
 

CHAPTER 5

Methods For Normal Data

5.1 Introduction

The most common probability model for continuous
multivariate data is the multivariate normal distribution. Many
standard methods for analyzing multivariate data, including
factor analysis, principal components and discriminant
analysis, are based upon an assumption of multivariate
normality. Moreover, the classical techniques of linear
regression and analysis of variance assume conditional
normality of the response variables given linear functions of
the predictors, which is the conditional distribution implied by
a multivariate normal model for all the variables. Because
statistical methods motivated by assumptions of normality are
in such widespread use, it is natural to seek general techniques
for inference from incomplete normal data.

Datasets encountered in the real world often deviate from
multivariate normality, but in many cases the normal model
will be useful even when the actual data are nonnormal. There
are several important reasons for this. First, one can often
make the normality assumption more tenable by applying
suitable transformations to one or more of the variables.
Second, if some variables in a dataset are clearly nonnormal
(e.g. discrete) but are completely observed, then the
multivariate normal model may still be used for inference
provided that (a) it is plausible to model the incomplete
variables as conditionally normal given a linear function of the
complete ones, and (b) the parameters of inferential interest
pertain only to this conditional distribution (Section 2.6.2).

Finally, even if some of the incompletely observed
variables are clearly nonnormal, it may still be reasonable to

©1997 CRC Press LLC



 

use the normal model as a convenient device for creating
multiple imputations. As pointed out in Section 4.5.4,
inference by multiple imputation may be robust to departures
from the imputation model if the amounts of missing
information are not large, because the imputation model is
effectively applied not to the entire dataset but only to its
missing part. For example, it may be quite reasonable to use
normal model to impute a variable that is ordinal (consisting
of  small number of ordered categories), provided that the
amount of missing data is not extensive and the marginal
distribution is not too far from being unimodal and symmetric.
When using the normal model to impute categorical data,
however, the continuous imputes should be rounded off to the
nearest category to preserve the distributional properties as
fully as possible and to make them intelligible to the analyst.
We have found that the normal model, when used in this
fashion, can be an effective tool for imputing ordinal and even
binary data in instances where constructing a more elaborate
categorical-data model would be impractical (Schafer, Khare
and Ezzati-Rice, 1993).

5.2 Relevant properties of the complete-data model

5.2.1 Basic notation

We begin by establishing some notational conventions that
will be used throughout the chapter. The dataset, as depicted
in Figure 2.1, is assumed to be a matrix of n rows and p
columns, with rows corresponding to observational units and
columns corresponding to variables. Denote the complete data
by Y = (Yobs, Ymis), where Yobs and Ymis, are the observed and
missing portions of the matrix, respectively. Let yij denote an
individual element of Y, i = 1.2,...,n, j = 1,2,...,p. The ith row
of Y, expressed as a column vector (all vectors will be
regarded as column vectors), is

yi = (yi1, yi2,...,yip)
T.

We assume that y1, y2,...,yn are independent realizations of a
random vector, denoted symbolically as (Y1, Y2,...,Yp)

T which
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has a multivariate normal distribution with mean vector µ and

covariance matrix Σ;; that is,

y y y iidNn1 2, , ..., | ~ , ,θ µ Σ( )
where θ=(µ,Σ) is the unknown parameter. Throughout the

chapter, we assume no prior restrictions on θ other than the

positive definiteness of Σ(Σ>0); that is, we allow θ  to lie

anywhere within its natural parameter space. Because the
density of a single row is

P y y yi i
T

i| exp ,θ π µ µ( ) = − −( ) −( )}{− −2
1
2

2
1 1Σ Σ

the complete-data likelihood is, discarding a proportionality
constant,
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Maximum-likelihood estimates

By expanding the exponent in (5.1) and using the fact that
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it follows that the complete-data loglikelihood can be written
as
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where

T y Yi
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n
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T y y Yi i
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∑ Τ (5.4)

are the complete-data sufficient statistics, and 1 = (1, 1,..., 1)T.
Note that T1 is the vector of column sums,

T y y yi
n

il i
n

i i
n

ip
T

1 1 1 2 1= ( )= = =Σ Σ Σ, , ..., ,

©1997 CRC Press LLC



 

and T2 is the matrix of columnwise sums of squares and
crossproducts,

T
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Because the multivariate normal is a regular exponential
family and the loglikelihood is linear in the elements of T1 and
T2, we can maximize the likelihood by equating the realized
values of T1 and T2 with their expectations, E(T1) = nµ and

E(T2) = n(Σ+µµΤ). This leads immediately to the well known

result that the MLEs for µ and Σ are the sample mean vector

y n yi
i

n

= −

=
∑1

1

, (5.5)

and the sample covariance matrix
S n Y Y yy

n y y y y

T T

i
i

n
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∑

1

1

1

,
(5.6)

respectively. Note that S is a biased estimate of Σ, and in

practice it is more common to use the unbiased version n (n−
1)-1 S. Further details on estimation and frequents inference
for the multivariate normal model can be found in standard
texts on multivariate analysis (e.g. Anderson, 1984).

5.2.2 Bayesian inference under a conjugate prior

The simplest way to conduct Bayesian inference in the
complete-data case is to apply a parametric family or class of
prior distributions that is conjugate to the likelihood function
(5.1). A conjugate class has the property that any prior π(θ) in
the class leads to a posterior P(θ Υ)∝ π(θ)L(θ Υ) that is also

in the class. When both µ and Σ are unknown, the most natural
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conjugate class for the multivariate normal data model is the
normal inverted-Wishart family.

The inverted-Wishart distribution

If X is an m x p data matrix whose rows are iid N(0,Λ),, then

the matrix of sums of squares and cross-products A = XTX is
said to have a Wishart distribution, and we write

A~W(m,Λ). (5.7)

The parameters m and Λ  are often called the degrees of

freedom and scale, respectively. The dimension of A (p × p) is
not explicitly reflected in the notation (5.7) because it is
conveyed by the dimension of Λ.

The Wishart distribution arises in frequents theory as the
sampling distribution of S. For our purposes it will be more
convenient to work with the inverted-Wishart distribution. If
A~W(m,Λ) then B = A-1 is said to be inverted-Wishart, and we

write
B W m~ , .− ( )1 Λ

Omitting normalizing constants, the inverted-Wishart density
for m ≥ p can be shown to be

P B m B
m p

tr B| , expΛ Λ( ) ∝ − + +



 − 
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− −1
2

1
2

1 1 (5.8)

over the region where B  > 0. For m < p, the matrix A  is
singular and B  = A -1 does not exist. Notice that (5.8) is a
proper density function for any choice of m ≥ p and Λ > 0; we

need not restrict ourselves to integer values of m. The mean of
the inverted-Wishart distribution is

E B m
m p

| , .Λ Λ( ) =
− −

−1
1

1 (5.9)

provided that m ≥  p + 2. In the special case of p = 1, the

inverted-Wishart reduces to a scaled inverted-chisquare,
c mχ ,

−2 , with c=Λ-1. These and other well-known properties of

the Wishart and inverted-Wishart distributions are discussed in
many texts on multivariate analysis; an excellent reference is
Muirhead (1982).
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For our purposes, it will also be useful to know that the
mode of the inverted-Wishart density is

mode | ,B m
m p

Λ Λ( ) =
+ +

⋅−1
1

1 (5.10)

Demonstrating this fact involves maximizing the logarithm of
(5.8), an exercise which is nearly identical to deriving the ML
estimates for the multivariate normal distribution by
maximizing the loglikelihood (5.2). We omit details of this
calculation, but for a thorough demonstration in the case of the
loglikelihood the interested reader may refer to Mardia, Kent
and Bibby (1979, pp. 103-105).

The normal inverted-Wishart prior and posterior

Returning to the problem of Bayesian inference for θ=(µ,Σ)
under a multivariate normal model, let us apply the following
prior distribution. Suppose that, given Σ, µ,  is assumed to be

conditionally multivariate normal,

µ µ| ~ , ,Σ ΣN T0
1−( ) (5.11)

where the hyperparameters µo
p∈ℜ  and T>0 are fixed and

known. Moreover, suppose that Σ is inverted-Wishart,

Σ Λ~ ,W m− ( )1 (5.12)

for fixed hyperparameters m ≥ p and Λ > 0. The prior density

for θ is then

π θ

µ µ µ µτ
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× − −( ) −( ){ }

−( ) − −

−

+ +

Σ Λ Σ
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2 1

2
1 1

2 0
1

0

exp tr

exp
(5.13)

Following some matrix algebra, the complete-data likelihood
function (5.1) can be rewritten as

L Y S

y y

n n

n T

θ

µ µ

| exp tr

exp

( ) ∝ −{ }
× − −( ) −( ){ }

− −

−

Σ Σ

Σ

2
2

1

2
1

(5.14)

Multiplying this likelihood by (5.13) and performing some
algebraic manipulation, it follows that Ρ(θ|Υ) has the same
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form as (5.13) but with new values for (τ;m,µ0,Λ) that is, the

complete-data posterior is normal inverted-Wishart,

µ µ τ| , ~ , ,Σ ΣY N ′ ′( )( )−
0

1 (5.15)

Σ Υ Λ| ~ , ,W m− ′ ′( )1 (5.16)

where the updated hyperparameters are
′ = +
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In the special case of p = 1, the posterior becomes

µ µ τ| , ~ , ,Σ ΣY N ′ ′( )( )−
0

1

Σ | ~ ,Y c m′ ′
−χ 2

where

′ = + −( ) +
+





 −( )

=
∑c c y y

n
n

yi
i

n
2

1
0

2τ
τ

µ

and c = Λ−1 is the prior scale for Σ.

