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A note on the robustness of a full Bayesian method for
nonignorable missing data analysis

Zhiyong Zhang and Lijuan Wang
University of Notre Dame

Abstract. A full Bayesian method utilizing data augmentation and Gibbs
sampling algorithms is presented for analyzing nonignorable missing data.
The discussion focuses on a simplified selection model for regression analy-
sis. Regardless of missing mechanisms, it is assumed that missingness only
depends on the missing variable itself. Simulation results demonstrate that
the simplified selection model can recover regression model parameters un-
der both correctly specified situations and many misspecified situations. The
method is also applied to analyzing a training intervention data set with miss-
ing data.

1 Introduction

Missing data problem is a big challenge in statistical inference even for a well
designed study. Little and Rubin (2002) distinguished three kinds of missing
data mechanisms—missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR). For the MCAR mechanism, every
subject (datum) has the same probability to be missing. For example, if a partic-
ipant’s test score is missing because his/her experimenter accidentally forgets to
give him/her the test, then the resulting missing datum can be viewed as MCAR.
If missingness can be fully predicted by observed data in a model, the missing
mechanism is MAR. For example, in a pre-test post-test experiment, all subjects
participated in the pre-test. Some subjects missed the post-test because they did not
perform well in the pre-test. In this case, missingness during the post-test may be
predicted using data from the pre-test. However, if missingness cannot be fully pre-
dicted by observed data, missing data are MNAR. For example, in survey research,
when asking about salary, those with high salary often choose not to respond. Thus,
missing data on income are often considered to be MNAR.

To some extent, MCAR and MAR data are ignorable because problems caused
by them can be overcome through sophisticated statistical techniques such as the
full information likelihood (FIML) method and multiple imputation (e.g., Little
and Rubin, 2002, Schafer, 1997). MNAR data, however, are nonignorable because
without extra information or modeling specifications, their influences cannot be
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well addressed. To deal with nonignorable missing data, selection models (see
recent reviews by Ibrahim et al., 2006 and Ibrahim and Molenberghs, 2009) and
the multiple imputation (MI) method with auxiliary variables (e.g., Graham, 2009)
can be used. However, both selection models and MI typically require auxiliary
variables (information) to account for nonignorable missingness.

Best et al. (1996) proposed a simplified selection model to study cognitive de-
cline in the elderly. The model assumed that missingness in an outcome variable
was only related to itself and the model, therefore, did not require auxiliary vari-
ables to model the nonignorable missing mechanism. Through empirical data anal-
ysis, they demonstrated that model parameters of interest were insensitive to dif-
ferent prior specifications on the parameters predicting missingness. In this article,
we examine and extend the model by Best et al. (1996) in several ways with a fo-
cus on the robustness of the model in recovering true regression parameter values
using full Bayesian methods. First, we derive the full Bayesian posterior distribu-
tions for the simplified selection model. Second, we evaluate the performance of
the model under different conditions. Third, we apply the model to analyze a set
of training intervention data to illustrate the use of the model.

In the remainder of the paper, we will first discuss selection models and the
simplified version by Best et al. (1996). Then, we will discuss how to estimate the
simplified selection model through a full Bayesian method by obtaining a full set
of conditional posterior distributions for model parameters utilizing the data aug-
mentation algorithm. After this, we will evaluate the performance of the model and
the estimation method through several simulation studies. Finally, we will present
an empirical example to demonstrate how to apply the model and the method in
behavioral research.

2 Selection models

Consider a multiple regression model with a dependent variable y and a vector of
independent variables x. The regression model can be expressed as

yi = xiβ + ei, (2.1)

where yi and xi are observed data for the ith person, β is a vector of regression
coefficients, and ei is residual that is assumed to be normally distributed such that
ei ∼ N(0, φ) with φ denoting the variance of the residuals. If both the dependent
and independent variables are fully observed, estimates of the regression coeffi-
cients can be obtained conveniently.

However, data are often incomplete or not fully observed for a variety of rea-
sons such as non-response and dropout. For example, we consider a scenario that
the dependent variable y is partially observed and independent variables x are
fully observed. This scenario is very common in designed experiments and sur-
vey research. For example, in an experiment, the controlled factors are often pre-
determined and thus are known. However, data of the outcome variables may not
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be always observed. In survey research, subjects may respond to nonsensitive ques-
tions such as demographic variables including age and level of education, but are
less likely to answer sensitive questions.

Let mi be an indicator variable where mi = 0 if yi is observed and mi = 1 if yi

is missing. Then, the missing probability of yi , in general, can be modeled as

Pr(yi is missing) = Pr(mi = 1) = f (γ0 + γ1yi + αvi ), (2.2)

where v is a set of variables that may be related to the missingness of y. The vari-
ables in v may or may not be fully observed and could be latent variables. v may
also include part of or all variables of x. The γ0, γ1, and α are model parameters.
The link function f can be any function that maps its input to an output value from
0 to 1. For example, if f is a logistic function, equation (2.2) becomes a logistic
regression model.

Equation (2.2) models the missing mechanism of y. The missing mechanisms
defined by Little and Rubin (2002) can be distinguished according to the parameter
values in equation (2.2). If γ1 = 0 and α = 0, the missing probability is a constant
and the missing mechanism is MCAR. If γ1 = 0, and α �= 0 and v are fully ob-
served and included in the regression model as predictors, the missing mechanism
is MAR. If γ1 �= 0 or the coefficients α for the partially observed or unobserved
variables in v are not equal to zero, missing data are MNAR.

