
CHAPTER 16

Logistic Regression

16.1 The Logistic Regression Model

16.2 Inference for Logistic Regression



16-2 CHAPTER 16 Logistic Regression

Introduction
The simple and multiple linear regression methods we studied in Chapters 10
and 11 are used to model the relationship between a quantitative response
variable and one or more explanatory variables. A key assumption for these
models is that the deviations from the model fit are normally distributed. In
this chapter we describe similar methods that are used when the response
variable has only two possible values.

Our response variable has only two values: success or failure, live or die,
acceptable or not. If we let the two values be 1 and 0, the mean is the propor-
tion of ones, p = P(success). With n independent observations, we have the
binomial setting (page 335). What is new here is that we have data on an ex-
planatory variable x. We study how p depends on x. For example, suppose we
are studying whether a patient lives, ( y = 1) or dies ( y = 0) after being ad-
mitted to a hospital. Here, p is the probability that a patient lives and possible
explanatory variables include (a) whether the patient is in good condition or
in poor condition, (b) the type of medical problem that the patient has, and
(c) the age of the patient. Note that the explanatory variables can be either
categorical or quantitative. Logistic regression1 is a statistical method for de-
scribing these kinds of relationships.

16.1 The Logistic Regression Model
Binomial distributions and odds
In Chapter 5 we studied binomial distributions and in Chapter 8 we learned
how to do statistical inference for the proportion p of successes in the bino-
mial setting. We start with a brief review of some of these ideas that we will
need in this chapter.

EXAMPLE 16 . 1 Example 8.1 (page 537) describes a survey of 17,096 students in U.S.
four-year colleges. The researchers were interested in estimating the

proportion of students who are frequent binge drinkers. A student who reports drink-
ing five or more drinks in a row three or more times in the past two weeks is called
a frequent binge drinker. In the notation of Chapter 5, p is the proportion of frequent
binge drinkers in the entire population of college students in U.S. four-year colleges.
The number of frequent binge drinkers in an SRS of size n has the binomial distri-
bution with parameters n and p. The sample size is n = 17,096 and the number of
frequent binge drinkers in the sample is 3314. The sample proportion is

p̂ = 3314
17,096

= 0.1938

Logistic regressions work with odds rather than proportions. The oddsodds
are simply the ratio of the proportions for the two possible outcomes. If p̂ is
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the proportion for one outcome, then 1 − p̂ is the proportion for the second
outcome:

ODDS = p̂
1 − p̂

A similar formula for the population odds is obtained by substituting p for p̂
in this expression.

EXAMPLE 16 . 2 For the binge-drinking data the proportion of frequent binge drinkers
in the sample is p̂ = 0.1938, so the proportion of students who are not

frequent binge drinkers is

1 − p̂ = 1 − 0.1938 = 0.8062

Therefore, the odds of a student being a frequent binge drinker are

ODDS = p̂
1 − p̂

= 0.1938
0.8062

= 0.24

When people speak about odds, they often round to integers or fractions.
Since 0.24 is approximately 1/4, we could say that the odds that a college stu-
dent is a frequent binge drinker are 1 to 4. In a similar way, we could describe
the odds that a college student is not a frequent binge drinker as 4 to 1.

In Example 8.9 (page 557) we compared the proportions of frequent binge
drinkers among men and women college students using a confidence interval.
There we found that the proportion for men was 0.227 (22.7%) and that the
proportion for women was 0.170 (17.0%). The difference is 0.057, and the 95%
confidence interval is (0.045, 0.069). We can summarize this result by saying,
“The proportion of frequent binge drinkers is 5.7% higher among men than
among women.”

Another way to analyze these data is to use logistic regression. The ex-
planatory variable is gender, a categorical variable. To use this in a regression
(logistic or otherwise), we need to use a numeric code. The usual way to do
this is with an indicator variable. For our problem we will use an indicatorindicator variable
of whether or not the student is a man:

x =
{

1 if the student is a man
0 if the student is a woman

The response variable is the proportion of frequent binge drinkers. For
use in a logistic regression, we perform two transformations on this variable.
First, we convert to odds. For men,

ODDS = p̂
1 − p̂

= 0.227
1 − 0.227

= 0.294
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Similarly, for women we have

ODDS = p̂
1 − p̂

= 0.170
1 − 0.170

= 0.205

Model for logistic regression
In simple linear regression we modeled the mean µ of the response variable y
as a linear function of the explanatory variable: µ = β0 + β1x. With logistic
regression we are interested in modeling the mean of the response variable p
in terms of an explanatory variable x. We could try to relate p and x through
the equation p = β0 + β1x. Unfortunately, this is not a good model. As long as
β1 �= 0, extreme values of x will give values of β0 + β1x that are inconsistent
with the fact that 0 ≤ p ≤ 1.

The logistic regression solution to this difficulty is to transform the odds
( p/(1 − p)) using the natural logarithm. We use the term log odds for thislog odds
transformation. We model the log odds as a linear function of the explanatory
variable:

log
(

p
1 − p

)
= β0 + β1x

Figure 16.1 graphs the relationship between p and x for some different val-
ues of β0 and β1. For logistic regression we use natural logarithms. There are
tables of natural logarithms, and many calculators have a built-in function
for this transformation. As we did with linear regression, we use y for the
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response variable. So for men,

y = log(ODDS) = log(0.294) = −1.23

and for women,

y = log(ODDS) = log(0.205) = −1.59

In these expressions we use y as the observed value of the response vari-
able, the log odds of being a frequent binge drinker. We are now ready to build
the logistic regression model.

LOGISTIC REGRESSION MODEL

The statistical model for logistic regression is

log
(

p
1 − p

)
= β0 + β1x

where p is a binomial proportion and x is the explanatory variable.
The parameters of the logistic model are β0 and β1.

