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a b s t r a c t

Nonlinear dynamic systems such as biochemical pathways can be represented in abstract
form using a number of modelling formalisms. In particular differential equations provide
a highly expressive mathematical framework with which to model dynamic systems, and
a very natural way to model the dynamics of a biochemical pathway in a deterministic
manner is through the use of nonlinear ordinary or time delay differential equations.
However if, for example, we consider a biochemical pathway the constituent chemical
species and hence the pathway structure are seldom fully characterised. In addition it
is often impossible to obtain values of the rates of activation or decay which form the
free parameters of the mathematical model. The system model in many cases is therefore
not fully characterised either in terms of structure or the values which parameters take.
This uncertainty must be accounted for in a systematic manner when the model is
used in simulation or predictive mode to safeguard against reaching conclusions about
system characteristics that are unwarranted, or inmaking predictions that are unjustifiably
optimistic given the uncertainty about the model. The Bayesian inferential methodology
provides a coherent framework with which to characterise and propagate uncertainty in
suchmechanisticmodels and this paper provides an introduction to Bayesianmethodology
as applied to system models represented as differential equations.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The use of differential equations1 to model biochemical processes and systems has a long and well established history
especially within themore recent context of Systems Biology e.g. [1–3]. On the other hand the systematic characterisation of
model uncertainty has been givenmuch less considerationwith themajority of effort being focused onparameter estimation
from an optimisation perspective [4] . The Bayesian methodology (see e.g. [5,6]) is well suited for this particular problem in
that posterior parameter inference can characterise uncertainty in the estimates of unknown parameter values and indeed
the uncertainty over a set of candidate models [7].
This paper will present the appropriate Bayesian statistical methodology in its general form in Section 2, with Section 3

providing the concrete example of a linear regression model. Performing Bayesian inference over models based on systems
of ordinary differential equations is discussed and Section 7 an experimental illustration is then provided.

2. Bayesian model inference

Consider observed dataD = {y, t} such that y ∈ RN and t ∈ RN . This can be considered as some input stimulus t and the
corresponding model response y, and the aim is to obtain a model of the functional relationship y← ϕ(t) in order that the

∗ Tel.: +44 0 141 330 1623; fax: +44 0 141 330 2673.
E-mail address: girolami@dcs.gla.ac.uk.
URL: http://www.dcs.gla.ac.uk/inference.
1 For clarity this paper will simply focus on Ordinary Differential Equations however the inferential methodology presented is sufficiently general that

other forms such as delay and partial differential equations can be given the same treatment.

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.07.005

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:girolami@dcs.gla.ac.uk
http://www.dcs.gla.ac.uk/inference
http://www.dcs.gla.ac.uk/inference
http://www.dcs.gla.ac.uk/inference
http://www.dcs.gla.ac.uk/inference
http://www.dcs.gla.ac.uk/inference
http://www.dcs.gla.ac.uk/inference
http://www.dcs.gla.ac.uk/inference
http://dx.doi.org/10.1016/j.tcs.2008.07.005


M. Girolami / Theoretical Computer Science 408 (2008) 4–16 5

inferred functional relationship can be employed in a predictive manner. A model classM = {M1 · · ·MK } is defined which
enumerates the models which will be considered. Each modelMk may have a parametric form in which case an associated
set of parameters , θk, will be linkedwith eachmodel.Whenmaking a prediction of possible values y∗ given a particular value
of the dependent variable t∗ the uncertainty in both model parameters and in the models themselves should be taken into
account. We therefore wish to obtain the predictive probability distribution of the unobserved random variable y∗ which
is denoted as p(y∗|t∗,D) and provides the probability distribution of the values which y∗ may take given, or conditioned
upon, the known value of t∗ and the previously observed data,D .
This probability distribution is obtained by averaging the predictive distributions obtained from each model,

p(y∗|t∗,Mk,D), with respect to the discrete probability measure P(Mk|D)which defines the posterior probability of model
Mk given the observed data.

p(y∗|t∗,D) =
∑
k∈M

p(y∗|t∗,Mk,D)P(Mk|D). (1)

All predictions are therefore based on the averaged model-based predictive distributions where the averaging is carried
out with respect to the posterior distribution over models within the model class thereby taking into account the posterior
uncertainty of all models.
The posterior probability distribution over modelsMk is given in the standard form as

P(Mk|D) =
p(D|Mk)π(Mk)∑
l∈M
p(D|Ml)π(Ml)

(2)

where the prior probability distribution over models is denoted by π(Mk) and the integrated likelihood of the observed data
given the model is denoted as p(D|Mk). Note that the integrated likelihood can also be denoted as p(y|t,Mk)which makes
explicit that the observations y are conditional on the values of t and the model employedMk.
Now each model has an associated set of possible parameters in which case the likelihood of modelMk with parameter

values θk ∈ Θ giving rise to observations y is the probability density p(D|θk,Mk). As with the individual models a prior
probability density will be placed on themodel parameters p(θk|Mk) and the integrated likelihood is obtained by taking the
expectation of the data likelihood with respect to the parameter prior.

p(D|Mk) =

∫
θk∈Θ

p(D|θk,Mk)p(θk|Mk)dθk. (3)