Selection models (e.g., Heckman, 1976, Little and Rubin, 2002) focus on mod-
eling the joint distribution of observed data and missing indicators as

p(yi,mi |β,φ,γ ,α,xi ,vi ) = p(yi |xi , β,φ)p(mi |yi,γ ,vi ,α), (2.3)

where p(·) represents the probability density function and γ = (γ0, γ1)
′. A possi-

ble choice for p(mi |yi,γ ,vi ,α) is given in equation (2.2). Model parameters in
selection models can be estimated by maximizing the following likelihood func-
tion (e.g., Little, 1982, Little and Rubin, 2002)

L =
∫

vmiss
i

∫
ymiss
i

n∏
i=1

p(yi,mi |β,φ, γ,α,xi ,vi) dymiss
i vmiss

i , (2.4)

where ymiss
i denotes a missing datum in y and vmiss

i denotes unobserved data in
v for individual i. To identify selection models, xi and vi should not completely
overlap, or the values of λ or α for some covariate(s) are known or preconstrained
(e.g., Little, 1985, Olsen, 1980, Tang, Little and Raghunathan, 2003).

To properly apply selection models, variables in v have to be determined care-
fully, which often hinders practical adoptions of selection models. Best et al.
(1996) discussed a simplified selection model with α ≡ 0. Thus, the model as-
sumes that missingness in y is only related to itself and no auxiliary variables
need to be used in the model. One of the advantages of the model is the avoid-
ance of selecting auxiliary variables. Although the function f in equation (2.2)
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can take many different forms, the logistic function (the logit link) and the cu-
mulative normal distribution function (the probit link) are most widely used (e.g.,
Ibrahim et al., 2006, Little and Rubin, 2002). Best et al. used the logistic function
in equation (2.2). In this study, we use the cumulative normal distribution func-
tion because of its convenience in obtaining posterior distributions. Therefore, the
missing mechanism in the simplified selection model can be specified as⎧⎨

⎩
mi ∼ Bernoulli(pi),

pi = �(γ0 + γ1yi) = �

[
(1 yi )

(
γ0
γ1

)]
= �(wiγ ),

(2.5)

where pi is the probability that yi is missing and � is the cumulative normal
distribution function. mi is a binary variable following a Bernoulli distribution.
Furthermore, wi = (1, yi) and γ = (γ0, γ1)

′.
Note that if the missing mechanism is MCAR or MNAR depending on y only,

the missing mechanism is correctly specified. Otherwise, the missing mechanism
is misspecified, for example, under the situation of MAR. For convenience, we
refer to the model in equations (2.1) and (2.5) together as the simplified selection
model and the model in equation (2.1) as the regular model in the remainder of
the paper. Because of the focus of Best et al.’s study, the posterior distributions of
the selection model were not discussed and conditions under which the simplified
selection model would/would not work were not investigated. Thus, in this study,
we will present posterior distributions of the simplified selection model and then
evaluate its performance under a variety of conditions.

3 Full Bayesian estimation method

To estimate the simplified selection model, we will use the Bayesian estimation
method based on data augmentation (Albert and Chib, 1993, Tanner and Wong,
1987) and Gibbs sampling (e.g., Casella and George, 1992). We first assume that
there is an underlying normal variable zi ∼ N(wiγ ,1) for each mi . If zi > 0,
then mi = 1. Otherwise, mi = 0. In other words, if zi > 0, yi is unobserved. By
augmenting zi with mi , the joint distribution of mi and zi is

p(mi, zi |yi,γ ) = p(mi |zi)p(zi |yi,γ ).

The distribution of zi , p(zi |yi,γ ), is already known as a normal distribution with
mean wiγ and variance 1 and we need to obtain the distribution for mi conditional
on zi . Note that

p(mi = 1|zi > 0) = 1, p(mi = 1|zi ≤ 0) = 0,

p(mi = 0|zi > 0) = 0, p(mi = 0|zi ≤ 0) = 1.

Thus, the distribution for mi |zi can be expressed as

p(mi |zi) = I(mi = 1)I(zi > 0) + I(mi = 0)I(zi ≤ 0),
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where I(A) is an indicator function which takes 1 if the expression A is true and
otherwise 0.

Furthermore, by augmenting missing data ymiss
i with observed data, mi and zi ,

the joint distribution of yi , mi and zi is

p(yi, zi,mi |β,γ , φ,X) = p(yi |β, φ,X)p(mi |zi)p(zi |yi,γ )

= 1√
2πφ

exp
[
−(yi − xiβ)2

2φ

]

(3.1)
× [I(mi = 1)I(zi > 0) + I(mi = 0)I(zi ≤ 0)]

× 1√
2π

exp
[
−(zi − γ0 − γ1yi)

2

2

]
.