Existence of the prior distribution requires τ > 0, m ≥ p and

Λ  > 0. Notice, however, that we may apply the updating

formulas and still obtain acceptable values of τ′, m′, and Λ′  for

certain τ  ≤ 0 and m < p. Under ordinary circumstances it

would not make sense to use a negative value for τ,, because

µ′0 would then become a weighted average of y  and µ0 with

negative weight for µ0. Taking τ = 0, however, may be quite

sensible when little or no prior information about p is
available, because it results in a posterior distribution for µ
centered about y . Moreover, in some cases a choice of m < p
may be attractive as well: see Section 5.2.3 below.
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Inferences about the mean vector

By integrating the normal inverted-Wishart density function
(5.13) over Σ , one can show that the marginal prior

distribution of µ implied by (5.11)-(5.12) is a multivariate t

distribution centered at µ0 with v = m − p + 1 degrees of freedom.

The mean of this distribution is µ0 provided that v > 1, and the

covariance matrix is v −( )− − −2 1 1 1τ Λ  provided that v  > 2.
Other properties of this multivariate t distribution are
discussed in many texts on multivariate analysis; a good
reference is Press (1982). In particular, the marginal prior
distribution of any scalar component or linear function of the
components of µ is univariate t. Suppose that ξ = αΤµ, where a

is a constant vector of length p. The marginal prior distribution
of ξ implied by (5.11)-(5.12) is then (ξ−ξ0)/σ∼ τv, where v=m−
p+1,ξ0 = αΤµ0, and

σ α α
τ

=
−Τ∆ 1

v
.

The marginal prior density is

P
v

v

oξ
πυσ

ξ ξ
υσ

υ

( ) =
( )

( )
+

−( )











+ − +( )
Γ

Γ

1
2

2
2

2

2

1 2

1

/

(5.17)

where Γ (⋅) denotes the gamma function. After observing Y we

can obtain P(ξ |Υ), the marginal posterior distribution of ξ ,

simply by replacing the hyperparameters (τ,m,µο,Λ) in the

above expressions with their updated values (τ′,m′,µ  ′0,Λ′).

Inferences about the covariance matrix

In many problems the parameters of interest are functions of
µ, and Σ  is best regarded as a nuisance parameter. On

occasion, however, an estimate of Σ  is needed. From a

Bayesian standpoint there is no universally accepted `best’
estimate of Σ. The optimal estimate depends on the choice of a
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loss function, and in practice it tends to be difficult or
impossible to choose among the various loss functions.
Bayesian estimation of a covariance matrix raises some
interesting theoretical problems that have yet to be resolved
(Dempster, 1969a). If the current state of knowledge about Σ
is described by Σ~W-1(m,Λ), then competing estimates include

the mean (5.9) and the mode (5.10). To complicate matters
further, suppose that the mean µ and the covariance matrix Σ
are both of interest, and the current state of knowledge about
θ = (µ,Σ) is represented by the normal inverted-Wishart

distribution

µ µ τ| ~ , ,Σ ΣN 0
1−( )

Σ Λ~ , .W m− ( )1

By a calculation that is essentially equivalent to maximizing
the multivariate-normal loglikelihood function, one can then
show that the joint mode is achieved at µ = µ0 and

Σ Λ=
+ +

−1
2

1

m p
.

Note that maximizing the joint density for µ and Σ  is not

equivalent to maximizing the marginal densities for µ and Σ
separately.

When a Bayesian estimate of Σ is needed, we will adopt the

following rule-of-thumb: if the current state of knowledge
about Σ is described by Σ~W -1(m,Λ) irrespective of µ, then

estimate Σ by m-1Λ-1. This represents a compromise between

the mean (5.9) and the marginal mode (5.10).

5.2.3 Choosing the prior hyperparameters

A noninformative prior

When no strong prior information is available about θ, it is

customary to apply Bayes’s theorem with the improper prior

π θ( ) ∝ −( )+

Σ
p 1

2 (5.18)
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which is the limiting form of the normal inverted-Wishart
density (5.11)-(5.12) as τ→0, m→−1 and Λ−1→0. Notice that

µ does not appear on the right-hand side of (5.18); the prior

`distribution’ of µ is assumed to be uniform over the p -

dimensional real space. Under this improper prior, the
complete-data posterior becomes

µ | , ~ , .Σ ΣY N y n−( )1 (5.19)

Σ | ~ , .Y W n nS− −− ( )( )1 11 (5.20)

A non-Bayesian justification for the use of this prior is that the
posterior distribution of the pivotal quantity

T n y S yT2 11= −( ) −( ) −( )−µ µ
becomes (n−1)p(n−p)−1F p,n−p,  the  same as  i t s  sampling
distribution conditionally upon θ (DeGroot, 1970). The

ellipsoidal (1−α) 100% HPD region for µ under this prior is

identical to the classical (1-α)100% confidence region for µ
from sampling theory, and for inferences about µ the Bayesian

and frequents answers coincide. The improper prior (5.18)
also arises by applying the Jeffreys invariance principle to µ
and Σ (Box and Tiao, 1992).

If our primary interest is not in µ  but in Σ, then the

frequents justification for using (5.18) as a noninformative
prior is not as strong because of the ambiguities involved in
estimation of Σ. Notice, however, that if we use our rule-of-

thumb that a reasonable estimate for Σ~W-1(m,Λ),is m -1Λ-1,

then (5.20) leads to the point estimate (n-1)-1nS. This is the

estimate of Σ that is most widely used in practice, because it is

unbiased for fixed θ  over repetitions of the sampling

procedure. For these reasons, we will accept (5.18) as a
reasonable prior distribution when prior information about θ is

scanty.
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Informative priors

When an informative prior distribution is needed, it is often
possible to choose reasonable values for the hyperparameters
by appealing to the device of imaginary results. Suppose that
we regard the improper prior (5.18) as representing a state of
complete ignorance about θ. After observing a sample of n

observations with mean y  and covariance matrix S, the new
state of knowledge is represented by (5.19)-(5.20). By this
logic, we can interpret the hyperparameters in (5.1l)-(5.12) as
a summary of the information provided by an imaginary set of
data: µ0 represents our best guess as to what µ might be (the

imaginary y ); τ represents the number of imaginary prior

observations on which the guess µ0 is based; m-1Λ-1 represents

our best guess as to what Σ might be (the imaginary S); and

m = τ−1 represents the number of imaginary prior degrees of

freedom on which the guess m-1 Λ-1 is based.

A ridge prior

It sometimes happens that the sample covariance matrix S is
singular or nearly so, either because the data are sparse (e.g. n
is not substantially larger than p), or because such strong
relationships exist among the variables that certain linear
combinations of the columns of Y  exhibit little or no
variability. When this happens, it may be difficult to obtain
sensible inferences about µ unless we introduce some prior

information about Σ . The following is a suggestion for

choosing a prior distribution to stabilize the inference when
little is known a priori about µ or Σ.

Suppose that we adopt the limiting form of the normal
inverted-Wishart prior (5.13) as τ→0 for some m and Λ. The

posterior becomes

µ | , ~ , ,Σ ΣY N y n−( )1 (5.21)

Σ Λ| ~ , ,Y W m n nS− − −
+ +[ ]





1 1 1
(5.22)
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which is proper provided that m + n ≥ p and (Λ−1+nS) > 0.

Notice that this posterior is very similar to the posterior
distribution (5.19)-(5.20) obtained under the standard
noninformative prior, except that the covariance matrix Σ has

been ’smoothed’ toward a matrix proportional to Λ−1. If we

take m = ∈  for some ∈  > 0 and Λ−1 =∈ S* for some covariance

matrix S*, then our rule-of-thumb estimate of Σ is

1 1

m n
nS

n
S

n
n

S
+

+( ) = ∈
+ ∈





 ∗ +

+ ∈






−Λ ,

a weighted average of S and S* with weights determined by
the relative sizes of n and ∈ .

When S is singular or nearly so, it makes sense to choose
S* to move the weighted average of the two matrices away
from the boundary of the parameter space. One effective way
to do this is to set the diagonal elements of S* equal to those
of S and the off-diagonal elements equal to zero,

S* = Diag S. (5.23)
The resulting `prior’, which is not really a prior in the Bayesian
sense because it is partly determined by the data, has the
practical effect of allowing the means and variances to be
estimated from the data alone, but smooths the correlation
matrix slightly toward the identity. The degree of smoothing is
determined by the relative sizes of ∈  and n, and ∈  can be

regarded as an imaginary number of prior degrees of freedom
added to the inference. Note that ∈  need not be an integer, and

in some cases even a small fractional value of ∈  may be

sufficient to overcome computational difficulties associated
with singular covariance matrices. Use of this prior is closely
related to the technique of ridge regression (e.g. Draper and
Smith, 1981), and can be regarded as a form of empirical
Bayes inference (e.g. Berger, 1985). This prior can be very
helpful for stabilizing inferences about µ when some aspects

of Σ are poorly estimated.
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5.2.4 Alternative parameterizations and sweep

Suppose that z is a p × 1 random vector distributed as N (µ, Σ),

which we partion as z z zΤ Τ Τ= ( )1 2,  .where z1 and z2 are

subvectors of lengths p1 and p2 = p - p1 respectively. It is well
known that the marginal distributions of z1 and z2 are N(µ1,Σ11)

and N(µ2,Σ22) where µΤ= µ µ1 2
Τ Τ,( )  and

Σ
Σ Σ
Σ Σ

=










11 12

21 22

are the partitions of µ and Σ corresponding to z z zΤ Τ Τ= ( )1 2, .

Moreover, the conditional distributions are also normal; in
particular, the distribution of z2 given z1 is normal with mean

Ε z z B z

B z
2 1 2 2 1 1 1

2 1 2 1 1

| .

. .

( ) = + −( )
= +

µ µ
α

and covariance matrix Σ22Æ1, where

α µ µ2 1 2 21 11
1

1

2 1 21 11
1

22 1 22 21 11
1

12

.

.

.

