possible journals:
Methodology: http://www.psycontent.com/content/120235/
linear.res<-function(filename) { ##process the results # res.file<-paste('res-N',N,'-T',T,'-alpha',alpha,'-R',r,'-a.txt',sep='') ## filename<-'C:\\zzy\\research\\LongPower\\Results\\MAR\\linear\\power\\res-N100-T3-alpha0-R0-a.txt' res.comp<-read.table(filename,col.names=c(1:55),fill=T) ## data in the file ## Model with freely estimated change score ## 1 id 2 var_E 3 mu_I 4 mu_S 5 psi_I 6 psi_IS 7 psi_S ## s.e. 8 9 10 11 12 13 ## 14 chi-value 15 chi-df 16 chi-p 17 CFI 18 TLI 19 H0ll 20 H1ll ## 21 para 22 AIC 23 BIC 24 A-BIC 25 RMSEA 26 RMSEA.l 27 RMSEA.h 28 RMSEA.p 29 SRMR ## model with zero change score ## 30 var_E 31 mu_I 32 psi_I 33 psi_IS 34 psi_S ## 35 36 37 38 39 ## 40 chi-value 41 chi-df 42 chi-p 43 CFI 44 TLI 45 H0ll 46 H1ll ## 47 para 48 AIC 49 BIC 50 A-BIC 51 RMSEA 52 RMSEA.l 53 RMSEA.h 54 RMSEA.p 55 SRMR res.comp<-res.comp[!is.na(res.comp[,55]),] chi.diff<-(res.comp[,40]-res.comp[,14]) res.comp<-res.comp[chi.diff>0,] mu_S <- mean(res.comp[,4],na.rm=T) mu_S } N.v<-c(100,200,300,400,500) T.v<-3:5 r.v<-c(.1,.3) M.M<-c('MCAR', 'MAR', 'MNAR') alpha.v<-c(1,0,0) a<-c('-a','-a', '') for (T in T.v){ for (N in N.v){ cat(T, ' ', N, ' ') filename<-paste('C:\\zzy\\LongPower\\Results\\MCAR\\linear\\power\\res-N',N,'-T',T,'-alpha',alpha,'-R',0,'-a.txt',sep='') cat(linear.res(filename)) cat(' ') for (r in r.v){ for (i in 1:3){ filename<-paste('C:\\zzy\\LongPower\\Results\\',M.M[i],'\\linear\\power\\res-N',N,'-T',T,'-alpha',alpha.v[i],'-R',r, a[i] ,'.txt',sep='') cat(linear.res(filename)) cat(' ') } } cat('\n') } } quad.res<-function(filename) { ##process the results #filename<-'C:\\zzy\\research\\LongPower\\Results\\MAR\\quadratic\\power\\res-N100-T4-alpha0-R0-a.txt' res.comp<-read.table(filename,col.names=c(1:83),fill=T) ## data in the file ## Model with freely estimated change score ## 1 id 2 var_E 3 mu_I 4 mu_S 5 mu_Q 6 Beta 7 psi_I 8 psi_IS 9 psi_S 10 PSI_IQ 11 psi_QS 12 psi_Q 13 psi_XI 14 psi_XQ ## s.e. 15 16 17 18 19 20 21 22 23 24 25 26 27 ## 28 chi-value 29 chi-df 30 chi-p 31 CFI 32 TLI 33 H0ll 34 H1ll ## 35 para 36 AIC 37 BIC 38 A-BIC 39 RMSEA 40 RMSEA.l 41 RMSEA.h 42 RMSEA.p 43 SRMR ## model with zero change score ## 44 var_E 45 mu_I 46 mu_S 47 mu_Q 48 Beta 49 psi_I 50 psi_IS 51 psi_S 52 PSI_IQ 53 psi_QS 54 psi_Q 55 psi_XI 56 psi_XQ ## s.e. 57 58 59 60 61 62 63 64 65 66 67 ## 68 chi-value 69 chi-df 70 chi-p 71 CFI 72 TLI 73 H0ll 74 H1ll ## 75 para 76 AIC 77 BIC 78 A-BIC 79 RMSEA 80 RMSEA.l 81 RMSEA.h 82 RMSEA.p 83 SRMR res.comp<-res.comp[!is.na(res.comp[,83]),] chi.diff1<-(res.comp[,68]-res.comp[,28]) res.comp<-res.comp[chi.diff1>0,] Beta <- mean(res.comp[,6]) Beta } N.v<-c(100,200,300,400,500) T.v<-4:5 