The final component of the averaged predictive likelihood (1) that needs to be considered is themodel specific predictive
likelihood. This distribution will be obtained by further averaging such that

p(y∗|t∗,Mk,D) =

∫
θk∈Θ

p(y∗|t∗, θ,Mk)p(θk|D,Mk)dθk. (4)

where the expectation is taken with respect to the parameter posterior density obtained as

p(θk|D,Mk) =
p(D|θk,Mk)p(θk|Mk)

p(D|Mk)
(5)

It can be seen that the integrated likelihood appears in the parameter posterior distribution as a normalising term. From
the predictive distribution defined in (1) it is straightforward to obtain summary statistics such as the predictive mean and
variance which follow as

E{y∗|t∗,D} =
∑
k∈M

E{y∗|t∗,Mk}P(Mk|D) ≡ µ
2
∗

Var{y∗|t∗,D} =
∑
k∈M

(
Var{y∗|t∗,Mk} + E{y∗|t∗,Mk}

2) P(Mk|D)− µ
2
∗
.

With this small number of identities a powerful inferential framework is provided in devising prediction from models
which takes into account the sources of uncertainty based on model structure and parameter values. To give a concrete
example of the Bayesian framework in action the next section provides a Bayesian treatment of a standard linear functional
response model.

3. Linear response model

As an illustrative example of this inferential framework a linear model is considered, further examples and details for
applications in regression and classification can be found in [8]. Given a single random variable t and a corresponding
observed response variable a linear combination of basis expansions of the dependent variable is employed such that
f =

∑M
m=1 βmϕm(t) which forms the deterministic component of the overall statistical model. In addition a noise or error

term is included such that the observation y = f + ε where ε is a stochastic term which if Normal errors are assumed
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then this will have a Gaussian density with a mean of zero and an unknown variance or standard deviation denoted as
σ . The notation ε ∼ N (0, σ ) indicates that the random variable ε is Normally distributed with mean zero and standard
deviation σ .
The overall model is then defined by the class of basis function employed, ϕm as well as the associatedmodel parameters

β ∈ RM and σ . Let us consider the model class of polynomial basis functions such that each Mk ≡ ϕk(t) = {t i}i=1···k
where each model is defined as {Mk,βk, σ } and is indexed from k = 1 · · · K . In other words the model class considered is
polynomials of order-k and each model-order is defined by a set of expansion coefficients βk ∈ Rk and σ .
Given data observed such that D = {(y1, t1), . . . , (yN , tN)} = (y ∈ RN , t ∈ RN) an instantiation of the Bayesian

inferential methodology is developed for this particular class of model and, for illustrative purposes, we will consider the
class of polynomial functions up to K = 10.
For each model a prior over the parameters is required i.e. p(θk|Mk) which in this case will be p(βk, σ |Mk). In addition

a likelihood requires to be defined, so given that each εn ∼ N (0, σ ) and assuming that they are independent and
identically distributed then it follows that p(D|θk,Mk) ≡ p(y|t,βk, σ ) = Ny(Φβ, INσ 2)which denotes the N-dimensional
multivariate Gaussian density at the point ywith a mean ofΦβ and covariance of INσ 2. Where IN denotes an N×N identity
matrix and Φ denotes the N × k dimensional matrix of polynomial responses for each tn and βk is the k × 1 dimensional
vector of basis coefficients. The multivariate Gaussian is defined below.

Ny(Φβ, INσ 2) =
1

(2πσ 2)
N
2
exp

{
−
1
2σ 2

(y− Φβ)T(y− Φβ)

}
. (6)

Now that the likelihood has been defined a functional form for the prior p(βk, σ
2
|Mk) is required. Noting that p(βk, σ |Mk) =

p(βk|σ
2)p(σ 2|Mk) a product of independent Gaussians can be placed on each βm with mean zero and variance equal to

σ 2 and so p(βk|σ
2) = Nβ(0, INσ 2). This prior distribution on the basis weights reflects the notion that the values of the

coefficients should be small so as not to produce an unnecessarily complex combination of polynomials. It also has the
advantage that both the likelihood and the prior having the same functional form ensures a degree of analytical tractability.
The prior density for the variance σ 2 has to have support restricted to the positive half of the real line and in this case
an inverse-Gamma density is a reasonable choice and has the added advantage of enabling analytic solution for all of
the integrals defined in the previous section. The inverse Gamma density is defined by two parameters α and γ where
IGσ 2(α, γ ) = γ

α(σ 2)−(α+1) exp(−γ σ−2)/0(α). For the case where α = γ = 1 the overall prior density over the model
parameters is

p(βk, σ
2
|Mk) =

(
σ 2
)−( 4+k2 )

(2π)
k
2
exp

{
−

βTkβk + 2
2σ 2

}
. (7)

It follows that an analytic form for the integrated likelihood is obtained after some straightforward but tediousmanipulation.
For the prior density defined above the integrated likelihood takes the following analytic form

p(y|t,Mk) =

∫ ∫
Ny(Φβk, INσ

2)Nβk(0, INσ
2)IGσ 2(1, 1)dβkdσ

2

=
0(1+ N

2 )√
πN |Σk|

{
1+

1
2
yT(IN − ΦΣ−1k ΦT)y

}−(1+ N2 )
(8)

whereΣk = Ik+ΦTΦ , 0(·) denotes a Gamma function and | · | is the matrix determinant operator. Now that the integrated
likelihood is available conditional on each model the posterior distribution over models follows straightforwardly as