,

,

= −
= −
= −

−

−

−

Σ Σ
Β Σ Σ
Σ Σ Σ Σ Σ

(5.24)

are the vector of intercepts, matrix of slopes and matrix of
residual covariances, respectively, from the regression of z2 on
z1.

Because specifying the joint distribution of z1 and z2 is
equivalent to specifying the marginal distribution of z1 and the
conditional distribution of z2 given z1, we can characterize the
parameters of the distribution of z either by θ = (µ,Σ) or by

φ=(φ1,φ2), where φ1=(µ1,Σ11) and φ2=(α2.1,Β2.1,Σ22.1) It is easy to

show that the transformation φ=φ(θ) is one-to-one, with the

inverse transformation θ=φ−1(φ) given by
µ α µ2 2 1 2 1 1

12 11 2 1

22 22 1 2 1 11 2 1

= +
=
= +

. .

. ,

. . . .

B

B

B B

T

T
Σ Σ
Σ Σ Σ

(5.25)

Moreover, the parameters φ1 and φ2 are distinct in the sense

that the parameter space of φ is the Cartesian cross-product of

©1997 CRC Press LLC



 

the individual parameter spaces of φ1 and φ2; that is, any

choice of α2.1,Β2.1 and Σ22.1 > 0 will produce a valid θ = (µ,Σ)
with Σ > 0.

When a probability distribution is applied to θ=(µ,Σ) .it is

occasionally necessary to find the density function for φ. Let f

(θ) be the density of θ and g(φ) the density of φ=φ(θ) induced

by f. The relationship between g and f is

g f Jφ φ φ( ) = ( )( )− −1 1
,

where J is the Jacobian or first-derivative matrix of the
transformation from θ to φ, and ||J||means the absolute value of

the determinant of J. Notice that α21, Β2.1 and Σ22.1 are of the

same dimension as µ2, Σ21 and Σ22, respectively, so J can be

partitioned as

J

B B

= ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

∂µ
∂µ

∂µ
∂

∂µ
∂µ

∂µ
∂

∂µ
∂

∂
∂µ

∂
∂

∂
∂µ

∂
∂

∂
∂

∂α
∂µ

∂α
∂

∂α
∂µ

∂α
∂

∂α
∂

∂
∂µ

∂
∂

1

1

1

11

1

2

1

21

1

22

11

1

11

11

11

2

11

21

11

22

2 1

1

2 1

11

2 1

1

2 1

21

2 1

22

2 1

1

2 1

Σ Σ Σ
Σ Σ

Σ
Σ Σ

Σ
Σ
Σ

Σ Σ Σ

ΣΣ Σ Σ
Σ Σ

Σ
Σ Σ

Σ
Σ
Σ

11

2 1

2

2 1

21

2 1

22

22 1

1

22 1

11

22 1

2

22 1

21

22 1

22

∂
∂µ

∂
∂

∂
∂

∂
∂µ

∂
∂

∂
∂µ

∂
∂

∂
∂

B B B⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅



































,

where the submatrices along the diagonal are square. By
inspection of (5.24), we see that this matrix has the pattern

J

I

I

I

I

= × × ×
× ×
× ×























0 0 0 0

0 0 0 0

0

0 0 0

0 0

,

where I denotes an identity matrix, 0 denotes a zero matrix
and x denotes a matrix that is neither I nor 0. It is a well-
known property of determinants that
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A B

C
A C

0
= (5.26)

for square A  and C . Applying (5.26) repeatedly, the
determinant of J reduces to

J
B= ⋅∂

∂
2 1

21Σ
. (5.27)

With Σ11 held fixed, Β2.1=Σ21Σ−1
11 is a linear transformation of

Σ21.  It can be shown that the Jacobian of the linear

transformation from W (p × q) to Z = WB for nonsingular B (q
× q) is |Β|p (e.g. Mardia, Kent and Bibby, 1979, Table 2.4.1),

and thus

| | .J
p

=
−

Σ11
2

(5.28)

The sweep operator

The algorithms presented in this chapter will require repeated
use of the transformations (5.24) and (5.25). To simplify both
the notation and implementation of these algorithms, we will
rely heavily on a device known as the sweep operator. First
introduced by Beaton (1964), the sweep operator is commonly
used in linear model computations and stepwise regression.
Dempster (1969b) describes its relationship to methods of
successive orthogonalization, and Little and Rubin (1987)
demonstrate the usefulness of sweep in ML estimation for
multivariate missing-data problems. Further information and
references are given by Thisted (1988).

Suppose that G is a p  x p symmetric matrix with elements
gij. The sweep operator SWP[k] operates on G by replacing it
with another p x p symmetric matrix H,

H = SWP[k]G,
where the elements of H are given by

h g

h h g g j k

h h g g g g j k l k

kk kk

jk kj jk kk

jl lj jl jk kl kk

= −
= = ≠
= = − ≠ ≠

1 / ,

/ for ,

/ for and .

(5.29)

After application of (5.29), the matrix is said to have been
swept on position k. In a computer program, sweep can be
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carried out as follows: first, replace gkk with hkk = −1/gkk; next,
replace the remaining elements gjl=gjl in row and column k
with hjk = gjl-gjlhjk. and finally, replace the remaining elements
gjl = glj in the other rows and columns by hjl = gjl - gklhjk. This
method is efficient both in terms of computation time and
memory, because no storage locations other than the matrix
itself are necessary. Because both G and H are symmetric,
further savings can be achieved by computing and retaining
only the upper-triangular portion of the matrix.

Suppose that a p × p matrix G is partitioned as

G
G G

G G
=











11 12

21 22
,

where G11 is p1 × p1. After sweeping on positions 1, 2,..., p1,

the matrix becomes

SWP , ,...,1 2 1
11

1
11

1
12

21 11
1

22 21 11
1

12
p G

G G G

G G G G G G
[ ] = −

−













− −

− −

which is recognizable as a matrix version of (5.29). The
notation SWP[1,2,...,p1] indicates successive application of
(5.29),

SWP , ,..., SWP SWP SWP .1 2 2 11 1p G p G[ ] = [ ] [ ] [ ]L

Sweeps on multiple positions need not be carried out in any
particular order, because the sweep operator is commutative,

SWP SWP SWP SWP .k k G k k G2 1 1 2[ ] [ ] = [ ] [ ]
Sweeping a p ×  p  matrix G on positions 1, 2,..., p has the

effect of replacing G by −G−1. This inverse exists if and only if
none of the attempted sweeps involve division by zero. When
inverting a matrix with sweep, we can also readily obtain the
determinant. Let ϒk denote the kth diagonal element of the

matrix after it is swept on positions 1, 2,..., k − 1,
γ k kk

k G= −[ ]( )SWP , ,.., .1 2 1

Then

G
k

p

k=
=

∏
1

γ , (5.30)

where γ1 is taken to be g11, the first element of G. Thus the

determinant can be found by computing the product of the
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pivots (i.e. the diagonal elements of the matrix) as they appear
immediately before the matrix is swept on them (Dempster,
1969b).

It is also convenient to define a reverse-sweep operator that
returns a swept matrix to its original form. The reverse-sweep
operator, denoted by

H = RSW[k]G,
replaces the elements of G with

h g

h h g g j k

h h g g g g j k l k

kk kk

jk l jk kk

jl lj jl jk kl kk

= −
= = ≠
= = − ≠ ≠

1 / ,

/ for ,

/ for and .
κ (5.31)

Notice that reverse sweep is remarkably similar to sweep, with
the only difference being a minus sign in the calculation of hjk

= h kj. It is easy to verify that reverse sweep is indeed the
inverse of sweep,

RSW[k] SWP[k] G = G
and that reverse sweep is commutative,

RSW[k2] RSW[k1] G = RSW[k1] RSW[k2] G.

Computing alternative parameterizations

From a statistical viewpoint, the sweep operator is highly
useful for the following reason: when applied to the
parameters of the multivariate normal model, sweep converts a
variable from a response to a predictor. Suppose that z is a p ×
1 random vector distributed as N(µ,Σ), and we partition it as zΤ

= z zT T
1 2,( ) where z1 has length p 1. Let us arrange the

parameters θ = (µ,Σ) as a (p+1) × (p+1) matrix in the following

manner,

θ µ
µ

µ µ
µ
µ

= −











=
−















1
1 1 2

1 11 12

2 21 22

T
T T

Σ
Σ Σ
Σ Σ

(5.32)

The reason for placing -1 in the upper-left corner will be
explained shortly. To simplify book-keeping, we will allow
the row and column indices to run from 0 to p rather than from
1 to p + 1, so that the parameters pertaining to the jth variable
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will appear in row and column j. Suppose that we sweep this
θ-matrix on positions 1, 2,...,p1; the result will be, by the

matrix analogue of (5.29),

− − −
−

− −

















− − −

− − −

− − −

1 1 11
1

1 1 11
1

2 1 11
1

12

11
1

1 11
1

11
1

12

2 21 11
1

1 21 11
1

22 21 11
1

12

µ µ µ µ µ
µ

µ µ

Τ Τ Τ ΤΣ Σ Σ Σ
Σ Σ Σ Σ
Σ Σ Σ Σ Σ Σ Σ Σ

.

Comparing this to (5.24), we see that the last p - p1 rows and
columns contain α 2.1, Β2.1, and Σ22.1, the parameters of the

conditional distribution of z2 given z1,

SWP ,...1

1

1

1 11
1

1 1 11
1

2 1

11
1

1 11
1

2 1

2 1 2 1 22 1

p B

B

T T T

T[ ] =
− −

−

















− −
⋅

− −
⋅

⋅ ⋅ ⋅

θ
µ µ µ α

µ
α

Σ Σ
Σ Σ

Σ

Moreover, the upper-left (p1 + 1) × (p1 + 1) submatrix contains

in swept form the parameters of the marginal distribution of z1,

−











= [ ] − −
−













− −

− −
1

1
11

1 11
1

1 11
1

1 1 11
1

11
1

1 11
1

µ
µ

µ µ µ
µ

Τ Τ Τ

Σ
Σ Σ

Σ Σ
RSW ,..., p

We have thus shown that φ=(µ1,Σ11,α2.1,Β2.1,Σ22.1), expressed in

matrix form as

φ
µ α

µ
α

=
−















⋅

⋅

⋅ ⋅ ⋅

1 1 2 1

1 11 2 1

2 1 2 1 22 1

T T

TB

B

Σ
Σ

. (5.33)

can be computed from the θ-matrix by first sweeping the full

matrix on positions 1, 2,..., pl, and then reverse sweeping the
upper-left (p1 + 1) × (p1 + 1) submatrix on the same positions.

