## dealing with student t distribution simulation results library(coda) newbind<-function(x,y){ nx<-nrow(x) ny<-nrow(y) rmax<-max(nx,ny) cmax<-ncol(x)+ncol(y) temp<-array(NA, c(rmax, cmax)) temp[1:nx, 1:ncol(x)]<-x temp[1:ny, (ncol(x)+1):cmax]<-y temp } allres<-list() R <- 100 for (r in 1:R){ ncoda<-read.table(paste('histnorm',r,'.txt', sep='')) tcoda<-read.table(paste('histt',r,'.txt', sep='')) ncoda<-ncoda[2:ncol(ncoda)] tcoda<-tcoda[2:ncol(tcoda)] ncoda<-as.mcmc(ncoda) tcoda<-as.mcmc(tcoda) norm.sum<-summary(ncoda) t.sum<-summary(tcoda) temp.norm<-cbind(norm.sum$statistics[,1:2], norm.sum$quantiles[,c(1,5)], geweke.diag(ncoda)$z,effectiveSize(ncoda) ) temp.t<-cbind(t.sum$statistics[,1:2], t.sum$quantiles[,c(1,5)], geweke.diag(tcoda)$z,effectiveSize(tcoda) ) temp.bind<-newbind(temp.norm, temp.t) allres[[r]]<-temp.bind }