EXAMPLE 16 . 3 For our binge-drinking example, there are n = 17,096 students in
the sample. The explanatory variable is gender, which we have coded

using an indicator variable with values x = 1 for men and x = 0 for women. The
response variable is also an indicator variable. Thus, the student is either a frequent
binge drinker or the student is not a frequent binge drinker. Think of the process of
randomly selecting a student and recording the values of x and whether or not the
student is a frequent binge drinker. The model says that the probability ( p) that this
student is a frequent binge drinker depends upon the student’s gender (x = 1 or x = 0).
So there are two possible values for p, say, pmen and pwomen.

Logistic regression with an indicator explanatory variable is a very special
case. It is important because many multiple logistic regression analyses focus
on one or more such variables as the primary explanatory variables of interest.
For now, we use this special case to understand a little more about the model.

The logistic regression model specifies the relationship between p and x.
Since there are only two values for x, we write both equations. For men,

log
(

pmen

1 − pmen

)
= β0 + β1

and for women,

log
(

pwomen

1 − pwomen

)
= β0

Note that there is a β1 term in the equation for men because x = 1, but it is
missing in the equation for women because x = 0.
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Fitting and interpreting the logistic regression model
In general, the calculations needed to find estimates b0 and b1 for the parame-
ters β0 and β1 are complex and require the use of software. When the explana-
tory variable has only two possible values, however, we can easily find the
estimates. This simple framework also provides a setting where we can learn
what the logistic regression parameters mean.

EXAMPLE 16 . 4 In the binge-drinking example, we found the log odds for men,

y = log
(

p̂men

1 − p̂men

)
= −1.23

and for women,

y = log
(

p̂women

1 − p̂women

)
= −1.59

The logistic regression model for men is

log
(

pmen

1 − pmen

)
= β0 + β1

and for women it is

log
(

pwomen

1 − pwomen

)
= β0

To find the estimates of b0 and b1, we match the male and female model equations with
the corresponding data equations. Thus, we see that the estimate of the intercept b0 is
simply the log(ODDS) for the women:

b0 = −1.59

and the slope is the difference between the log(ODDS) for the men and the log(ODDS)

for the women:

b1 = −1.23 − (−1.59) = 0.36

The fitted logistic regression model is

log(ODDS) = −1.59 + 0.36x

The slope in this logistic regression model is the difference between the
log(ODDS) for men and the log(ODDS) for women. Most people are not com-
fortable thinking in the log(ODDS) scale, so interpretation of the results in
terms of the regression slope is difficult. Usually, we apply a transformation
to help us. With a little algebra, it can be shown that

ODDSmen

ODDSwomen
= e0.36 = 1.43

The transformation e0.36 undoes the logarithm and transforms the logistic re-
gression slope into an odds ratio, in this case, the ratio of the odds that aodds ratio



16.2 Inference for Logistic Regression 16-7

man is a frequent binge drinker to the odds that a woman is a frequent binge
drinker. In other words, we can multiply the odds for women by the odds ratio
to obtain the odds for men:

ODDSmen = 1.43 × ODDSwomen

In this case, the odds for men are 1.43 times the odds for women.
Notice that we have chosen the coding for the indicator variable so that the

regression slope is positive. This will give an odds ratio that is greater than 1.
Had we coded women as 1 and men as 0, the signs of the parameters would
be reversed, the fitted equation would be log(ODDS) = 1.59 − 0.36x, and the
odds ratio would be e−0.36 = 0.70. The odds for women are 70% of the odds
for men.

Logistic regression with an explanatory variable having two values is a
very important special case. Here is an example where the explanatory vari-
able is quantitative.

EXAMPLE 16 . 5 The CHEESE data set described in the Data Appendix includes a
response variable called “Taste” that is a measure of the quality of

the cheese in the opinions of several tasters. For this example, we will classify the
cheese as acceptable (tasteok = 1) if Taste ≥ 37 and unacceptable (tasteok = 0) if
Taste < 37. This is our response variable. The data set contains three explanatory
variables: “Acetic,” “H2S,” and “Lactic.” Let’s use Acetic as the explanatory variable.
The model is

log
(

p
1 − p

)
= β0 + β1x

where p is the probability that the cheese is acceptable and x is the value of Acetic. The
model for estimated log odds fitted by software is

log(ODDS) = b0 + b1x = −13.71 + 2.25x

The odds ratio is eb1 = 9.48. This means that if we increase the acetic acid content
x by one unit, we increase the odds that the cheese will be acceptable by about 9.5
times.

16.2 Inference for Logistic Regression
Statistical inference for logistic regression is very similar to statistical infer-
ence for simple linear regression. We calculate estimates of the model param-
eters and standard errors for these estimates. Confidence intervals are formed
in the usual way, but we use standard normal z∗-values rather than critical val-
ues from the t distributions. The ratio of the estimate to the standard error is
the basis for hypothesis tests. Often the test statistics are given as the squares
of these ratios, and in this case the P-values are obtained from the chi-square
distributions with 1 degree of freedom.
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Confidence Intervals and Significance Tests

CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS
FOR LOGISTIC REGRESSION PARAMETERS

A level C confidence interval for the slope β1 is

b1 ± z∗SEb1

The ratio of the odds for a value of the explanatory variable equal to
x + 1 to the odds for a value of the explanatory variable equal to x is
the odds ratio.

A level C confidence interval for the odds ratio eβ1 is obtained by
transforming the confidence interval for the slope

(eb1−z∗SEb1 , eb1+z∗SEb1 )

In these expressions z∗ is the value for the standard normal density
curve with area C between −z∗ and z∗.

To test the hypothesis H0: β1 = 0, compute the test statistic

z = b1

SEb1

The P-value for the significance test of H0 against Ha: β1 �= 0 is com-
puted using the fact that when the null hypothesis is true, z has
approximately a standard normal distribution.