The reason for placing -1 in the upper-left corner of the
θ matrix (5.32) is that this matrix can be considered to be

already swept on position 0. Notice that if we reverse-sweep θ
on position 0, we obtain

RSW 0
1 1[ ] −











=
+













µ
µ

µ
µ µµ

T T

TΣ Σ
. (5.34)

the parameters of the multivariate normal distribution
expressed in terms of the first two moments of z about the
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origin. This unswept version of θ is quite useful because it is

the natural representation for computing ML estimates.
Suppose that Y is an n × p  data matrix whose rows are
independent realizations of the random vector z. If we arrange
the sufficient statistics Τ1=ΥΤ1 and Τ2=ΥΤΥ into a (p + 1) × (p

+ 1) matrix

T Y Y
n T

T T
T

T
= [ ] [ ] =













1 1 1

1 2
, , , (5.35)

then the moment equations for ML estimation set (5.34) equal
to n−1T. Hence the ML estimate of θ may be computed from

the sufficient statistics by
ˆ SWP .θ θ= [ ] −n T1

Because ML estimates are invariant under transformations of
the parameter, the MLE for an alternative parameterization φ

can be obtained by sweeping θ̂  on the appropriate positions.

Figure 5.1. Matrix of missingness patterns associated with Y with 1 denoting
an observed variable and 0 denoting a missing variable.

5.3 The EM algorithm

When portions of the data matrix Y are missing, ML estimates
cannot in general be obtained in closed form; we must resort
to iterative computation. The EM algorithm for a multivariate
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normal data matrix with an arbitrary pattern of missing values
was described by Orchard and Woodbury (1972); Beale and
Little (1975); Dempster, Laird and Rubin (1977); and Little
and Rubin (1987). Because of its usefulness and its similarities
to the simulation algorithms that follow, we describe in detail
one possible implementation of EM for incomplete
multivariate normal data.

5.3.1 Preliminary manipulations

To simplify notation and facilitate computations, it is helpful
at the outset to group the rows of Y  by their missingness
patterns. A matrix of missingness patterns corresponding to Y
is shown in Figure 5.1. We will index the missingness patterns
by s = 1, 2,..., S, where S is the number of unique patterns
appearing in the data matrix. The trivial pattern with all
variables missing should be omitted from consideration. Rows
of Y  that are completely missing contribute nothing to the
observed-data likelihood and would only slow the
convergence of EM by increasing the fractions of missing
information (Section 3.3.2).

For book-keeping purposes it will be helpful to define the
following quantities. Let R  be an S  ×  p  matrix of binary

indicators with typical element rsj, where

r
Y s

Y ssj
j

j
=







1

0

if isobservedinpattern ,

if ismissinginpattern .

The matrix R is shown in Figure 5.1. For each missingness
pattern s, let Ο(s) and Μ (s) denote the subsets of the column

labels {1, 2,..., p} corresponding to variables that are observed
and missing, respectively,

O s     j r

M s j r

sj

sj

( ) = = }{
( ) = = }{

: ,

: .

1

0

Finally, let Ι(s) denote the subset of {1, 2,..., n} corresponding

to the rows of Y that exhibit pattern s. For example, suppose
that the data matrix has ten rows with no missing values, and
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after sorting these rows are labeled 1,..., 10; the first row of R
is then (1, 1,..., 1), and

O p

M

I

1 1 2

1

1 1 2 10

( ) = }{
( ) = ∅

( ) = }{

, , ..., ,

,

, , .. .

5.3.2 The E-step

Recall that in the E-step of EM, one calculates the expectation
of the complete-data sufficient statistics over P(Υmis|Υobs,θ) for

an assumed value of θ. These statistics are of the form Σiyij

and Σiyijyik, so to perform the E-step we need to find the

expectations of yij and yijyik over Ρ(Υmis|Υobs,θ).
Because the rows y1, y2,...,yn of Y are independent given θ,

we can write

P Y Y P y ymis obs
i

n

i mis i obs| , | , ,θ θ( ) = ( )
=

( ) ( )∏
1

where yi(obs) and yi(mis) denote the observed and missing
subvectors of yi, respectively. The distribution Ρ(yi(mis)|yi(obs) ,q)
is a multivariate normal linear regression of yi(mis) on yi(obs), and
the parameters of this regression can be calculated by
sweeping the θ−matrix on the positions corresponding to the

variables in yi(obs). If row i is in missingness pattern s, then the
parameters of Ρ(yi(mis) |yi(obs) ,θ) are contained in SWP[Ο(s)]θ
in the rows and columns labeled M(s) Let A denote the swept
parameter matrix

A O s= ( )[ ]SWP ,θ
and let ajk denote the (j, k)th element of A , j, k = 0, 1,..., p.
Using the results of Section 5.2.4, the reader may verify that
the first two moments of yi(mis) with respect to P(Ymis|Υobs,θ)
are given by

©1997 CRC Press LLC



 

E y Y a a y

y y Y a

ij obs oj kj ik
O s

ij ik obs jk

| , ,

Cov , | ,

θ

θ

κ
( ) = +

( ) =

∈ ( )
∑

for each i ∈ Ι(s)and j, k∈ M.(s) For any j∈ Ο(s), of course, the

moments are
E y Y y

y y Y

ij obs ij

ij ik obs

| , ,

Cov , | , ,

θ

θ

( ) =

( ) = 0

because yij is regarded as fixed. Applying the relation

E y y Y y y Y

E y Y E y Y
ij i obs ij ik obs

ij obs i obs

κ

κ

θ θ

θ θ

| , Cov , | ,

| , | ,

( ) = ( )
+ ( ) ( )

it follows that

E y Yij obs y j M s
y j O s

ij

ij| , * for ,
for ,θ( ) = 


 ∈ ( )

∈ ( )

and

E y y Y

y y j k O s

y y j M s k s

y y j k M s
ij i obs

ij ik

ij ik

jk ij ik

κ θ
α

| ,

for , ,

for , ,

for , ,

*( ) =
∈ ( )

∈ ( ) ∈ ( )
+ ∈ ( )







 ∗ ∗

Ο

where

y yij oj kj ik
k O s

∗

∈ ( )
= + ∑α α . (5.36)

The E-step consists of calculating and summing these
expected values of yij and yijyik over i for each j and k. The
output of an E-step can then be written as Ε(Τ|Υobs,θ) where T

is the matrix of complete-data sufficient statistics

T
n Y

Y Y Y

n y y y

y y y y y

y y y

y

T

T T

i i ip

i i i i ip

i i ip

ip

i

n

=












=























=
∑1

1

1 2

1
2

1 2 1

2
2

2

2

1

L

L

L

O M

.

The elements below the diagonal are not shown and may be
omitted from the calculations because they are redundant.
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Notice that the matrix Α=SWP[O(s)]θ needed for the E-step

depends on the missingness pattern s, and thus in practice the
elements of Ε(Τ|Υobs,θ) must be calculated by first summing

expected values of yij and yijyik for i∈ Ι(s), and then summing

across patterns s = 1, 2,..., S, with a new A-matrix being
calculated for each missingness pattern.

5.3.3 Implementation of the algorithm

Once Ε(Τ|Υobs,θ) has been found, carrying out the M-step is

relatively trivial. For a given value of T the complete-data

MLE is ˆ SWP ,θ = [ ] −0 1n T   and the M-step merely carries out

this same operation on Ε(Τ|Υobs,θ) rather than T . A single

iteration of EM can thus be written succinctly as

θ θt
obs

tn E T Y+( ) − ( )= [ ] ( )1 10SWP | , . (5.37)

In principle the EM algorithm for incomplete multivariate
normal data is completely defined by (5.37), but from a
practical standpoint we should still consider how to implement
the algorithm in an efficient manner. It is beneficial to keep
both processing time and memory usage down, but trade-offs
between the two are inevitable; one can always reduce
processing time at the expense of additional memory by
storing rather than recomputing quantities that must be used
repeatedly. The implementation suggested here stores rather
than recomputes the portions of Ε(Τ|Υobs,θ) that do not depend

on θ and thus remain the same for every E-step. This method

may not be optimal for any particular dataset, but it is not
difficult to program and seems to perform well in a wide
variety of situations.

Observed and missing parts of the sufficient statistics

We can express the matrix T  as the sum of matrices
corresponding to the individual missingness patterns. Let
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Τ

Σ Σ Σ
Σ Σ Σ

Σ Σs

n y y y

y y y y y

y y y

y

s i i ip

i i i i ip

i i ip

ip

( ) =























1 2

1
2

1 2 1

2
2

2

2

L

L

L

O M

,

where all sums are taken over i∈ I(s), and ns=∑i∈ I(s) is the

sample size in missingness pattern s; then

T T s
s

S

= ( )
=

∑
1

.

