r,|);

* generate a vector (integers) containing the integers 1 to n sampled
randomly, with replacement, from a uniform distribution whose initial seed is
resample;
Do i=1 to n;
integers(|i|)=int(uniform(resample)*(n-1)+1);
end;

*print &r integers;

%if &predtype='r' %then %do;
/*=====================================================================*/
/*** PAIR RESAMPLING BOOTSTRAP ***/
/*=====================================================================*/
/***********************************************************************/
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/* The i-th entry in integers is an integer (j) between 1 and n which */
/* indicates the entry (row) number of the data matrix to be taken */
/* as the i-th entry (row) in the matrix obsboot. This is repeated */
/* for i = 1 to n. */
/***********************************************************************/
* obsboot is a matrix of randomly sampled observations;
obsboot=J(n,r,0);
Do i=1 to n;
j=integers(|i, |);
obsboot(|i, |)=DATA(|j, |);
end;

* convert bootstrapped data to external file;
***************************************************;

create bootdata from obsboot[colname={&dep &indep}];
append from obsboot;

close bootdata;
run;

%end;
/*===================== END of Pair Resampling =======================*/

%if &predtype='f' %then %do;
/*=====================================================================*/
/*** RESIDUAL RESAMPLING BOOTSTRAP ***/
/*=====================================================================*/
/***********************************************************************/
/* From the matrix DATA, whose first column represents Y and the */
/* remaining columns represent X (as specified above), the vector of */
/* Least-squares predicted values, YHat, and the vector of the */
/* Least Squares residuals, Res, are computed. */
/***********************************************************************/

* fit a model with an intercept to obtain YHat and Res;
ONE=J(n,1,1);
X1=ONE||X;
YHat=X1*INV(X1`*X1)*X1`*Y;
Res=YHat-Y;

/***********************************************************************/
/* The i-th entry in integers is an integer between 1 and n (j) which */
/* indicates the entry (row) number of the residuals vector, Res, */
/* to be added to the i-th predicted value, Y-Hat. This is repeated */
/* for i = 1 to n. The vector Yboot consists of the initial predicted */
/* values (YHat) with the randomly selected residuals added. The */
/* matrix Fixdata consists of Yboot and the original X matrix. */
/***********************************************************************/

* Resboot is a vector of randomly sampled residuals;
Resboot=J(n,1,0);
Do i=1 to n;
j=integers(|i, |);
Resboot(|i, |)=Res(|j, |);
end;

* add random residuals to Y-hat;
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Yboot=YHat+Resboot;

* an n by r matrix of bootstrapped Y and fixed Xs;
Fixdata=Yboot||X;

* convert bootstrapped data to external file;
***************************************************;
create bootdata from obsboot[colname={&dep &indep}];
append from obsboot;
close bootdata;
run;

%end;
/*=================== END of Residual Resampling =====================*/

finish;
run; quit;

* produce bootstrap data sets;

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
/* Computing Dij */
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/

* regression of bootstrapped data;
***********************************;

data resample;
set bootdata;
run;

proc reg corr data=resample noprint outest=regfile (keep=_in_ _rsq_ &indep);
model &dep=&indep / selection=adjrsq;

run; quit; option nonotes;

* order all subset models in lexicographical order;
data bootmat;
set regfile;
*%if %substr(&sysver,1,1)=8 %then if _n_>1;;
%do i=1 %to &p;

&&x&i=(&&x&i>.);
%end;
if _IN_=. then delete;
keep &indep _IN_ _RSQ_;

run;
proc sort; by _IN_ %do i=1 %to &p; descending &&x&i %end;; run;

* obtain Aij and Dij for each ij pair;
proc IML;
reset noprint; * nolog;
start;
/*************************************************************************
* COMPUTE DOMINANCE MATRICES (resample)
**************************************************************************/
use bootmat;
read all into damat;
close bootmat;



Supplemental material 
Azen and Budescu, Psychological Methods, Vol. 8, No. 2, 129–148 13 

* damat is a matrix that consists of p+2 columns: 1/0 for x1 - xp, in, Rsq;

use Dcsample;
read all into sampleDc;

close Dcsample;
use Dasample;
read all into sampleDa;

close Dasample;
use Dgsample;
read all into sampleDg;

close Dgsample;