The statistic z is sometimes called a Wald statistic. Output from some sta-Wald statistic
tistical software reports the significance test result in terms of the square of
the z statistic

X2 = x2

This statistic is called a chi-square statistic. When the null hypothesis ischi-square statistic
true, it has a distribution that is approximately a χ2 distribution with 1 degree
of freedom, and the P-value is calculated as P(χ2 ≥ X2). Because the square
of a standard normal random variable has a χ2 distribution with 1 degree of
freedom, the z statistic and the chi-square statistic give the same results
for statistical inference.

We have expressed the hypothesis-testing framework in terms of the slope
β1 because this form closely resembles what we studied in simple linear re-
gression. In many applications, however, the results are expressed in terms of
the odds ratio. A slope of 0 is the same as an odds ratio of 1, so we often ex-
press the null hypothesis of interest as “the odds ratio is 1.” This means that
the two odds are equal and the explanatory variable is not useful for predict-
ing the odds.
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SPSS

Variables in the Equation

Step 1 GENDERM
Constant

B
0.362

–1.587

S.E.
0.039
0.027

Wald
86.611

3520.069

df
1
1

Sig.
0.000
0.000

Exp(B)
1.435
0.205

a Variable(s) entered on step 1: GENDERM

SAS

The LOGISTIC Procedure

Parameter

Intercept
genderm

Estimate

–1.5868
0.3617

Standard
Error

0.0267
0.0388

Wald
Chi-Square

3520.3120
86.6811

DF

1
1

Pr > ChiSq

< 0.001
< 0.001

Effect

genderm

Analysis of Maximum Likelihood Estimates

Point
Estimate

1.436

95% Wald
Confidence Limits

1.330 1.549

Odds Ratio Estimates

FIGURE 16.2 Logistic regression output from SPSS and SAS for the binge-drinking
data, for Example 16.6.

EXAMPLE 16 . 6 Figure 16.2 gives the output from SPSS and SAS for the binge-drinking
example. The parameter estimates are given as b0 = −1.5869 and

b1 = 0.3616, the same as we calculated directly in Example 16.4, but with more sig-
nificant digits. The standard errors are 0.0267 and 0.0388. A 95% confidence interval
for the slope is

b1 ± z∗SEb1 = 0.3616 ± (1.96)(0.0388)

= 0.3616 ± 0.0760

We are 95% confident that the slope is between 0.2856 and 0.4376. The output provides
the odds ratio 1.436 but does not give the confidence interval. This is easy to compute
from the interval for the slope:

(eb1−z∗SEb1 , eb1+z∗SEb1 ) = (e0.2855, e0.4376)

= (1.33, 1.55)

For this problem we would report, “College men are more likely to be frequent binge
drinkers than college women (odds ratio = 1.44, 95% CI = 1.33 to 1.55).”

In applications such as these, it is standard to use 95% for the confidence
coefficient. With this convention, the confidence interval gives us the result of
testing the null hypothesis that the odds ratio is 1 for a significance level of
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0.05. If the confidence interval does not include 1, we reject H0 and conclude
that the odds for the two groups are different; if the interval does include 1,
the data do not provide enough evidence to distinguish the groups in this way.

The following example is typical of many applications of logistic regres-
sion. Here there is a designed experiment with five different values for the
explanatory variable.

EXAMPLE 16 . 7 An experiment was designed to examine how well the insecticide ro-
tenone kills an aphid, called Macrosiphoniella sanborni, that feeds on

the chrysanthemum plant.2 The explanatory variable is the concentration (in log of
milligrams per liter) of the insecticide. At each concentration, approximately 50 insects
were exposed. Each insect was either killed or not killed. We summarize the data using
the number killed. The response variable for logistic regression is the log odds of the
proportion killed. Here are the data:

Concentration (log) Number of insects Number killed

0.96 50 6
1.33 48 16
1.63 46 24
2.04 49 42
2.32 50 44
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FIGURE 16.3 Plot of log odds of percent killed versus log concentration for the insecticide
data, for Example 16.7.



16.2 Inference for Logistic Regression 16-11

Pe
rc

en
t k

ill
ed

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Log concentration

2.4

100

90

80

70

60

50

40

30

20

10

0

FIGURE 16.4 Plot of the percent killed versus log concentration with the logistic fit for the
insecticide data, for Example 16.7.

If we transform the response variable (by taking log odds) and use least squares, we
get the fit illustrated in Figure 16.3. The logistic regression fit is given in Figure 16.4. It
is a transformed version of Figure 16.3 with the fit calculated using the logistic model.

One of the major themes of this text is that we should present the results of
a statistical analysis with a graph. For the insecticide example we have done
this with Figure 16.4 and the results appear to be convincing. But suppose that
rotenone has no ability to kill Macrosiphoniella sanborni. What is the chance
that we would observe experimental results at least as convincing as what we
observed if this supposition were true? The answer is the P-value for the test
of the null hypothesis that the logistic regression slope is zero. If this P-value
is not small, our graph may be misleading. Statistical inference provides what
we need.

EXAMPLE 16 . 8 Figure 16.5 gives the output from SPSS, SAS, and Minitab logistic re-
gression analysis of the insecticide data. The model is

log
(

p
1 − p

)
= β0 + β1x

where the values of the explanatory variable x are 0.96, 1.33, 1.63, 2.04, 2.32. From the
output we see that the fitted model is

log(ODDS) = b0 + b1x = −4.89 + 3.10x
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SPSS

Variables in the Equation

LCONC
Constant

B

3.109
–4.892

S.E.

0.388
0.643

Wald

64.233
57.961

df

1
1

Sig.