Thus, the likelihood function for the selection model with augmented data can be
expressed as

L(β,γ , φ|y,X, z,m) =
n∏

i=1

p(yi, zi,mi |β,γ , φ,X), (3.2)

where y = (y1, . . . , yn)
′ denotes a vector of data for the dependent variable and

X = (x′
1, . . . ,x′

n)
′ is the design matrix. Furthermore, z = (z1, . . . , zn)

′ and m =
(m1, . . . ,mn)

′. By integrating out missing data ymiss
i and the underlying variable

zi , one can obtain the observed data likelihood for the maximum likelihood esti-
mation method. However, the integration is not an easy task. Bayesian estimation
procedure, however, can be implemented relatively easily through Gibbs sampling
after obtaining the full set of conditional posterior distributions for the selection
model.

To use the Bayesian method, we need to specify priors for unknown parameters.
We first consider the following semi-conjugate priors and then discuss the use of
Jeffreys priors (Gelman et al., 2003, Jeffreys, 1946). For the regression coefficients
β , a multivariate normal prior is used as

p(β) = MN(β0,�0) ∝ |�0|−1/2 exp
[
−1

2
(β − β0)

′�−1
0 (β − β0)

]
, (3.3)

where β0 and �0 are predefined hyper-parameters representing the mean vector
and covariance matrix of the multivariate normal distribution.1 For the residual
variance parameter φ, an inverse gamma distribution is employed,

p(φ) = IG(a0, b0) ∝ φ−a0/2−1 exp
(
− b0

2φ

)
, (3.4)

1Note that β0, �0 and other symbols with subscript in a distribution represent the hyper-parameters
of the prior or posterior distributions.
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where a0 and b0 are assumed to be known shape and scale parameters. Finally, for
parameters γ , a multivariate normal prior is also used,

p(γ ) = MN(γ 0,D0) ∝ |D0|−1/2 exp
[
−1

2
(γ − γ 0)

′D−1
0 (γ − γ 0)

]
, (3.5)

where γ 0 and D0 are known mean vector and covariance matrix. These priors are
called semi-conjugate priors because the corresponding conditional posteriors are
from the same distribution family (Gelman et al., 2003).

With the likelihood function in (3.2) and priors in (3.3), (3.4) and (3.5), the joint
posterior distribution of the unknown parameters is readily available. However, the
marginal posterior distributions of the parameters are difficult to obtain explicitly.
To avoid the difficulty of getting the marginal posterior distributions explicitly, we
obtain the conditional distributions of the parameters and then utilize the Gibbs
sampling method to generate Markov chains for the parameters and construct the
Bayesian parameter estimates through posterior means.

The conditional posterior distribution for β is a multivariate normal distribution
defined by

β|y,X, φ ∼ MN(β1,�1),

where

β1 = (�−1
0 + X′Xφ−1)−1(�−1

0 β0 + X′yφ−1)

and

�1 = (�−1
0 + X′Xφ−1)−1,

where X and y are as defined earlier.
The conditional posterior distribution for φ is an inverse Gamma distribution

given by

φ|β,y,X ∼ IG(a1, b1),

where

a1 = a0 + n

2
and

b1 = b0 + (y − Xβ)′(y − Xβ)

2
.

The conditional posterior distribution for γ is

γ |z,y,W ∼ MN(γ 1,D1),

where

γ 1 = (D−1
0 + W′W)−1(D−1

0 γ 0 + W′z)
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and

D1 = (D−1
0 + W′W)−1,

where W = (w′
1, . . . ,w′

n)
′.

The conditional posterior distribution for the underlying variable zi is

zi |γ , yi,mi ∼
{

N(wiγ ,1)I (0,+∞), mi = 1,
N(wiγ ,1)I (−∞,0], mi = 0.

Thus, zi follows a truncated normal distribution.
Finally, the conditional posterior distribution for missing data ymiss

i is

ymiss
i |β,γ , zi, φ,xi ∼ N(μ1, φ1),

where

μ1 =
[

xiβ

φ
+ γ1(zi − γ0)

](
1

φ
+ γ 2

1

)−1

and

φ1 =
(

1

φ
+ γ 2

1

)−1

.

Note that if missing data are MCAR, one should expect that γ1 = 0. Then the
posterior for missing data ymiss

i reduces to

ymiss
i |β,γ , zi, φ,xi ∼ N(xiβ, φ)

which can be viewed as the multiple imputation method.
Jeffreys priors (Jeffreys, 1946) can also be used in obtaining the conditional

posterior distributions of the model parameters. One form of Jeffreys priors can be

p(φ) ∝ 1/φ

and

p(β,γ ) ∝ 1.

Note that these priors are improper and can be viewed as carrying no information
(Box and Tiao, 1973). With these Jeffreys priors, the conditional posterior distri-
butions for zi and ymiss

i remain the same. The conditional posterior distributions
for the model parameters become

β|yi,xi , φ ∼ MN[(X′X)−1X′Y, (X′X)−1φ],
φ|β, yi,xi ∼ IG

[
n

2
,
(Y − Xβ)′(Y − Xβ)

2

]
,

γ |zi, yi ∼ MN[(W′W)−1W′Z, (W′W)−1],
where Y = (y′

1, . . . ,y′
n)

′ and Z = (z′
1, . . . , z′

n)
′.

With the conditional posterior distributions, one can implement the following
Gibbs sampling procedure.
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1. Start with initial values β(0), φ(0),γ (0), z
(0)
i , y

miss(0)
i .