Each T(s) can be further partitioned into an observed part and
a missing part. Notice that the elements of T(s) in the rows and
columns labeled M(s) are functions of Ymis and perhaps Yobs

whereas the remaining elements of T(s) are functions of Yobs

only. Define a new matrix Tmis (s) which has the same
elements as T(s) in the rows and columns labeled M(s), but
with all other elements set to zero, and define Tobs(s) to be T(s)
−T mis(s). For example, consider a dataset with p = 3 variables,
and suppose that missingness pattern s has Y1 and Y3 observed
but Y2 missing; then

T s

n y y

y y y

y

T s

y

y y

y y y

obs

s i i

i i i

mis

i

i i

i i i

( ) =



















( ) =



















Σ Σ
Σ Σ

Σ

Σ
Σ
Σ Σ

1 3

1
2

1 3

13
2

2

1 2

2
2

2 3

0

0

0 0

0 0 0

0 0

0

,

,

where all sums are taken over i∈ I(s). Finally, define

T T s T T sobs obs
s

S

mis mis
s

S

= ( ) = ( )
= =

∑ ∑
1 1

and ,
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Figure 5.2. Single iteration of EM for incomplete multivariate normal data,
written in pseudocode

so that T = Tobs + Tmis. The E-step may then be written
E T Y T E T Y

T s E T s Y

obs obs mis obs

obs
s

S

mis obs
s

S
| , | ,

| , .

θ θ

θ

( ) = + ( )
= ( ) + ( )( )

= =
∑ ∑

1 1
The elements of Tobs can be calculated once at the outset of the
program and stored for all future iterations of EM.

An implementation in pseudocode

One possible implementation of an iteration of EM is shown
in Figure 5.2. It is written in pseudocode, a shorthand
language that can be understood by anyone with programming
experience and is easily converted into standard languages like
Fortran or C. In this pseudocode, the symbol `: =’ indicates the
operation of assignment; for example, `a : = b ’ means `set a
equal to b.’ This implementation requires two (p + 1) × (p + 1)
matrix workspaces: T, into which the expected sufficient
statistics are accumulated, and q, which holds the current

estimate of the parameter. For simplicity, the rows and
columns of these matrices are labeled from 0 to p rather than

©1997 CRC Press LLC



 

from 1 to p  + 1. In addition, a single vector of length p ,
denoted by c = (c1,...,cp), is needed as a temporary workspace
to hold the values of y ji

∗  given by (5.36). The iteration begins
by setting T equal to Tobs which we assume has already been
computed. The expectations of yij and yijyik that contribute to
Tmis are then calculated and added into T, one missingness
pattern at a time. In order to calculate these expectations
within a missingness pattern s, the θ-matrix must be put into

the required SWP[Ο(s)] condition; for this, we use the

convenient book-keeping device that a diagonal element θjj is

negative if and only if θ has been swept on position j. Finally,

after the expected sufficient statistics are fully accumulated
into T, the new parameter estimate is calculated and stored in
θ in preparation for the next iteration.

For efficiency, the code in Figure 5.2 does not calculate the
off-diagonal elements of T more than once. If θ and T are

stored as two-dimensional arrays, then only the upper-
triangular portions should be used, and Tjk or θjk should be

interpreted as the (j, k)th element if ≤ k or the (k, j)th element if

j > k. Memory requirements can be reduced by retaining only
the upper-triangular parts of T and 0 in packed storage. To
reduce the impact of rounding errors, T, θ, and c should be

stored in double precision. Rounding errors can also be
reduced by centering and scaling the columns of Y at the
outset; for example, we could transform the observed data in
each column of Y to have mean zero and unit variance before
running EM. If the data are centered and scaled, however, we
should remember that θ will be expressed on this transformed

scale, and for interpretability we may need to transform the
estimate of θ back to the original scale at the end of the

program.

Starting values

EM requires a starting value θ(0)=(µ(0),∑(0))for the first

iteration. Any starting value may be used provided that ∑(0) is
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positive definite, but in practice it helps to choose a value that
is likely to be close to the mode. Several choices for starting
values are described by Little and Rubin (1987). The mean
vector and covariance matrix calculated only from the
completely observed rows of Y may work well, provided that
there are at least p + 1 such rows. Another easy method is to
use the observed data from each variable to supply starting
values for the means and variances, and set the initial
correlations to zero; if the columns of Y have been centered
and scaled at the outset to have mean 0 and variance 1, then
this corresponds to taking µ(0)=(0,0,...,0)Τ and ∑(0)=Ι.

Unless the fractions of missing information for some
components of θ are very high, the choice of starting value is

usually not crucial; when the missing information is low to
moderate, the first few iterations of EM tend to bring θ to the

vicinity of the mode from any sensible starting value. When
writing a program for general use, it is helpful to give the user
the option of supplying a starting value, because restarting EM
from a variety of locations helps to diagnose unusual features
of the observed-data likelihood, such as ridges and multiple
modes.

Estimates on the boundary

It sometimes happens, particularly with sparse datasets, that
the observed-data likelihood function increases without limit
as θ approaches the boundary of the parameter space (i.e. as ∑
approaches a singular matrix). When this occurs, the EM
algorithm may behave in a variety of ways. In some problems,
the elements of θ stabilize and EM appears to converge to a

solution on the boundary. In other problems, the program halts
due to numeric overflow or attempted division by zero. In yet
other problems, the sweeps required for the E-step become
numerically unstable as the iterates approach the boundary,
and substantial rounding errors are introduced. We have found
that these rounding errors sometimes `deflect’ θ away from the

boundary, causing a sudden large drop in likelihood from one
iteration to the next. The iterates may approach the boundary
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for a number of steps, deflect away, approach again, and
deflect away again in a recurring fashion. If the elements of θ
do not appear to have converged after a large number of
iterations, then it is advisable to monitor both the
loglikelihood (Section 5.3.5) and some aspect of ∑ (e.g. the

determinant, or the ratio of the largest eigenvalue to the
smallest) to determine whether the iterates are approaching the
boundary.

When an ML estimate falls on the boundary, it is often
helpful to apply a ridge prior and use EM to find the posterior
mode as described below.

5.3.4 EM for posterior modes

This EM algorithm can be easily altered to compute a mode of
the observed-data posterior distribution rather than an MLE.
As discussed in Section 3.2.3, the E-step is no different; only
the M-step needs to be modified. The exact form of this
modification will depend on the prior distribution applied to θ.

Priors for incomplete data

At this point, it is worthwhile to consider what prior
distributions may be appropriate for an incomplete dataset.
Because a prior distribution by definition reflects one’s state of
knowledge about θ before any data are observed, the fact that

some data are missing should from a strictly Bayesian
viewpoint have no effect whatsoever on the choice of a prior.
To the Bayesian purist, any prior that is appropriate for
complete data will be equally appropriate for incomplete data.
Most statisticians would agree, however, that choosing a prior
distribution (including its analytic form) purely by
introspection can be difficult, and in practice most priors are
chosen at least partly for computational convenience. The
normal inverted-Wishart family of prior distributions,
described in Sections 5.2.2 and 5.2.3, is computationally
convenient for the EM and data augmentation algorithms in
this chapter. In general, this family is not conjugate when data
are incomplete; the observed data posterior P Yobsθ |( ) under a
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normal inverted-Wishart prior is tractable only in special
cases. Yet EM and data augmentation are both easy to
implement under this family of priors, because the simplicity
of these algorithms depends upon the tractability of the
complete-data problem.

When prior information about θ is scanty, we suggest that

the customary diffuse prior for complete data,

π θ( ) ∝ −( )+

Σ
p 1

2 ,

may also be reasonable when some data are missing. Recall
from Section 5.2.3 that one important justification for this
prior with complete data is that Bayesian and frequents
inferences about p coincide. This result does not immediately
generalize to incomplete data, but limited experience suggests
that Bayesian inferences under this prior may also be
approximately valid from a frequents point of view. Little
(1988) reports that in the case of bivariate datasets with
missing values on one variable generated by an ignorable
mechanism, this prior leads to Bayesian inferences about µ
that are well-calibrated; the HPD regions tend to have
frequency coverage close to the nominal levels. Because this
prior treats the variables Y1, Y2,..., Yp in a symmetric fashion,
we conjecture that similar results may hold for more
complicated multivariate scenarios as well.

When data are sparse and certain aspects of ∑ are poorly

estimated, we suggested in Section 5.2.3 that a useful prior for
complete data was the limiting form of the normal inverted-
Wishart with τ=0,  m=∈  for some ∈  > 0, and Λ −1=∈ Diag S,

where S is the complete-data sample covariance matrix. With
incomplete data S cannot be calculated, but a useful substitute
is the matrix with diagonal elements equal to the sample
variances among the observed values in each column of Y.
This prior effectively smooths the variances in ∑ toward the

observed-data variances and the correlations toward zero. If
the observed data in each column of Y have been scaled at the
outset of the program to have unit variances, then this prior
will simply take Λ−1=∈ Ι.
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Modications to the M-step

The joint mode of the normal inverted-Wishart distribution,

µ µ τ| ~ , ,

~ , ,

Σ Σ

Σ Λ

N

W m

0
1

1

−

−
( )

( )
is achieved at µ0 and (m+p+2)-1Λ−1 for µ and ∑, respectively

(Section 5.2.2). Thus the complete-data posterior mode for
θ = (µ,Σ) under the normal inverted-Wishart prior with

hyperparameters (τ,m,µ0,Λ), denoted by ˜ ˜ , ˜ ,θ µ= ( )Σ  is

˜ and ˜ ,µ µ= ′ =
′ + +

′( )−
0

11
2

Σ Λ
m p

where µ 0,  m ′  and Λ′ are the updated versions of the

hyperparameters given in Section 5.2.2. By reverse-sweeping
the mode on position 0 and equating the result to a matrix of
modified sufficient statistics,

RSW
˜

˜ ˜
˜

˜ ˜ ˜ ˜

˜

˜ ˜
0

1 1 1 1

1 2
[ ] −











=
+













=












−µ
µ

µ
µ µµ

T T

T

T
n

n T

T TΣ Σ
the mode can be computed as if it were an ML estimate based
on T̃1 and T̃2  rather than T1 and T2. Solving for T̃1 and T̃2  and
substituting expressions for the updated hyperparameters gives

T
n

n
T

n
n

1 1 0
~ =

+




 +

+




τ

τ
τ

µ

and

˜ ˜ ˜T
n

n m p
T T T A T Tn

T
n

T
2 2

1
1 1

1 1
1 12

=
+ + +

− + +( ) +−Λ

as the modified sufficient statistics, where

A
n n

T n T n T=
+( )

−( ) −( )τ
τ

µ µ1 0 1 0 .