0.000
0.000

Exp(B)

22.394
0.008

95.0% C.I. for EXP(B)
Upper

47.896
Lower

10.470

SAS

The LOGISTIC Procedure

Parameter

Intercept
Iconc

Estimate

–4.8923
3.1088

Standard
Error

0.6426
0.3879

Wald
Chi-Square

57.9606
64.2332

DF

1
1

Pr > ChiSq

< 0.001
< 0.001

Effect

Iconc

Analysis of Maximum Likelihood Estimates

Point
Estimate

22.394

95% Wald
Confidence Limits

10.470 47.896

Odds Ratio Estimates

Minitab

Coef
–4.8923
3.1088

Z
–7.61
8.01

Predictor
Constant
1conc

Lower

10.47

Upper

47.90

Logistic Regression Table

Odds
Ratio

22.39

P
0.000
0.000

StDev
0.6426
0.3879

95% CI

FIGURE 16.5 Logistic regression output from SPSS, SAS, and Minitab for the insecticide
data, for Example 16.8.

This is the fit that we plotted in Figure 16.4. The null hypothesis that β1 = 0 is clearly
rejected (X2 = 64.07, P < 0.001). We calculate a 95% confidence interval for β1 using
the estimate b1 = 3.1035 and its standard error SEb1 = 0.3877 given in the output:

b1 ± z∗SEb1 = 3.1035 ± (1.96)(0.3877)

= 3.1035 ± 0.7599

We are 95% confident that the true value of the slope is between 2.34 and 3.86.
The odds ratio is given on the output as 22.277. An increase of one unit in the log

concentration of insecticide (x) is associated with a 22-fold increase in the odds that an
insect will be killed. The confidence interval for the odds is obtained from the interval
for the slope:

(eb1+z∗SEb1 , eb1−z∗SEb1 ) = (e2.34361, e3.86339)

= (10.42, 47.63)
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Note again that the test of the null hypothesis that the slope is 0 is the same as the
test of the null hypothesis that the odds are 1. If we were reporting the results in terms
of the odds, we could say, “The odds of killing an insect increase by a factor of 22.3
for each unit increase in the log concentration of insecticide (X2 = 64.07, P < 0.001;
95% CI = 10.4 to 47.6).”

In Example 16.5 we studied the problem of predicting whether or not the
taste of cheese was acceptable using Acetic as the explanatory variable. We
now revisit this example and show how statistical inference is an important
part of the conclusion.

EXAMPLE 16 . 9 Figure 16.6 gives the output from Minitab for a logistic regression
analysis using Acetic as the explanatory variable. The fitted model is

log(ODDS) = b0 + b1x = −13.71 + 2.25x

This agrees up to rounding with the result reported in Example 16.5. From the out-
put we see that because P = 0.0285, we can reject the null hypothesis that β1 = 0. The
value of the test statistic is X2 = 4.79 with 1 degree of freedom. We use the estimate
b1 = 2.2490 and its standard error SEb1 = 1.0271 to compute the 95% confidence in-
terval for β1:

b1 ± z∗SEb1 = 2.2490 ± (1.96)(1.0271)

= 2.2490 ± 2.0131

Our estimate of the slope is 2.25 and we are 95% confident that the true value is be-
tween 0.24 and 4.26. For the odds ratio, the estimate on the output is 9.48. The 95%
confidence interval is

(eb1+z∗SEb1 , eb1−z∗SEb1 ) = (e0.23588, e4.26212)

= (1.27, 70.96)

We estimate that increasing the acetic acid content of the cheese by one
unit will increase the odds that the cheese will be acceptable by about 9 times.
The data, however, do not give us a very accurate estimate. The odds ratio
could be as small as a little more than 1 or as large as 71 with 95% confi-
dence. We have evidence to conclude that cheeses with higher concentrations
of acetic acid are more likely to be acceptable, but establishing the true rela-
tionship accurately would require more data.

Coef
–13.705
2.249

Z
–2.31
2.19

Predictor
Constant
acetic

Lower

1.27

Upper

70.96

Logistic Regression Table

Odds
Ratio

9.48

P
0.21
0.029

StDev
5.932
1.027

95% CI

FIGURE 16.6 Logistic regression output from Minitab for the cheese data with Acetic as
the explanatory variable, for Example 16.9.
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Variables in the Equation

ACETIC
H2S
LACTIC
Constant

B

0.584
0.685
3.468

–14.260

S.E.

1.544
0.404
2.650
8.287

Wald

0.143
2.873
1.713
2.961

df

1
1
1
1

Sig.

0.705
0.090
0.191
0.085

Exp(B)

1.794
1.983

32.084
0.000

95.0% C.I. for EXP(B)
Upper

37.001
4.379

5776.637

Lower
0.087
0.898
0.178

Sig.
0.001

df
3

Chi-square
16.334Model

Omnibus Tests of Model Coefficients

SAS

Parameter

Intercept
acetic
h2s
lactic

Estimate

–14.2604
0.5845
0.6848
3.4684

Standard
Error

8.2869
1.5442
0.4040
2.6497

Wald
Chi-Square

2.9613
0.1433
2.8730
1.7135

DF

1
1
1
1

Pr > ChiSq

0.0853
0.7051
0.0901
0.1905

Effect

acetic
h2s
lactic

Analysis of Maximum Likelihood Estimates

Point
Estimate

1.794
1.983

32.086

95% Wald
Confidence Limits

10.087
0.898
0.178

37.004
4.379

>999.999

Odds Ratio Estimates

Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 16.3344 3 0.0010
 

Minitab

    Coef
–14.260
0.584

  0.6849
3.468

Z
–1.72
0.38
1.69
1.31

Predictor
Constant
acetic
h2s
lactic

Lower

0.09
0.90
0.18

Upper

37.01
4.38

5777.85

Logistic Regression Table

Odds
Ratio

1.79
1.98
32.09

P
0.085
0.705
0.909
0.191

  StDev
8.287
1.544
0.4040
2.650

Log-Likelihood = –9.230
Test that all slopes are zero: G = 16.334, DF = 3, P-Value = 0.001

95%   CI

FIGURE 16.7 Logistic regression output from SPSS, SAS, and Minitab for the cheese data
with Acetic, H2S, and Lactic as the explanatory variables, for Example 16.10.
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Multiple logistic regression
The cheese example that we just considered naturally leads us to the next
topic. The data set includes three variables: Acetic, H2S, and Lactic. We ex-
amined the model where Acetic was used to predict the odds that the cheese
was acceptable. Do the other explanatory variables contain additional infor-
mation that will give us a better prediction? We use multiple logistic regres-multiple logistic

regression sion to answer this question. Generating the computer output is easy, just as it
was when we generalized simple linear regression with one explanatory vari-
able to multiple linear regression with more than one explanatory variable in
Chapter 11. The statistical concepts are similar, although the computations
are more complex. Here is the example.