2. Assume at the iteration t , one has β(t), φ(t),γ (t), z
(t)
i , y

miss(t)
i .

3. At iteration t + 1,
(a) generate β(t+1) from β|yobs

i , y
miss(t)
i ,xi , φ

(t),

(b) generate φ(t+1) from φ|β(t+1), yobs
i , y

miss(t)
i ,xi ,

(c) generate z
(t+1)
i from zi |γ (t), yobs

i , y
miss(t)
i ,mi for i = 1, . . . , n,

(d) generate γ (t+1) from γ |z(t+1)
i , yobs

i , y
miss(t)
i ,

(e) generate y
miss(t+1)
i from ymiss

i |β(t+1),γ (t+1), z
(t+1)
i , φ(t+1),xi if yi is miss-

ing.

The above Gibbs sampling procedure can be used to generate a Markov chain for
each model parameter, underlying variable, and missing datum. After convergence,
these Markov chains can be viewed as samples from the joint distribution and
marginal distributions of the parameters and thus Bayesian parameter estimates
can be constructed (e.g., Casella and George, 1992, Geman and Geman, 1984).

4 Simulation studies

In this section, we conduct several simulation studies to investigate the perfor-
mance of the simplified selection model and the Bayesian estimation method.
The focus of the simulation studies is to evaluate whether the simplified selection
model with the Bayesian estimation method is robust to choices of priors, choices
of link functions, and missing data mechanisms. In the first study, we compare
the parameter estimates from the selection model and the regular regression model
assuming MNAR and the missing mechanism is known to depend solely on y. In
the second simulation, we evaluate whether results from the selection model are
influenced by different choices of priors, and in the third simulation, we investigate
whether results from the selection model are influenced by different choices of link
functions. In Simulation 4, the missing mechanism is related to an external unob-
served variable. In Simulation 5, the missingness depends on both the dependent
variable y and independent variables X. In Simulation 6, the missing mechanism
is MCAR.

4.1 General settings of the simulation studies

In all simulation studies, data are generated from a multiple regression model with
two covariates as in

yi = β0 + β1x1i + β2x2i + ei = xiβ + ei. (4.1)

The population parameters are β0 = β1 = β2 = 1 and ei ∼ N(0, φ) with variance
φ = 0.25. Both covariates x1i and x2i are generated from the standard normal
distribution. Complete data are first generated from this model and missing data are
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then generated according to each simulation condition. In all simulation studies,
sample size is n = 100 and the missing data percentage is 40%. Furthermore, for
each simulation study, a total of 1,000 data sets with missing data are generated
and analyzed.

For each simulation study, four statistics will be reported. The first one is the pa-
rameter estimate which is calculated as the average of parameter estimates of 1,000
simulation replications. The second one is the average standard error (ASE) which
is the average of standard errors of parameter estimates from the 1,000 replications.
The third one is the standard deviation of the 1,000 sets of estimated parameters.
Finally, the coverage probability of the 95% credible (confidence) interval of each
parameter are also reported.

In the following simulation studies except for the second simulation, the follow-
ing priors are used without further elaboration. For β , the trivariate normal prior is
used with β0 = (0,0,0)′ and

�0 =
⎛
⎝ 106 0 0

0 106 0
0 0 106

⎞
⎠ .

For φ, the inverse gamma prior is used with a0 = b0 = 10−3. And for γ , the bi-
variate normal prior is used with γ 0 = (0,0)′ and

D0 =
(

106 0
0 106

)
.

These priors can be considered as carrying little information (Congdon, 2003). For
the second simulation, the Jeffreys priors are used.

All simulations are conducted using SAS and WinBUGS (Zhang et al., 2008).
The convergence of the Markov chains is monitored through the Geweke statis-
tics (Geweke, 1992). The WinBUGS codes for the simplified selection model are
provided in the Appendix.

4.2 Simulation 1: Missingness depends on y only

4.2.1 Purpose. This simulation study investigates whether the regression model
parameters (β and φ) can be recovered using the simplified selection model and the
Bayesian estimation method when the missing mechanism is correctly specified.

4.2.2 Missing data generation. In this simulation study, the probability that a
datum is missing is assumed to depend on itself. Thus, the missingness is nonig-
norable. Missing data are generated in the following way. Let cα denote the 100αth
percentile of y. Then, the probability that yi is missing is set as

Pr(yi is missing) = Pr(mi = 1) =
{

0.9r/(1 − α), if yi > cα ,
0.1r/α, otherwise,
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Table 1 MNAR data analysis using the simplified selection model and the regular model

Simplified selection model Regular model

Parameters Estimates ASE SD Coverage Estimates ASE SD Coverage

β0 (Intercept) 0.998 0.082 0.081 0.947 0.855 0.075 0.076 0.477
β1 (x1) 0.994 0.075 0.077 0.945 0.922 0.074 0.076 0.808
β2 (x2) 0.997 0.075 0.076 0.932 0.924 0.074 0.077 0.823
φ 0.261 0.056 0.054 0.945 0.236 0.045 0.044 0.922
γ0 −1.488 0.365 0.503 – – – – –
γ1 (y) 1.023 0.218 0.323 – – – – –

Note. The results are based on 1,000 simulation replications. ASE: average standard error. SD: stan-
dard deviation of parameter estimates. Coverage: coverage probability of the 95% highest posterior
density credible interval.

where r is the predefined missing data rate. In this simulation study, we set α =
60% and r = 0.4. Note that the missing probability function is a step function
instead of a continuous function. It also indicates that when yi is larger than the
60th percentile, its missing probability is 0.9. Otherwise, its missing probability is
about 0.067.