* at first run, initialize frequency matrices and sample pattern counter;
if &r =1 then do;
freqDc1=J(&p, &p, 0); freqDc0=J(&p, &p, 0); freqDcn=J(&p, &p, 0);
freqDa1=J(&p, &p, 0); freqDa0=J(&p, &p, 0); freqDan=J(&p, &p, 0);
freqDg1=J(&p, &p, 0); freqDg0=J(&p, &p, 0); freqDgn=J(&p, &p, 0);
patcount=J(1,3,0); *columns correspond to dominance types;

end;

* at subsequent runs retrieve files as sum matrices;
if &r ^= 1 then do;
use sumDc1;
read all into freqDc1;

close sumDc1;
use sumDc0;
read all into freqDc0;

close sumDc0;
use sumDcn;
read all into freqDcn;

close sumDcn;

use sumDa1;
read all into freqDa1;

close sumDa1;
use sumDa0;
read all into freqDa0;

close sumDa0;
use sumDan;
read all into freqDan;

close sumDan;

use sumDg1;
read all into freqDg1;

close sumDg1;
use sumDg0;
read all into freqDg0;

close sumDg0;
use sumDgn;
read all into freqDgn;

close sumDgn;

use patfreq;
read all into patcount;

close patfreq;

end;

* r-squared vector is the last column of damat (without null model);
RSQ=damat[,ncol(damat)];
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*print &r RSQ;

Dc=J(&p,&p,0); Da=J(&p,&p,0); Dg=J(&p,&p,0);

/***************************************************/
/***** Complete dominance ****/
/***************************************************/
do i=1 to &p-1;
do j=i+1 to &p;

* define matrix of constants ("comp") to determine complete dominance between
each pair of predictors;

comp=J(2**(&p-2),2**&p-1,0);

* Xh is any subset model that does not include i and j;
* Xh contains the columns of damat that do not involve i or j;
Xh=J(nrow(damat),&p-2,99);

Xhcol=0; * index column number in Xh;
do h=1 to &p;
if (i ^= h & j ^= h) then do; * find non i,j columns;
Xhcol=Xhcol+1; * update column number in Xh;
Xh[,Xhcol] = damat[,h]; * assign column to Xh;
end;

end;

* contrast rows (subsets) representing XiXh and XjXh;
comprow=1;
do r=1 to 2**&p-2; * for each pair of rows;
do s=r+1 to 2**&p-1;
if Xh[r,]=Xh[s,] then do; * if the rows of Xh are the same;

* and if i and j are contrasted;
if (damat[r,i]=1 & damat[r,j]=0 & damat[s,i]=0 &

damat[s,j]=1) then do;
comp[comprow,r]=1;
comp[comprow,s]=-1;
comprow=comprow+1;

end;
end;

end; * do r loop;
end; * do s loop;

*** Determine the complete Dij value ***;

cdiffij=comp*RSQ;

zero=J(nrow(cdiffij), ncol(cdiffij),0);
ijdom=nrow(cdiffij);

* obtain complete dominance matrices;
* undetermined case (all differences are zero);
if cdiffij=zero then do;

Dc[i,j]=0.5;
Dc[j,i]=Dc[i,j];

end;
* else, check signs of difference elements;



Supplemental material 
Azen and Budescu, Psychological Methods, Vol. 8, No. 2, 129–148 15 

if cdiffij ^= zero then do;
nonneg=0; nonpos=0;
do k=1 to nrow(cdiffij);
if cdiffij[k,]>=0 then nonneg=nonneg+1;
if cdiffij[k,]<=0 then nonpos=nonpos+1;

end;
* dominance case;
if nonneg=ijdom then Dc[i,j]=1; else Dc[i,j]=0;
if nonpos=ijdom then Dc[j,i]=1; else Dc[j,i]=0;
* undetermined case (differences have different signs);
if (Dc[i,j]=0 & Dc[j,i]=0) then do;

Dc[i,j]=0.5;
Dc[j,i]=Dc[i,j];

end;
end;