EXAMPLE 16 . 10 As in Example 16.9, we predict the odds that the cheese is acceptable.
The explanatory variables are Acetic, H2S, and Lactic. Figure 16.7

gives the outputs from SPSS, SAS, and Minitab for this analysis. The fitted model is

log(ODDS) = b0 + b1 Acetic + b2 H2S + b3 Lactic

= −14.26 + 0.58 Acetic + 0.68 H2S + 3.47 Lactic

When analyzing data using multiple regression, we first examine the hypothesis that
all of the regression coefficients for the explanatory variables are zero. We do the same
for logistic regression. The hypothesis

H0: β1 = β2 = β3 = 0

is tested by a chi-square statistic with 3 degrees of freedom. For Minitab, this is given in
the last line of the output and the statistic is called “G.” The value is G = 16.33 and the
P-value is 0.001. We reject H0 and conclude that one or more of the explanatory vari-
ables can be used to predict the odds that the cheese is acceptable. We now examine
the coefficients for each variable and the tests that each of these is 0. The P-values are
0.71, 0.09, and 0.19. None of the null hypotheses, H0: β1 = 0, H0: β2 = 0, and H0: β3 = 0,
can be rejected.

Our initial multiple logistic regression analysis told us that the explanatory
variables contain information that is useful for predicting whether or not the
cheese is acceptable. Because the explanatory variables are correlated, how-
ever, we cannot clearly distinguish which variables or combinations of vari-
ables are important. Further analysis of these data using subsets of the three
explanatory variables is needed to clarify the situation. We leave this work for
the exercises.



16-16 CHAPTER 16 Logistic Regression

CHAPTER 16 Summary
If p̂ is the sample proportion, then the odds are p̂/(1 − p̂), the ratio of the pro-
portion of times the event happens to the proportion of times the event does
not happen.

The logistic regression model relates the log of the odds to the explanatory
variable:

log
(

pi

1 − pi

)
= β0 + β1xi

where the response variables for i = 1, 2, . . . , n are independent binomial ran-
dom variables with parameters 1 and pi; that is, they are independent with
distributions B(1, pi). The explanatory variable is x.

The parameters of the logistic model are β0 and β1.

The odds ratio is eβ1 , where β1 is the slope in the logistic regression model.

A level C confidence interval for the intercept β0 is

b0 ± z∗SEb0

A level C confidence interval for the slope β1 is

b1 ± z∗SEb1

A level C confidence interval for the odds ratio eβ1 is obtained by trans-
forming the confidence interval for the slope

(eb1−z∗SEb1 , eb1+z∗SEb1 )

In these expressions z∗ is the value for the standard normal density curve with
area C between −z∗ and z∗.

To test the hypothesis H0: β1 = 0, compute the test statistic

z = b1

SEb1

and use the fact that z has a distribution that is approximately the standard
normal when the null hypothesis is true. This statistic is sometimes called the
Wald statistic. An alternative equivalent procedure is to report the square
of z,

X2 = z2

This statistic has a distribution that is approximately a χ2 distribution with
1 degree of freedom, and the P-value is calculated as P(χ2 ≥ X2). This is the
same as testing the null hypothesis that the odds ratio is 1.

In multiple logistic regression the response variable has two possible values,
as in logistic regression, but there can be several explanatory variables.

CHAPTER 16 Exercises
16.1 For each of the following, explain what is wrong and why.

(a) In logistic regression with one explanatory variable we can use a chi-
square statistic to test the null hypothesis H0: b1 = 0 versus a two-sided
alternative.
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(b) For a logistic regression we assume that the error term in our model has
a normal distribution.

(c) For a multiple logistic regression with 5 explanatory variables, the null hy-
pothesis that the regression coefficients of all of the explanatory variables
are zero is tested with an F test.

16.2 In Example 9.12 (page 591) we studied data on the success of 170 franchise
firms and whether or not the owner of a franchise had an exclusive territory.
Here are the data:

Observed numbers of firms

Exclusive territory

Success Yes No Total

Yes 108 15 123
No 34 13 47

Total 142 28 170

(a) What proportion of the exclusive-territory firms are successful?

(b) Find the proportion for the firms that do not have exclusive territories.

(c) Convert the proportion you found in part (a) to odds. Do the same for the
proportion you found in part (b).

(d) Find the log of each of the odds that you found in part (c).

16.3 Following complaints about the working conditions in some apparel facto-
ries both in the United States and abroad, a joint government and industry
commission recommended in 1998 that companies that monitor and enforce
proper standards be allowed to display a “No Sweat” label on their products.
Does the presence of these labels influence consumer behavior?

A survey of U.S. residents aged 18 or older asked a series of questions
about how likely they would be to purchase a garment under various condi-
tions. For some conditions, it was stated that the garment had a “No Sweat”
label; for others, there was no mention of such a label. On the basis of the
responses, each person was classified as a “label user” or a “label nonuser.”3

Suppose we want to examine the data for a possible gender effect. Here are
the data for comparing women and men:

Gender n Number of label users

Women 296 63
Men 251 27

(a) For each gender find the proportion of label users.

(b) Convert each of the proportions that you found in part (a) to odds.

(c) Find the log of each of the odds that you found in part (b).
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16.4 Refer to Exercise 16.2. Use x = 1 for the exclusive territories and x = 0 for the
other territories.

(a) Find the estimates b0 and b1.

(b) Give the fitted logistic regression model.