P(Mk|y, t) =
p(y|t,Mk)π(Mk)∑
l∈M
p(y|t,Ml)π(Ml)

. (9)

This distribution over models provides the means to rank models and to perform the model-based averaging of
predictions.
Conveniently, due to the exponential conjugacy of the prior density and the likelihood, the parameter posterior density

p(βk, σ
2
|Mk, y, t) takes the form of a product of a Normal and Inverse-Gamma density given below as

δ
N+2
2
k

(
σ 2
)−( 4+k2 )

(2π)
k
2 |Σk|

1
20(N+22 )

exp

{
−
(βk − µk)

TΣ−1k (βk − µk)+ 2δk
2σ 2

}
(10)

where µk = Σ
−1
k ΦTy and δk = 1+ 1

2 (y
Ty− µTkΣ

−1
k µk). Finally an explicit expression for the model conditional predictive

distribution can also be obtained as an analytic form for the required integral below is also available.

p(y∗|t∗,Mk, y, t) =
∫ ∫

p(y∗|t∗,βk, σ
2)p(βk, σ

2
|Mk, y, t)dβkdσ

2 (11)



M. Girolami / Theoretical Computer Science 408 (2008) 4–16 7

Fig. 1. The left hand figure shows the observed data points and the solid line is the noise free function which generated the finite number of noisy
observations. The right hand figure shows the observed data and the noise free function. In addition the Bayesian model averaged predictive mean value
(Eq. (13)), is shown in solid red and the shaded region corresponds to± one standard deviation of the model averaged predictive distribution (Eq. (14)).

and as the predictive likelihood p(y∗|t∗,βk, σ
2) is a univariate Gaussian then the above integral takes the formof a Student-T

density where

p(y∗|t∗,Mk, y, t) =
0(1+ N

4 )

0( 3N4 )
√
(πδkξk)

{
1+

(y∗ − φTkµk)

δkξk

}−(1+ N4 )
(12)

whereφk is a k×1 vector of the basis (polynomial in this example) responses at t∗ the query point and ξk = 1+φTkΣ
−1
k φk. This

predictive density has a mean value of φTkµk and a variance
N+2
N−2δkξk and so the Bayesian model averaged mean prediction

and associated variance follows as

E{y∗|t∗, y, t} =
∑
k∈M

φTkµkP(Mk|y, t) ≡ µ∗ (13)

Var{y∗|t∗, y, t} =
∑
k∈M

(
N + 2
N − 2

δkξk + φTkµkµ
T
kφk

)
P(Mk|y, t)− µ2∗. (14)

3.1. Summary

For the case of the linear model with the choice of prior distribution over parameters chosen it is possible to obtain
fully analytic expressions for the posterior distribution, the predictive distribution and the integrated likelihood which then
provides the posterior distribution over all models considered. The following section gives an experimental illustration of
the Bayesian methodology in practice for this type of linear model.

4. Inference for linear data models an illustrative example

Consider that measurements are made at forty one distinct points, these could be for example time points. The objective
is then to devise amodel of the functional relationship between, t and themeasurements y, and use this tomake subsequent
predictions at points forwhich nomeasurement has been taken. Byway of illustrationwewill generate data synthetically by
specifying such a functionwhich in this case is a cubic expansion f (t) = 0.2193t3+0.5287t2−0.8051t . In addition a simple
Gaussian noise process with a mean of zero and σ = 0.5 is defined so that each observation is defined by y(t) = f (t)+ ε(t)
where each ε ∼ N (0, 0.52).
The data and the deterministic underlying function is shown in Fig. 1, the spread of the observed data points indicates the

levels of uncertainty in the measurements and to provide consistent predictions this uncertainty requires to be propagated
forward to all levels of inference. The observed datawould suggest that there is possibly a polynomial relationship between t
and y possibly of second or higher order. Given thiswe can select the class ofmodels to be considered as the set of polynomial
basis expansions up to a maximal order of say ten. From the plot of the data it is unlikely that tenth order effects are of any
significance butwe can include this and allow the Bayesian inferentialmechanism to appropriatelyweight themodels under
consideration.
Themost popular method for model fitting is the use of least squares estimators which are nothingmore thanmaximum

likelihood estimators. The value of the joint likelihood of the observed data when the maximum posterior parameter
estimates are used, denoted as p(y|t, β̂k, σ̂k,Mk), is plotted as a bar chart in Figure (2) left hand diagram.What we see is that
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Fig. 2. The right hand bar chart displays the data likelihood for each model fromM1 toM10 . The data likelihood is obtained when themaximum a posteriori
point estimates of the model parameters β̂k , σ̂ are employed. The data likelihood is a raw measure of how well each model fits the observed data and it is
clear that as the model complexity, that is the order of the polynomial expansion, increases then the misfit to the data decreases and so the data likelihood
increases. The left hand bar chart shows the discrete probability distribution over the data models and here we observe a quite different pattern.