4.2.3 Results. The simulated data are analyzed using the simplified selection
model in equations (2.1) and (2.5). For the purpose of comparison, we also an-
alyze the data by ignoring the nonignorable missing mechanism, namely, the data
are analyzed as MAR through a regular regression model in equation (2.1). The
results from the analysis are summarized in Table 1.

When the missing mechanism is MNAR and the data are analyzed ignoring the
missing mechanism, the parameter estimates are biased—underestimated in this
simulation study. Furthermore, the coverage probabilities are not correct, much
smaller than the nominal level 95% especially for the regression coefficients (β).
When the data are analyzed using the simplified selection model, the parameters
are well recovered, especially for the regression coefficients, with less than 0.6%
bias. The coverage probabilities are also close to 0.95. Finally, the ASE and SD
are very close for the regression parameters, which indicates that the standard error
estimates of parameters are also accurate. Note that although the missing mecha-
nism is modeled using the cumulative normal distribution function and the missing
data are generated according to a step function, the regression model parameter (β
and φ) estimates are still accurate. This indicates that the nonignorable missing
mechanism does not need to be perfectly specified.

4.3 Simulation 2: Semi-conjugate priors vs. Jeffreys priors (sensitivity
analysis of priors)

4.3.1 Purpose. During the discussion of the model estimation method, we dis-
cussed two types of priors—the semi-conjugate priors and the Jeffreys priors. This
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Table 2 Results from the simplified selection model with different priors

Semi-conjugate priors Jeffreys priors

Parameters Estimates ASE SD Coverage Estimates ASE SD Coverage

β0 (Intercept) 0.998 0.082 0.081 0.947 1.004 0.084 0.082 0.954
β1 (x1) 0.994 0.075 0.077 0.945 0.997 0.077 0.077 0.947
β2 (x2) 0.997 0.075 0.076 0.932 1.000 0.076 0.077 0.933
φ 0.261 0.056 0.054 0.945 0.272 0.060 0.057 0.950
γ0 −1.488 0.365 0.503 – −1.514 0.385 0.553 –
γ1 (y) 1.023 0.218 0.323 – 1.036 0.229 0.356 –

Note. The same as the previous table.

simulation study is to investigate whether the estimated model parameters (β and
φ) are influenced by the choice of the two sets of priors.

4.3.2 Missing data generation. The data are generated using the same procedure
in Simulation 1.

4.3.3 Results. The results from the analysis using two types of priors are given in
Table 2. From the results, the parameter estimates, especially the regression coef-
ficients (β), are very close from two different types of priors. The results for using
the Jeffreys priors can be viewed as the baseline data analysis. Prior information,
when available, can be incorporated into data analysis through the semi-conjugate
priors.2

4.4 Simulation 3: Cumulative normal distribution function vs. logistic
function

4.4.1 Purpose. In equation (2.2), the f function can be any function that maps
a raw value to be within 0 and 1. For derivation convenience, we have used the
cumulative normal distribution function in the previous section. With it, the ex-
plicit forms of the conditional posterior distributions can be obtained conveniently.
However, the other functions such as the logistic function can also be used as in
Best et al. (1996). In this simulation study, we investigate whether the choice of
the function f such as the cumulative normal distribution function or the logistic
function influences regression parameter (β and φ) estimates.

4.4.2 Missing data generation. The data are generated using the same procedure
in Simulation 1.

2Best et al. (1996) compared three sets of informative priors and found that parameter estimates
were insensitive to the chosen priors in their examples.
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Table 3 Results from the simplified selection model with different f

Normal distribution function Logistic function

Parameters Estimates ASE SD Coverage Estimates ASE SD Coverage

β0 (Intercept) 0.998 0.082 0.081 0.947 0.996 0.080 0.078 0.958
β1 (x1) 0.994 0.075 0.077 0.945 0.994 0.074 0.075 0.947
β2 (x2) 0.997 0.075 0.076 0.932 0.997 0.074 0.074 0.933
φ 0.261 0.056 0.054 0.945 0.256 0.054 0.052 0.946
γ0 −1.488 0.365 0.503 – −2.721 0.686 0.663 –
γ1 (y) 1.023 0.218 0.323 – 1.903 0.439 0.420 –

Note. The same as the previous table.

4.4.3 Results. The results from the simplified selection model using the cumula-
tive normal distribution and logistic functions are provided in Table 3. The results
are almost identical for the regression parameters (β). For the γ s, the estimates
using the logistic distribution is about 1.83 times of those using the cumulative
normal distribution function. This simulation suggests that the selection model
does not require the link function to match the missing mechanism exactly.

4.5 Simulation 4: Missing data depend on an external and unobserved
variable z

4.5.1 Purpose. In this simulation, we consider the situation that the missingness
of y depends on an external variable z that is related to y but unobserved. The pur-
pose of this simulation is to investigate whether we can recover regression model
parameters using the simplified selection model when the missing mechanism is
misspecified.