(c) What is the odds ratio for exclusive territory versus no exclusive territory?

16.5 Refer to Exercise 16.3. Use x = 1 for women and x = 0 for men.

(a) Find the estimates b0 and b1.

(b) Give the fitted logistic regression model.

(c) What is the odds ratio for women versus men?

16.6 If we apply the exponential function to the fitted model in Example 16.9, we
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get

ODDS = e−13.71+2.25x = e−13.71 × e2.25x

Show that for any value of the quantitative explanatory variable x, the odds
ratio for increasing x by 1,

ODDSx+1

ODDSx

is e2.25 = 9.49. This justifies the interpretation given after Example 16.9.

16.7 Refer to Example 16.8. Suppose that you wanted to report a 99% confidence
interval for β1. Show how you would use the information provided in the out-
puts shown in Figure 16.5 to compute this interval.

16.8 Refer to Example 16.8 and the outputs in Figure 16.5. Using the estimate b1

and its standard error, find the 95% confidence interval for the odds ratio and
verify that this agrees with the interval given by the software.

16.9 The Minitab output in Figure 16.5 does not give the value of X2. The column
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labeled “Z” provides similar information.

(a) Find the value under the heading “Z” for the predictor lconc. Verify that Z
is simply the estimated coefficient divided by its standard error. This is a
z statistic that has approximately the standard normal distribution if the
null hypothesis (slope 0) is true.

(b) Show that the square of z is X2. The two-sided P-value for z is the same as
P for X2.

(c) Draw sketches of the standard normal and the chi-square distribution
with 1 degree of freedom. (Hint: You can use the information in Table F
to sketch the chi-square distribution.) Indicate the value of the z and the
X2 statistics on these sketches and use shading to illustrate the P-value.

16.10 Exercise 9.20 (page 617) presents some results of a study about how advertis-
ers use sexual imagery to appeal to young people. The clothing worn by the
model in each of 1509 ads was classified as “not sexual” or “sexual” based on
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a standardized criterion. A logistic regression was used to describe the prob-
ability that the clothing in the ad was “not sexual” as a function of several ex-
planatory variables. Here are some of the reported results:

Explanatory variable b Wald (z) test

Reader age 0.50 13.64
Model sex 1.31 72.15
Men’s magazines −0.05 0.06
Women’s magazines 0.45 6.44
Constant −2.32 135.92

Reader age is coded as 0 for young adult and 1 for mature adult. Therefore, the
coefficient of 0.50 for this explanatory variable suggests that the probability
that the model clothing is not sexual is higher when the target reader age is
mature adult. In other words, the model clothing is more likely to be sexual
when the target reader age is young adult. Model sex is coded as 0 for female
and 1 for male. The explanatory variable men’s magazines is 1 if the intended
readership is men and 0 for women’s magazines and magazines intended for
both men and women. Women’s magazines is coded similarly.

(a) State the null and alternative hypotheses for each of the explanatory
variables.

(b) Perform the significance tests associated with the Wald statistics.

(c) Interpret the sign of each of the statistically significant coefficients in
terms of the probability that the model clothing is sexual.

(d) Write an equation for the fitted logistic regression model.

16.11 Refer to the previous exercise. The researchers also reported odds ratios
with 95% confidence intervals for this logistic regression model. Here is a
summary:

95% confidence limits

Explanatory variable Odds ratio Lower Upper

Reader age 1.65 1.27 2.16
Model sex 3.70 2.74 5.01
Men’s magazines 0.96 0.67 1.37
Women’s magazines 1.57 1.11 2.23

(a) Explain the relationship between the confidence intervals reported here
and the results of the Wald z significance tests that you found in the
previous exercise.

(b) Interpret the results in terms of the odds ratios.

(c) Write a short summary explaining the results. Include comments re-
garding the usefulness of the fitted coefficients versus the odds ratios in
making a summary.
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16.12 A poll of 811 adults aged 18 or older asked about purchases that they intended
to make for the upcoming holiday season.4 One of the questions asked what
kind of gift they intended to buy for the person on whom they intended to
spend the most. Clothing was the first choice of 487 people.

(a) What proportion of adults said that clothing was their first choice?

(b) What are the odds that an adult will say that clothing is his or her first
choice?

(c) What proportion of adults said that something other than clothing was
their first choice?

(d) What are the odds that an adult will say that something other than
clothing is his or her first choice?

(e) How are your answers to parts (a) and (d) related?

16.13 Different kinds of companies compensate their key employees in different
ways. Established companies may pay higher salaries, while new companies
may offer stock options that will be valuable if the company succeeds. Do
high-tech companies tend to offer stock options more often than other com-
panies? One study looked at a random sample of 200 companies. Of these,
91 were listed in the Directory of Public High Technology Corporations, and
109 were not listed. Treat these two groups as SRSs of high-tech and non-
high-tech companies. Seventy-three of the high-tech companies and 75 of the
non-high-tech companies offered incentive stock options to key employees.5

(a) What proportion of the high-tech companies offers stock options to their
key employees? What are the odds?

(b) What proportion of the non-high-tech companies offers stock options to
their key employees? What are the odds?

(c) Find the odds ratio using the odds for the high-tech companies in the
numerator. Describe the result in a few sentences.

16.14 Refer to the previous exercise.

(a) Find the log odds for the high-tech firms. Do the same for the non-high-
tech firms.

(b) Define an explanatory variable x to have the value 1 for high-tech firms
and 0 for non-high-tech firms. For the logistic model, we set the log odds
equal to β0 + β1x. Find the estimates b0 and b1 for the parameters β0

and β1.

(c) Show that the odds ratio is equal to eb1 .

16.15 Refer to Exercises 16.13 and 16.14. Software gives 0.3347 for the standard
error of b1.

(a) Find the 95% confidence interval for β1.

(b) Transform your interval in (a) to a 95% confidence interval for the odds
ratio.