Fig. 3. The figures show the original data, the true underlying function, as well as the mean and variance of the predictive distribution for each of the ten
models considered.

the likelihood increases as the complexity of the model increases beyond that which actually produced the observations. In
other words observing the data under complex models is more likely than under less complex ones. This is a fundamental
flaw in model assessment within themodel fitting paradigm.
On the other hand if we obtain the posterior distribution over models (Eq. (9)), which in the case of this particular model

can be obtained analytically, we observe a quite different distribution in Fig. 2 from that obtained bymeasures of data fit. We
can now see that the posterior distribution over the ten models considered gives almost no support to a linear model, this
is obvious from looking at the data. It is not so obvious, visually at least, whether a third or fourth order model underlies the
observations and we see from the distribution a peak at k = 3 with some decaying residual support from k = 4 onwards. It
is clear then that this posterior distribution can be used as a means of ranking models in terms of their evidential support
and we shall return to this in the following sections. In addition the model posterior distribution can be used to weight
or average the predictions made over all models. In Fig. 3 the predictive mean and variance (from the Student-t density of
Eq. (12)) for each of the tenmodels considered is shown graphically. For the linearmodelwith k = 1we can see the expected
bias in the predictions and this decrease as the model complexity increases, however it is interesting to observe that the
variance of the predictions starts to increase rapidly after k = 3 the truemodel order. This is most apparent for predictions
made around t = ±2.3 where there was no observed data. So whilst the bias is decreasing (or put another way the data
fit is improving) as the model complexity increases, the predictive variance is also increasing rendering the predictions of
poorer quality due to the large levels of predictive uncertainty. Returning to Fig. 1 we observe the Bayesian model averaged
predictions the uncertainty is at a similar level to the single k = 3 model however the variance is a little higher reflecting
as it does the overall uncertainty in the modeling process.
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(a) Model1: the simpler model, which has 10
parameters. This model relies onMichaelis–Menten
law to define activation of protein R.

(b) Model2: themore complexmodel, which has 12
parameters. This model relies on mass action law to
define activation of protein R.

Fig. 4.Models used for this case study.

4.1. Conclusions

This section has provided an example of the power of Bayesian inferencewithin the datamodeling processwhere a linear
expansion of basis functions has been employed as the functional class. The choice of prior distributions and the essentially
linear nature of the models has allowed us to obtain the required posterior and marginal densities in analytic form. The
following section now considers inference over models based on nonlinear ODEs and here we will see that there is another
layer of technical difficulty which has to be overcome for inference to proceed.

5. Nonlinear ODE models of biochemical pathways

The inferential framework presented and illustrated is completely general and we now demonstrate it on dynamic
models defined by systems of nonlinear ordinary Differential Equations (ODE). The example we now consider is one which
is directly related to systems biology, themodeling of biochemical pathways [1]. In this section two ODE-basedmodels have
been developed to demonstrate the application of Bayesian inference to realistic problems in Systems Biology. Both of the
models describe a process of enzymatic activation of protein R into its active, or phosphorolated, form Rpp by an enzyme S.
At the same time enzyme degrades into its inactive form D.
The first model (see Fig. 4(a)) utilises the Michaelis–Menten kinetic law to define activation of protein R. The system of

differential equations (15) that defines Model 1 has 5 kinetic parameters: k1, V1, Km1, V2, and Km2. In addition to the kinetic
parameters, the statistical model also contains the initial values for all of the variables: S|t=0, D|t=0, R|t=0, Rpp|t=0.
The systematic component of the overallmodel is defined by a systemof coupledODE’s denoted asM1, (Eq. (15)). Now the

stochastic component of themodel will characterise the variability in the observed data, which if themodel is fully observed
at each of N distinct time points can be represented by the N × K , where K = 4 dimensional matrix Y. The dynamic system
which the ODE’s define will generate four time series each of which are correlated through time and with each other thus
inducing a complex covariance structure across time points and across observed species. This structure can be represented
by amultivariate Gaussian Process by defining the NK ×1 vector y = vec(Y) such that y is distributed as a Gaussian Process
with meanµ and covarianceΣ ⊗ C and⊗ denotes the Kronecker product. Whereµ is an NK × 1 vector of of the computed
values for S,D, R, Rpp at each of the N time points,Σ is an N × N dimensional symmetric positive semi-definite matrix of
the covariance function values at each time point and the K × K dimensional covariance matrix models the inter-species
covariance.

M1 =



dS
dt
= −k1 · S

dD
dt
= k1 · S

dR
dt
= −

V1 · R · S
Km1 + R

+
V2 · Rpp
Km2 + Rpp

dRpp
dt
=
V1 · R · S
Km1 + R

−
V2 · Rpp
Km2 + Rpp

.

(15)

For the purposes of this illustrative paper we will assume a much more simplified error structure where statistical
independence is assumed across time and across chemical species with a single error term describing all data variance
in which case the multivariate Gaussian Process collapses to a spherical Gaussian such that y ∼ N (µ, Iσ 2).
The overall set of parameters for the ODE system and the simple error model can be represented by the vector θ =