r.v<-c(.1,.3) M.M<-c('MCAR', 'MAR', 'MNAR') alpha.v<-c(1,0,0) a<-c('-a','-a', '-a') for (T in T.v){ for (N in N.v){ cat(T, ' ', N, ' ') filename<-paste('C:\\zzy\\LongPower\\Results\\MCAR\\quadratic\\power\\res-N',N,'-T',T,'-alpha',alpha,'-R',0,'-a.txt',sep='') cat(quad.res(filename)) cat(' ') for (r in r.v){ for (i in 1:3){ filename<-paste('C:\\zzy\\LongPower\\Results\\',M.M[i],'\\quadratic\\power\\res-N',N,'-T',T,'-alpha',alpha.v[i],'-R',r, a[i] ,'.txt',sep='') cat(quad.res(filename)) cat(' ') } } cat('\n') } }
## Processing results for the power analysis ## Function for the linear model linear.res<-function(filename) { ##process the results # res.file<-paste('res-N',N,'-T',T,'-alpha',alpha,'-R',r,'-a.txt',sep='') ## filename<-'C:\\zzy\\research\\LongPower\\Results\\MAR\\linear\\power\\res-N100-T3-alpha0-R0-a.txt' res.comp<-read.table(filename,col.names=c(1:55),fill=T) ## data in the file ## Model with freely estimated change score ## 1 id 2 var_E 3 mu_I 4 mu_S 5 psi_I 6 psi_IS 7 psi_S ## s.e. 8 9 10 11 12 13 ## 14 chi-value 15 chi-df 16 chi-p 17 CFI 18 TLI 19 H0ll 20 H1ll ## 21 para 22 AIC 23 BIC 24 A-BIC 25 RMSEA 26 RMSEA.l 27 RMSEA.h 28 RMSEA.p 29 SRMR ## model with zero change score ## 30 var_E 31 mu_I 32 psi_I 33 psi_IS 34 psi_S ## 35 36 37 38 39 ## 40 chi-value 41 chi-df 42 chi-p 43 CFI 44 TLI 45 H0ll 46 H1ll ## 47 para 48 AIC 49 BIC 50 A-BIC 51 RMSEA 52 RMSEA.l 53 RMSEA.h 54 RMSEA.p 55 SRMR res.comp<-res.comp[!is.na(res.comp[,55]),] chi.diff<-(res.comp[,40]-res.comp[,14]) res.comp<-res.comp[chi.diff>0,] chi.diff1<-chi.diff[chi.diff>0] nn<-length(chi.diff1) pow1<-sum(chi.diff1>3.841459)/nn var_E <- mean(res.comp[,2],na.rm=T) mu_I <- mean(res.comp[,3],na.rm=T) mu_S <- mean(res.comp[,4],na.rm=T) psi_I <- mean(res.comp[,5],na.rm=T) psi_IS <- mean(res.comp[,6],na.rm=T) psi_S <- mean(res.comp[,7],na.rm=T) CI<-cbind(res.comp[,4] -1.96*res.comp[,10],res.comp[,4]+1.96*res.comp[,10]) cvg<-sum(CI[,1]<1 & CI[,2]>1)/nn cng<-nn/10000 c(var_E, mu_I, mu_S, psi_I, psi_IS, psi_S, pow1, cvg, cng) } N.v<-c(100,200,300,400,500) T.v<-3:5 alpha.v<-c(0) r.v<-c(0, .1,.3) for (T in T.v){ for (N in N.v){ for (r in r.v){ for (alpha in alpha.v){ ## Power filename<-paste('C:\\zzy\\research\\LongPower\\Results\\MNAR\\linear\\power\\res-N',N,'-T',T,'-alpha',alpha,'-R',r,'.txt',sep='') ## Type1 #filename<-paste('C:\\zzy\\research\\LongPower\\Results\\MNAR\\linear\\type1\\res-N',N,'-T',T,'-alpha',alpha,'-R',r,'.txt',sep='') res<-linear.res(filename) cat(c(T, N, r, alpha, res)) cat("\n") } } } } ################################################## ## 2. parameter bias quadratic model quad.res<-function(filename) { ##process the results #filename<-'C:\\zzy\\research\\LongPower\\Results\\MAR\\quadratic\\power\\res-N100-T4-alpha0-R0-a.txt' res.comp<-read.table(filename,col.names=c(1:83),fill=T) ## data in the file ## Model with freely estimated change score ## 1 id 2 var_E 3 mu_I 4 mu_S 5 mu_Q 6 Beta 7 psi_I 8 psi_IS 9 psi_S 10 PSI_IQ 11 psi_QS 12 psi_Q 13 psi_XI 14 psi_XQ ## s.e. 15 16 17 18 19 20 21 22 23 24 25 26 27 ## 28 chi-value 29 chi-df 30 chi-p 31 CFI 32 TLI 33 H0ll 34 H1ll ## 35 para 36 AIC 37 BIC 38 A-BIC 39 RMSEA 40 RMSEA.l 41 RMSEA.h 42 RMSEA.p 43 SRMR ## model with zero change score ## 44 var_E 45 mu_I 46 mu_S 47 mu_Q 48 Beta 49 psi_I 50 psi_IS 51 psi_S 52 PSI_IQ 53 psi_QS 54 psi_Q 55 psi_XI 56 psi_XQ ## s.e. 57 58 59 60 61 62 63 64 65 66 67 ## 68 chi-value 69 chi-df 70 chi-p 71 CFI 72 TLI 73 H0ll 74 H1ll ## 75 para 76 AIC 77 BIC 78 A-BIC 79 RMSEA 80 RMSEA.l 81 RMSEA.h 82 RMSEA.p 83 SRMR res.comp<-res.comp[!is.na(res.comp[,83]),] chi.diff1<-(res.comp[,68]-res.comp[,28]) res.comp<-res.comp[chi.diff1>0,] chi.diff1<-chi.diff1[chi.diff1>0] nn<-length(chi.diff1) pow1<-sum(chi.diff1>3.84)/nn var_E <- mean(res.comp[,2]) mu_I <- mean(res.comp[,3]) mu_S <- mean(res.comp[,4]) mu_Q <- mean(res.comp[,5]) Beta <- mean(res.comp[,6]) psi_I <- mean(res.comp[,7]) psi_IS <- mean(res.comp[,8]) psi_S <- mean(res.comp[,9]) psi_IQ <- mean(res.comp[,10]) psi_QS <- mean(res.comp[,11]) psi_Q <- mean(res.comp[,12]) #psi_XI <- mean(res.comp[,13]) #psi_XS <- mean(res.comp[,14]) CI<-cbind(res.comp[,6] -1.96*res.comp[,19],res.comp[,6]+1.96*res.comp[,19]) cvg<-sum(CI[,1]< -1 & CI[,2]> -1)/nn cng<-nn/10000 c(var_E, mu_I, mu_S, mu_Q, Beta, psi_I, psi_IS, psi_S, psi_IQ, psi_QS, psi_Q, pow1, cvg, cng) #c(mu_I, mu_S, mu_Q, Beta, nn) } M<-c('power', 'type1') N.v<-c(100,200,300,400,500) T.v<-4:5 alpha.v<-c(0) r.v<-c(0, .1,.3) for (T in T.v){ for (N in N.v){ for (r in r.v){ for (alpha in alpha.v){ filename<-paste('C:\\zzy\\research\\LongPower\\Results\\MNAR\\quadratic\\type1\\res-N',N,'-T',T,'-alpha',alpha,'-R',r,'-a.txt',sep='') # filename<-paste('C:\\zzy\\research\\LongPower\\Results\\MCAR\\quadratic\\power\\res-N',N,'-T',T,'-alpha',alpha,'-R',r,'-a.txt',sep='') res<-quad.res(filename) cat(c(T, N, r, alpha, res)) cat("\n") } } } }
## Processing results for the power analysis ## Function for the linear model linear.res<-function(filename) { ##process the results # res.file<-paste('res-N',N,'-T',T,'-alpha',alpha,'-R',r,'-a.txt',sep='') ## filename<-'C:\\zzy\\research\\LongPower\\Results\\MAR\\linear\\power\\res-N100-T3-alpha0-R0-a.txt' res.comp<-read.table(filename,col.names=c(1:55),fill=T) ## data in the file ## Model with freely estimated change score ## 1 id 2 var_E 3 mu_I 4 mu_S 5 psi_I 6 psi_IS 7 psi_S ## s.e. 8 9 10 11 12 13 ## 14 chi-value 15 chi-df 16 chi-p 17 CFI 18 TLI 19 