/***************************************************/
/***** Conditional dominance ****/
/***************************************************/
* define matrix of constants ("avg") to determine average (within model
size) dominance between each pair of predictors;

subsets=damat;
* subsets is a matrix that consists of p+2 columns (and
the null model in the top row): 1/0 for x1 - xp, in, Rsq;

avg=J(&p,2**&p-1,0);
do c=1 to &p; * for each model size;
num=0; * index number of subsets per size;
do m=1 to 2**&p-1; * for each model, determine number of models

of size is c-1 to which the ith predictor makes
an additional contribution;

if (subsets[m,&p+1]=c-1 & subsets[m,i]=0) then num=num+1;
end;
if num=0 then num=1; * for the case of the null model (size=0);
do r=1 to 2**&p-1; * determine subsets to contrast;
* consider additional contributions for model size (c);
if (subsets[r,&p+1]=c-1 | subsets[r,&p+1]=c) then do;
* average contribution of models that inlcude i but not j;
if (subsets[r,i]=1 & subsets[r,j]=0) then avg[c,r]=1/num;
* average contribution of models that inlcude j but not i;
if (subsets[r,i]=0 & subsets[r,j]=1) then avg[c,r]=-1/num;

end;
end;

end;

*** Determine the average Dij value ***;

adiffij=avg*RSQ;

zero=J(nrow(adiffij), ncol(adiffij),0);
ijdom=nrow(adiffij);

* obtain average dominance matrices;
* undetermined case (all differences are zero);
if adiffij=zero then do;

Da[i,j]=0.5;
Da[j,i]=Da[i,j];
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end;
* else, check signs of difference elements;
if adiffij ^= zero then do;
nonneg=0; nonpos=0;
do k=1 to nrow(adiffij);
if adiffij[k,]>=0 then nonneg=nonneg+1;
if adiffij[k,]<=0 then nonpos=nonpos+1;

end;
* dominance case;
if nonneg=ijdom then Da[i,j]=1; else Da[i,j]=0;
if nonpos=ijdom then Da[j,i]=1; else Da[j,i]=0;
* undetermined case (differences have different signs);
if (Da[i,j]=0 & Da[j,i]=0) then do;

Da[i,j]=0.5;
Da[j,i]=Da[i,j];

end;
end;

/***************************************************/
/***** General dominance ****/
/***************************************************/
* define matrix of constants ("glob") to determine global (overall average)
dominance between each pair of predictors;

glob=J(1,2**&p-1,99);
do g=1 to 2**&p-1;
glob[,g]=avg[+,g]/&p;

end;

*** Determine the global Dij value ***;

gdiffij=glob*RSQ;
*print 'global dominance comparisons';
*print i j gdiffij;

zero=J(nrow(gdiffij), ncol(gdiffij),0);
ijdom=nrow(gdiffij);

* obtain global dominance matrices;
* undetermined case (all differences are zero);
if gdiffij=zero then do;

Dg[i,j]=0.5;
Dg[j,i]=Dg[i,j];

end;
* else, check signs of difference elements;
if gdiffij ^= zero then do;
nonneg=0; nonpos=0;
do k=1 to nrow(gdiffij);
if gdiffij[k,]>=0 then nonneg=nonneg+1;
if gdiffij[k,]<=0 then nonpos=nonpos+1;

end;
* dominance case;
if nonneg=ijdom then Dg[i,j]=1; else Dg[i,j]=0;
if nonpos=ijdom then Dg[j,i]=1; else Dg[j,i]=0;
* undetermined case (differences have different signs);
if (Dg[i,j]=0 & Dg[j,i]=0) then do;

Dg[i,j]=0.5;
Dg[j,i]=Dg[i,j];

end;
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end;

end; *(i loop);
end; *(j loop);

**** compare current D matrices to sample D matrices ****;
if Dc=sampleDc then patcount[,1]=patcount[,1]+1;
if Da=sampleDa then patcount[,2]=patcount[,2]+1;
if Dg=sampleDg then patcount[,3]=patcount[,3]+1;
create patfreq from patcount;
append from patcount;

close patfreq;

thisDc1=J(&p,&p,0); thisDc0=J(&p,&p,0); thisDcn=J(&p,&p,0);
thisDa1=J(&p,&p,0); thisDa0=J(&p,&p,0); thisDan=J(&p,&p,0);
thisDg1=J(&p,&p,0); thisDg0=J(&p,&p,0); thisDgn=J(&p,&p,0);
do i=1 to &p;
do j=1 to &p;
if i ^=j then do;
if Dc[i,j]=1 then thisDc1[i,j]=1;
if Dc[i,j]=0 then thisDc0[i,j]=1;
if Dc[i,j]=0.5 then thisDcn[i,j]=1;
if Da[i,j]=1 then thisDa1[i,j]=1;
if Da[i,j]=0 then thisDa0[i,j]=1;
if Da[i,j]=0.5 then thisDan[i,j]=1;
if Dg[i,j]=1 then thisDg1[i,j]=1;
if Dg[i,j]=0 then thisDg0[i,j]=1;
if Dg[i,j]=0.5 then thisDgn[i,j]=1;

end;
end;

end;