(k1, V1, Km1, V2, Km2, S0,D0, R0, Rpp0, σ 2). In defining the likelihood we will use µ(θ) to make explicit that the mean
response is a nonlinear function of the model parameters. Note that in this case there is no analytic solution for the system
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of ODE’s and so numerical integration of the ODE’s will be required to obtain µ(θ) and therefore to obtain the value of the
likelihood p(y|t, θ,M1).
In defining a prior for themodel parameters p(θ|M1)wenote that all parameters have to be restricted to the positive part

of the real line, however, irrespective of the choice of prior the integrated likelihood p(y|t,M1) =
∫
p(y|t, θ,M1)p(θ|M1)dθ

will no longer admit an analytic form. As the integrated likelihood is the normalising constant for the posterior then wewill
lose the analytic expression for p(θ|y, t,M1) the posterior. This means that the posterior averaging to obtain the predictive
distribution p(y∗|t∗,M1) cannot be achieved analytically and in addition the posterior over possible model structures will
not have an analytic form. We shall return to these issues in the following section but for nowwe will introduce the second
biochemical model that shall be considered.
The second model (see Fig. 4(b)) utilises the mass action kinetic law (in its explicit form for enzymatic activation) to

define activation of protein R. The system of differential equations (16) that defines modelM2 has 6 kinetic parameters: k1,
k2, k3, k4, V , and Km. In addition to the kinetic parameters, the statistical model also contains the initial values for all of the
variables: S|t=0, D|t=0, R|t=0, RS|t=0, Rpp|t=0, and the error variance σ resulting in 12 parameters overall.

M2 =



dS
dt
= −k1 · S − k2 · R · S + k3 · RS + k4 · RS

dD
dt
= k1 · S

dR
dt
= −k2 · R · S + k3 · RS +

V · Rpp
Km+ Rpp

dRS
dt
= k2 · R · S − k3 · RS − k4 · RS

dRpp
dt
= k4 · RS −

V · Rpp
Km+ Rpp

.

(16)

As this is amore complexmechanistic description of the biochemical process we should note that an additional chemical
species RS enters this model which is not present in M1. If we observe only the chemical species which are in common
between both models then RS at each time point is unobserved or a latent variable. However as an initial value problem has
to be solved in obtaining the ODE solutions the unobserved RS only adds one additional parameter which is the unknown
initial value RS|t=0. As the overall time course of RS is not observed its effect on the likelihood is indirect via the coupling of
RS to all other state-derivative equations in the system.

6. Markov chain Monte Carlo

The challenge which we now face is no longer a statistical one, it is in fact a computational problem which we have to
address. The main issue in making progress here is that the multi-dimensional integrals required to obtain the integrated
likelihood (Eq. (3)) and the predictive likelihood (Eq. (4)) are no longer analytic. These integrals take the generic form of

I(f ) =
∫
f (x)π(x)dx ≡ Eπ {f (x)} (17)

where π(x) is a probability density function and we can see that this is the expectation of the function f (.) with respect
to the density π and is written as Eπ {f (x)}. For the purposes of invoking results from the Central Limit Theorem (CLT) it is
assumed that the expected absolute deviation of the function is finitely bounded i.e. Eπ {|f (x)|} < +∞.
If samples can be drawn from the density π such that xs ∼ π(x), then from the Law of Large Numbers it follows that

lim
S→+∞

1
S

S∑
s=1

f (xs) = Eπ {f (x)} (18)

so the estimator ÎS(f ) = S−1
∑N
s=1 f (x

s) is an unbiased estimator of the desired integral (see e.g. [9]). In addition from
the CLT the distribution of the error converges to a Normal distribution with mean zero (as the estimator is unbiased) and
variance equal to var(f (x)), such that as S →+∞ then

√
S
(
ÎS(f )− I(f )

)
∼ N (0, var(f (x))) (19)

indicating a convergence rate of O( 1√
S
) irrespective of the dimensionality of the random vector x.

So to obtain the integrated likelihood it would initially appear that the difficulty has been overcome as the following
estimator can be employed.

p̂(y|t,M1) =
1
S

S∑
s=1

p(y|t, θs,M1) ≈

∫
p(y|t, θ,M1)p(θ|M1)dθ (20)
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where θs ∼ p(θ|M1) which should be straightforward to sample from if the prior is from a standard family such as the
Gamma. There is however a small fly in the ointment which will take some formidable computational effort to remove.
Many of the samples drawn from the prior density will not necessarily lie in regions of the parameter space for which the
likelihood p(y|t, θ,M1) is large. This is exacerbated by the relatively high dimensionality of the parameter spaces we are
now considering and the potential dynamic complexity of the systems which are being modeled thus inducing likelihood
surfaces which may well vary wildly. The outcome of this is that the estimator itself will be poor having a large variance.
We shall return to this issue shortly.
The other multi-dimensional integral we require is that for the predictive likelihood again we can invoke a Monte Carlo

estimate of this integral such that

p̂(y∗|t∗,M1, y, t) =
1
S

S∑
s=1

p(y∗|t∗, θs) ≈
∫
p(y∗|t∗, θ)p(θ|y, t,M1)dθ (21)

where θs ∼ p(θ|y, t,M1). Now the problem we face is that samples from a density which has no analytic form are required
and this presents yet another obstacle in our adoption of the Bayesian inferential framework in this setting. We consider
this problem further in the following section.