H0ll 20 H1ll ## 21 para 22 AIC 23 BIC 24 A-BIC 25 RMSEA 26 RMSEA.l 27 RMSEA.h 28 RMSEA.p 29 SRMR ## model with zero change score ## 30 var_E 31 mu_I 32 psi_I 33 psi_IS 34 psi_S ## 35 36 37 38 39 ## 40 chi-value 41 chi-df 42 chi-p 43 CFI 44 TLI 45 H0ll 46 H1ll ## 47 para 48 AIC 49 BIC 50 A-BIC 51 RMSEA 52 RMSEA.l 53 RMSEA.h 54 RMSEA.p 55 SRMR res.comp<-res.comp[!is.na(res.comp[,55]),] chi.diff<-(res.comp[,40]-res.comp[,14]) res.comp<-res.comp[chi.diff>0,] chi.diff1<-chi.diff[chi.diff>0] chi.diff1 } N.v<-c(100,200,300,400,500) T.v<-3:5 alpha.v<-c(1) r.v<-c(0, .1,.3) MM<-'MCAR' for (T in T.v){ for (N in N.v){ for (r in r.v){ for (alpha in alpha.v){ ## Power #filename<-paste('C:\\zzy\\research\\LongPower\\Results\\MNAR\\linear\\power\\res-N',N,'-T',T,'-alpha',alpha,'-R',r,'.txt',sep='') ## Type1 filename<-paste('C:\\zzy\\research\\LongPower\\Results\\',MM,'\\linear\\type1\\res-N',N,'-T',T,'-alpha',alpha,'-R',r,'.txt',sep='') res<-linear.res(filename) fileout<-paste('C:\\zzy\\research\\LongPower\\Results\\qqplot\\linear-',MM,'T-',T,'-N',N,'-R',r,'.txt',sep='') write.table(res,fileout, row.names=F, col.names=F) } } } } ################################################## ## 2. parameter bias quadratic model quad.res<-function(filename) { ##process the results #filename<-'C:\\zzy\\research\\LongPower\\Results\\MAR\\quadratic\\power\\res-N100-T4-alpha0-R0-a.txt' res.comp<-read.table(filename,col.names=c(1:83),fill=T) ## data in the file ## Model with freely estimated change score ## 1 id 2 var_E 3 mu_I 4 mu_S 5 mu_Q 6 Beta 7 psi_I 8 psi_IS 9 psi_S 10 PSI_IQ 11 psi_QS 12 psi_Q 13 psi_XI 14 psi_XQ ## s.e. 15 16 17 18 19 20 21 22 23 24 25 26 27 ## 28 chi-value 29 chi-df 30 chi-p 31 CFI 32 TLI 33 H0ll 34 H1ll ## 35 para 36 AIC 37 BIC 38 A-BIC 39 RMSEA 40 RMSEA.l 41 RMSEA.h 42 RMSEA.p 43 SRMR ## model with zero change score ## 44 var_E 45 mu_I 46 mu_S 47 mu_Q 48 Beta 49 psi_I 50 psi_IS 51 psi_S 52 PSI_IQ 53 psi_QS 54 psi_Q 55 psi_XI 56 psi_XQ ## s.e. 57 58 59 60 61 62 63 64 65 66 67 ## 68 chi-value 69 chi-df 70 chi-p 71 CFI 72 TLI 73 H0ll 74 H1ll ## 75 para 76 AIC 77 BIC 78 A-BIC 79 RMSEA 80 RMSEA.l 81 RMSEA.h 82 RMSEA.p 83 SRMR res.comp<-res.comp[!is.na(res.comp[,83]),] chi.diff1<-(res.comp[,68]-res.comp[,28]) res.comp<-res.comp[chi.diff1>0,] chi.diff1<-chi.diff1[chi.diff1>0] chi.diff1 } N.v<-c(100,200,300,400,500) T.v<-4:5 alpha.v<-c(0) r.v<-c(0, .1,.3) MM<-'MAR' for (T in T.v){ for (N in N.v){ for (r in r.v){ for (alpha in alpha.v){ filename<-paste('C:\\zzy\\research\\LongPower\\Results\\',MM, '\\quadratic\\type1\\res-N',N,'-T',T,'-alpha',alpha,'-R',r,'-a.txt',sep='') # filename<-paste('C:\\zzy\\research\\LongPower\\Results\\MCAR\\quadratic\\power\\res-N',N,'-T',T,'-alpha',alpha,'-R',r,'-a.txt',sep='') res<-quad.res(filename) fileout<-paste('C:\\zzy\\research\\LongPower\\Results\\qqplot\\quad-',MM,'T-',T,'-N',N,'-R',r,'.txt',sep='') write.table(res,fileout, row.names=F, col.names=F) } } } }