(c) What do you conclude?
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16.16 Refer to Exercises 16.13 to 16.15. Repeat the calculations assuming that you
have twice as many observations with the same proportions. In other words,
assume that there are 182 high-tech firms and 218 non-high-tech firms. The
numbers of firms offering stock options are 146 for the high-tech group and
150 for the non-high-tech group. The standard error of b1 for this scenario
is 0.2366. Summarize your results, paying particular attention to what re-
mains the same and what is different from what you found in Exercises 16.13
to 16.15.

16.17 There is much evidence that high blood pressure is associated with increased
risk of death from cardiovascular disease. A major study of this association
examined 3338 men with high blood pressure and 2676 men with low blood
pressure. During the period of the study, 21 men in the low-blood-pressure
group and 55 in the high-blood-pressure group died from cardiovascular
disease.

(a) Find the proportion of men who died from cardiovascular disease in the
high-blood-pressure group. Then calculate the odds.

(b) Do the same for the low-blood-pressure group.

(c) Now calculate the odds ratio with the odds for the high-blood-pressure
group in the numerator. Describe the result in words.

16.18 To what extent do syntax textbooks, which analyze the structure of sentences,
illustrate gender bias? A study of this question sampled sentences from 10
texts.6 One part of the study examined the use of the words “girl,” “boy,”
“man,” and “woman.” We will call the first two words juvenile and the last
two adult. Here are data from one of the texts:

Gender n X( juvenile)

Female 60 48
Male 132 52

(a) Find the proportion of the female references that are juvenile. Then trans-
form this proportion to odds.

(b) Do the same for the male references.

(c) What is the odds ratio for comparing the female references to the male
references? (Put the female odds in the numerator.)

16.19 Refer to the study of cardiovascular disease and blood pressure in Exercise
16.17. Computer output for a logistic regression analysis of these data gives
the estimated slope b1 = 0.7505 with standard error SEb1 = 0.2578.

(a) Give a 95% confidence interval for the slope.

(b) Calculate the X2 statistic for testing the null hypothesis that the slope is
zero and use Table F to find an approximate P-value.

(c) Write a short summary of the results and conclusions.
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16.20 The data from the study of gender bias in syntax textbooks given in Ex-
ercise 16.18 are analyzed using logistic regression. The estimated slope is
b1 = 1.8171 and its standard error is SEb1 = 0.3686.

(a) Give a 95% confidence interval for the slope.

(b) Calculate the X2 statistic for testing the null hypothesis that the slope is
zero and use Table F to find an approximate P-value.

(c) Write a short summary of the results and conclusions.

16.21 The results describing the relationship between blood pressure and cardiovas-
cular disease are given in terms of the change in log odds in Exercise 16.19.

(a) Transform the slope to the odds and the 95% confidence interval for the
slope to a 95% confidence interval for the odds.

(b) Write a conclusion using the odds to describe the results.

16.22 The gender bias in syntax textbooks is described in the log odds scale in Exer-
cise 16.20.

(a) Transform the slope to the odds and the 95% confidence interval for the
slope to a 95% confidence interval for the odds.

(b) Write a conclusion using the odds to describe the results.

16.23 To be competitive in global markets, many U.S. corporations are undertaking
major reorganizations. Often these involve “downsizing” or a “reduction in
force” (RIF), where substantial numbers of employees are terminated. Federal
and various state laws require that employees be treated equally regardless of
their age. In particular, employees over the age of 40 years are in a “protected”
class, and many allegations of discrimination focus on comparing employees
over 40 with their younger coworkers. Here are the data for a recent RIF:

Over 40

Terminated No Yes

Yes 7 41
No 504 765

(a) Write the logistic regression model for this problem using the log odds
of a RIF as the response variable and an indicator for over and under 40
years of age as the explanatory variable.

(b) Explain the assumption concerning binomial distributions in terms of the
variables in this exercise. To what extent do you think that these assump-
tions are reasonable?

(c) Software gives the estimated slope b1 = 1.3504 and its standard error
SEb1 = 0.4130. Transform the results to the odds scale. Summarize the
results and write a short conclusion.

(d) If additional explanatory variables were available, for example, a perfor-
mance evaluation, how would you use this information to study the RIF?
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16.24 The Ping Company makes custom-built golf clubs and competes in the $4 bil-
lion golf equipment industry. To improve its business processes, Ping decided
to seek ISO 9001 certification.7 As part of this process, a study of the time it
took to repair golf clubs sent to the company by mail determined that 16% of
orders were sent back to the customers in 5 days or less. Ping examined the
processing of repair orders and made changes. Following the changes, 90%
of orders were completed within 5 days. Assume that each of the estimated
percents is based on a random sample of 200 orders. Use logistic regression
to examine how the odds that an order will be filled in 5 days or less has im-
proved. Write a short report summarizing your results.

16.25 To devise effective marketing strategies it is helpful to know the character-
istics of your customers. A study compared demographic characteristics of
people who use the Internet for travel arrangements and of people who do
not.8 Of 1132 Internet users, 643 had completed college. Among the 852
nonusers, 349 had completed college. Model the log odds of using the Internet
to make travel arrangements with an indicator variable for having completed
college as the explanatory variable. Summarize your findings.

16.26 The study mentioned in the previous exercise also asked about income. Among
Internet users, 493 reported income of less than $50,000 and 378 reported in-
come of $50,000 or more. (Not everyone answered the income question.) The
corresponding numbers for nonusers were 477 and 200. Repeat the analysis
using an indicator variable for income of $50,000 or more as the explanatory
variable. What do you conclude?

16.27 A study of alcohol use and deaths due to bicycle accidents collected data on a
large number of fatal accidents.9 For each of these, the individual who died
was classified according to whether or not there was a positive test for alcohol
and by gender. Here are the data:

Gender n X(tested positive)

Female 191 27
Male 1520 515

Use logistic regression to study the question of whether or not gender is
related to alcohol use in people who are fatally injured in bicycle accidents.