6.1. Metropolis–Hastings sampler

Sampling from a target distribution p(θ|y) ∝ p(y|θ)p(θ) where the non-normalised form, i.e. the product of the
likelihood and prior, is only available in computable form is still feasible by simulating fromaMarkov chainwhose stationary
distribution is the desired target. There is a vast literature on Markov chain Monte Carlo (MCMC) methodology and here we
consider the foundational Metropolis-Hasting method [10] which employs local Markov transitions in sampling space (see
for example [11]). Assume we have a transition density q(θ∗|θ)which defines the probability of making the transition from
θ to θ∗. This can be something as simple as a Gaussian computed at θ which has a mean of θ∗ with some covariance C i.e.
q(θ∗|θ) = Nθ∗(θ, C). Given the current state of the Markov chain (parameter values) a transition can be proposed θ → θ∗

with probability q(θ∗|θ). So if the transition probability is indeed a multivariate Gaussian Nθ∗(θ, C) then it is clear that the
Markov chain will make local moves within the ellipse of equi-probability defined by the covariance matrix C and centered
at θ. To ensure that the Markov chain has the target density as its stationary distribution the proposed transitions will then
be accepted with a probability α(θ∗|θ)where this is defined as

min
{
1,
p(y|θ∗)p(θ∗)q(θ|θ∗)
p(y|θ)p(θ)q(θ∗|θ)

}
(22)

so proposing candidate transitions θ∗ from q(θ∗|θ) and accepting these with probability α(θ∗|θ) will provide dependent
samples θ1, θ2, θ3, . . . , θS which are distributed as p(θ|y).
This method is particularly appealing in that it provides a means of sampling from a density for which the normalised

form is unavailable as the transition acceptance probability depends only on the product of the likelihood, prior and proposal
densities. So these samples obtained from theMarkov Chain basedMetropolis routine can be used in providing aMonte Carlo
estimate of the predictive likelihood equation (21).
It would appear then that we have all the tools available to perform full Bayesian inference over this class of nonlinear

models. Although it is feasible to perform Monte Carlo averaging with samples drawn from the prior in estimating the
integrated likelihood (Eq. (20)) it is well known that this can be a rather poor estimator [12]. To illustrate this suppose the
linear models of the previous section were set with a prior density on the basis coefficients which was Gaussian centered
at zero with variance one. Furthermore if the true model had a set of basis coefficients, βi = ±3.5, it is clear that more
than 99.7% of values drawn from this prior will be smaller / larger than the true±3.5 and hence will generate values of the
likelihood function that are small and contribute little to the estimate. So a large number of values, S, from the prior will
need to be generated before the Monte Carlo estimate will start to converge and the variance of the finite sample estimate
takes on reasonable values. This form of estimator using samples from the prior is hugely inefficient and this is studied in a
detailed manner in [13].
In addition to the practical inefficiency of Monte Carlo estimates of the integrated likelihood based on samples from the

prior there is a further hurdle that has to be negotiated before we are ready to consider fully Bayesian inference of these
nonlinear ODE based models.
Consider the following simple model of a Circadian Oscillator as originally described in [14].

dx
dt
=

k1
36+ k2y

− k3,
dy
dt
= k4x− k5 (23)

where k1 = 72, k2 = 1, k3 = 2, k4 = 1 and k5 = 1, and the initial values are set to x(0) = 7 and y(0) = −10. The
data comprised of 120 data points, y, which were simulated using these settings, between t = 0 and t = 60 in discrete
steps of 0.5, t, to which independent Gaussian noise was added with variance σ = 0.5. The posterior was then calculated
conditionally over the parameters k3 and k4 and plotted from 0 to 5 on each axis.
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Fig. 5. The posterior p(k3, k4|y, t, k1 = 72, k2 = 1, k5 = 1, x(0) = 7, y(0) = −10, σ = 0.5). The right hand plot shows the path of twenty independent
Markov chains derived from the Metropolis method, it is clear that they do not mix or cover the whole parameter space.

What canbe observed is that the there is indeed a sharp peak in the posterior at the ’true’ values of k3 and k4 however there
are a series of strong ripples which form a number of ridges on the posterior surface. This has major practical implications
for the ability of theMarkov chain driving theMetropolis sampler to successfully explore the posterior surface fully. Imagine
that the current state of the chain is located at the peak of one of the ridges of the posterior. Any proposalwill result in amove
into a region of lower posterior density and so the acceptance probability will be very small making it highly unlikely that
the chain will make any further transitions away from the region on the ridge in finite time. This is illustrated in the contour
plot of Fig. 5 where Markov chains sampled using the Metropolis method easily get caught in these local modes, even when
engineering techniques, such as an adaptive step size, are employed. The plot shows the paths taken by 20 independent
Markov chains generated by a Metropolis sampler. Their starting points, indicated by a×, were generated randomly in the
parameter space from a prior distribution, and their end positions are denoted by a ◦. The localised movement of the chains
on the ridges is evident from the figure and this problem can be resolved by defining as the target distribution a product of
densities which form a path from the smooth prior to the ridge like posterior.

6.2. Product space sampling

Consider the target density p(θ|y,α) =
∏L
i=1 p(θ|y, αi) where each term in the product is defined as p(θ|y, αi) ∝

p(y|θ)αip(θ). Clearly for αi = 0 the prior is recovered, i.e., p(θ|y, αi = 0) = p(θ) and likewise when αi = 1 the posterior is
recovered i.e. i.e., p(θ|y, αi = 1) = p(θ|y). TheMarkov chain is now defined over the product density and hence proposals of
transitions between densities p(θ|y, αi) at different values of αi are valid in terms of the convergence of theMarkov chain to
the desired stationary distribution p(θ|y,α). Intuitively densities with low values of αi will be smoother 2 thus allowing freer
movement of the chain in parameter space, see Fig. 6. The transitions or exchanges between different densities suggests
that these freer moving samples can be propagated up this ladder of densities to the desired posterior so having the effect of
enablingmovement of the chain between the ridges of high density.More formal arguments are provided in [15,16] however
the use of this population of parallel Markov chains operating at different levels of smoothness between the prior and the
posterior provides a means of global sampling from the desired posterior density, Fig. 7.
If the eventual aim is to sample directly from the posterior then the intermediate distributions serve only one purpose,

and that is to provide auxiliary bridging distributions to the posterior of interest. However consider the form of the
intermediate densities p(θ|y, α) = z−1α p(y|θ)