## qqplot for testing the distributions ## for linear model qq.linear<-function(T, N, r){ prob<-seq(.01,.99,.01) plotname<-paste('QQ-Linear-', T, '-N-', N, '-R-', r, '.pdf', sep='') pdf(file=plotname, width=5, height=5) ## complete data file.comp<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\linear-MCAR','T-',T,'-N',N,'-R',0,'.txt',sep='') y.comp<-scan(file.comp) qqplot(qchisq(prob, 1), quantile(y.comp, prob=prob), type='l', lwd=3, ylab='Sample quantiles', xlab='Theoretical quantiles') abline(0,1) ## MCAR data file.mcar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\linear-MCAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mcar<-scan(file.mcar) lines(qchisq(prob, 1), quantile(y.mcar, prob=prob), lty=2, lwd=3) ## MAR data file.mar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\linear-MAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mar<-scan(file.mar) lines(qchisq(prob, 1), quantile(y.mar, prob=prob), lty=3, lwd=3) ## MNAR data file.mnar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\linear-MNAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mnar<-scan(file.mnar) lines(qchisq(prob, 1), quantile(y.mnar, prob=prob), lty=4, lwd=3) legend('bottomright', c('Complete','MCAR', 'MAR', 'MNAR'), lty=c(1,2,3,4), lwd=c(3,3,3,3)) dev.off() } N.v<-c(100,200,300,400,500) T.v<-3:5 r.v<-c(.1,.3) for (T in T.v){ for (N in N.v){ for (r in r.v){ qq.linear(T, N, r) } } } ## Q-Q plot for quadratic model qq.quad<-function(T, N, r){ prob<-seq(.01,.99,.01) plotname<-paste('QQ-Quad-', T, '-N-', N, '-R-', r, '.pdf', sep='') pdf(file=plotname, width=5, height=5) ## complete data file.comp<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\quad-MCAR','T-',T,'-N',N,'-R',0,'.txt',sep='') y.comp<-scan(file.comp) qqplot(qchisq(prob, 1), quantile(y.comp, prob=prob), type='l', lwd=3, ylab='Sample quantiles', xlab='Theoretical quantiles') abline(0,1) ## MCAR data file.mcar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\quad-MCAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mcar<-scan(file.mcar) lines(qchisq(prob, 1), quantile(y.mcar, prob=prob), lty=2, lwd=3) ## MAR data file.mar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\quad-MAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mar<-scan(file.mar) lines(qchisq(prob, 1), quantile(y.mar, prob=prob), lty=3, lwd=3) ## MNAR data file.mnar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\quad-MNAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mnar<-scan(file.mnar) lines(qchisq(prob, 