16.28 In Examples 16.5 and 16.9, we analyzed data from the CHEESE data set
described in the Data Appendix. In those examples, we used Acetic as the
explanatory variable. Run the same analysis using H2S as the explanatory
variable.

16.29 Refer to the previous exercise. Run the same analysis using Lactic as the
explanatory variable.

16.30 For the cheese data analyzed in Examples 16.9, 16.10, and the two exercisesCH

ALLENGE

above, there are three explanatory variables. There are three different logistic
regressions that include two explanatory variables. Run these. Summarize the
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results of these analyses, the ones using each explanatory variable alone, and
the one using all three explanatory variables together. What do you conclude?

The following four exercises use the CSDATA data set described in the Data
Appendix. We examine models for relating success as measured by the GPA to
several explanatory variables. In Chapter 11 we used multiple regression meth-
ods for our analysis. Here, we define an indicator variable, say HIGPA, to be 1
if the GPA is 3.0 or better and 0 otherwise.

16.31 Use a logistic regression to predict HIGPA using the three high school grade

CH

ALLENGE

summaries as explanatory variables.

(a) Summarize the results of the hypothesis test that the coefficients for all
three explanatory variables are zero.

(b) Give the coefficient for high school math grades with a 95% confidence
interval. Do the same for the two other predictors in this model.

(c) Summarize your conclusions based on parts (a) and (b).

16.32 Use a logistic regression to predict HIGPA using the two SAT scores as ex-
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planatory variables.

(a) Summarize the results of the hypothesis test that the coefficients for both
explanatory variables are zero.

(b) Give the coefficient for the SAT math score with a 95% confidence interval.
Do the same for the SAT verbal score.

(c) Summarize your conclusions based on parts (a) and (b).

16.33 Run a logistic regression to predict HIGPA using the three high school grade
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summaries and the two SAT scores as explanatory variables. We want to pro-
duce an analysis that is similar to that done for the case study in Chapter 11.

(a) Test the null hypothesis that the coefficients of the three high school grade
summaries are zero; that is, test H0: βHSM = βHSS = βHSE = 0.

(b) Test the null hypothesis that the coefficients of the two SAT scores are
zero; that is, test H0: βSATM = βSATV = 0.

(c) What do you conclude from the tests in (a) and (b)?

16.34 In this exercise we investigate the effect of gender on the odds of getting a high
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GPA.

(a) Use gender to predict HIGPA using a logistic regression. Summarize the
results.

(b) Perform a logistic regression using gender and the two SAT scores to pre-
dict HIGPA. Summarize the results.

(c) Compare the results of parts (a) and (b) with respect to how gender relates
to HIGPA. Summarize your conclusions.

16.35 Here is an example of Simpson’s paradox, the reversal of the direction of a com-
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parison or an association when data from several groups are combined to form a
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single group. The data concern two hospitals, A and B, and whether or not pa-
tients undergoing surgery died or survived. Here are the data for all patients:

Hospital A Hospital B

Died 63 16
Survived 2037 784

Total 2100 800

And here are the more detailed data where the patients are categorized as be-
ing in good condition or poor condition:

Good condition Poor condition

Hospital A Hospital B Hospital A Hospital B

Died 6 8 Died 57 8
Survived 594 592 Survived 1443 192

Total 600 600 Total 1500 200

(a) Use a logistic regression to model the odds of death with hospital as the
explanatory variable. Summarize the results of your analysis and give a
95% confidence interval for the odds ratio of Hospital A relative to Hos-
pital B.

(b) Rerun your analysis in (a) using hospital and the condition of the patient
as explanatory variables. Summarize the results of your analysis and give
a 95% confidence interval for the odds ratio of Hospital A relative to Hos-
pital B.

(c) Explain Simpson’s paradox in terms of your results in parts (a) and (b).

CHAPTER 16 Notes
1. Logistic regression models for the general case where there are more than two pos-
sible values for the response variable have been developed. These are considerably
more complicated and are beyond the scope of our present study. For more informa-
tion on logistic regression, see A. Agresti, An Introduction to Categorical Data Analysis,
Wiley, 1996; and D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, Wiley,
1989.

2. This example is taken from a classical text written by a contemporary of R. A. Fisher,
the person who developed many of the fundamental ideas of statistical inference that
we use today. The reference is D. J. Finney, Probit Analysis, Cambridge University
Press, 1947. Although not included in the analysis, it is important to note that the ex-
periment included a control group that received no insecticide. No aphids died in this
group. We have chosen to call the response “dead.” In the text the category is described
as “apparently dead, moribund, or so badly affected as to be unable to walk more than
a few steps.” This is an early example of the need to make careful judgments when
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defining variables to be used in a statistical analysis. An insect that is “unable to walk
more than a few steps” is unlikely to eat very much of a chrysanthemum plant!

3. Marsha A. Dickson, “Utility of no sweat labels for apparel customers: profiling label
users and predicting their purchases,” Journal of Consumer Affairs, 35 (2001), pp. 96–
119.

4. The poll is part of the American Express Retail Index Project and is reported in
Stores, December 2000, pp. 38–40.

5. Based on Greg Clinch, “Employee compensation and firms’ research and develop-
ment activity,” Journal of Accounting Research, 29 (1991), pp. 59–78.

6. Monica Macaulay and Colleen Brice, “Don’t touch my projectile: gender bias and
stereotyping in syntactic examples,” Language, 73, no. 4 (1997), pp. 798–825.

7. Based on Robert T. Driescher, “A quality swing with Ping,” Quality Progress, August
2001, pp. 37–41.

8. Karin Weber and Weley S. Roehl, “Profiling people searching for and purchasing
travel products on the World Wide Web,” Journal of Travel Research, 37 (1999), pp. 291–
298.

9. Guohua Li and Susan P. Baker, “Alcohol in fatally injured bicyclists,” Accident Anal-
ysis and Prevention, 26 (1994), pp. 543–548.