αp(θ)where zα =
∫
p(y|θ)αp(θ)dθ some schoolboy calculus shows that

d
dα
log zα =

∫
p(θ|y, α) log p(y|θ)dθ ≡ Eθ|y,α {log p(y|θ)} (24)

and integrating with respect to α yields

log zα=1 = log p(y) =
∫ 1

0
Eθ|y,α {log p(y|θ)} dα. (25)

This expresses the logarithm of the integrated likelihood in terms of the expectations of the log-likelihood with respect
to each of the intermediate bridging distributions. Now it was previously highlighted that Monte Carlo estimates of the

2 Consider a standarised Gaussian density raised to the power of α i.e.N (0, 1)α ∝ N (0, α−1). Small values of α give a large variance around the mean
whilst larger values concentrate the Gaussian tightly around the mean.
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Fig. 6. Tempered posterior surfaces conditioned on two parameters of a 2-variable Goodwin oscillator model. The shapes of the power posteriors change
most rapidly between between t = 0 and t = 0.28, and the overall transition from smooth prior to spiky posterior allows chains to globally explore the
parameter space through exchanges between temperatures.

Fig. 7. Samples obtained from a chain at t = 0, which is effectively sampling from the prior. The free movement within the parameter space is clear to see.
The iso-contours of the posterior are also plotted in this case. Progress of samples drawn from a chain at temperature t = 0.5 are shown against the iso-
contours of the full posterior. The free movement across modes is most apparent and this is mainly due to the exchange proposals between temperatures.
Samples drawn from the posterior, when t = 1. There are great differences between this and the highly localised sticky exploration in Fig. 5. The Population
MCMC algorithm clearly has a much greater ability to move between modes in order to find the most likely one.

integrated likelihood employing samples from the prior will be particularly poor. Consider Eq. (25) which represents the
logarithm of the integrated likelihood, it is clear that expectations of the log-likelihoodwith respect to the bridging densities
from the prior to the posterior are integrated in obtaining this expression. So an estimator based on this representation will
employ samples drawn from the prior and all intermediate densities up to the posterior thus providing a potentially much
superior estimator as is indeed the case [17–19]. An approximation to this integral can be obtained by noting that it can be
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represented in terms of a discrete set of αi values and associated expectations by using the trapezoidal rule for numerical
integration

log p(y) =
1
2

L∑
i=1

∆i
[
Eθ|y,αi−1 {log p(y|θ)} + Eθ|y,αi {log p(y|θ)}

]
+
1
2

L∑
i=1

εi (26)

where∆i = αi − αi−1 and the discretisation error is εi = D(pi−1||pi)− D(pi||pi−1). Each D(pi||pi−1) is the Kullback-Liebler
divergence between the posteriors conditioned on αi and αi−1, defined as

D(pi||pi−1) = Eθ|y,αi

{
log

p(θ|y, αi)
p(θ|y, αi−1)

}
.

So as proposed in [18,19] the approximation for the integrated likelihood follows as

log p(y) ≈
1
2

L∑
i=1

∆i
[
Eθ|y,αi−1 {log p(y|θ)} + Eθ|y,αi {log p(y|θ)}

]
(27)

where the samples from each intermediate distribution can be used to obtain Monte Carlo estimates for each
Eθ|y,αi−1 {log p(y|θ)} appearing in the approximation above.
This also suggests a strategy for discretising the unit line in order to minimise the error which consists on varying the

partition widths ∆i to drive each D(pi−1||pi) → 0 and minimise the variance of the overall estimator for the integrated
likelihood. It is straightforward to obtain the minimum-variance partition as

∆i ∝
1

Eθ,∆i|y
{
log p(y|θ)2

} ≈ 2
Eθ|y,αi

{
log p(y|θ)2

}
+ Eθ|y,αi−1

{
log p(y|θ)2

} (28)

which can be used to define an adaptive scheme to estimate the width of the partitions. Starting with a uniform partitioning
∆i = L−1 the above can be used to update each∆i subject to

∑
i∆i = 1. This scheme clearlywill reduce the partitionwidths

if the approximate total variance across the partition is large and increase the width as the total variance drops.
We now have all the computational tools required to obtain estimates of the measures necessary to perform posterior

inference over parameters p(θk|D,Mk) and model structures, P(Mk|D), and the following section will illustrate this with
some examples of simple biochemical models described in terms of systems of non-linear ODE’s.

7. Illustrative experiment

The example will consider the two ODE models described in Section 5. Given that there are two candidate models the
first task is to define a set of prior distributions over the parameters.

