## Simulate multilevel mediation model data model{ for (i in 1:n){ re[i, 1:5]~dmnorm(mure[i, 1:5], pre_cov[1:5,1:5]) mure[i,1]<-b[1,1]+b[1,2]*w[i] mure[i,2]<-b[2,1]+b[2,2]*w[i] mure[i,3]<-b[3,1]+b[3,2]*w[i] mure[i,4]<-b[4,1]+b[4,2]*w[i] mure[i,5]<-b[5,1]+b[5,2]*w[i] ## Generate w[i] w[i]~dnorm(0, 1) for (j in 1:mi[i]){ y[i,j] ~ dnorm(muy[i,j], pre_phi[1]) muy[i,j]<-re[j,1]+re[j,2]/re[j,3]*m[i,j]+re[j,4]*x[i,j] m[i,j] ~ dnorm(mum[i,j], pre_phi[2]) mum[i,j]<-re[j,5]+re[j,3]*x[i,j] ## generate x[i,j] x[i,j]~dnorm(0, 1) } } for (i in 1:2){ pre_phi[i]<-phi[i] } pre_cov[1:5,1:5]<-inverse(cov[1:5,1:5]) } ## Population parameter values list(n=100, phi=c(1,1), b=structure(.Data =c( 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0), .Dim = c(5,2)), cov=structure(.Data =c(1, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 1), .Dim = c(5,5)), mi=c(100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100))