To modify the EM algorithm shown in Figure 5.2 to compute
a posterior mode rather than an MLE, we need only to replace
the expected sufficient statistics T1 and T2 in the workspace T
by the modified versions T̃1 and T̃2  immediately before

executing the final step θ : = SWP[0]n-1Τ.

©1997 CRC Press LLC



 

5.3.5 Calculating the observed-data loglikelihood

One of the great advantages of the EM algorithm is that it
never requires calculation of the observed-data loglikelihood
function or its derivatives. The observed-data likelihood for
this problem, discussed in Example 3 of Section 2.3.2, or its
logarithm l(θ|Υobs), would be very tedious to differentiate or

maximize by gradient-based methods. Evaluation of l(θ|Υobs),
at a specific value of θ, however, is not overwhelmingly

difficult; the computations required for a single evaluation are
comparable to those needed for a single iteration of EM.

It follows from (2.10) that the observed data-loglikelihood
function may be written as

− − −( ) −( )






∗
( )

∗ ∗−
( )

∗

∈ ( )=
∑∑ 1

2
1
2

1

1

log ,Σ Σs i obs s
T

s i obs s
i I ss

S

y yµ µ

where yi(obs) denotes the observed part of yi and µs
∗  and Σs

∗

denote the subvector of µ and the submatrix of ∑,

respectively, that pertain to the variables that are observed in
pattern s. An equivalent but computationally more convenient
expression is

l Y tr Mobs
n

s s s
s

S
sθ | log ,*( ) = − − }{ ∗ −

=
∑ 2

1
2

1

1

Σ Σ (5.38)

where ns is the number of observations in missingness pattern
s and

M y ys i obs s
i I s

i obs s
T

= −( ) −( )( )
∗

∈ ( )
( )

∗∑ µ µ .
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Figure 5.3. Calculation of observed-data loglikelihood function.

Pseudocode for calculating l(θ|Υobs) is shown in Figure 5.3.

This algorithm requires a p × p matrix workspace M to hold
values of M<i>s</i>, and a p × 1 vector c for temporary storage

of µ . The constants d and t hold log Σs
∗  and tr Ms sΣ*−1 ,

respectively, and after execution the loglikelihood value is
contained in 1. This program modifies the parameter matrix θ;

if necessary, however, the single line
θ:=RSW[Ο(S)θ

may be added at the end of the program, which will return θ to

its original state except for rounding errors.
Notice that the algorithm for evaluating L(θ|Υobs) bears a

strong resemblance to a single step of EM. An obvious
question to ask is whether the two sets of code can be
combined, so that an evaluation of the loglikelihood is
efficiently woven into EM itself This is certainly possible, but
subject to the following caveats. First, the loglikelihood would
have to be evaluated at the parameter estimate from the
previous iteration; that is, we would have to evaluate l(θ(t)

|Υobs) as we computed θ ( t + 1 ). Second, notice that a
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loglikelihood evaluation requires accumulation of the
observed parts of the complete-data sufficient statistics, rather
than the expected values of the missing parts. Recall that the
EM code in Figure 5.2 assumes that Tobs the portion of the
expected value of T that does not change over the iterations,
has already been computed and stored at the outset of the
program. Evaluation of the observed-data loglikelihood,
however, requires access to the individual matrices Tobs(s) for
s = 1,2,..., S which could be very cumbersome to store. If, as in
Figure 5.3, the matrices Tobs(s) are not stored but effectively
recomputed at each iteration, then the proportionate reductions
in computing time achieved by combining the two algorithms
over running them separately would not be overwhelming.

When EM is used to find a posterior mode rather than an
MLE, the function that is guaranteed to be non-decreasing at
each iteration is no longer the observed-data likelihood but the
observed-data posterior density. The logarithm of the
observed-data posterior density is

log | | log ,P Y l Yobs obsθ θ π θ( ) = ( ) + ( )
where unnecessary normalizing constants have been omitted.
Thus the log-posterior density may be evaluated by adding log
π(θ) to the result of the algorithm in Figure 5.3. Under a

normal inverted-Wishart prior with hyperparameters
(τ,m,µ0,Λ), this additional term is

log log ,π θ( ) = − + + − −m p
tr M

2
2

1
2

1
0Σ Σ

where

M T
0

1
0 0= + −( ) −( )−Λ τ µ µ µ µ ,

and unnecessary constants have again been omitted.

5.3.6 Example: serum-cholesterol levels of heart-attack
patients

Ryan and Joiner (1994, Table 9.1) report serum-cholesterol
levels for n  = 28 patients treated for heart attacks at a
Pennsylvania medical center. For all patients in the sample,
cholesterol levels were measured 2 days and 4 days after the
attack. For 19 of the 28 patients, an additional measurement
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was taken 14 days after the attack. The data are displayed in
Table 5.1 (a), with readings at 2, 4 and 14 days denoted by Y1,
Y2 and Y3, respectively.

Regarding the complete data as a random sample from a
trivariate normal distribution, we applied EM to find the observed-data

Table 5.1. EM algorithm applied to cholesterol levels for heart-attack patients
measured 2, 4 and 14 days after attack

ML estimates of the nine parameters in θ=(µ,Σ) (ML estimates

for this dataset could also be calculated noniteratively; see
Section 6.5). Denote the elements of µ and ∑  by µj and σjκ,
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respectively, for j, k = 1, 2, 3, and let ρjκ =σjκ(σjjσκκ)-1/2 denote

the correlations. From starting values chosen based on a crude
guess, µ(ο)=(200,200,200)Τ  and ∑ ( ο)=(50)2Ι, convergence

within four significant digits to

ˆ
.

.

.

, ˆ
.

µ =
















=
















253 9

230 6

222 2

2195 1455 835 4

2127 1515

1953

Σ

was achieved in just three iterations. Because no data, e
missing for Y1 or Y 2, the five parameters (µ1,µ2,σ11,σ22,ρ12)
converge in a single step regardless of the starting value.
Iterates of the four remaining parameters, expressed as µ3,

σ3=√σ33, ρ13 and ρ23, are displayed to six significant digits in

Table 5.1 (b).
For estimation of θ, the iterations beyond t  = 4 are

superfluous because precision beyond three or four digits is
rarely necessary. As discussed in Section 3.3.4, however, these
additional iterations can be used to estimate elementwise rates
of convergence, which are typically equal to the largest
fraction of missing information. Elementwise rates of
convergence for the four parameters that do not converge in
one step, estimated using (3.27), are displayed in Table 5.1 (c).
These estimates, which are all close to 47%, do not measure
the individual rates of missing information for the four
parameters µ3, σ3, ρ13 and ρ23; rather, they pertain to the

function of θ for which the rate of missing information is

highest.
Notice that the 47% rate of missing information is

somewhat higher than the 9/28 = 32% rate of missing
observations for Y3. Because we know that the parameters
pertaining to the joint distribution of (Y1, Y2) have no missing
information, the 47% rate must pertain to some function of the
parameters of the regression of Y3 on Y1 and Y 2. It is
instructive to consider why the largest rate of missing
information exceeds the rate of missing observations for Y3. A
hint is provided by the scatterplot of Y1 versus Y2 displayed in
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Figure 5.4 (a). The cases having missing values for Y3 tend to
be slightly farther, on average, from the center of the (Y1, Y2)
distribution than do the cases for which Y3 is observed.
Because they are farther from the center, they exert more
influence on the estimates of the regression parameters. A well
known measure of influence in linear regression models is
provided by the leverage values, the diagonal elements of the
hat matrix (e.g. Draper and Smith, 1981).

Figure 5.4. (a) Scatterplot of Y1 versus Y2 for all cases, and boxplots of
leverage values hii for cases having (b) Y3 observed and (c) Υ3 missing.

The hat matrix for linear regression is defined to be
Η=Χ(ΧΤΧ)−1ΧΤ,

where X is the matrix of predictor variables, in this case a 28 ×
3 matrix containing the observed values of Y1 and Y2 and the
column vector 1=(1,1,...,)Τ. Boxplots of the diagonal elements

hii of H for the cases having Y3 observed and the cases having
Y3 missing are shown in Figures 5.4 (b) and (c), respectively.
The incomplete cases tend to have slightly higher values of hii

and thus exert greater influence on an average, per-case basis
over the estimates of the regression parameters.

The parameters of greatest interest in this problem appear to
be functions of µ, such as comparisons or contrasts among µ1,

µ2 and µ3. Although the rate of missing observations for Y3 is

32%, we might conjecture that the rate of missing information
for µ3 or a contrast involving µ3 is substantially lower, because

of the high correlations between Y3 and the completely
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observed variables Y1 and Y2. The rate of missing information
for µ3, a contrast involving µ3 or any other function of θ may

be estimated in a straightforward manner by multiple
imputation; see Section 6.2.1.

5.3.7 Example: changes in heart rate due to marijuana use

Weil et al. (1968) describe a pilot study to investigate the clinical 
and psychological effects of marijuana use in human subjects. Nine

Table 5.2. Change in heart rate recorded 15 and 90 minutes after marijuana
use, measured in beats per minute above baseline

healthy male subjects, all of whom claimed never to have used
marijuana before, received doses in the form of cigarettes of
uniform size. Each subject received each of the three
treatments (low dose, high dose and placebo) and the order of
treatments within subjects was balanced in a replicated 3 × 3

Latin square. Changes in heart rate for the n = 9 subjects
measured 15 and 90 minutes after the smoking session are
displayed in Table 5.2. Because the article does not specify the
order in which the treatments were given to the individual
subjects, we will ignore this feature of the data and proceed as
if the order effects are negligible.