1), quantile(y.mnar, prob=prob), lty=4, lwd=3) legend('bottomright', c('Complete','MCAR', 'MAR', 'MNAR'), lty=c(1,2,3,4), lwd=c(3,3,3,3)) dev.off() } N.v<-c(100,200,300,400,500) T.v<-4:5 r.v<-c(.1,.3) for (T in T.v){ for (N in N.v){ for (r in r.v){ qq.quad(T, N, r) } } }
## qqplot for testing the distributions ## for linear model qq.linear<-function(MM, T, N, r){ file.comp<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\linear-', MM,'T-',T,'-N',N,'-R',r,'.txt',sep='') y.comp<-scan(file.comp, quiet=T) 100*sum(y.comp>3.84)/length(y.comp) } N.v<-c(100,200,300,400,500) T.v<-3:5 r.v<-c(.1,.3) M.M<-c('MCAR', 'MAR', 'MNAR') for (T in T.v){ for (N in N.v){ cat(T, ' ', N, ' ') cat(qq.linear('MCAR',T, N, 0)) cat(' ') for (r in r.v){ for (i in 1:3){ cat(qq.linear(M.M[i], T, N, r)) cat(' ') } } cat('\n') } } ## for linear model qq.quad<-function(MM, T, N, r){ file.comp<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\quad-', MM,'T-',T,'-N',N,'-R',r,'.txt',sep='') y.comp<-scan(file.comp, quiet=T) 100*sum(y.comp>3.84)/length(y.comp) } N.v<-c(100,200,300,400,500) T.v<-4:5 r.v<-c(.1,.3) M.M<-c('MCAR', 'MAR', 'MNAR') for (T in T.v){ for (N in N.v){ cat(T, ' ', N, ' ') cat(qq.quad('MCAR',T, N, 0)) cat(' ') for (r in r.v){ for (i in 1:3){ cat(qq.quad(M.M[i], T, N, r)) cat(' ') } } cat('\n') } }
## qqplot for testing the distributions ## for linear model qq.linear<-function(MM, T, N, r){ file.comp<-paste('C:\\zzy\\LongPower\\Results\\power\\linear-', MM,'T-',T,'-N',N,'-R',r,'.txt',sep='') y.comp<-scan(file.comp, quiet=T) 100*sum(y.comp>3.84)/length(y.comp) } N.v<-c(100,200,300,400,500) T.v<-3:5 r.v<-c(.1,.3) M.M<-c('MCAR', 'MAR', 'MNAR') for (T in T.v){ for (N in N.v){ cat(T, ' ', N, ' ') cat(qq.linear('MCAR',T, N, 0)) cat(' ') for (r in r.v){ for (i in 1:3){ cat(qq.linear(M.M[i], T, N, r)) cat(' ') } } cat('\n') } } ## for linear model qq.quad<-function(MM, T, N, r){ file.comp<-paste('C:\\zzy\\LongPower\\Results\\power\\quad-', MM,'T-',T,'-N',N,'-R',r,'.txt',sep='') y.comp<-scan(file.comp, quiet=T) 100*sum(y.comp>3.84)/length(y.comp) } N.v<-c(100,200,300,400,500) T.v<-4:5 r.v<-c(.1,.3) M.M<-c('MCAR', 'MAR', 'MNAR') for (T in T.v){ for (N in N.v){ cat(T, ' ', N, ' ') cat(qq.quad('MCAR',T, N, 0)) cat(' ') for (r in r.v){ for (i in 1:3){ cat(qq.quad(M.M[i], T, N, r)) cat(' ') } } cat('\n') } }
## qqplot for testing the distributions ## for linear model qq.linear<-function(T, N, r){ T=4 N=300 r=0.1 prob<-seq(.01,.99,.01) plotname<-paste('QQ-Linear-', T, '-N-', N, '-R-', r, '.pdf', sep='') pdf(file=plotname, width=5, height=5) par(mar=c(5, 4, 4, 5) + 0.1) ## complete data file.comp<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\linear-MCAR','T-',T,'-N',N,'-R',0,'.txt',sep='') y.comp<-scan(file.comp) plot(qchisq(prob, 