4.5.2 Missing data generation. To generate data, zi is first generated using

zi = ayi + vi,

where vi ∼ N(0,1). To investigate whether the correlation between y and z influ-
ences parameter estimates, we set a at 1 and 0.2 corresponding to the correlations
(ρ) between y and z at 0.83 and 0.29, respectively. Let cα denote the 100αth per-
centile of z. Then, the probability that yi is missing is set as

Pr(yi is missing) = Pr(mi = 1) =
{

0.9r/(1 − α), if zi > cα ,
0.1r/α, otherwise,

where r is the missing data rate. As in the previous simulations, we set α = 60%
and r = 0.4.
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Table 4 Results from the simulation study that missing mechanism is related to an external vari-
able z

a = 1 and ρ = 0.83 a = 0.2 and ρ = 0.29

Parameters Estimates ASE SD Coverage Estimates ASE SD Coverage

β0 (Intercept) 1.009 0.078 0.078 0.945 1.003 0.067 0.067 0.952
β1 (x1) 1.001 0.072 0.072 0.955 0.998 0.066 0.067 0.942
β2 (x2) 1.000 0.072 0.071 0.946 1.003 0.066 0.069 0.944
φ 0.263 0.055 0.052 0.960 0.259 0.049 0.047 0.952
γ0 −1.061 0.258 0.252 – −0.557 0.174 0.127 –
γ1 (y) 0.680 0.150 0.162 – 0.191 0.099 0.103 –

Note. The same as the previous table.

4.5.3 Results. Results from this simulation are summarized in Table 4. Biases in
parameter estimates (β) are very small and the coverage probabilities are close to
95% regardless of the size of the correlation between the external variable and the
outcome variable. Thus, the regression model parameters can still be recovered
well using the simplified selection model even when the missing mechanism is
misspecified in the current situation.

4.6 Simulation 5: Missing data depend on both y and X (a mixture of MNAR
and MAR)

4.6.1 Purpose. This simulation study investigates whether the simplified selec-
tion model is robust to the missing mechanism situation that the missing proba-
bility of y depends on both y and X. The missing mechanism can be viewed as a
mixture of MNAR and MAR. Thus, the missing mechanism is also misspecified
in the simplified selection model in this simulation study.

4.6.2 Missing data generation. To generate missing data, we first generate a vari-
able z such that

zi = 0.5yi + x1i − 0.5x2i .

Then the missing probability is set by

Pr(yi is missing) = Pr(mi = 1) =
{

0.9r/(1 − α), if zi > cα ,
0.1r/α, otherwise,

where cα is the 100αth percentile of z. In this simulation, we have α = 60% and
r = 0.4.

4.6.3 Results. Results from this simulation study are given in Table 5. The bi-
ases of the regression coefficient parameters (β) are slightly larger than the previ-
ous simulations. For example, for the intercept β0, the relative bias is about 3.8%.
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Table 5 Results from the simulation study that missing probabil-
ity is related to both y and X

Parameters Estimates ASE SD Coverage

β0 (Intercept) 1.038 0.084 0.082 0.934
β1 (x1) 1.026 0.080 0.077 0.954
β2 (x2) 0.998 0.073 0.072 0.949
φ 0.271 0.059 0.055 0.953
γ0 −1.438 0.364 0.476 –
γ1 (y) 0.948 0.209 0.289 –

Note. The same as the previous table.

However, the bias is still small (less than 5%). Furthermore, the coverage probabil-
ities are close to 95%. Thus, the simplified selection model appears to work well
under the current condition.

4.7 Simulation 6: MCAR data analysis using the selection model

4.7.1 Purpose. This simulation study investigates whether the simplified selec-
tion model can be applied when the missing mechanism is MCAR. Note that for
MCAR, the simplified selection model is correctly specified and one would expect
that γ̂1 = 0.

4.7.2 Missing data generation. To generate missing data, the missing probability
is set as

Pr(yi is missing) = Pr(mi = 1) = r,

where r is a constant and is set as 0.4 in this simulation.

4.7.3 Results. Results from this simulation are given in Table 6. First, the esti-
mate of γ1 is very close to 0. Thus, the selection model correctly identifies that the
missing mechanism does not depend on y. Second, the regression coefficient (β)
estimates are very close to the true values with the maximum relative bias about
0.3%. Third, the estimate of φ is not as accurate as the regression coefficients
estimates but close to the true value 0.25. Finally, the coverage probabilities are
close to the nominal value 0.95. Clearly, if the missing mechanism is MCAR, the
simplified selection model can still be applied.

5 An empirical example

In this section, we illustrate the application of the simplified selection model
through the analysis of a subset of data from the Advanced Cognitive Training
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Table 6 Analyze MCAR data using the simplified selection model

Parameters Estimates ASE SD Coverage

β0 (Intercept) 1.002 0.068 0.066 0.958
β1 (x1) 1.002 0.067 0.066 0.944
β2 (x2) 1.003 0.067 0.067 0.937
φ 0.259 0.051 0.049 0.951
γ0 −0.258 0.159 0.096 –
γ1 (y) −0.002 0.093 0.093 0.955

Note. The same as the previous table.

for Independent and Vital Elderly (ACTIVE) study. The ACTIVE study is a ran-
domized and controlled study designed to determine whether cognitive training in-
terventions can affect cognitively based measures of daily functioning (Jobe et al.,
2001, Tennstedt, 2001). For the purpose of illustration, the analysis here focuses
on whether booster training on memory can improve everyday problem solving
ability (EPT) of the elderly.