7.1. Prior distributions

The prior densities which were used are as follows. For k1, V1, Km1, V2, Km2 and σ a Gamma prior with shape and scale
parameters set to one i.e. α = 1 and γ = 1, denoted as G(1, 1) which has a mean value of αγ = 1 and variance αγ 2 = 1.
This is a reasonable prior density to assume for these parameters as, (1) it has support on the positive part of the real line
and so satisfies the positivity constraints on the kinetic parameters and the noise variance, (2) it possesses a variance which
is sufficiently wide to cover the plausible range of values for the kinetic parameters so as to retain the same scaling as the
variables S,D, R and Rpp of the model. The use of G(1, 1) as a prior for the error variance is selected based on the empirical
variance of the observed data. The prior densities for the initial values S0,D0, R0 and Rpp0 were also defined using Gamma
distributions. Due to nomeasurements being available at t = 0 the trend of the data at t = 0was estimated and the variance
at this point was reasonably assumed similar to the empirical variance of the observations. As such S0, R0 ∼ G(5, 0.2)which
has mean of 1 and variance of 0.2 which is large compared to the empirical variance. Likewise D0, Rpp0 ∼ G(1, 0.1) having
mean 0.1 and variance 0.01 again reflecting the plausible values based on the trend of the data towards t = 0. It may be that
actual measured values for the parameters of interest are available in which case these may be used as a location parameter
and an associated spread can be defined depending on how reliable the measurements are considered.

7.2. Posterior inference

The parameter and initial values detailed in Fig. 8 were used in the system of equations to run the model in simulation
mode and the levels of Rpp were monitored at twenty time intervals. Each of the Rpp levels had a small amount of additive
Gaussian noise with σ = 0.02 to simulate measurement and observation error. A product space sampling3 method was
employed and the marginal posterior mean and variance obtained for each of the parameters are listed in the table of Fig. 8.
It is clear that the marginal posterior distributions have a main mode which are centered on the true parameter values.

3 A software tool to perform Bayesian inference over ODE models is available at http://www.dcs.gla.ac.uk/biobayes/.

http://www.dcs.gla.ac.uk/biobayes/
http://www.dcs.gla.ac.uk/biobayes/
http://www.dcs.gla.ac.uk/biobayes/
http://www.dcs.gla.ac.uk/biobayes/
http://www.dcs.gla.ac.uk/biobayes/
http://www.dcs.gla.ac.uk/biobayes/
http://www.dcs.gla.ac.uk/biobayes/
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Fig. 8. The left hand table shows the posteriormean and variance of themodel parameterswith the right hand diagramhighlighting the covariance structure
of the full parameter posterior distribution.

It is illuminating to study the full posterior density obtained by the sampling p(θ|y, t) where the set of parameters are
θ = (k1, V1, Km1, V2, Km2, S0,D0, R0, Rpp0, σ 2). If we consider theHinton diagram in Fig. 8 significant posterior correlations
between a number of themodel parameters can be observed. For example we can see that Km1 and V1 have a strong positive
correlation as does Km2 and V2. If we study the system of equations (15) definingM1 we see that these posterior correlated
parameters are employed in defining the chemical reactions using theMichaelis–Menten kinetic law. This dependency arises
due to the mathematical form of the reaction equation. The maximum rate at which the enzyme S catalyses the activation
reaction when the concentrations of substrate R are high is denoted as Vi and Kmi corresponds to the concentration of R that
allows enzyme S to generate Rpp at half their maximum rate. Both of these parameters occur in a rational form and so there
is a structural dependency in the effect they will have. Consider further the strong negative posterior correlation between
the initial values of the chemical species R0 and Rpp0. This is due to the fact that R and Rpp are involved in a cyclic process of
activation and deactivation and therefore can be converted into each other. The positive correlation between V1 and R0 can
be explained by the requirement to sustain a sufficient rate of production of Rpp. Clearly appropriate re-parameterisation
can eliminate such posterior dependencies and the information with the posterior can be employed in subsequent model
simplification studies.
As it is possible now to also obtain estimates of the integrated likelihoods for each model which can then be used to

rank and compare models (see [7]) given some observed data. For the two models considered we simulate data (levels of
Rpp) and then compute the integrated likelihoods of the data under each candidate model. Denoting y1 as data generated
frommodel 1 (the ‘true’ model) and likewise y2 as the data simulated frommodel 2 then we proceed to compute estimates
of the integrated likelihoods log p(y1|M1) and log p(y1|M2). Obtaining these measures and assuming that a priori neither
model is preferred i.e. π(M1) = π(M2) then we can obtain the posterior odds of model 1 over model 2 which in this
case is referred to as the Bayes Factor, log B12 = log p(y1|M1) − log p(y1|M2). This then provides a means of objectively
assessing the evidential support for onemodel over another. In this casewe find that log p(y1|M1) ≈ 861.0849±0.3699 and
log p(y1|M2) ≈ 771.7686± 0.0714 indicating very strong support for model 1, which of course was the ‘true’ model which
gave rise to the observations. Likewise employingdata generated frommodel 2weobtain log p(y2|M1) ≈ 706.8671±0.5425
and log p(y2|M2) ≈ 851.6974± 0.5015 indicating very strong support for the ‘correct’ model.

8. Conclusions

There is often a requirement to perform a statistical analysis of mechanistic models based on ordinary differential
equations, in particular characterising the residual uncertainty in estimates of parameters or unobserved components
and assessing the evidential support of competing model definitions. It is argued that the Bayesian inferential framework
provides a consistent approach to defining and propagating uncertainty within such mechanistic models. Examples based
on simple biochemical models have been provided to illustrate the power of this methodology in enabling reasoning over
models.
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