At first glance, it appears that missing data are only a minor
problem here; only 5 of the 54 data values are missing. Yet,
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the EM algorithm converges very slowly. Depending on the
starting values and convergence criterion, several hundred
iterations may be needed to obtain convergence. The
elementwise rates of convergence indicate that the largest
fraction of missing information is approximately 97%.
Moreover, the ML estimate of θ lies on the boundary of the

parameter space. The ML estimates of the means, standard
deviations and correlations are displayed in Table 5.3, along
with the eigenvalues of the estimated correlation matrix. The
smallest eigenvalue is zero to three decimal places, indicating
that the estimated covariance matrix is singular or nearly so.

Why do so few missing values create such difficulty in this
example?

Table 5.3. ML estimates of means, standard deviations and correlations for
the columns of Table 5.2, with eigenvalues of the estimated correlation matrix

There are two primary reasons. First, the incomplete cases
appear to be very influential. A comparison of the ML
estimates of the means in Table 5.3 (a) with the means of the
observed data in the columns of Table 5.2 is quite revealing.
The large discrepancy for the fourth column (10.6 versus 1.0)
demonstrates that a disproportionate amount of information
about the mean for that column is provided by subjects 4 and
5. Further examination of Table 5.2 reveals that these two
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subjects have rather extreme values in some of the other
columns, which gives them high leverage. When these two
subjects are deleted, EM converges rapidly and the estimated
largest fraction of missing information drops to 45%.

A second reason why this example is problematic is that the
complete-data estimation problem is poorly conditioned. The
number of subjects n = 9 is not much greater than the number
of variables p = 6. When n and p are nearly equal, it becomes
likely that certain linear combinations of the columns of Y will
show little or no variability, particularly when the columns are
correlated. The multivariate normal model for this example
has 27 parameters, too many to be estimated well from a
dataset of this size even with complete data. Although certain
aspects of θ are poorly estimated, however, we can still make

reasonable inferences about the parameters of interest; see
Section 5.4.4.

5.4 Data augmentation

5.4.1 The I-step

Data augmentation for incomplete multivariate normal data is
remarkably similar to the EM algorithm. The deterministic E-
and M-steps are replaced by stochastic I- and P-steps,
respectively, where the I-step simulates

Y P Y Ymis
t

mis obs
t+( ) ( )( )1 ~ | , ,θ

and the P-step simulates

θ θt
obs mis

tP Y Y+( ) +( )( )1 1~ | , .

Because the rows y 1, y2,...,yn of Y are conditionally
independent given θ, the I-step is carried out by drawing

y P y yi mis
t

i mis i obs
t

( )
+( )

( ) ( )
( )( )1 ~ | ,θ

independently for i = 1, 2,..., n. As discussed in Section 5.3.2,
if row i is in missingness pattern s then the conditional
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distribution of yi(mis) given yi(obs) and θ is multivariate normal

with means

E y Y a a yij obs j kj ik
k O s

| ,θ( ) = +
∈ ( )
∑0 (5.39)

and covariances

Cov , | ,y y Y aij ik obs jkθ( ) = (5.40)

for j,k∈ M(s), where ajk denotes an element of the matrix

A=SWP[Ο(s)]θ. (5.41)

Thus the I-step of data augmentation involves nothing more
than the independent simulation of random normal vectors for
each row of the data matrix, with means and covariances given
by (5.39) and (5.40).

A convenient way to simulate random normal vectors within
the I-step is to create a Cholesky factorization routine that operates

Figure 5.5. Calculation of A:= CholsA.

on square submatrices of (5.41). The Cholesky factor of a
positive definite matrix A, denoted by

C=CholA,
is an upper-triangular matrix of the same dimension of A
having the property that CTC  = A . To simulate a random
vector z from N(b, A), we may take

z=b+(CholA)Τz0,

where z0 is a vector of the same length as z containing
independent standard normal variates. A typical Cholesky
factorization routine operates on the upper-triangular portion
of a symmetric matrix, overwriting it with its Cholesky factor,
To draw from the distribution of yi(mis) given yi(obs) and θ,
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however, we need to calculate the Cholesky factor of only the
square submatrix of (5.41) corresponding to the rows and
columns in M(s). For a set S of row labels of a matrix A, let us

use
Α:=CholsA (5.42)

to indicate the operation that overwrites (the upper triangular
portion of) the square submatrix { ajκ : j,k∈ S}  with its Cholesky
factor, while leaving the remaining elements of A unchanged.
A simple algorithm for this operation, adapted from
pseudocode given by Thisted (1988, p. 83), is shown in Figure
5.5.

Once the Cholesky factorization is available, the I-step
becomes a simple matter of cycling through the missingness
patterns s = 1,..., S, calculating

CholM(s)SWP[Ο(s)]θ
for each s, and simulating yi(mis) for each i∈ Ι(s). An implemen-
tation of the I-step is shown in Figure 5.6. The code simulates the

Figure 5.6. I-step for incomplete multivariate normal data.
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missing values in Ymis and stores them in the appropriate
elements of Y . In addition, the code contains four lines
preceded by the single character ’C’ which accumulate the
simulated complete-data sufficient statistics and store them in
a (p + 1) × (p + 1) matrix workspace T. If the I-step is to be
followed by a P-step, then these sufficient statistics will be
needed to describe the complete-data posterior distribution of
θ. If the I-step will not be followed by a P-step (e.g. if it is the

final step of a chain for producing an imputation of Ymis) then
these four lines may be omitted. The code in Figure 5.5
requires two temporary workspaces: a p × p  matrix C  for
storing Cholesky factors, and a p × 1 vector z for holding
simulated N (0, 1) variates.

5.4.2 The P-step

Under the prior distributions discussed in Sections 5.2.2 and
5.2.3, the complete data posterior Ρ(θ|Υobs,Υmis) is a normal

inverted-Wishart distribution. The P-step of data
augmentation, therefore, is merely a simulation of the normal
inverted-Wishart distribution,

µ µ τ| ~ , ,

~ , ,

Σ Σ

Σ Λ

N

W m

0
1

1

−

−
( )

( )
for some (τ,m,µο,Λ)determined by the prior, the observed data

Υobs, and the missing data Ymis
t( )  imputed at the last I-step. The

specific values of (τ ,m,µο,Λ)) are calculated using the

formulas for updating hyperparameters given in Section 5.2.2.
The most obvious way to generate ∑~W-1(m,Λ) is to take

∑=(ΧΤΧ)-1, where X  is an m  × p  random matrix whose rows

are independent draws from N(0,Λ). This method cannot be

used for non-integer values of m , however, and may be
cumbersome for large m  because it requires mp random
variates. More efficient methods for generating random
Wishart matrices are available that require simulation of only
p (p + 1)/2 random variates. One such method relies on a
characterization of the Wishart distribution known as the
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Bartlett decomposition (e.g. Muirhead, 1982). If Α~W(m,I)
where I is a p × p identity matrix and m ≥ p, then we can write

A = BTB where B is an upper triangular matrix whose elements
are independently distributed as

b X j pjj m j~ ,..., ,,− + =1
2 1 (5.43)

b N j kjk ~ , , .0 1( ) < (5.44)

Suppose that we generate an upper-triangular matrix B
according to (5.43)-(5.44), so that ΒΤΒ~W(m,I), and take

M=(ΒΤ)-1C,

where C  is the Cholesky factor of Λ−1(i.e.CΤC=Λ−1). Then

∑=MΤM will be distributed as W-1(m,Λ) because

M M C B B C

W m C C

T T T

T

( ) = ( )
( )





− − −

−

1 1 1

1
~ , .

(Here we have made use of the property that D ~W(n,Γ)
implies CΤDC~W(n,CΤΓC) which follows immediately from

the definition of the Wishart distribution.) Moreover, taking
µ µ τ= + −

0
1 2/ .M zΤ

where z~N(0,Ι) is a p  ×  1 vector of independent standard

normal variates, results in µ |∑~N(µ0,τ−1Σ)This method

requires the inversion of only the triangular matrix BT, which
can be accomplished via a simple backsolving operation. Note
that with the exception of M, all matrices used here are either
symmetric or triangular, so memory requirements can be
reduced by retaining only their upper-triangular portions in
packed storage.

5.4.3 Example: cholesterol levels of heart-attack patients

Recall the example of Section 5.3.6 in which cholesterol
measurements were recorded for patients 2, 4 and 14 days
after heart attack. The EM algorithm converged rapidly with
an estimated largest fraction of missing information equal to
47%. We applied data augmentation to this example under the
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noninformative prior (5.18). Output analysis from preliminary
runs suggested that the data augmentation algorithm also
converged rapidly. For illustration, we ran a single chain for
1100 iterations starting from the ML estimate of θ, discarded

the first 100 iterations, and estimated ACFs for a variety of
scalar functions of θ over the remaining 1000 iterations. We

deliberately chose functions of θ  for which the rates of

missing information were thought to be high, including:

1. µ 3 and σ 3, the mean and standard deviation of Y3,

respectively;

2. the parameters of the linear regression of Y3 on Y1 and Y2,
including the slopes

β
β

σ σ
σ σ
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and

3. the worst linear function ξ=ξ(θ) estimated from the final

iterations of EM, as described in Section 4.4.3. This is the
inner product of θ  and the estimated eigenvector

corresponding to the largest eigenvalue of EM’s asymptotic
rate matrix. Because there are no missing values on Y1 or
Y2, ξ  is a weighted sum of µ3, σ13, σ23 and σ33, where the

weights are the perturbations from the ML estimates in the
final iterations of EM.
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Table 5.4 Sample ACFs of selected scalar parameters estimated over
iterations of data augmentation

Sample ACFs for these functions of θ  up to lag 20 are

displayed in Table 5.4. Correlations that are significantly
different from zero at the 0.05 level, as determined by
Bartlett’s formula (4.49), are marked with an asterisk. Because
the series is so long and the serial dependence is not high, the
standard errors are small and even very small correlations are
deemed significant. Even for the worst functions examined,
however, the correlations are effectively zero by lag 10, and
definitely negligible by lag 20. Time-series plots of these
functions showed no unusual features and resembled those of
the rapidly-converging series displayed in Figure 4.2 (a) and
(b). Based on this evidence, we feel safe in concluding that the
algorithm effectively achieves stationarity by 20 iterations.

