model
    {

    # PRIORS
       alpha[1] <- 0; # zero contrast for baseline food
       for (k in 2 : K) {
          alpha[k] ~ dnorm(0, 0.00001) # vague priors
       }
    # Loop around lakes:
       for (k in 1 : K){
          beta[1, k] <- 0
       } # corner-point contrast with first lake
       for (i in 2 : I) {
          beta[i, 1] <- 0 ; # zero contrast for baseline food
          for (k in 2 : K){
             beta[i, k] ~ dnorm(0, 0.00001) # vague priors
          }
       }
    # Loop around sizes:
       for (k in 1 : K){
          gamma[1, k] <- 0 # corner-point contrast with first size
       }
       for (j in 2 : J) {
          gamma[j, 1] <- 0 ; # zero contrast for baseline food
          for ( k in 2 : K){
             gamma[j, k] ~ dnorm(0, 0.00001) # vague priors
          }
       }

    # LIKELIHOOD   
       for (i in 1 : I) { # loop around lakes
          for (j in 1 : J) { # loop around sizes

    # Multinomial response
    # X[i,j,1 : K] ~ dmulti( p[i, j, 1 : K] , n[i, j] )
    # n[i, j] <- sum(X[i, j, ])
    # for (k in 1 : K) { # loop around foods
    # p[i, j, k] <- phi[i, j, k] / sum(phi[i, j, ])
    # log(phi[i ,j, k]) <- alpha[k] + beta[i, k] + gamma[j, k]
    # }

    # Fit standard Poisson regressions relative to baseline
             lambda[i, j] ~ dnorm(0, 0.00001) # vague priors
             for (k in 1 : K) { # loop around foods
                X[i, j, k] ~ dpois(mu[i, j, k])
                log(mu[i, j, k]) <- lambda[i, j] + alpha[k] + beta[i, k] + gamma[j, k]
             }
          }
       }

    # TRANSFORM OUTPUT TO ENABLE COMPARISON
    # WITH AGRESTI'S RESULTS

       for (k in 1 : K) { # loop around foods
          for (i in 1 : I) { # loop around lakes
             b[i, k] <- beta[i, k] - mean(beta[, k]); # sum to zero constraint
          }
          for (j in 1 : J) { # loop around sizes
             g[j, k] <- gamma[j, k] - mean(gamma[, k]); # sum to zero constraint
          }
       }
    }