The sample size for this data analysis is N = 703 with about 53% (372) par-
ticipants selected randomly to receive the booster training on memory. Before and
after the booster training, everyday problem solving ability test was administered
to the participants. The time interval between the two tests was about one year. In
this data set, the change scores (�EPT) as the difference between test scores before
and after training were available for 76.5% (583) participants (about 23.5% par-
ticipants had missing data). It is hypothesized that the training group has a larger
�EPT than the control group. To control possible confounding factors, we also in-
cluded demographic variables, age and education level, in our data analysis. There
are no missing data on the demographic variables.

Table 7 presents the summary statistics of each group in the data analysis. From
Table 7, we can see that the control group had more missing data on EPT than
the training group. There were no significant differences in age and education be-
tween the two groups. Both groups on average had negative change on EPT and
the control group seemed to have more everyday functioning decline. Based on
the two-sample t-test on �EPT with list-wise deletion, the average difference on
�EPT between two groups was not significant at the significance level of 0.05.

Two models were fitted to the data. The first one is a regular regression model
assuming that missingness on �EPT is ignorable. Thus, the model can be written
as

�EPTi = β0 + β1Trainingi + β2Agei + β3Educationi + ei.

The second one is the simplified selection model assuming that missingness of
�EPT is related to change in EPT before and after training. Therefore, the model
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Table 7 Summary statistics for the ACTIVE sub-sample

Variable Training group Control group Difference

Sample size 372 331
Missing rate 17.2% 30.5% −13.3%
Age (years) 73.25 (5.78) 73.84 (6.28) −0.59
Education (years) 13.71 (2.60) 13.45 (2.87) 0.26
�EPT −0.11 (3.27) −0.28 (3.13) 0.17

Note: Values in the parentheses are standard deviations.

can be specified as

�EPTi = β0 + β1Trainingi + β2Agei + β3Educationi + ei,

mi ∼ Bernoulli(pi),

pi = �(γ0 + γ1�EPTi ).

In the two models, Training is a binary variable with 1 denoting that a partic-
ipant is from the booster training group and 0 denoting the control group. The
missingness indicator variable m was created with 1 indicating that the score of
�EPT is missing. Both models were estimated through the Bayesian method as
discussed earlier. For priors, each regression coefficient (β) was given a normal
distribution with mean 0 and variance 106 and the variance of the residuals φ was
given an inverse gamma distribution with both scale and shape parameters equal
to 10−3. The results from the two models are summarized in Table 8.

First, the Geweke statistics show that the Markov chain for each model param-
eter converged to its marginal distribution because all Geweke statistics are in the
range of −1 to 1. Second, for all model parameters, the ratios between the Monte
Carlo error and the standard deviation are smaller than 5%. This indicates that the
parameter estimates were accurate. Thus, we can make our inference based on the
results in Table 8.

When missing data are assumed to be ignorable, results from the regular regres-
sion model show that booster training did not improve everyday problem solving
ability of the elderly after controlling effects of age and education level. Age did
not predict change in everyday problem solving ability, which is not consistent
with aging literature (e.g., Finkel et al., 2003, Hedden and Gabrieli, 2004). How-
ever, analyzing the data as MNAR using the simplified selection model reveals
a different picture. Training did have a positive effect in the change of everyday
problem solving ability. Overall, participants in the training group on average had
0.739 (s.d.: 0.316; HPD: 0.110–1.351) more positive change than those in the con-
trol group after controlling effects of age and education level. In addition, age is
negatively related to change in everyday problem solving ability (older adults had
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Table 8 Bayesian parameter estimates from the regular regression model and the simplified selec-
tion model

Estimate s.d. MC/s.d. HPD Geweke

Regular model Intercept 1.816 1.925 0.036 −2.011 5.506 −0.124
Training 0.117 0.281 0.006 −0.429 0.671 −0.740

Age −0.041 0.024 0.035 −0.087 0.006 −0.018
Education 0.070 0.051 0.018 −0.031 0.171 0.805

φ 10.280 0.631 0.003 9.057 11.520 0.649

Selection model Intercept 1.384 2.083 0.040 −2.843 5.273 0.483
Training 0.739 0.316 0.011 0.110 1.351 −0.819

Age −0.057 0.026 0.039 −0.105 −0.005 −0.426
Education 0.090 0.054 0.020 −0.018 0.194 −0.277

φ 13.010 1.288 0.021 10.460 15.500 −0.961
γ0 −1.312 0.230 0.028 −1.766 −0.866 0.994

γ1 (�EPT) −0.256 0.058 0.028 −0.366 −0.142 0.865

Note. s.d.: standard deviation, can also be viewed as standard error from a frequentist’s perspective.
MC/s.d.: the ratio between Monte Carlo error and standard deviation of a parameter. HPD: highest
posterior density credible interval.

more negative change than younger adults), which is consistent with previous find-
ings (e.g., see the review by Hedden and Gabrieli, 2004).