The parameters of greatest interest in this problem are
functions of µ=(µ1,µ2µ3)Τ. For illustration, we will focus
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attention on three quantities: µ3, the average cholesterol level at 14 days;

Figure 5.7. Histograms of sample values of (a)µ3, (b) δ13, (C) τ13 and (d) dL

from 5000 consecutive iterations of data augmentation.

δ µ µ13 1 3= − , the average decrease in cholesterol level from

day 2 to day 14; and τ13=100(µ1−µ3)⁄µ1, the relative percentage

decrease in average cholesterol level from day 2 to day 14. To
draw inferences about these quantities, we simulated another
single chain of 5100 iterations starting from the ML estimate,
discarded the first 100, and saved the 5000 remaining values
of µ3, δ13 and τ13. Histograms of the sample values for these

three quantities are shown in Figure 5.7 (a)-(c). Because µ3

and δ13  are linear combinations of the elements of µ, obtaining

Rao-Blackwellized estimates of the marginal densities of these
quantities is straightforward. Under the prior (5.18), the
complete-data posterior is given by (5-19)-(5.20). Using
(5.17), it follows that the complete-data posterior density of a
linear combination η−aTµ is
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(5.45)
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where n = 28 and p = 3 are the number of observations and

variables, respectively; σ 2 1= −( )−n p a Sa y ST ; and  are the
sample mean vector (5.5) and covariance matrix (5.6)
computed from Υ=(Υobs,Υmis); and

k
n p

n p

n p
=

( )
( ) −( )

− +

−

Γ

Γ

1
2

2
2π σ

.

Rao-Blackwellized density estimates for µ3=(0,0,1)µ and

δ13=(1,0,−1)µ estimated from the first 1000 iterations after the

τ13 initial burn-in period are shown superimposed over the

histograms in Figure 5.7 (a) and (b). Because τ13 is nonlinear

its density is somewhat less easy to find, and Rao-
Blackwellized estimates for this quantity are not shown.

In addition to µ3, δ13 and τ13, we also calculated and stored

values of the likelihood-ratio statistic

d d l Y l YL L obs obs= ( ) = ( ) − ( )[ ]θ θ θ2 ˆ | |

over the 5000 iterations, where θ̂  is the ML estimate. For
large samples, the posterior distribution of dL is approximately
χ d,

2 , where d  is the dimension of θ (in this case, 9). A

histogram of the sample values of dL is displayed in Figure 5.7
(d) with the χ9

2  density function superimposed over it,
showing that the actual posterior matches the theoretical
approximation quite closely.

Simulated posterior means for µ3, δ13 and τ13 were found by

averaging the 5000 iterates of each parameter. Simulated 95%
posterior intervals were found by calculating the 2.5 and 97.5
percentiles of each sample using (4.8). To obtain a rough
assessment of the random error in these estimates, a second
chain was generated in an identical fashion with a different
random-number generator seed. The simulated posterior
means and 95% intervals (in parentheses) for the two replicate
runs are shown below.
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µ δ τ3 13 13

222 2 31 8 12 4

201 6 244 0 8 9 55 4 3 7 20 9

222 4 31 4 12 3

201 7 242 6 8 9 53 3 3 7 20 3

. . .

. , . . , . . , .

. . .

. , . . , . . , .

( ) ( ) ( )

( ) ( ) ( )
Inferences about µ3, δ13 and τ13 can also be conducted through

multiple imputation. This will be demonstrated in Section
6.2.1.

5.4.4 Example: changes in heart rate due to marijuana use

Returning to the data in Table 5.2, let µj denote the population

mean corresponding to column j, and let δjκ=µj−µκ,j,k=1,...,6.
Following the original article be Weil et al. (1968), we will
focus attention on the six treatment comparisons below.
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Data augmentation under the usual noninformative prior
(5.18) does not work for this problem; the iterates of θ quickly

wander to the boundary of the parameter space, causing
numeric overflow. This pathological behavior suggests that
the posterior is not proper. To stabilize the inference, we
applied a ridge prior as described in Sections 5.2.3 and 5.3.4.
After centering and scaling the columns of Y so that the
observed data in each column have mean zero and unit
variance, we set the hyperparameters of the normal inverted-
Wishart prior to τ=0, m=∈ ,  and Λ−1=∈Ι  for ∈ =0.5. Under this

weak prior, EM converges slowly but reliably to a posterior
mode in the interior of the parameter space, with the largest
fraction of missing information estimated at 95%.

The slow convergence of EM in this example suggests that
data augmentation will also converge slowly, and output
analysis from a preliminary run confirmed this. Using the
same ridge prior, we simulated a single chain beginning at the
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posterior mode and monitored a variety of scalar summaries of
θ. Time-series plots for δ21 and δ54 (on the original scale) from

the first 100 iterations are shown in Figure 5.8 (a) and (b),
respectively. The iterates of δ21 appear to approach stationarity

quickly, whereas the series for δ54 shows long-range

dependence. This is not surprising, because δ54 is a function of

µ4, and our earlier analysis led us to conjecture that the rate of

missing information for µ4 was very high. Sample ACFs for

δ21 and δ54 estimated from 10 000 iterations are displayed in

Figure 5.8 (c) and (d), respectively. Figure 5.8 (d) is typical of
the ACFs for other slowly converging functions of θ. For all

the functions we examined, the serial correlations effectively
died out by lag 50.

The slow convergence in this example should lead us to use extra 
caution in designing the simulation experiment. Running independent
chains from overdispersed starting values would be attractive,

Figure 5.8. Time-series plots of (a) δ21 and (b) δ54 over the first 100 iterations

of data augmentation, and sample AM for (C) δ21 and (d) δ54 estimated from

10 000 iterations, with dashes indicating approximate 0.05-level critical
values for testing ρκ=ρκ+1=…=0.
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but obtaining overdispersed starting values is not easy.
Bootstrap resampling is unlikely to work well, because n is not
much larger than p, so the distribution of θ over bootstrap

samples will probably bear little resemblance to the observed-
data posterior. Sampling from the prior is not possible,
because the prior is not a proper probability distribution.
Because convergence to stationarity tends to be fastest when
the starting value is near the center of the observed-data
posterior, we decided to run ten independent chains of 5500
iterations each, starting each chain at the posterior mode. After
discarding the first 500 values from each chain, the pth sample
quantile for each contrast δjκ, was calculated for p = 0.025,

0.25, 0.5, 0.75 and 0.975 from the remaining 5000 values.
Finally, the sample quantiles were averaged across the ten
chains. For each of these averages, the variance of the
quantiles across chains was used to estimate a standard error
with nine degrees of freedom. The estimated quantiles for all
six parameters are displayed in Figure 5.9. All of the
simulated 95% posterior intervals cover zero, indicating that
there is no strong evidence that any of the contrasts is different
from zero. Standard errors for the simulated quantiles

Figure 5.9. Simulated posterior medians, quantiles and 951% equal-tailed
intervals for six contrasts.

ranged from 0.02 to 0.72, which is quite small relative to the
width of the intervals displayed in Figure 5.9, so these
simulation results are sharp enough for our purposes.
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One could very well argue that the unrestricted multivariate
normal model has too many parameters to be estimated from a
dataset of this size, and that the unnecessarily large number of
nuisance parameters hinders us from making clear inferences
about the parameters of interest. Indeed, the long tails
exhibited in the marginal posteriors of Figure 5.9, particularly
for the two contrasts involving µ4, suggest that some of the

nuisance parameters are very poorly estimated, and we might
do well to simplify the model. One possible simplification is
to reduce the number of free parameters by applying a priori
constraints to ∑. For example, we could require ∑ to satisfy

the condition of compound symmetry (i.e. equal diagonal
elements and equal off-diagonal elements). Simulation
algorithms for incomplete multivariate normal data with
constrained covariance structure are possible, but they are
beyond the scope of this book. A slightly different approach
would be to specify fixed, additive effects for the rows and
columns of the data matrix, and define the parameters of
interest to be contrasts among the column effects (Chapter 9).

Yet another possibility is to perform a simple bivariate
analysis for each contrast, making inferences about δjκ using

only the data in columns j and k . Under this bivariate
approach, it is no longer possible to make joint inferences
about  the contrasts .  Moreover ,  ignoring the data  in  
columns other than j and k when making inferences about 

δ j k  m a y  t e n d  t o  i n t r o d u c e  n o n r e s p o n s e  b i a s e s ;
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Figure 5.10. Simulated posterior medians, quantiles and 951% equal-tailed
intervals for six contrasts using a bivariate approach.

the MAR assumption tends to be less plausible for the
bivariate dataset than for the one with six variables. The
decision whether to include additional variables in an analysis
is not always an easy one, particularly for small datasets, and
is an important topic worthy of further research.

Simulated posterior quantiles from a bivariate analysis are
shown in Figure 5.10. For each contrast, data augmentation
was applied to the bivariate dataset under the standard
noninformative prior (5.18). Output analyses suggested that
convergence to stationarity was rapid. For each contrast, 10
100 steps of a single Markov chain were simulated, beginning
from the ML estimate. The first 100 values of the simulated
contrast were discarded, and sample quantiles were calculated
from the remaining 10 000. The distributions in Figure 5.10
are much narrower than those in Figure 5.9, and there is now a
fair amount of evidence that the three contrasts δ21, δ31, and δ65

are nonzero.
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