**** add current D matrices to previous D matrices ****;
freqDc1 = freqDc1+thisDc1;
freqDa1 = freqDa1+thisDa1; freqDg1 = freqDg1+thisDg1;
freqDc0 = freqDc0+thisDc0;
freqDa0 = freqDa0+thisDa0; freqDg0 = freqDg0+thisDg0;
freqDcn = freqDcn+thisDcn;
freqDan = freqDan+thisDan; freqDgn = freqDgn+thisDgn;

create sumDc1 from freqDc1;
append from freqDc1;

close sumDc1;
create sumDc0 from freqDc0;
append from freqDc0;

close sumDc0;
create sumDcn from freqDcn;
append from freqDcn;

close sumDcn;

create sumDa1 from freqDa1;
append from freqDa1;

close sumDa1;
create sumDa0 from freqDa0;
append from freqDa0;

close sumDa0;
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create sumDan from freqDan;
append from freqDan;

close sumDan;

create sumDg1 from freqDg1;
append from freqDg1;

close sumDg1;
create sumDg0 from freqDg0;
append from freqDg0;

close sumDg0;
create sumDgn from freqDgn;
append from freqDgn;

close sumDgn;

*at last run create summary tables containing the following columns:
i, j, f=1, f=0, f=0.5 pij pji;
if &r=&B then do;
row=1;
summary_c=J(&p*(&p-1), 8, -9);
summary_a=J(&p*(&p-1), 8, -9);
summary_g=J(&p*(&p-1), 8, -9);
do i=1 to &p;
do j=1 to &p;
if i^=j then do;
summary_c[row,1]=i; summary_c[row,2]=j;

summary_c[row,3]=freqDc1[i,j];
summary_c[row,4]=freqDc0[i,j]; summary_c[row,5]=freqDcn[i,j];
summary_c[row,6]=freqDc1[i,j]/&B; summary_c[row,7]=freqDc0[i,j]/&B;

summary_c[row,8]=freqDcn[i,j]/&B;
summary_a[row,1]=i; summary_a[row,2]=j;

summary_a[row,3]=freqDa1[i,j];
summary_a[row,4]=freqDa0[i,j]; summary_a[row,5]=freqDan[i,j];
summary_a[row,6]=freqDa1[i,j]/&B; summary_a[row,7]=freqDa0[i,j]/&B;

summary_a[row,8]=freqDan[i,j]/&B;
summary_g[row,1]=i; summary_g[row,2]=j;

summary_g[row,3]=freqDg1[i,j];
summary_g[row,4]=freqDg0[i,j]; summary_g[row,5]=freqDgn[i,j];
summary_g[row,6]=freqDg1[i,j]/&B; summary_g[row,7]=freqDg0[i,j]/&B;

summary_g[row,8]=freqDgn[i,j]/&B;
row=row+1;

end;
end;
end;
create csummary from summary_c[colname={i j f1 f0 fn Pij Pji pno}];
append from summary_c;
close csummary;
create asummary from summary_a[colname={i j f1 f0 fn Pij Pji pno}];
append from summary_a;
close asummary;
create gsummary from summary_g[colname={i j f1 f0 fn Pij Pji pno}];
append from summary_g;
close gsummary;
create patsum from patcount[colname={complete conditional general}];
append from patcount;
close patsum;

end;

finish;
run; quit;



Supplemental material 
Azen and Budescu, Psychological Methods, Vol. 8, No. 2, 129–148 19 

%end; ***** end the 1 to B loop ****;