1), quantile(y.comp, prob=prob), ylim=c(0,7), xlim=c(0,7),type='l', lwd=2, ylab='Sample quantiles', xlab='Theoretical quantiles') #abline(0,1) ## MCAR data file.mcar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\linear-MCAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mcar<-scan(file.mcar) lines(qchisq(prob, 1), quantile(y.mcar, prob=prob), lty=2, lwd=2) ## MAR data file.mar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\linear-MAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mar<-scan(file.mar) lines(qchisq(prob, 1), quantile(y.mar, prob=prob), lty=3, lwd=2) par(new=T, mar=c(5, 4, 4, 5) + 0.1) plot(1,1,type='n',ylim=c(0,55), xlim=c(0,7), axes=F, ylab='', xlab='') ## MNAR data file.mnar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\linear-MNAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mnar<-scan(file.mnar) quantile(y.mnar, .99) lines(qchisq(prob, 1), quantile(y.mnar, prob=prob), lty=4, lwd=2, ylim=c(0,160), xlim=c(0,7)) axis(4) mtext('MNAR sample quantitles', 4, line=3) legend('bottomright', c('Complete','MCAR', 'MAR', 'MNAR'), lty=c(1,2,3,4), lwd=c(3,3,3,3)) dev.off() } N.v<-c(100,200,300,400,500) T.v<-3:5 r.v<-c(.1,.3) for (T in T.v){ for (N in N.v){ for (r in r.v){ qq.linear(T, N, r) } } } ## Q-Q plot for quadratic model qq.quad<-function(T, N, r){ T=4 N=300 r=0.3 prob<-seq(.01,.99,.01) plotname<-paste('QQ-Quad-', T, '-N-', N, '-R-', r, '.pdf', sep='') pdf(file=plotname, width=5, height=5) par(mar=c(5, 4, 4, 5) + 0.1) ## complete data file.comp<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\quad-MCAR','T-',T,'-N',N,'-R',0,'.txt',sep='') y.comp<-scan(file.comp) qqplot(qchisq(prob, 1), quantile(y.comp, prob=prob), ylim=c(0,7), xlim=c(0,7),type='l', lwd=2, ylab='Sample quantiles', xlab='Theoretical quantiles') #abline(0,1) ## MCAR data file.mcar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\quad-MCAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mcar<-scan(file.mcar) lines(qchisq(prob, 1), quantile(y.mcar, prob=prob), lty=2, lwd=2) ## MAR data file.mar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\quad-MAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mar<-scan(file.mar) lines(qchisq(prob, 1), quantile(y.mar, prob=prob), lty=3, lwd=2) ## MNAR data file.mnar<-paste('C:\\zzy\\LongPower\\Results\\qqplot\\quad-MNAR','T-',T,'-N',N,'-R',r,'.txt',sep='') y.mnar<-scan(file.mnar) lines(qchisq(prob, 1), quantile(y.mnar, prob=prob), lty=4, lwd=2) legend('bottomright', c('Complete','MCAR', 'MAR', 'MNAR'), lty=c(1,2,3,4), lwd=c(3,3,3,3)) dev.off() } N.v<-c(100,200,300,400,500) T.v<-4:5 r.v<-c(.1,.3) for (T in T.v){ for (N in N.v){ for (r in r.v){ qq.quad(T, N, r) } } }