With different assumptions on missing mechanisms and consequently different
models, our data analysis led to different conclusions. Comparison between em-
pirical results and aging literature indicates that it is more likely that missing data
were MNAR in this example. From the estimate of γ1 in the simplified selection
model, �EPT was negatively related to the missingness of itself. This means that
participants with a lower �EPT (less positive change or more negative change)
were more likely to have missing data on post-test. In other words, if a participant
expected that he/she would not gain much on EPT through training, he/she was
more likely to miss the post-test. Note that we have found that for the training
group, participants on average had 0.739 more positive change in their EPT scores
than the control group after controlling the effects of age and education from the
simplified selection model. Thus, participants in the training group would have a
lower probability to have missing data than participants in the control group. Actu-
ally, from the empirical missing data rates of the ACTIVE study in Table 7, about
30.5% percent of participants have missing data in the control group and about
17.2% of participants have missing data in the booster training group. Therefore,
the control group had a higher missing data rate, which means that relatively more
lower �EPTs were missed and relatively more higher �EPTs were included in the
analysis than the training group in terms of proportions. This explains why results
from the two models are different.
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6 Conclusion and discussion

To ease the choice of appropriate variables in explaining missing mechanisms in
selection models, we examined and extended the simplified selection model used
by Best et al. (1996) in which missingness depends solely on the missing variable
itself. We first derived the full conditional posterior distributions for the simplified
selection model using the data augmentation algorithm. Then, we conducted six
simulation studies to evaluate the performance of the simplified selection model
under a variety of conditions. Finally, we demonstrated the application of the
simplified selection model through an example using real data from the ACTIVE
study.

Our simulation results portrayed important features of the simplified selection
model. Simulation study 1 showed that when MNAR data were analyzed as MAR
data, parameter estimates were incorrect. When the simplified selection model was
applied, parameter estimates were accurate. Simulation studies 2 and 3 demon-
strated that the simplified selection model was insensitive to some choices of priors
and link functions. For example, using either semi-conjugate priors or Jeffreys pri-
ors, model parameters were recovered equally well. Furthermore, although missing
data were generated through a step function, both the cumulative normal distri-
bution and logistic functions can be used to obtain correct regression parameter
estimates.

MNAR data may be resulted from different situations other than the simple sit-
uation that missingness depends on variables themselves of interest. For example,
missingness could be related to an auxiliary and unobserved variable. Simulation
study 4 investigated such a scenario and found that the simplified selection model
was still able to recover regression model parameters very well. Simulation study 5
looked into the situation where missingness in y depends on both y and X. The
results showed that the simplified selection model again performed well in this
situation. Overall, simulation results showed that the simplified selection model is
robust to the misspecification situations designed in our simulation studies and the
simplified selection model can recover regression model parameters under both
correctly specified situations and many misspecified situations.

Our ACTIVE data analysis provided a substantive example on how to apply
the simplified model to analyze real data. From previous research, we knew that
with the increase of age, there was a accelerated decline in cognitive ability (e.g.,
Finkel et al., 2003, Hedden and Gabrieli, 2004). However, the regular data analysis
assuming ignorable missing data showed that age was not related to the change of
EPT. This signaled that the missing mechanism here may not be ignorable. On the
other hand, when the simplified selection model was applied, the negative relation
between age and the change in EPT showed up. Furthermore, other results from
the simplified selection model seemed also reasonable. It demonstrated that if a
participant did not expect much help from booster training, she/he was more likely
to miss a test. It should be noted that this is not a formal test for distinguishing
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missing mechanisms. Thus, we suggest whenever a selection model is used to
analyze missing data, data analysis based on a corresponding regular model should
also be conducted and reported for comparison.

This study has its limitations. Admittedly, the regression model discussed in
the current study is a relatively simple model. However, this model is very widely
used practically. Especially, with such a model, we can disentangle the complexity
of missing data analysis in a transparent way. For example, conditional posterior
distributions of missing data are readily available and they clearly show the differ-
ence and connection between a regular model and a selection model. The method
and strategy used in this study can be readily generalized to more complex models,
for example, growth curve models and growth mixture models. By presenting the
details of a simpler model, it is our hope that more future research on nonignor-
able missing data can be conducted for regression models and other sophisticated
models.

Because of the focus of the current study, we did not formally discuss model
fit and model selection when applying selection models. Potentially, the model fit
can be evaluated through posterior predictive checking and the model selection
can be conducted using Bayes factors (Gelman et al., 2003). However, the validity
and reliability of posterior predictive checking and Bayes factors for model fit and
model selection involving nonignorable missing data need careful evaluation.

Appendix: WinBUGS codes for the selection model

## Model
model{
for (i in 1:N){

mu[i]<-b[1]+b[2]*x1[i]+b[3]*x2[i]
y[i]~dnorm(mu[i], pre.phi)

z[i]~dnorm(muz[i], 1)I(L[i],U[i])
muz[i]<-b[4]+b[5]*y[i]

L[i]<- -(1-m[i])*10000
U[i]<- m[i]*10000

}
for (i in 1:5){

b[i]~dnorm(0, 1.0E-6)
Para[i]<-b[i]

}
pre.phi~dgamma(.001,.001)
Para[6]<-1/pre.phi
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}
## Starting values
list(b=c(0,0,0,0,0), pre.phi=1)
## Data are omitted for the sake of saving space
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