/*************************************************************************/
/* PART 3: Probabilities and reproducibilities */
/*************************************************************************/
* input: nine p by p matrices of COUNTS;
* stpes: convert to probabilities, compute test statistics / CIs, plots;
* output: tables;
data average;
set asummary;
dominance='conditional';
pair=i*10+j;

run;
data complete;
set csummary;
dominance='complete';
pair=i*10+j;

run;
data global;
set gsummary;
dominance='general';
pair=i*10+j;

run;

data merged;
set complete average global;

run;
/* proc print data=merged; title 'results'; run; */
data results; set merged;
array f[3] f1 f0 fn;
do domtype=1 to 3;
domfreq = f[domtype];
output;

end;
run;
data results; set results;

if domtype=1 then Dij=1;
if domtype=2 then Dij=0;
if domtype=3 then Dij=0.5;

run;
proc sort data=results; by dominance pair; run;
proc means data=results noprint;
var Dij; freq domfreq;
by dominance pair;
output out=meansout mean=Dbar STD=SE;

run;

data samplea;
set Sample_da; pair=i*10+j; dominance='conditional';

run;
data samplec;
set Sample_dc; pair=i*10+j; dominance='complete';

run;
data sampleg;
set Sample_dg; pair=i*10+j; dominance='general';

run;
data sample;
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set samplec samplea sampleg;
run;

******* SUMMARY OUTPUT *******;
* variables: dominance-type, i, j, p(iDj), p(jDi), p(noD), Dbar, SE,
sample-value, pattern-prob;
*** merge sample, results and meansout data sets by dominance and pair;
proc sort data=sample; by dominance pair; run;
data results; set results; if domtype=1; run;
proc sort data=results; by dominance pair; run;
proc sort data=meansout; by dominance pair; run;
data printout;
merge results sample meansout;
by dominance pair;

run;

data table;
set printout(drop=domtype domfreq _TYPE_ _FREQ_);

/* i_dom_j=pij; j_dom_i=pji; no_dom=pno; */
Pijno=pno;
Dij_mean = dbar;
Dij_se = se;
if dij=1 then reprod = pij;
if dij=0 then reprod = pji;
if dij=0.5 then reprod = pijno;
format Dij_se F6.3;

run;
data table; set table(drop = f1 f0 fn pno dbar); run;
proc sort; by dominance pair; run;
proc print data=table;
title 'summary of results: all pairs';
title2 'Pij, Pji, Pijno are dominance probabilities and';
title3 'reprod are reproducibility values';
var dominance i j Dij Dij_mean dij_SE Pij Pji Pijno reprod;

run;
data plots; set table;
if Pij ge Pji;
format Dij_se F6.3;

run;
proc print data=plots;
title 'summary of results: pair arranged by dominant predictor';
title2 'Pij, Pji, Pijno are dominance probabilities and';
title3 'reprod are reproducibility values';
var dominance i j Dij Dij_mean dij_SE Pij Pji Pijno reprod;

run;

%mend dom;

/***********************************************************
The following macros expand a variable list containing
hyphens into a list specifying each individual variable.

***********************************************************/

%MACRO EXPAND;
%LET LNGTH = %LENGTH(&INDEP); %LET TEMP=;
%DO _INDEX_ = 1 %TO &LNGTH;

%LET ITEM = %SCAN(&INDEP,&_INDEX_,%QUOTE( ));
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%IF %LENGTH(&ITEM) EQ 0 %THEN %GOTO DONE;
%IF %INDEX(&ITEM,-) > 0 %THEN %EXPANDED;
%LET TEMP = &TEMP &ITEM;

%END; %DONE: %LET INDEP = &TEMP;
%MEND EXPAND;

%MACRO EXPANDED;
%LET DASH = %INDEX(&ITEM,-);
%DO I = %EVAL(&DASH-1) %TO 1 %BY -1;

%LET ALPHANUM = %SUBSTR(&ITEM,&I,1);
%DO II = 0 %TO 9; %IF &ALPHANUM EQ &II %THEN %GOTO FOUND; %END;
%GOTO DONE;

%FOUND: %END;
%DONE: %LET PREFX = %SUBSTR(&ITEM,1,&I);
%LET LOWER = %SUBSTR(&ITEM,%EVAL(&I+1),%EVAL(&DASH-&I-1));
%LET UPPER = %SUBSTR(&ITEM,%EVAL(&DASH+&I+1));
%LET ITEM=; %DO II = &LOWER %TO &UPPER; %LET ITEM = &ITEM &PREFX.&II;
%END;

%MEND EXPANDED;


